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ABSTRACT
Generative models transform random noise into images; their inversion aims to
transform images back to structured noise for recovery and editing. This paper ad-
dresses two key tasks: (i) inversion and (ii) editing of a real image using stochastic
equivalents of rectified flow models (such as Flux). Although Diffusion Mod-
els (DMs) have recently dominated the field of generative modeling for images,
their inversion presents faithfulness and editability challenges due to nonlineari-
ties in drift and diffusion. Existing state-of-the-art DM inversion approaches rely
on training of additional parameters or test-time optimization of latent variables;
both are expensive in practice. Rectified Flows (RFs) offer a promising alternative
to diffusion models, yet their inversion has been underexplored. We propose RF
inversion using dynamic optimal control derived via a linear quadratic regulator.
We prove that the resulting vector field is equivalent to a rectified stochastic dif-
ferential equation. Additionally, we extend our framework to design a stochastic
sampler for Flux. Our inversion method allows for state-of-the-art performance
in zero-shot inversion and editing, outperforming prior works in stroke-to-image
synthesis and semantic image editing, with large-scale human evaluations con-
firming user preference.

1 INTRODUCTION

Vision generative models typically transform noise into images. Inverting such models, given a ref-
erence image, involves finding the structured noise that can regenerate the original image. Efficient
inversion must satisfy two crucial properties. First, the structured noise should produce an image
that is faithful to the reference image. Second, the resulting image should be easily editable using
new prompts, allowing fine modifications over the image.

Diffusion Models (DMs) have become the mainstream approach for generative modeling of im-
ages (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020), excelling at sampling
from high-dimensional distributions (Ramesh et al., 2021; Saharia et al., 2022; Ramesh et al., 2022;
Rombach et al., 2022; Podell et al., 2023; Pernias et al., 2024). The sampling process follows a
Stochastic Differential Equation known as reverse SDE (Anderson, 1982; Efron, 2011; Song et al.,
2021b). Notably, these models can invert a given image. Recent advances in DM inversion have
shown a significant impact on conditional sampling, such as stroke-to-image synthesis (Meng et al.,
2022), image editing (Hertz et al., 2022; Mokady et al., 2023; Couairon et al., 2023; Rout et al.,
2023a;b; 2024a; Delbracio & Milanfar, 2023) and stylization (Hertz et al., 2023; Rout et al., 2024b).

Despite its widespread usage, DM inversion faces critical challenges in faithfulness and editability.
First, the stochastic nature of the process requires fine discretization of the reverse SDE (Ho et al.,
2020; Song et al., 2021b), which increases expensive Neural Function Evaluations (NFEs). Coarse
discretization, on the other hand, leads to less faithful outputs (Meng et al., 2022), even with deter-
ministic methods like DDIM (Song et al., 2021a;b). Second, nonlinearities in the reverse trajectory
introduce unwanted drift, reducing the accuracy of reconstruction (Karras et al., 2024). While ex-
isting methods enhance faithfulness by optimizing latent variables (Rout et al., 2024a) or prompt
embeddings (Mokady et al., 2023; Miyake et al., 2023), they tend to be less efficient, harder to edit,
and rely on complex attention processors to align with a given prompt (Hertz et al., 2022; Rout et al.,
2024a). These added complexities make such methods less suitable for real-world deployment.

For inversion and editing, we introduce a zero-shot conditional sampling algorithm using Rectified
Flows (RFs) (Liu et al., 2022; Albergo & Vanden-Eijnden, 2023; Lipman et al., 2022; Esser et al.,
2024), a powerful alternative to DMs. Unlike DMs, where sampling is governed by a reverse SDE,
RFs use an Ordinary Differential Equation known as reverse ODE, offering advantages in both ef-
ficient training and fast sampling. We construct a controlled forward ODE, initialized from a given
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Figure 1: Graphical model illustrating (a) DDIM inversion
and (b) RF inversion. Due to nonlinearities in DM tra-
jectory, the DDIM inverted latent x1 significantly deviates
from the original image y0. RF inversion without controller
reduces this deviation, resulting in x1. With controller, RF
inversion further eliminates the reconstruction error, making
x1 nearly identical to y0, which enhances the faithfulness.
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image, to generate the initial conditions for the reverse ODE. The reverse ODE is then guided by
an optimal controller, obtained through solving a Linear Quadratic Regulator (LQR) problem. We
prove that the resulting new vector fields have a stochastic interpretation with an appropriate drift
and diffusion. We evaluate RF inversion on stroke-to-image generation and image editing tasks,
and show extensive qualitative results on other applications like cartoonization. Our method signif-
icantly improves photo realism in stroke-to-image generation, surpassing a state-of-the-art (SoTA)
method (Mokady et al., 2023) by 89%, while maintaining faithfulness to the input stroke. In addi-
tion, we show that RF inversion outperforms DM inversion (Meng et al., 2022) in faithfulness by
4.7% and in realism by 13.8% on LSUN-bedroom dataset (Wang et al., 2017). Figure 1 shows a
graphical comparison between DM and RF inversion.

Our theoretical and practical contributions can be summarized as:
• We present an efficient inversion method for RF models, including Flux, that requires no addi-

tional training, latent optimization, prompt tuning, or complex attention processors.
• We develop a new vector field for RF inversion, interpolating between two competing objectives:

consistency with a possibly corrupted input image, and consistency with the “true” distribution
of clean images (§3.3). We prove that this vector field is equivalent to a rectified SDE that
interpolates between the stochastic equivalents of these competing objectives (§3.4).
• We demonstrate the faithfulness and editability of RF inversion across three benchmarks: (i)

LSUN-Bedroom, (ii) LSUN-Church, and (iii) SFHQ, on two tasks: stroke-to-image synthesis
and image editing. In addition, we provide extensive qualitative results and conduct large-scale
human evaluations to assess user preference metrics (§5).

2 RELATED WORKS

DM Inversion. Diffusion models have become the mainstream approach for generative modeling,
making DM inversion an exciting area of research (Meng et al., 2022; Couairon et al., 2023; Song
et al., 2021b; Hertz et al., 2023; Mokady et al., 2023; Rout et al., 2024a). Among training-free
methods, SDEdit (Meng et al., 2022) adds noise to an image and uses the noisy latent as structured
noise. For semantic image editing based on a given prompt, it simulates the standard reverse SDE
starting from this structured noise. SDEdit requires no additional parameter training, latent variable
optimization, or complex attention mechanisms. However, it is less faithful to the original image
because adding noise in one step is equivalent to linear interpolation between the image and noise,
while the standard reverse SDE follows a nonlinear path (Liu et al., 2022; Karras et al., 2022).

An alternate method, DDIM inversion (Song et al., 2021a;b), recursively adds predicted noise at
each forward step and returns the final state as the structured noise (illustrated by Yt process in
Figure 1(a)). However, DDIM inversion often deviates significantly from the original image due
to nonlinearities in the drift and diffusion coefficients, as well as inexact score estimates (Mokady
et al., 2023). To reduce this deviation, recent approaches optimize prompt embeddings (Mokady
et al., 2023) or latent variables (Rout et al., 2024a), but they have high time complexity. Negative
prompt inversion (Miyake et al., 2023) speeds up the inversion process but sacrifices faithfulness.
Methods like CycleDiffusion (Wu & De la Torre, 2023) and Direction Inversion (Ju et al., 2023) use
inverted latents as references during editing, but they are either computationally expensive or not
applicable to rectified flow models like Flux or SD3 (Esser et al., 2024).

DM Editing. Efficient inversion is crucial for real image editing. Once a structured noise is ob-
tained by inverting the image, a new prompt is fed into the T2I generative model. Inefficient inver-
sion often fails to preserve the original content and therefore requires complex editing algorithms.
These editing algorithms can be broadly classified into (i) attention control, such as prompt-to-
prompt (Hertz et al., 2022), plug-and-play (PnP) (Tumanyan et al., 2023), (ii) optimization-based
methods like DiffusionCLIP (Kim et al., 2022), DiffuseIT (Kwon & Ye, 2023), STSL (Rout et al.,
2024a), and (iii) latent masking to edit specific regions of an image using masks provided by the
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user (Nichol et al., 2022; Huberman-Spiegelglas et al., 2024) or automatically extracted from the
generative model (Couairon et al., 2023). We focus on efficient inversion, avoiding the need for
complex editing algorithms.

Challenges in RF Inversion. Previous inversion or editing approaches have been tailored towards
diffusion models and do not directly apply to SoTA rectified flow models like Flux. This limitation
arises because the network architecture of Flux is MM-DiT (Peebles & Xie, 2023), which is funda-
mentally different from the traditional UNet used in DMs (Ho et al., 2020; Song et al., 2021a;b). In
MM-DiT, text and image information are entangled within the architecture itself, whereas in UNet,
text conditioning is handled via cross-attention layers. Additionally, Flux primarily uses T5 text en-
coder, which lacks an aligned latent space for images, unlike CLIP encoders. Therefore, extending
these prior methods to modern T2I generative models requires a thorough investigation. We take the
first step by inverting and editing a given image using Flux.

RF Inversion and Editing. DMs (Ho et al., 2020; Song et al., 2021a; Rombach et al., 2022) tradi-
tionally outperform RFs (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2023) in
high-resolution image generation. However, recent advances have shown that RF models like Flux
can surpass SoTA DMs in text-to-image (T2I) generation tasks (Esser et al., 2024). Despite this,
their inversion and editing capabilities remain underexplored. In this paper, we introduce an effi-
cient RF inversion method that avoids the need for training additional parameters (Hu et al., 2021;
Ruiz et al., 2023), optimizing latent variables (Rout et al., 2024a), prompt tuning (Mokady et al.,
2023), or using complex attention processors (Hertz et al., 2022). While our focus is on inversion
and editing, we also show that our framework can be easily extended to generative modeling.

Filtering, Control and SDEs. There is a rich literature on the connections between nonlinear filter-
ing, optimal control and SDEs (Fleming & Rishel, 1975; Øksendal, 2003; Tzen & Raginsky, 2019;
Zhang & Chen, 2022). These connections are grounded in the Fokker-Planck equation (Øksendal,
2003), which RF methods (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2023;
Albergo et al., 2023) heavily exploit in sampling. Our study focuses on rectified flows for conditional
sampling, and shows that the resulting drift field also has an optimal control interpretation.

3 METHOD

3.1 PRELIMINARIES

In generative modeling, the goal is to sample from a target distribution p0 given a finite number
of samples from that distribution. Rectified flows (Lipman et al., 2022; Liu et al., 2022) represent
a class of generative models that construct a source distribution q0 and a time varying vector field
vt(xt) to sample p0 using an ODE:

dXt = vt(Xt)dt, X0 ∼ q0, t ∈ [0, 1]. (1)

Starting from X0 = x0, the ODE (1) is integrated from t : 0 → 1 to yield a sample x1 distributed
according to p0 (e.g., the distribution over images). A common choice of q0 is standard Gaussian
N (0, I) and vt (Xt) = −u(Xt, 1 − t;ϕ), where u is a neural network parameterized by ϕ. The
neural network is trained using the conditional flow matching objective as discussed below.

Training Rectified Flows. To train a neural network to serve as the vector field for the ODE (1),
we couple samples from p0 with samples from q0 – which we call p1 to simplify the notation – via
a linear path: Yt = tY1 + (1− t)Y0. The resulting marginal distribution of Yt becomes:

pt(yt) = EY1∼p1 [pt(yt|Y1)] =

∫
pt(yt|y1)p1(y1)dy1. (2)

Given an initial state Y0 = y0 and a terminal state Y1 = y1, the linear path induces an ODE:
dYt = ut (Yt|y1) dt with the conditional vector field ut (Yt|y1) = y1 − y0. The marginal vector
field is derived from the conditional vector field using the following relation (Lipman et al., 2022):

ut(yt) = EY1∼p1

[
ut (yt|Y1)

pt(yt|Y1)

pt(yt)

]
=

∫
ut (yt|y1)

pt(yt|y1)

pt(yt)
p1(y1)dy1. (3)

We can then use a neural network u(yt, t;ϕ), parameterized by ϕ, to approximate the marginal
vector field ut(yt) through the flow matching objective defined as:

LFM (ϕ) := Et∼U [0,1],Yt∼pt

[
‖ut(Yt)− u(Yt, t;ϕ)‖22

]
. (4)
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For tractability, we can instead consider a different objective, called conditional flow matching:

LCFM (ϕ) := Et∼U [0,1],Yt∼pt(·|Y1),Y1∼p1

[
‖ut(Yt|Y1)− u(Yt, t;ϕ)‖22

]
. (5)

LCFM andLFM have the identical gradients (Lipman et al., 2022, Theorem 2), and are hence equiv-
alent. However, LCFM (ϕ) is computationally tractable, unlike LFM (ϕ), and therefore preferred
during training. Finally, the required vector field in (1) is computed as vt (Xt) = −u(Xt, 1− t;ϕ).
In this way, rectified flows sample a data distribution by an ODE with a learned vector field.

3.2 CONNECTION BETWEEN RECTIFIED FLOWS AND LINEAR QUADRATIC REGULATOR

The unconditional rectified flows (RFs) (e.g., Flux) from Section §3.1 above, enable image gener-
ation by simulating the vector field vt(·) initialized with a sample of random noise. Subsequently,
by simulating the reversed vector field −v1−t(·) starting from the image, we get back the sample of
noise that we started with. We formalize this statement below.
Proposition 3.1. Given an image y0 and the vector field vt(·) of the generative ODE (1), suppose
the structured noise y1 is obtained by simulating an ODE:

dYt = ut(Yt)dt, Y0 = y0, t ∈ [0, 1]. (6)

If ut(·) = −v1−t(·) and X0 = y1, then the ODE (1) recovers the original image, i.e., X1 = y0.

Implication. Rectified flows enable exact inversion of a given image when the vector field of the
generative ODE (1) is precisely known. Employing ODE (6) for the structured noise and ODE (1)
to transform that noise back into an image, RF inversion accurately recovers the given image.

Suppose instead that we start with a corrupted image and simulate the reversed vector field−v1−t(·).
Then we obtain a noise sample. There are two salient aspects of this noise sample. First, it is
consistent with the original image: when processed through vt(·) it results in the same corrupted
image. Second, if the image sample is “atypical” (e.g., corrupted, or, say, a stroke painting as in
§5), then the sample of noise is also likely to be atypical. In other words, the noise sample is only
consistent to the (possibly corrupted) image sample.

Our goal is to modify the pipeline above so that even when we start with a corrupted image, we
can get back a clean image (see stroke-to-image synthesis in Figure 4), but for this, we need to
process by vt(·) a noise sample that is closer to being “typical”. More generally, the goal is to create
a pipeline that supports semantic editing of real images (§5), e.g., changing age, or gender without
relying on additional training, optimization, or complex attention processors.

Thus, as a first step, we derive an optimal controller that takes a minimum energy path to convert
any image Y0 (whether corrupted or not) to a given sample of random noise Y1 ∼ p1 – i.e., noise
that is typical for p1. Specifically, we consider optimal control in a d-dimensional vector space Rd:

V (c) :=

∫ 1

0

1

2
‖c (Zt, t)‖22 dt+

λ

2
‖Z1 − Y1‖22 , dZt = c (Zt, t) dt, Z0 = y0, Y1 ∼ p1, (7)

where λ is the weight assigned to the terminal cost and V (c) denotes the total cost of the control
c : Rd × [0, 1] → Rd. The minimization of V (c) over the admissible set of controls, denoted by C,
is known as the Linear Quadratic Regulator (LQR) problem. The solution of the LQR problem (7)
is given in Proposition 3.2, which minimizes the quadratic transport cost of the dynamical system.
Proposition 3.2. For Z0 = y0 and Y1 = y1, the optimal controller of the LQR problem (7),
denoted by c∗ (·, t) is equal to the conditional vector field ut (·|y1) of the rectified linear path Yt =
tY1 + (1− t)Y0 when Y0 = y0, i.e., c∗ (zt, t) = ut (zt|y1) = (y1 − zt)/(1− t).

3.3 INVERTING RECTIFIED FLOWS WITH DYNAMIC CONTROL

So far, we have two vector fields. The first, from the RFs, transforms an image Y0 typical for
distribution p0 to a typical sample of random Gaussian noise Y1 ∼ p1. As discussed above, if the
image sample is atypical, then the sample of noise is also likely to be atypical.

We also have a second vector field resulting from the optimal control formulation that transforms any
image (whether corrupted or not) to a noise sample that is typical-by-design from the distribution p1.
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Therefore, this sample, when passed through the rectified flow ODE (1) results in a “typical” image
from the “true” distribution p0. This image is clean, i.e., typical for p0, but it is not related to the
image Y0. Our controlled ODE, defined below, interpolates between these two differing objectives
– consistency with the given (possibly corrupted) image, and consistency with the distribution of
images p0 – with a tunable parameter γ:

dYt =
[
ut(Yt) + γ (ut(Yt|y1)− ut(Yt))

]
dt, Y0 = y0, (8)

where ut(Yt|y1) = c∗(Yt, t) is computed based on the insights from Proposition 3.2, and ut(Yt) =
−v1−t(Yt) as established in Proposition 3.1. Here, we call γ ∈ [0, 1] the controller guidance. Thus,
ODE (8) generalizes (6) to editing applications, while keeping its inversion accuracy comparable.

When γ = 1, the drift field of the ODE (8) becomes optimal controller of LQR problem (7), ensuring
that the structured noise Y1 = y1 adheres to the distribution p1. Consequently, initializing the
generative ODE (1) with y1 results in samples with high likelihood under the data distribution p0.

Conversely, when γ = 0, the system follows the ODE (6) described in Proposition 3.1, resulting a
structured noise Y1 that is not guaranteed to follow the noise distribution p1. However, initializing
the generative ODE (1) with this noise precisely recovers the reference image y0.

Beyond this vector field interpolation intuition, we show in the next section §3.4 that the controlled
ODE (8) has an SDE interpretation. As is well known (Ho et al., 2020; Song et al., 2021a; Meng
et al., 2022; Song et al., 2021b), SDEs are robust to initial conditions, in proportion to the variance
of the additive noise. Specifically, errors propagate over time in an ODE initialized with an incorrect
or corrupted sample. However, SDEs (Markov processes) under appropriate conditions converge to
samples from a carefully constructed invariant distribution with reduced sensitivity to the initial con-
dition, resulting in a form of robustness to initialization. As we see, the parameter γ (the controller
guidance) appears in the noise term to the SDE, thus the SDE analysis in the next section again
provides intuition on the trade-off between consistency to the (corrupted) image and consistency to
the terminal invariant distribution, and helps design a stochastic sampler for Flux (Appendix C.7).
Remark 3.3. We note that our analysis extends to the case where γ is time-varying, though we
omit these results for simplicity of notation. This is useful in practice, especially when y0 is a
corrupted image, because for large γ the stochastic evolution (22) moves toward a sample from
the invariant measure N (0, I). This noise encodes clean images. Starting from this noise, the
corresponding reverse process operates in pure diffusion mode, resulting in a clean image. As the
process approaches the terminal state, γ is gradually reduced to ensure that y0 is encoded through
ut(·) into the final structured noise sample.

3.4 CONTROLLED RECTIFIED FLOWS AS STOCHASTIC DIFFERENTIAL EQUATIONS

An SDE (Ho et al., 2020) is known to have an equivalent ODE formulation (Song et al., 2021a)
under certain regularity conditions (Anderson, 1982; Song et al., 2021b). In this section, we derive
the opposite: an SDE formulation for our controlled ODE (8) from §3.3. Let Wt be a d-dimensional
Brownian motion in a filtered probability space (Ω,F , {Ft},P).
Theorem 3.4. Fix any T ∈ (0, 1). For any t ∈ [0, T ], the controlled ODE (8) is explicitly given by:

dYt =

[
− 1

1− t
(Yt − γy1)− (1− γ)t

1− t
∇ log pt(Yt)

]
dt, Y0 ∼ p0. (9)

Its density evolution is identical to the density evolution of the following SDE:

dYt = − 1

1− t
(Yt − γy1) dt+

√
2(1− γ)t

1− t
dWt, Y0 ∼ p0. (10)

Finally, denoting pt(·) as the marginal pdf of Yt, the density evolution is explicitly given by:

∂pt(Yt)

∂t
= ∇ ·

[(
1

1− t
(Yt − γy1) +

(1− γ)t

1− t
∇ log pt(Yt)

)
pt(Yt)

]
. (11)

Properties of SDE (10). Elaborating on the intuition discussed at the end of §3.3, when the con-
troller guidance parameter γ = 0, it becomes the stochastic equivalent of the standard RFs; see
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Lemma A.2 for a precise statement. The resulting SDE is given by

dYt = − 1

1− t
Ytdt+

√
2t

1− t
dWt, Y0 ∼ p0, (12)

which improves faithfulness to the image Y0. When γ = 1, the SDE (10) solves the LQR problem
(7) and drives towards the terminal state Y1 = y1. This improves the generation quality, because
the sample Y1 is from the correct noise distribution p1 as previously discussed in §3.3. Therefore, a
suitable choice of γ retains faithfulness while simultaneously applying the desired edits.

Finally, we assume T = 1 − δ for sufficiently small δ (such that 0 < δ � 1) to avoid irregularities
at the boundary. This is typically considered in practice for numerical stability (even for diffusion
models). Thus, in practice, the final sample y1−δ is returned as y1.

Comparison with DMs. Analogous to the SDE (12), the stochastic noising process of DMs is
typically modeled by the Ornstein-Uhlenbeck (OU) process, governed by the following SDE:

dYt = −Ytdt+
√

2dWt. (13)

The corresponding ODE formulation is given by:

dYt = [−Yt −∇ log pt(Yt)] dt. (14)

Instead, our approach is based on rectified flows (1), which leads to a different ODE and conse-
quently translates into a different SDE. As an additional result, we formalize the ODE derivation in
Lemma A.1. In Lemma A.2, we show that the marginal distribution of this ODE is equal to that of
an SDE with appropriate drift and diffusion terms. In Proposition A.3, we show that the stationary
distribution of this new SDE (12) converges to the standard Gaussian N (0, I) in the limit as t→ 1.

The standard OU process (13) interpolates between the data distribution at time t = 0 and a standard
Gaussian as t→∞. The SDE (12), however, interpolates between the data distribution at time t = 0
and a standard Gaussian at t = 1. In other words, it effectively “accelerates” time as it progresses
to achieve the terminal Gaussian distribution. This is accomplished by modifying the coefficients of
drift and diffusion as in (12) to depend explicitly on time t. Thus, a sample path of (12) appears like
a noisy line, unlike that of the OU process (see Appendix C.3 for numerical simulations).

3.5 CONTROLLED REVERSE FLOW USING RECTIFIED ODES AND SDES

In this section, we develop an ODE and an SDE similar to our discussions above, but for the reverse
direction (i.e., from noise to images).

Reverse process using ODE. Starting from the structured noise y1 obtained by integrating the
controlled ODE (8), we construct another controlled ODE (15) for the reverse process (i.e., noise to
image). In this process, the optimal controller uses the reference image y0 for guidance:

dXt =
[
vt(Xt) + η (vt(Xt|y0)− vt(Xt))

]
dt, X0 = y1, t ∈ [0, 1], (15)

where η ∈ [0, 1] is the controller guidance parameter as before that controls faithfulness and ed-
itability of the given image y0. Similar to the analysis in Proposition 3.2, vt(Xt|y0) is obtained by
solving the modified LQR problem (16):

V (c) =

∫ 1

0

1

2
‖c (Zt, t)‖22 dt+

λ

2
‖Z1 − y0‖22 , dZt = c (Zt, t) dt, Z0 = y1. (16)

Solving (16), we get c(Zt, t) = y0−Zt

1−t . Our controller steers the samples toward the given image
y0. Thus, the controlled reverse ODE (15) effectively reduces the reconstruction error incurred in
the standard reverse ODE (1) of RF models (e.g. Flux).

Reverse process using SDE. Finally, in Theorem 3.5, we provide the stochastic equivalent of our
controlled reverse ODE (15) for generation. Recall that we initialize with the terminal structured
noise by running the controlled forward ODE (8), along with a reference image y0. As discussed
above, we terminate the inversion process at a time T = 1 − δ for numerical stability, resulting
in a vector y1−δ . Our reverse SDE thus starts at a corresponding time δ with this vector y1−δ at
initialization, and terminates at time T ′ < 1.
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Theorem 3.5. Fix any T ′ ∈ (δ, 1), and for any t ∈ [δ, T ′], the density evolution of the controlled
ODE (15) initialized at X0 = y1−δ is identical to the density evolution of the following SDE:

dXt =

[
(1− t− η)Xt + ηty0

t(1− t)
+

2(1− t)(1− η)

t
∇ log p1−t(Xt)

]
dt+

√
2(1− t)(1− η)

t
dWt.

(17)

Furthermore, denoting qt(·) as the marginal pdf of Xt, its density evolution is given by:

∂qt(Xt)

∂t
= ∇ ·

[
−
(

1− t− η
t(1− t)

Xt +
η

1− t
y0 +

(1− t)
t

(1− η)∇ log p1−t(Xt)

)
qt(Yt)

]
. (18)

Properties of SDE (17). When the controller parameter η = 0, we obtain a stochastic sampler
(22) for the pre-trained Flux, as given in Lemma A.4. This case of our SDE (17) corresponds to
the stochastic variant of standard RFs (Liu et al., 2022; Lipman et al., 2022; Albergo & Vanden-
Eijnden, 2023). Our key contribution lies in conditioning on X1 = y0 for inverting rectified flows.
Importantly, our explicit construction does not require additional training or test-time optimization,
enabling for the first time an efficient sampler for zero-shot inversion and editing using Flux. When
η = 1, the score term and Brownian motion vanish from the SDE (17). The resulting drift becomes
y0−Xt

1−t , the optimal controller for the LQR problem (16), exactly recovering the given image y0.

Remark 3.6. Similar to Remark 3.3, our analysis extends to the case when η is time-varying. This
is useful in editing, as it allows the flow to initially move toward the given image y0 by choosing a
large η. As the flow approaches y0 on the image manifold, η is gradually reduced, ensuring that the
text-guided edits are enforced through the unconditional vector field vt(·) provided by Flux.

4 ALGORITHM: INVERSION AND EDITING VIA CONTROLLED ODES

In this section, we define the problem setup and outline the procedure using controlled ODEs (8)
and (15). We employ Algorithm 1 for inversion and Algorithm 2 for editing: see Appendix C.

Problem Setup. The user provides a text “prompt” to edit reference content, which could be a
corrupt or a clean image. For the corrupt image guide, we use the dataset from SDEdit (Meng et al.,
2022), which contains color strokes to convey high-level details. In this setting, the reference guide
y0 is typically not a realistic image under the data distribution p0. The objective is to transform this
guide into a more realistic image under p0 while maintaining faithfulness to the original guide.

For the clean image guide, the user provides a real image y0 along with an accompanying text
“prompt” to specify the desired edits. The task is to apply text-guided edits to y0 while preserving
its content. Examples include face editing, where the text might instruct change in age or gender.

Procedure. Our algorithm has two key steps: inversion and editing. We discuss each step below.

Original                    RF inversion

Figure 2: Inverting flows by
controlled ODEs (8) and (15).

Inversion. The first step involves computing the structured noise
Y1 by employing our controlled ODE (8), initialized at the ref-
erence content Y0 = y0. To compute the unconditional vector
field, we use the pre-trained Flux model u (·, ·, ·;ϕ), which requires
three inputs: the state Yt, the time t, and the prompt embedding
Φ(prompt). During the inversion process, we use null prompt in the
Flux model, i.e., ut(yt) = u(yt, t,Φ(“”);ϕ). For the conditional
vector field, we apply the analytical solution derived in Proposi-
tion 3.2. The inversion process yields a latent variable that is then
used to initialize our controlled ODE (15), i.e., X0 = y1. In this
phase, we again use the null prompt to compute the vector field
vt(xt) = −u(xt, 1− t,Φ(“”);ϕ): see Figure 2 for the final output.

Editing. The second step involves text-guided editing of the ref-
erence content y0. This process is governed by our controlled
ODE (15), where the vector field is computed using the desired text
prompt within Flux: vt(Xt) = −u(xt, 1 − t,Φ(prompt);ϕ). The
controller guidance η in (15) balances faithfulness and editability:
higher η improves faithfulness but limits editability, while lower η allows significant edits at the cost

7
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0                                      0.2                                     0.4                                 0.6       0.8                             Original

Figure 3: Effect of controller guidance η given the original image and the prompt: “A young man”.
Increasing η improves the faithfulness to the original image, which is reconstructed at η=1.

Input SDEdit DDIM Inversion NTI NTI+P2P                  Ours

Figure 4: Stroke2Image generation. Our method generates photo-realistic images of bedroom or
church given stroke paints, showing robustness to initial corruptions.

Original SDEdit DDIM Inversion NTI NTI+P2P                   Ours
Figure 5: Image editing for adding face accessories. Prompt: “face of a man/woman wearing
glasses”. The proposed method better preserves the identity while applying the desired edits.

of reduced faithfulness. Consequently, the controller guidance η provides a smooth interpolation
between faithfulness and editability, a crucial feature in semantic image editing. Motivated by Re-
mark 3.3 and 3.6, we consider a time-varying controller guidance ηt, such that for a fixed η ∈ [0, 1]
and τ ∈ [0, 1], ηt = η ∀t ≤ τ and 0 otherwise. Figure 3 illustrates the effect of controller guidance
η for τ = 0.3; see Appendix C.2 for a detailed ablation study.

5 EXPERIMENTAL EVALUATION

We show that RF inversion outperforms DM inversion across three benchmarks: LSUN-church,
LSUN-bedroom (Wang et al., 2017), and SFHQ (Beniaguev, 2022) on two tasks: Stroke2Image
generation and semantic image editing. Stroke2Image generation shows the robustness of our algo-
rithm to initial corruption. In semantic image editing, we emphasize the ability to edit clean images
without additional training, optimization, or complex attention processors.

Baselines. As this paper focuses on inverting flows, we compare with SoTA inversion approaches,
such as NTI (Mokady et al., 2023), DDIM Inversion (Song et al., 2021a), and SDEdit (Meng et al.,
2022). We use the official NTI implementation for both NTI and DDIM inversion, and Diffusers
library for SDEdit. Hyper-parameters for all these baselines are tuned for optimal performance. We

8
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“laugh” “angry”Original “A woman” “old” “older”

man à woman

(a) (b) 

(c) Original + “pepperoni” + “mushroom”(d) 
Figure 6: Editing (a) stylized expression, (b) age, (c) gender, and (d) object insert. Given an original
image and a text prompt, our algorithm performs semantic image editing in the wild.

Table 1: Quantitative results for Stroke2Image generation. L2 and Kernel Inception Distance
(KID) capture faithfulness and realism, respectively. Optimization-based methods are colored gray.
User Pref. shows the percentage of users that prefer our method over each alternative in pairwise
comparisons (and ties). E.g.: 62.11% (+ 8% ties) prefer ours over SDEdit-Flux for LSUN Bedroom.

LSUN Bedroom LSUN Church

Method L2 ↓ KID ↓ User Pref. (%) ↑ L2 ↓ KID ↓ User Pref. (%) ↑
SDEdit-SD1.5 86.72 0.029 59.67 (5.33) 90.72 0.089 65.33 (4.11)
SDEdit-SDXL 96.82 0.133 - 98.19 0.112 -
SDEdit-SD3 93.40 0.037 - 98.14 0.096 -
SDEdit-Flux 94.89 0.032 62.11 (8.00) 92.47 0.081 66.22 (5.22)
DDIM Inv-SD1.5 87.95 0.113 82.56 (1.67) 97.36 0.107 85.44 (2.78)
NTI-SD1.5 82.77 0.095 80.89 (4.33) 87.88 0.098 77.11 (4.89)
NTI+P2P-SD1.5 46.46 0.234 98.11 (1.78) 34.48 0.168 99.22 (0.56)
Ours 82.65 0.025 - 80.36 0.059 -

compare with NTI for both direct prompt change and with prompt-to-prompt Hertz et al. (2022)
editing. All methods are training-free; however, NTI (Mokady et al., 2023) solves an optimization
problem at each denoising step during inversion and uses P2P (Hertz et al., 2022) attention processor
during editing. We follow the evaluation protocol from SDEdit (Meng et al., 2022). More qualitative
results and comparison are in Appendix §C.

Stroke2Image generation. As discussed in §4, our goal is to generate a photo-realistic image from
a stroke paint (a corrupted image) and the text prompt “photo-realistic picture of a bedroom”. In this
case, the high level details in the stroke painting guide the reverse process toward a clean image.

In Figure 4, we compare RF inversion (ours) with DM inversions. DM inversions propagate the
corruption from the stroke painting into the structured noise, which leads to outputs resembling the
input stroke painting. NTI optimizes null embeddings to align the reverse process with the DDIM
forward trajectory. Although adding P2P to the NTI pipeline helps localized editing as in Figure 5,
for corrupted images, it drives the reverse process even closer to the corruption. In contrast, our
controlled ODE (8) yields a structured noise that is consistent with the corrupted image and also the
invariant terminal distribution, as discussed in §3.3, resulting in more realistic images.

In Table 1, we show that our method outperforms prior works in faithfulness and realism. On the test
split of LSUN bedroom dataset, our approach is 4.7% more faithful and 13.79% more realistic than
the best optimization free method SDEdit-SD1.5. Ours is 73% more realistic than the optimization-
based method NTI, but comparable in L2. As discussed, NTI+P2P gets closer toward the corrupt
image, which gives a very low L2 error, but the resulting image becomes unrealistic. Our approach
is 89% more realistic than NTI+P2P. We observe similar gains on LSUN church dataset.

User study. We conduct a user study using Amazon Mechanical Turk to evaluate the overall perfor-
mance of the our method. With 3 responses for each question, we collected in total 9,000 compar-
isons from 126 participants. As given in Table 1, our method outperforms all the other baselines by
at least 59.67% in terms of overall satisfaction. More details are provided in Appendix §C.6.
Semantic Image Editing. Given a clean image and a text “prompt”, the objective is to mod-
ify the image according to the given text while preserving the contents of the image (identity for

9
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Table 2: Quantitative results for face editing on SFHQ for “wearing glasses”.
Method Face Rec. ↓ DINO ↑ CLIP-T ↑ CLIP-I ↑ Runtime(s) ↓
SDEdit-SD1.5 0.626 0.885 0.300 0.712 8
SDEdit-Flux 0.632 0.892 0.292 0.710 24
DDIM Inv. 0.709 0.884 0.311 0.669 15
NTI 0.707 0.876 0.304 0.666 78
NTI+P2P 0.443 0.953 0.293 0.845 85
Ours 0.442 0.951 0.300 0.900 39

face images). In rectified linear paths, editing from a noisy latent becomes straightforward, fur-
ther enhancing the efficiency of our approach. Compared with SoTA approaches (Figure 5), our
method requires no additional optimization or complex attention processors as in NTI (Mokady
et al., 2023)+P2P(Hertz et al., 2022). Thus, it is more efficient than a current SoTA approach, and
importantly, more faithful to the original image while applying the desired edits.

In Table 2, we show that our method outperforms the optimization-free methods by at least 29% in
face reconstruction, 6.6% in DINO patch-wise similarity, and 26.4% in CLIP-Image similarity while
being comparable in prompt alignment metric CLIP-T. Importantly, our approach offers 54.11% gain
in runtime while staying comparable to NTI+P2P.

In Figure 6, we showcase four complex editing tasks: (a) prompt-based stylization with the prompt:
“face of a boy in disney 3d cartoon style”, where facial expressions, such as “laugh” or “angry” are
used for editing; (b) ability to control the age of a person; (c) interpolating between two concepts:
“A man”↔ “A woman”; (d) sequentially inserting pepperoni and mushroom to an image of a pizza.
We provide more examples of editing in the wild in Appendix §C.

Original SDEdit (Flux) Flux Inversion Ours

Figure 7: Comparison using Flux backbone.

Comparison using the same backbone: Flux.
In Figure 7, we compare our method with
SDEdit and DDIM inversion both adapted to
Flux. NTI optimizes null embeddings to
align with forward latents before applying text-
guided edits, an approach well-suited for DMs
that use both null and text embeddings. How-
ever, this strategy cannot be applied to Flux, as
it does not explicitly use null embeddings. Con-
sequently, we only reimplement SDEdit and
DDIM inversion with the Flux backbone and
compare them to our method. Since all meth-
ods leverage the same generative model, the im-
provements clearly stem from our controlled ODEs, grounded in a solid theoretical foundation (§3).

6 CONCLUSION

We present the first efficient approach for inversion and editing with the state-of-art rectified flow
models such as Flux. Our method interpolates between two vector fields: (i) the unconditional RF
field that transforms a “clean” image to “typical” noise, and (ii) a conditional vector field derived
from optimal control that transforms any image (clean or not) to “typical” noise. Our new field
thus navigates between these two competing objectives of consistency with the given (possibly cor-
rupted) image, and consistency with the distribution of clean images. Theoretically, we show that
this is equivalent to a new rectified SDE formulation, sharing this intuition of interpolation. Prac-
tically, we show that our method results in state-of-art zero-shot performance, without the need of
additional training, optimization of latent variables, prompt tuning, or complex attention processors.
We demonstrate the effectiveness of our method in stroke-to-image synthesis, face editing, object
insertion, and stylization tasks, with large-scale human evaluation confirming user preference.

Limitation. The lack of comparison with expensive diffusion-based editing solutions may be viewed
as a limitation. However, these implementations are either not available for Flux or not directly
applicable due to Flux’s distinct multi-modal architecture. The key contribution of this paper lies in
its theoretical foundations, validated using standard benchmarks and relevant baselines.

Reproducibility. The pseudocode and hyper-parameter details have been provided to reproduce the
reported results in this paper. Source code will be released post publication.
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A ADDITIONAL THEORETICAL RESULTS

In this section, we present the theoretical results omitted from the main draft due to space constraints.
We formalize the ODE derivation of the standard rectified flows in Lemma A.1.
Lemma A.1. Given a coupling (Y0, Y1) ∼ p0 × p1, consider the noising process Yt = tY1 + (1−
t)Y0. Then, the rectified flow ODE formulation with the optimal vector field is given by

dYt =

[
− 1

1− t
Yt −

t

1− t
∇ log pt(Yt)

]
dt, Y0 ∼ p0. (19)

Furthermore, denoting pt(·) as the marginal pdf of Yt, its density evolution is given by:

∂pt(Yt)

∂t
= ∇ ·

[(
1

1− t
Yt +

t

1− t
∇ log pt(Yt)

)
pt(Yt)

]
. (20)

In Lemma A.2, we show that the marginal distribution of the rectified flow (6) is equal to that of an
SDE with appropriate drift and diffusion terms.
Lemma A.2. Fix any T ∈ (0, 1), and for any t ∈ [0, T ], the density evolution (20) of the rectified
flow model (19) is identical to the density evolution of the following SDE:

dYt = − 1

1− t
Ytdt+

√
2t

1− t
dWt, Y0 ∼ p0. (21)

In Proposition A.3, we show that the stationary distribution of the SDE (21) converges to the stan-
dard Gaussian N (0, I) in the limit as t→ 1.
Proposition A.3. Fix any T ∈ (0, 1), and for any t ∈ [0, T ], the density evolution for the rectified
flow ODE (6) is same as that of the SDE (12). Furthermore, denoting pt(·) as the marginal pdf of
Yt, its stationary distribution pt(Yt) ∝ exp (−‖Yt‖2

2t ), which converges to N (0, I) as t→ 1.

We note that Lemma A.1 and Lemma A.2 follow from the duality between the heat equation and
the continuity equation (Øksendal, 2003), where it is classically known that one can interpret a
diffusive term as a vector field that is affine in the score function, and vice-versa. This connection
has been carefully used to study a large family of stochastic interpolants (that generalize rectified
flows) in (Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023), and which can lead to a family
of ODE-SDE pairs. In the lemmas above, we have provided explicit coefficients that have been
directly derived, instead of using the stochastic interpolant formulation. Our key contribution lies
in constructing a controlled ODEs (8) and (15), along with their equivalent SDEs (10) and (17) in
Theorem 3.4 and Theorem 3.5, respectively. This aids faithfulness and editability as discussed in §4.

In Lemma A.4, we derive a rectified SDE that transforms noise into images by reversing the stochas-
tic equivalent of rectified flows (12).
Lemma A.4. Fix any small δ ∈ (0, 1), and for any t ∈ [δ, 1], the process Xt governed by the SDE:

dXt =

[
1

t
Xt +

2(1− t)
t
∇ log p1−t(Xt)

]
dt+

√
2(1− t)

t
dWt, X0 ∼ p1, (22)

is the time-reversal of the SDE (12).

Implication. The reverse SDE (22) provides a stochastic sampler for SoTA rectified flow mod-
els like Flux. Unlike diffusion-based generative models that explicitly model the score function
∇ log pt(·) in (22), rectified flows model a vector field, as discussed in §3.1. However, given a
neural network u(yt, t;ϕ)) approximating the vector field ut(yt), Lemma A.1 offers an explicit
formula for computing the score function:

∇ log pt(Yt) = −1

t
Yt −

1− t
t

u(Yt, t;ϕ). (23)

This score function is used to compute the drift and diffusion coefficients of the SDE (22), resulting
in a practically implementable stochastic sampler for Flux. This extends the applicability of Flux
to downstream tasks where SDE-based samplers have demonstrated practical benefits, as seen in
diffusion models (Ho et al., 2020; Song et al., 2021b; Rombach et al., 2022; Podell et al., 2023).
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B TECHNICAL PROOFS

This section contains technical proofs of the theoretical results presented in this paper.

B.1 PROOF OF PROPOSITION 3.2

Proof. The standard approach to solving an LQR problem is the minimum principle theorem that
can be found in control literature (Fleming & Rishel, 1975; Basar et al., 2020). We follow this
approach and provide the full proof below for completeness.

The Hamiltonian of the LQR problem (7) is given by

H(zt,pt, ct, t) =
1

2
‖ct‖2 + pTt ct. (24)

For c∗t = −pt, the Hamiltonian attains its minumum value: H(zt,pt, c
∗
t , t) = − 1

2 ‖pt‖
2. Using

minimum principle theorem (Fleming & Rishel, 1975; Basar et al., 2020), we get

dpt
dt

= ∇zt
H (zt,pt, c

∗
t , t) = 0; (25)

dzt
dt

= ∇pt
H (zt,pt, c

∗
t , t) = −pt; (26)

z0 = y0; (27)

p1 = ∇z1

(
λ

2
‖z1 − y1‖22

)
= λ (z1 − y1) . (28)

From (25), we know pt is a constant p. Using this constant in (26) and integrating from t→ 1, we
have z1 = zt − p(1− t). Substituting z1 in (27),

p = λ(zt − p(1− t)− y1) = λ(zt − y1)− λ(1− t)p,
which simplifies to

p = (1 + λ(1− t))−1 λ(zt − y1) =

(
1

λ
+ (1− t)

)−1
(zt − y1).

Taking the limit λ → ∞, we get p = zt−y1

1−t and the optimal controller c∗t = y1−zt

1−t . Since
ut(zt|y1) = y1 − y0, the proof follows by substituting y0 = zt−ty1

1−t .

B.2 PROOF OF PROPOSITION 3.1

Proof. Initializing the generative ODE (1) with the structured noise y1, we get

dXt

dt
= vt(Xt), X0 = y1, ∀t ∈ [0, 1]. (29)

Substituting ut(·) = −v1−t(·) in ODE (6),

dYt
dt

= ut(Yt) = −v1−t(Yt), Y0 = y0, ∀t ∈ [0, 1].

Replacing t→ (1− t),

dY1−t
dt

= vt(Y1−t), ∀t ∈ [0, 1]. (30)

Since (29) and (30) hold ∀t ∈ [0, 1] and X0 = y1, then Xt = Y1−t that implies X1 = Y0 = y0.

B.3 PROOF OF THEOREM 3.4

Proof. From Proposition 3.2, we have ut(Yt|Y1) = Y1−Yt

1−t . In Lemma A.1, we show that

ut(Yt) =

[
− 1

1− t
Yt −

t

1− t
∇ log pt(Yt)

]
.
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Now, the controlled ODE (8) becomes:

dYt =
[
ut(Yt) + γ (ut(Yt|Y1)− ut(Yt))

]
dt, Y0 ∼ p0, Y1 = y1

=

[
(1− γ)

(
− 1

1− t
Yt −

t

1− t
∇ log pt(Yt)

)
+ γ

(
Y1 − Yt
1− t

)]
dt

=

[
− 1

1− t
Yt −

t

1− t
(1− γ)∇ log pt(Yt) +

γ

1− t
Y1

]
dt

=

[
− 1

1− t
(Yt − γY1)− t

1− t
(1− γ)∇ log pt(Yt)

]
dt.

Using continuity equation (Øksendal, 2003), the density evolution of the controlled ODE (8) then
becomes:

∂pt(Yt)

∂t
= ∇ ·

[(
1

1− t
(Yt − γY1) +

t

1− t
(1− γ)∇ log pt(Yt)

)
pt(Yt)

]
. (31)

Applying Fokker-Planck equation (Øksendal, 2003) to the SDE (10), we have

∂pt(Yt)

∂t
+∇ ·

[(
− 1

1− t
(Yt − γY1)

)
pt(Yt)

]
= ∇ ·

[
t

1− t
(1− γ)∇pt(Yt)

]
,

which can be rearranged to equal (31) completing the proof.

B.4 PROOF OF LEMMA A.1

Proof. Given (Y0, Y1) ∼ p0 × p1, the conditional flow matching loss (5) can be reparameterized as:

LCFM (ϕ) := Et∼U [0,1],(Y0,Y1)∼p1×p0

[
‖(Y1 − Y0)− u(Yt, t;ϕ)‖22

]
, Yt = tY1 + (1− t)Y0,

where the optimal solution is given by the minimum mean squared estimator:

ut(yt) = E(Y0,Y1)∼p1×p0 [Y1 − Y0|Yt = yt] . (32)

Since Yt = tY1 + (1− t)Y0, we use Tweedie’s formula (Efron, 2011) to compute

E [Y0|Yt = yt] =
1

1− t
yt +

t2

1− t
∇ log pt(yt). (33)

Using the above relation, we obtain the following:

E [Y1|Yt = yt] =
1

t
E [Yt − (1− t)Y0|Yt = yt]

=
1

t
(yt − (1− t)E [Y0|Yt = yt])

=
1

t

(
yt − (1− t)

(
1

1− t
yt +

t2

1− t
∇ log pt(yt)

))
= −t ∇ log pt(yt). (34)

Combining (33) and (34) using linearity of expectation, we get

ut(yt) = E [Y1|Yt = yt]− E [Y0|Yt = yt] (35)

= −t∇ log pt(yt)−
1

1− t
yt −

t2

1− t
∇ log pt(yt) (36)

= − 1

1− t
yt −

t

1− t
∇ log pt(yt), (37)

The density evolution of Yt now immediately follows from the continuity equation (Øksendal, 2003)
applied to (19).
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B.5 PROOF OF LEMMA A.2

Proof. The Fokker-Planck equation of the SDE (12) is given by

∂pt(Yt)

∂t
+∇ ·

[
− 1

1− t
Yt pt(Yt)

]
= ∇ ·

[
t

1− t
∇pt(Yt)

]
. (38)

Rearranging (38) by multiplying and dividing pt(Yt) in the right hand side, we get

∂pt(Yt)

∂t
= ∇ ·

[(
1

1− t
Yt +

t

1− t
∇ log pt(Yt)

)
pt(Yt)

]
. (39)

To conclude, observe that that the density evolution above is identical to (20).

B.6 PROOF OF PROPOSITION A.3

Proof. The optimal vector field of the rectified flow ODE (6) is given by Lemma A.1. The proof
then immediately follows from the Fokker-Planck equations in Lemma A.1 and Lemma A.2.

From Lemma A.2, the density evolution of the SDE (12) is given by

∂pt(Yt)

∂t
= ∇ ·

[(
1

1− t
Yt +

t

1− t
∇ log pt(Yt)

)
pt(Yt)

]
.

The stationary (or steady state) distribution satisfies the following:

∂pt(Yt)

∂t
= 0 = ∇ ·

[(
1

1− t
Yt +

t

1− t
∇ log pt(Yt)

)
pt(Yt)

]
.

Using the boundary conditions (Øksendal, 2003), we get

1

1− t
Yt +

t

1− t
∇ log pt(Yt) = 0,

which immediately implies pt(Yt) ∝ e−
‖Yt‖2

2t .

B.7 PROOF OF THEOREM 3.5

Proof. Using Fokker-Planck equation (Øksendal, 2003), Lemma A.4 implies

∂qt(Xt)

∂t
= ∇ ·

[
−qt(Xt)

(
1

t
Xt +

1− t
t
∇ log qt(Xt)

)]
.

Therefore, the optimal vector field vt(Xt) of the controlled ODE (15) is given by

vt(Xt) =
1

t
Xt +

1− t
t
∇ log p1−t(Xt). (40)

The LQR problem (16) is identical to the LQR problem (7) with changes in the initial and terminal
states. Similar to Proposition 3.2, we compute the closed-form solution for the conditional vector
field of the ODE (15) as:

vt(Xt|X1) =
X1 −Xt

1− t
. (41)

Combining (40) and (41), we have

dXt = [vt(Xt) + η(vt(Xt|X1)− vt(Xt))] dt

=

[
(1− η)

(
1

t
Xt +

1− t
t
∇ log p1−t(Xt)

)
+ η

(
X1 −Xt

1− t

)]
dt

=

[
(1− η)(1− t)− ηt

t(1− t)
Xt +

η

1− t
X1 +

(1− η)(1− t)
t

∇ log p1−t(Xt)

]
dt

=

[
1− t− η
t(1− t)

Xt +
η

1− t
X1 +

(1− η)(1− t)
t

∇ log p1−t(Xt)

]
dt.

18
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The resulting continuity equation (Øksendal, 2003) becomes:

∂qt(Xt)

∂t
= ∇ ·

[
−
(

1− t− η
t(1− t)

Xt +
η

1− t
X1 +

(1− η)(1− t)
t

∇ log p1−t(Xt)

)
qt(Xt)

]
= ∇ ·

[
−
(

1− t− η
t(1− t)

Xt +
η

1− t
X1 +

2(1− η)(1− t)
t

∇ log p1−t(Xt)

)
qt(Xt)

+

(
(1− η)(1− t)

t
∇ log p1−t(Xt)

)
qt(Xt)

]
.

Using time-reversal property from Propsition 3.2, the above expression simplifies to

∂qt(Xt)

∂t
+∇ ·

[(
1− t− η
t(1− t)

Xt +
η

1− t
X1 +

2(1− η)(1− t)
t

∇ log p1−t(Xt)

)
qt(Xt)

]

= ∇ ·

[
(1− η)(1− t)

t
∇qt(Xt)

]
,

which yields the following SDE:

dXt =

[
1− t− η
t(1− t)

Xt +
η

1− t
X1 +

2(1− η)(1− t)
t

∇ log p1−t(Xt)

]
dt+

√
2(1− η)(1− t)

t
dWt,

and thus, completes the proof.

B.8 PROOF OF LEMMA A.4

Proof. It suffices to show that the Fokker-Planck equations of the SDE (22) and (12) are the same
after time-reversal. Let qt(·) denote the marginal pdf of Xt such that q0(·) = p1(·). The Fokker-
Planck equations of the SDE (22) becomes

∂qt(Xt)

∂t
+∇ ·

[
qt(Xt)

(
1

t
Xt +

2(1− t)
t
∇ log p1−t(Xt)

)]
= ∇ ·

[(
1− t
t

)
∇qt(Xt)

]
,

which can be rearranged to give

∂qt(Xt)

∂t
= ∇ ·

[
−qt(Xt)

(
1

t
Xt +

2(1− t)
t
∇ log p1−t(Xt)

)
+

(
1− t
t

)
∇qt(Xt)

]
= ∇ ·

[
−qt(Xt)

(
1

t
Xt +

2(1− t)
t
∇ log p1−t(Xt)−

1− t
t
∇ log qt(Xt)

)]
Since Yt is the time-reversal process of Xt as discussed in Proposition (3.1),

∂qt(Xt)

∂t
= ∇ ·

[
−qt(Xt)

(
1

t
Xt +

1− t
t
∇ log qt(Xt)

)]
.

Substituting t→ 1− t,

∂q1−t(X1−t)

∂t
= ∇ ·

[
q1−t(X1−t)

(
1

1− t
X1−t +

t

1− t
∇ log q1−t(X1−t)

)]
,

which implies the density evolution of (12):

∂pt(Yt)

∂t
= ∇ ·

[
pt(Yt)

(
1

1− t
Yt +

t

1− t
∇ log pt(Yt)

)]
.

This completes the proof of the statement.
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C ADDITIONAL EXPERIMENTS

This section substantiates our contributions further by providing additional experimental details.

Baselines. We use the official NTI codebase1 for the implementations of NTI (Mokady et al., 2023),
P2P (Hertz et al., 2022), and DDIM (Song et al., 2021a) inversion. We use the official Diffusers
implementation2 for SDEdit and Flux3. We modify the pipelines for SDEdit and DDIM inversion to
adapt to the Flux backbone. In Figure 7, for SDEdit, we use the optimally tuned strength parameter
0.7 (Meng et al., 2022), and for DDIM inversion, we use a midway starting point which is the same
as ours (s = 1− 6/28 = 0.78 for glasses and s = 1− 3/28 = 0.89 for stroke2image).

For completeness, we include qualitative comparison with a leading training-based approach In-
structPix2Pix (Brooks et al., 2023)4 and a higher-order differential equation based LEDIT++ (Brack
et al., 2024)5 (§C). Table 3 summarizes the requirements of the compared baselines.

Table 3: Requirements of compared baselines. Our method outperforms prior works while requiring
no additional training, optimization of prompt embedding, or attention manipulation scheme.

Method Training Optimization Attention Manipulation

SDEdit (Meng et al., 2022)
DDIM (Song et al., 2021a)
NTI (Mokady et al., 2023)
NTI+P2P (Hertz et al., 2022)
LEDIT++ (Brack et al., 2024)
InstructPix2Pix (Brooks et al., 2023)
Ours

Metrics. Following SDEdit (Meng et al., 2022), we measure faithfulness using L2 loss between
the stroke input and the output image, and assess realism using Kernel Inception Distance (KID)
between real and generated images. Stroke inputs are generated from RGB images using the algo-
rithm provided in SDEdit. Given the subjective nature of image editing, we conduct a large-scale
user study to calculate the user preference metric.

For face editing, we evaluate identity preservation, prompt alignment, and overall image quality
using a face recognition metric (Ruiz et al., 2024), CLIP-T scores (Radford et al., 2021), and using
CLIP-I scores (Radford et al., 2021), respectively. For the face recognition score, we calculate the
L2 distance between the face embedding of the original image and the edited image, obtained from
Inception ResNet trained on CASIA-Webface dataset. Similar to SDEdit (Meng et al., 2022), we
conduct extensive experiments on Stroke2Image generation, and showcase additional capabilities
qualitatively on a wide variety of semantic image editing tasks.

Algorithm. As shown in Figure 8, given a reference style or reference content denoted by y0, we
first use Algorithm 1 to obtain a structured noise Y1 as discussed in §4. Then, we use Algorithm 2
to transform the structured noise Y1 back into an image based on a new text prompt.

C.1 HYPER-PARAMETER CONFIGURATIONS

In Table 4, we provide the hyper-parameters for the empirical results reported in §5. We use a
fix γ = 0.5 in our controlled forward ODE (8) and a time-varying guidance parameter ηt in our
controlled reverse ODE (15), as motivated in Remark 3.3 and Remark 3.6. Thus, our algorithm
introduces one additional hyper-parameter ηt into the Flux pipeline. For each experiment, we use a
fixed time-varying schedule of ηt described by starting time (s), stopping time τ , and strength (η).

1https://github.com/google/prompt-to-prompt
2https://github.com/huggingface/diffusers
3https://github.com/black-forest-labs/flux
4https://huggingface.co/spaces/timbrooks/instruct-pix2pix
5https://huggingface.co/spaces/editing-images/leditsplusplus
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Algorithm 1: Controlled Forward ODE (8)
Input: Discretization steps N , reference image y0, prompt embedding network Φ, Flux model

u(·, ·, ·;ϕ), Flux noise scheduler σ : [0, 1]→ R
Tunable parameter: Controller guidance γ
Output: Structured noise Y1

1 Initialize Y0 = y0

2 Fix a noise sample y1

3 for i = 0 to N − 1 do
4 Current time step: ti = i

N

5 Next time step: ti+1 = i+1
N

6 Unconditional vector field: uti (Yti) = u(Yti , ti,Φ(“”);ϕ) . Proposition 3.1
7 Conditional vector field: uti (Yti |y1) =

y1−Yti

1−ti . Proposition 3.2
8 Controlled vector field: ûti(Yti) = uti (Yti) + γ (uti (Yti |y1)− uti (Yti)) .ODE (8)
9 Next state: Yti+1

= Yti + ûti(Yti) (σ(ti+1)− σ(ti))
10 end
11 return Y1

Algorithm 2: Controlled Reverse ODE (15)
Input: Discretization steps N , reference text “prompt”, reference image y0, prompt embedding

network Φ, Flux model u(·, ·, ·;ϕ), Flux noise scheduler σ : [0, 1]→ R,
structured noise y1

Tunable parameter: Controller guidance η
Output: Edited image X1

1 Initialize X0 = y1

2 for i = 0 to N − 1 do
3 Current time step: ti = i

N

4 Next time step: ti+1 = i+1
N

5 Unconditional vector field: vti (Xti) = −u(Xti , 1− ti,Φ(prompt);ϕ) . Proposition 3.1
6 Conditional vector field: vti (Xti |y0) =

y0−Xti

1−ti . Proposition 3.2
7 Controlled vector field: v̂ti(Xti) = vti (Xti) + η (vti (Xti |y0)− vti (Xti)) .ODE (15)
8 Next state: Xti+1

= Xti + v̂ti(Xti) (σ(ti+1)− σ(ti))
9 end

10 return X1

We use the default config for Flux model: 3.5 for classifier-free guidance and 28 for the total number
of inference steps.

Table 4: Hyper-parameter configuration of our method for inversion and editing tasks.

Task Starting Time (s) Controller Guidance (ηt)
Stopping Time (τ ) Strength (η)

Stroke2Image 3 5 0.9
Object insert 0 6 1.0
Gender editing 0 8 1.0
Age editing 0 5 1.0
Adding glasses 6 25 0.7
Stylization 0 6 0.9
Inversion only 8 25 1
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(c)     Ref. content “sleeping cat” “tiger”“lion”“origami cat”“silver cat sculpture”

(b)      Ref. style “face of a boy”(a)      Ref. style “a girl” “a panda” “a dwarf”

(d)     Ref. content “smiling cartoon” “girl” “old man” “young boy+glasses”“angry cartoon”

Figure 8: Rectified flows for image inversion and editing. Our approach efficiently inverts refer-
ence style images in (a) and (b) without requiring text descriptions of the images and applies desired
edits based on new prompts (e.g. “a girl” or “a dwarf”). For a reference content image (e.g. a cat in
(c) or a face in (d)), it performs semantic image editing (e.g. “sleeping cat”) and stylization (e.g. “a
photo of a cat in origmai style”), without leaking unwanted content from the reference image. Input
images have orange borders.

C.2 ABLATION STUDY

In this section, we conduct ablation study for our controller guidance parameter ηt. We consider two
different time-varying schedules for ηt, and show that our controller strength allows for a smooth
interpolation between unconditional and conditional generation.

In Figure 9, we show the effect of starting time in controlling the faithfulness of inversion; starting
time s ∈ [0, 1] is defined as the time at which our controlled reverse ODE (15) is initialized. The
initial state Xs = y1−s is obtained by integrating the controlled forward ODE (8) from 0→ 1− s.

0                                      2                                         4                                         6 8                                     10

12                                      15                                    20                                   25                                    27                               Original

Figure 9: Effect of starting time. Prompt: “A young man”. The number below each figure denotes
the starting time scaled by 28 (the total number of denoising steps) for better interpretation. In the
absence of controller guidance (ηt = 0), increasing the starting time (s) in our controlled ODE (15)
improves faithfulness to the original image.
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In Figure 10, we study the effect of stopping time. We find that increasing controller guidance ηt
by increasing the stopping time τ guides the reverse flow towards the original image. However,
we observe a phase transition around τ = 0.14 = 4/28, indicating that the resulting drift in our
controlled reverse ODE (15) is dominated by the conditional vector field vt(Xt|y0) for t ≥ τ .
Therefore, the reverse flow solves the LQR problem (16) and drives toward the terminal state (i.e.,
the original image).

0                                      2                                         4                                         6 8                                     10

12                                      15                                    20                                   25                                    27                               Original

Figure 10: Effect of controller guidance. Prompt: “A young man”. For a fixed starting time s = 0,
consider a time-varying controller guidance schedule ηt = η ∀t ≤ τ and 0 otherwise. The number
below each figure denotes the stopping time τ scaled by 28 (the total number of denoising steps) for
better interpretation. Increasing τ increases the controller guidance (ηt) that improves faithfulness
to the original image.

In Figure 11, we visualize the effect of our controller guidance for another time-varying schedule.
We make a similar observation as in Figure 10: increasing ηt improves faithfulness. However, we
notice a smooth transition from the unconditional to the conditional vector field, evidence from the
smooth interpolation between “A young man” at the top left (η = 0) and the original image at the
bottom right.

0                                      0.1                                     0.2                                 0.3       0.4                                  0.5

0.6                                    0.7                                   0.8                                   0.9                                    1.0 Original

Figure 11: Effect of controller guidance for another time-varying schedule. Prompt: “A young
man”. For a fixed starting time s = 0 and stopping time τ = 8/28, consider a time-varying
controller guidance schedule ηt = η ∀t ≤ τ and 0 otherwise. Increasing η increases the controller
guidance (ηt) that improves faithfulness to the original image.

C.3 NUMERICAL SIMULATION

In this section, we design synthetic experiments to compare reconstruction accuracy of DM and RF
inversion. Given Y0 ∼ p0, where the data distribution p0 := N (µ, I) and the source distribution
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q0 := N (0, I), we numerically simulate the ODEs and SDEs associated with DM and RF inversion;
see our discussion in §3.

For µ = 10, we fix γ = 0.5 in the controlled forward ODE (8), and η = 0.5 in the controlled reverse
ODE (15). These ODEs are simulated using the Euler discretization scheme with 100 steps. Addi-
tionally, we simulate the uncontrolled rectified flow ODEs (6) → (1) as a special case of our con-
trolled ODEs (8)→ (15) by setting γ = η = 0, and the deterministic diffusion model DDIM (Song
et al., 2021a) in the same experimental setup.

The inversion accuracy is reported in Table 5. Observe that RF inversion has less L2 and L1 error
compared to DDIM inversion (14). The minimum error is obtained by setting γ = η = 0 (i.e.,
reversing the standard rectified flows), which supports our discussion in §3.3.

Furthermore, we simulate the stochastic samplers corresponding to these ODEs in Table 5, high-
lighted in orange. Similar to the deterministic samplers, we observe that stochastic equivalents of
rectified flows more accurately recover the original sample compared to diffusion models. Our con-
troller in RF Inversion (10)→ (17) effectively reduces the reconstruction error in the uncontrolled
RF Inversion (12) → (22), which are special cases when γ = η = 0. Thus, we demonstrate that
(controlled) rectified stochastic processes are better at inverting a given sample from the target dis-
tribution, outperforming the typical OU process used in diffusion models (Song & Ermon, 2019; Ho
et al., 2020; Song et al., 2021a;b).

Table 5: DM and RF inversion accuracy. Stochastic samplers are highlighted in orange.

Method L2 Error L1 Error

DDIM Inversion (14) 6.024 19.038
DDPM Inversion (13) 6.007 15.758
RF Inversion (γ = η = 0) (8)→ (15) 0.092 0.20
RF Inversion (γ = η = 0) (10)→ (17) 3.564 8.795
RF Inversion (γ = 0.5, η = 0) (8)→ (15) 4.777 11.628
RF Inversion (γ = 0, η = 0.5) (8)→ (15) 1.219 3.074
RF Inversion (γ = 0.5, η = 0.5) (8)→ (15) 0.628 1.643
RF Inversion (γ = η = 0.5) (10)→ (17) 0.269 0.694
RF Inversion (γ = η = 1.0) (10)→ (17) 0.003 0.010

In Figure 12, we compare sample paths of diffusion models and recitified flows using 10 IID samples
drawn from p0. In Figure 13, we visualize paths for those samples using our controlled ODEs and
SDEs with γ = η = 0.5.
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(a) DDPM (13) Fwd.
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(b) DDIM (14) Fwd.

0.00 0.25 0.50 0.75 1.00
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(c) SDE (12) Fwd.

0.00 0.25 0.50 0.75 1.00
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(d) RF (6) Fwd.
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(e) DDPM (13) Rev.
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(f) DDIM (14) Rev.

0.00 0.25 0.50 0.75 1.00
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(g) SDE (12) Rev.

0.00 0.25 0.50 0.75 1.00

0

5

10

(h) RF (6) Rev.

Figure 12: Sample paths of DMs and RFs. Top row corresponds to the forward process {Yt}, and
bottom row, reverse process {Xt}. In each plot, time is along the horizontal axis and the process,
along the vertical axis. The sample paths of RFs are straighter than that of DMs, allowing coarse
discretization and faithful reconstruction.
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(a) ODE (8) Fwd.
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(b) ODE (15) Rev.
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(d) SDE (17) Rev.

Figure 13: Sample paths of our controlled ODEs and SDEs. (a,c) The optimal controller
ut(Yt|Y1) steers Yt towards the terminal state Y1 ∼ p1 during inversion. (b,d) Similarly, vt(Xt|Y0)
guides Xt towards the reference image Y0 ∼ p0, significantly reducing the reconstruction error.

C.4 ADDITIONAL RESULTS ON STROKE2IMAGE GENERATION

In Figure 14 and Figure 15, we show additional qualitative results on Stroke2Image generation.
Our method generates more realistic images compared to leading training-free approaches in se-
mantic image editing including optimization-based NTI (Mokady et al., 2023) and attention-based
NTI+P2P (Hertz et al., 2022). Furthermore, it gives a competitive advantage over the training-based
approach InstructPix2Pix (Brooks et al., 2023).

Input SDEdit DDIM Inversion NTI NTI+P2P                LEDIT++            InstructPix2Pix             Ours

Figure 14: Stroke2Image generation. Additional qualitative results on LSUN-Bedroom dataset
comparing our method with SoTA training-free and training-based editing approaches.

In Figure 16, we demonstrate the robustness of our approach to corruption at initialization. All the
methods transform the stroke input (corrupt image) to a structured noise, which is again transformed
back to a similar looking stroke input, highlighting the faithfulness of these methods. However,
unlike our approach, the resulting images in other methods are not editable given a new prompt.

C.5 ADDITIONAL RESULTS ON SEMANTIC IMAGE EDITING

Figure 17 illustrates a smooth interpolation between “A man” → “A woman” (top row) and “A
woman”→ “A man” (bottom row). The facial expression and the hair style are gradually morphed
from one person to the other.

In Figure 18, we show the ability to regulate the extent of age editing. Given an image of a young
woman and the prompt “An old woman”, we gradually reduce the controller strength ηt to make the
person look older. Similarly, we reduce the strength to make an old man look younger.

Figure 19 shows the insertion of multiple objects by text prompts, such as “pepperoni”, “mush-
room”, and “green leaves” to an image of a pizza. Interestingly, pepperoni is not deleted while
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Input SDEdit DDIM Inversion NTI NTI+P2P                LEDIT++            InstructPix2Pix             Ours

Figure 15: Stroke2Image generation. Additional qualitative results on LSUN-Church dataset com-
paring our method with SoTA training-free and training-based editing approaches.

SDEdit DDIM NTI NTI+P2P Ours

Inversion

Editing

Stroke Input

Figure 16: Robustness. For inversion, all methods perform well at recovering the stroke input when
given a null prompt. However, when a new prompt like “a photo-realistic picture of a bedroom” is
provided, only our method successfully generates realistic images. The other methods continue to
suffer from the initial corruption, failing to make the output more realistic.

inserting mushroom, and mushroom is not deleted while inserting green leaves. The product is
finally presented in a lego style.

Figure 20 captures a variety of facial expressions that stylize a reference image. Given the original
image and text prompt: e.g. “Face of a girl in disney 3d cartoon style”, we first invert the image
to generate the stylized version of the original image. Then, we add the prompt for the expression
(e.g., “surprised”) at the end of the prompt and run our editing algorithm (15) with this new prompt:
“Face of a girl in disney 3d cartoon style, surprised”. By changing the expression, we are able to
preserve the identity of the stylized girl and generate prompt-based facial expressions.
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Figure 17: Gender editing. Our method smoothly interpolates between “A man”↔ “A woman”.

“A woman” “old” “older” “A man” “young” “younger”

Figure 18: Age editing. Our method regulates the extent of age editing.

Original + “pepperoni” + “mushroom” + “green leaves” + “in lego style”

Figure 19: Object insert. Text-guided insertion of multiple objects sequentially.

C.6 HUMAN EVALUATION

We conduct a user study on the test splits of both LSUN Bedroom and LSUN Church dataset using
Amazon Mechanical Turk, with 126 participants in total. As shown in Figure 21, each question was
accompanied by an explanation of the task, the question, and the evaluation criteria. Participants
were shown a pair of stroke-to-image outputs from different models, in random order, along with
the input stroke image. They were asked to select one of three options based on their preference
using the following two criteria:

1. Realism: which of these two images look more like a real, photorealistic image?

2. Faithfulness: which of these two images match more closely to the input stroke image?

We collect 3 responses per question. With 300 images in the test dataset and 10 pairwise compar-
isons, we gathered 9,000 responses for this evaluation. The example in Figure 21 is for the LSUN
Church dataset; for LSUN Bedroom dataset, we simply replace the word “church” to “bedroom” in
the instructions.

C.7 GENERATIVE MODELING USING RECTIFIED STOCHASTIC DIFFERENTIAL EQUATIONS

In Figure 22, we compare images generated by the ODE (1) and SDE (22) variant of Flux across
different discretization steps. Figure 23 illustrates text-to-image generation using the stochastic
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“Face of a girl in disney 3d cartoon style” 

“scared”“surprised” “frowning” “yawning” “laughing”Original

“gasping”“sad” “smiling” “winking”“grinning” “angry”

“Face of a boy in disney 3d cartoon style” 

“laugh” “smirking” “frown” “angry” “yelling”Original

Figure 20: Stylization of a reference image given prompt-based facial expressions.

Figure 21: Interface for human evaluation. Each participant is asked to select their preferred
image based on two criteria: realism and faithfulness.

sampler for Flux6, highlighting the practical significance of our theoretical findings in §3 and Ap-
pendix A.

C.8 DISCUSSION ON ACCELERATING CONTROLLED RECTIFIED FLOWS

In this paper, we used 28 inference steps, the default setting for Flux. It is well established that
reconstruction error increases as the number of inference steps decreases due to coarse discretiza-
tion. Prior works on diffusion models have developed methods to mitigate this error with fewer

6https://github.com/black-forest-labs/flux
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50                            100                         300                       500                       700       1000

Prompt: “This dreamlike digital art captures a vibrant, kaleidoscopic bird in a lush rainforest”.

FluxSDE

FluxODE

50                            100                         300                       500                       700       1000

Prompt: “A futuristic robot depicted entirely out of fractals”.

FluxSDE

FluxODE

Figure 22: T2I generation using rectified ODE (top) and SDE (bottom) for different number of
discretization steps marked along the X-axis. The stochastic equivalent sampler FluxSDE generates
samples visually comparable to FluxODE at different levels of discretization.

steps (Garibi et al., 2024; Pan et al., 2023). In particular, the accelerated iteration procedure from
AIDI (Pan et al., 2023) and the renoising iteration step in ReNoise (Garibi et al., 2024) could en-
hance the inversion and editing capabilities of our method with fewer steps. Integration of such
sampling techniques in rectified flows represents a promising direction for future work.

C.9 RF-INVERSION AS A PLUG-AND-PLAY SOLUTION FOR RECTIFIED FLOWS

Figure 24 presents stylization results achieved using RF-Inversion with Stable Diffusion 3.5 (Esser
et al., 2024). The generated images accurately reflect the artistic styles of the reference style images
while faithfully adhering to the desired prompts.

C.10 RF-INVERSION WITH DIFFERENT INITIALIZATION

Figure 25 shows the effect of y1 on reference image-based stylization and structure preservation.
The proposed method reliably generates accurately stylized image and preserves the structure of the
input image. While the choice of y1 does have an impact, our controller ensures that the semantics
of the reference input are still preserved for different random choices of y1.

Regarding stroke-to-image quality, the manually annotated clean stroke images used in SDEdit are
not publicly available. Therefore, we simulate stroke images following Section D.2 (Figures 30 and
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Prompt: “a space elevator, cinematic scifi art,
spacecrafts flying in the background”

Prompt: “a 3d model of a magical creature, long
nose, green color, movie asset, ultra detailed.”

Prompt: “a dragon soaring through the sky, battle
ground, people fighting on the ground.”

Prompt: “a genius scientist, in his 60s stands, writing
on the black board, white hair, white beard, round
spectacles.”

Prompt: “portrait, looking to one side of frame, lucid
dream-like 3d model of an owl, video game
character, forest, wonderland, photorealism,
cinematic artistic style.”

Prompt: “a robot with a reflective helmet, iron armor,
photorealistic, in shades of red and golden brown,
dark gloomy environment, epic scene.”

Flux                               FluxSDE (Ours)                                   Flux                               FluxSDE (Ours)

Figure 23: T2I generation using rectified flow SDE (22). Our stochastic sampler is visually com-
parable to the standard deterministic sampler provided by Flux.

31) in SDEdit, as this strategy was also used in their large-scale evaluation. The simulated stroke
images are noisy which increases variability in the layout of the generated images. We also added
one example in Figure 25 (d) using an annotated bedroom stroke input (by taking a screenshot of
stroke paint from Figure 1 of SDEdit), showing that the layout of the generated images are better
aligned with a cleaner stroke input.

C.11 COMPATIBILITY OF RF-INVERSION WITH FLUX-LORA

Figure 26 illustrates content-style composition using Flux-LoRA (Hu et al., 2021). In this experi-
ment, we apply LoRA fine-tuning only for content while using our method for stylization. We train
two LoRA models with the < sks > token using images from the DreamBooth (Ruiz et al., 2023)
dataset7: (1) “a sks dog” (6 images) and (2) “a sks cat” (5 images). For each LoRA, we use rank 16
and fine-tune for 1000 iterations, which takes around 25 minutes. We first use ut(yt) in Algorithm 1
to obtain a structured noise corresponding to the reference style image (e.g., “line drawing”). Subse-
quently, we employ Algorithm 2 with LoRA weights added to vt(·) using the desired prompt (e.g.,
“a sks dog in line drawing style”). Observe that the unique identifiers of the dog (e.g., the beard) are
effectively captured in the generated sample.

7https://github.com/google/dreambooth
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(a) Ref. style                 “A boat”                      “A car”                   (b) Ref. Style          “A mad scientist”           “A lion boy”

(c) Ref. style          “A house on a hill”         “A racing car”             (d) Ref. Style             “An elephant”       “A futuristic robot”

Figure 24: Compatibility of our method with another RF model, Stable Diffusion 3.5. Ref-
erence styles in (a) “melting golden 3d rendering” and (b) “vintage travel poster” are from
StyleAligned benchmark (Hertz et al., 2023), and (c) “plastic crayon drawing art” and “pencil
sketch” are hand-drawn styles provided by users.

C.12 ADAPTABILITY OF RF-INVERSION TO GENERAL INVERSE PROBLEMS

Figure 27 shows that our method RF-Inversion easily extends to a broad class of inverse prob-
lems without using additional training, latent variable optimization, or complex attention proces-
sors. For restoration task, we consider super-resolution by 8X (left) and motion blur by a kernel
(61× 61)(right).

C.13 STUDY OF CONTROLLER GUIDANCE IN IMAGE EDITING

Figure 28 demonstrates the influence of the controller guidance parameters γ (forward flow) and η
(reverse flow) on the image transformation process. The interplay between γ and η is crucial for
balancing the forward and reverse flows, ensuring that the resulting output follows the structure of
the given input. Increasing γ improves realism but the structure changes. For instance, the church
door is facing towards right. For a fixed γ (say 0.5), increasing η aligns the structure with the
reference input (y0). Interestingly, at a midway point (γ = 0.5, η = 0.5), the image looks blurry
because this is a superposition of two conflicting images (e.g., in one image, the door is facing to
the right, and in another, to the front). Finally, our controller guidance (η) rectifies this process to
become more faithful to the reference input.

C.14 ADDITIONAL EDITING RESULTS USING 8 STEP DISTILLED MODEL

Figure 29 shows additional qualitative results on face editing and stroke2image generation using
our method integrated with Flux-Turbo-LoRA8. These results demonstrate the compatibility of our
method with a distilled base model capable of sampling in as few as 8 steps. In this experiment, we
employ the distilled Flux-Turbo-LoRA model for computing ut(·) and vt(·) in our Algorithm 1 and
Algorithm 2, respectively.

C.15 COMPARISON WITH DDIM INVERSION FOR DIFFERENT START STEP

Figure 30 shows the effect of different starting time for DDIM Inversion. The generated samples
become less realistic but more faithful as the starting time increases.

C.16 BROADER IMPACT STATEMENT

Semantic image inversion and editing have both positive and negative social impacts.

8https://huggingface.co/alimama-creative/FLUX.1-Turbo-Alpha
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(d) Annotated bedroom “a bedroom”

(c) Simulated bedroom “a bedroom”

(b) Simulated church “a church”

(a) Reference content “face wearing glasses”

Input                        𝑦!! 𝑦!" 	𝑦!# 𝑦!$ 𝑦!%

(e) Reference style “a cute panda”

Figure 25: Robustness to initialization (y1). Given an input image (e.g., a style image of “pencil
sketch” in (e)) as y0 and 5 different typical samples {yi1}5i=1 from p1, our method effectively cap-
tures the semantics of the reference input while adhering to the desired prompt (e.g., “a cute panda”).
The annotated bedroom input in (d) is a screenshot of the bedroom from SDEdit (Meng et al., 2022).
Compared to simulated stroke inputs in (b,c), the annotated stroke input helps with better alignment
of the generated layout.

On the positive side, this technology enables (i) the generation of photo-realistic images from high
level descriptions, such as stroke paintings, and (ii) the modification of clean images by changing
various attributes like the age, gender, or adding glasses (§5).

On the negative side, it can be misused by malicious users to manipulate photographs of individuals
with inappropriate or offensive edits. Additionally, it carries the inherent risks associated with the
underlying generative model.

To mitigate the negative social impacts, we enable safety features such as NSFW filters in the under-
lying generative model. Furthermore, we believe watermarking images generated by this technology
can further reduce misuse in inversion and editing applications.
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Figure 26: Compatibility of our method with LoRA for content-style composition. The gener-
ated image preserves the identity of the reference content while adhering to the desired style.

(a)         Input                      “jumping dog”                        Input                        “cat yawning”

(b)     Input                              “a rabbit”                            Input                           “a turtle”

(c)“blue car, red flowers” “blue car, yellow flowers”            Input                          “a red car”
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Figure 27: Image editing in (a) non-rigid task, (b) image restoration and (c) local color change.
The proposed method generalizes to a wide-variety of inverse problems without training, test-time
optimization or cross-attention manipulation.
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Figure 28: Impact of the forward and reverse controller guidance in image editing. Increasing
γ helps transform an “atypical” sample to a “typical” sample, making the generated samples more
realistic. Subsequently, increasing the controller guidance for reverse flows (η) improves faithfulness
to the reference input, as discussed in §3.
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Input “disney cartoon” “old woman” Input “anime” “wearing glasses”

Input “a church” Input “A church” Input “A bedroom”

Figure 29: Face editing and Stroke2Image generation in 8 steps. We noise and denoise using a
distilled model that is capable of sampling from the data distribution in 8 steps.

Input DDIM Inv (0/50) DDIM Inv (10/50) DDIM Inv (20/50) DDIM Inv (30/50) Ours

Figure 30: Qualitative comparison with DDIM Inversion with different starting time. Our
method outperforms DDIM Inversion with a mid-way starting point.
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