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Highly Efficient No-reference 4K VideoQuality Assessment with
Full-Pixel Covering Sampling and Training Strategy

Anonymous Authors

ABSTRACT
Deep Video Quality Assessment (VQA) methods have shown im-
pressive high-performance capabilities. Notably, no-reference (NR)
VQA methods play a vital role in situations where obtaining ref-
erence videos is restricted or not feasible. Nevertheless, as more
streaming videos are being created in ultra-high definition (e.g.,
4K) to enrich viewers’ experiences, the current deep VQA methods
face unacceptable computational costs. Furthermore, the resizing,
cropping, and local sampling techniques employed in these meth-
ods can compromise the details and content of original 4K videos,
thereby negatively impacting quality assessment. In this paper,
we propose a highly efficient and novel NR 4K VQA technology.
Specifically, first, a novel data sampling and training strategy is pro-
posed to tackle the problem of excessive resolution. This strategy
allows the VQA Swin Transformer-based model to effectively train
and make inferences using the full data of 4K videos on standard
consumer-grade GPUs without compromising content or details.
Second, a weighting and scoring scheme is developed to mimic the
human subjective perception mode, which is achieved by consider-
ing the distinct impact of each sub-region within a 4K frame on the
overall perception. Third, we incorporate the frequency domain
information of video frames to better capture the details that affect
video quality, consequently further improving the model’s gener-
alizability. To our knowledge, this is the first technology for the
NR 4K VQA task. Thorough empirical studies demonstrate it not
only significantly outperforms existing methods on a specialized 4K
VQA dataset but also achieves state-of-the-art performance across
multiple open-source NR video quality datasets.

CCS CONCEPTS
• Computing methodologies → Image processing; • Informa-
tion systems→ Multimedia information systems.

KEYWORDS
4K video quality assessment, 4K video sampling strategy, Network
training, State-of-the-art

1 INTRODUCTION
Advancements in multimedia technology have facilitated the distri-
bution of videos across multiple platforms [19, 37]. However, the
quality of these videos varies significantly. Thus, Video Quality
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Figure 1: Comparison of data sampling strategies in VQA
methods on 4K videos. Fig.(a) visually shows the commonly
used sampling strategies and ours proposed strategy. Fig.(b) il-
lustrates the content-covering percentage of sampling strate-
gies on 4K videos. Both traditional and grid-based strategies
cover only a minimal amount of content, where the grid-
based method also accesses some global information. In con-
trast, our strategy is capable of covering the entire content.

Assessment (VQA) has become essential for accurately understand-
ing and predicting the quality of user experience (QoE) [3, 43, 44].
Moreover, advances in hardware and the increasing demand for
high-quality, high-resolution videos have led to a surge in 4K videos.
Unfortunately, many 4K videos are not originally filmed in 4K but
are instead generated from lower resolutions using techniques such
as up-sampling and super-resolution [23]. This has led to massive
low-quality pseudo-4K videos, notably diminishing user experi-
ence on social platforms and escalating resource usage. Hence,
it is crucial to research and understand the distinctions among
various 4K video types, including those from the source medium,
high-quality 4K restored videos, and mid-to-low quality pseudo-
4K videos. Nonetheless, despite the urgent necessity, a specific
approach for no-reference (NR) 4K VQA is currently lacking.

Challenges:
While current VQA techniques have shown considerable ad-

vancements [15, 23, 40, 44, 46], they encounter various limitations
when handling NR 4K videos because of the demanding require-
ments in terms of high-resolution and computational resources.
Typically, early deep learning methods for VQA involve traditional

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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pre-processing of video frames, such as resizing or cropping, be-
fore performing quality evaluation [23, 40, 46]. Actually, resizing a
frame can cause the loss of crucial details, and cropping may result
in the omission of essential visual information from the original 4K
video. As a result, both actions have the potential to compromise
the performance of VQA.

To mitigate the impact of the above operations on VQA, FAST-
VQA proposes a novel data sampling strategy based on Grid Mini-
patch Sampling (GMS) [41]. This data sampling strategy, named
as "fragments", enables the learning of local detail information
(through cropping) while retaining certain global information (as
grids are uniformly divided across the entire frame). This innovative
approach has been successfully applied in VQA, and numerous
subsequent methods are proposed based on it [20, 43]. Among
them, DOVER leverages the network of FAST-VQA and combines
it with aesthetic and technical perspectives to better understand
and predict the QoE on videos [43]. SAMA further improves upon
FAST-VQA, enhancing its performance with minimal additional
resource consumption [20]. Despite this, when cropping within
a uniformly distributed grid, the grid size increases notably with
higher resolutions such as 4K videos. Consequently, if the input data
size to the network stays constant [41], there is a rapid decrease in
the proportion of useful information acquired.

To better explain the different information retrieval rates of
different sampling strategies, a comparison is made and shown in
Fig. 1. It is clear to see that both traditional and grid-based strategies
can only cover a tiny fraction of the content in 4K videos. As a result,
the grid-based strategy almost entirely loses the global semantic
information, as shown in Fig. 1(b). Moreover, in the commonly seen
4K video resolution (i.e., 3840x2160), the cropped patches occupy
only about 0.6% of the grid areas. This restriction significantly limits
the effectiveness of 4K VQA and possibly for videos of even greater
resolutions in the future.

Motivation and Main Idea:
High-resolution 4K videos present a challenge to existing data

sampling methods in capturing adequate information. Hence, the
vital issue we need to handle is how to maximize video infor-
mation fed into the network with limited computational re-
sources. To confront this core issue head-on, this paper proposes
a highly efficient and novel data sampling and training strategy for
NR 4K VQA named Full-Pixel Covering (FuPiC). This strategy en-
sures that the network can capture nearly all content of the sampled
frames while guaranteeing an efficient training process. Generally,
4K videos are partitioned into non-overlapping patches in our study,
ensuring the content can be processed within a single GPU for train-
ing. Adopting this full sampling approach, we thoughtfully develop
a novel training strategy. Instead of the conventional method of
treating samples within one batch as "supervisory units," we opt to
gather multiple output results from samples originating from the
same frame and supervise the combination of these results. Stem-
ming from this concept, FuPiC enables the network to receive and
learn from the entire content (the cropped patches occupy 100%,
far exceeding 0.6%. as depicted in Fig. 1), simultaneously ensuring
that GPU resources are adequate for handling the learning process
of videos with high-resolution.

As stated earlier, FuPiC combines the results from different sam-
ples and supervises the combined result. However, the second
challenge we need to face is how to effectively and reasonably
combine these results. To tackle this challenge, inspired by the
subjective perception model of humans when evaluating videos, a
weighting and scoring scheme named region-aware scoring scheme
is proposed to focus on different regions within the video. In sub-
jective 4K video assessments, humans evaluate various regions,
such as focal areas, background, and blur-affected regions due to
jitter, each impacting overall quality differently. Thus, we consider
partitioned patches as a series of regions, using a neural network
to learn their weights and scores to estimate overall video quality.

FuPiC feeds all the information of 4K videos into the network,
and whether the network can more effectively capture and uti-
lize these details is the third point of concern in our study. One
notable observation from various real-world 4K video samples is
the difference in detail between high and low scoring videos, where
higher scoring videos tend to contain more intricate information. To
delve deeper into the impact of these details on 4K video quality, we
employed Haar Wavelet Transform to shift video frames from the
image domain to the frequency domain. We observed that videos
with similar scenes tend to have richer high-frequency information
if they score higher, which becomes especially apparent after apply-
ing Haar Wavelet processing. Consequently, we pre-process video
frames with HaarWavelets and use a linear embedding layer to han-
dle information across different frequencies, integrating this data
for network processing. This approach, named multi-frequency fea-
ture fusion, enhances the performance of the network in assessing
4K video quality, and notably, the inference time was reduced to
25% of the original one.

Additionally, a novel 4K VQA dataset with a large variety of
scenes and a reasonable quality distributed range for targeted 4K
VQA methods is constructed. To better meet the practical demands
of the 4K VQA task, our dataset construction follows a NR para-
digm instead of a reference-based one, meaning that all video clips
originate from heterogeneous content. Specifically, our dataset en-
compasses 200 ten-second video clips sourced from a diverse array
of occupationally generated content (OGC), including movies, tele-
vision dramas, and TV shows from different eras and countries.
Initially, we selected 200 long 4K videos guided by a criteria that
the era, the genre, and the region of these videos should be dis-
tributed as balanced as possible. Subsequently, we randomly extract
10 ten-second short video clips from each long video, resulting in a
total of 2000 clips. Following this, we employ a sampling strategy
similar to [39, 44] to distill these into 200 representative ten-second
video clips while some key video indicators are considered, includ-
ing spatial activity, temporal activity, noise, brightness, and contrast.
Then we adopt the Pair Comparison method in our subjective ex-
periment, which can efficiently obtain an accurate mean opinion
score (MOS) for each 4K video clip in the dataset.

Contributions:
To summarize, the main contributions of this work include:

• We propose a novel data sampling and training strategy,
namely Full-Pixel Covering (FuPiC), for NR 4K VQA. FuPiC
enables the network to receive all content information for
learning, while ensuring an easy training process.
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• We introduce aweighting and scoring scheme for FuPiC. This
scheme emulates the subjective quality evaluation procedure,
which can predict the frame score and eventually the overall
video score more accurately.

• By transforming video frame patches into the frequency do-
main and integrating information from various frequency
domains into the network, we emphasize the network’s at-
tention on the influence of high-frequency information on
video quality. This approach enhances the network perfor-
mance while mitigating the computational burden.

• We have constructed the first dataset explicitly tailored for
NR 4K VQA.

Our approach significantly outperforms other VQA methods on our
4K VQA dataset. Additionally, experiments on other open-source
VQA datasets also demonstrate the excellent performance of our
method.

2 RELATEDWORK
2.1 Classical VQA Methods
Classic VQA methods [6, 12, 18, 25–28, 31, 32, 36, 38] rely on hand-
crafted features for quality evaluation. Among them, V-BLIINDS
[32] is a spatio-temporal Natural Scene Statistics (NSS) model that
quantifies the NSS features of frame differences and motion co-
herency characteristics to assess video quality; VIIDEO [26] embod-
ies models that capture intrinsic statistical regularities of natural
videos to quantify disturbances introduced by distortions; TLVQM
[12] first computes temporal low-complexity handcrafted features
and then uses them to extract high-complexity features. More-
over, CNN-TLVQM [13] integrates TLVQM with spatial features
extracted from a pre-trained convolutional neural network (CNN)
for VQA tasks.

2.2 Deep VQA Methods
Classical VQA methods are known for their inefficiency and strug-
gle to perform well amidst the rapid development of multimedia
technologies. With the advent of deep learning, there has been a sig-
nificant emergence of deep VQA methods. These methods leverage
the power of deep neural networks (DNN) to provide more accu-
rate and efficient quality assessments, addressing the limitations of
classical VQA techniques.

In earlier research, the majority of efforts are based on employ-
ing CNN/3D-CNN models [2, 14–16, 37, 40, 44–46] to delve into the
spatial-temporal information within videos for quality assessment.
Li et al.[15] utilizes a pre-trained CNNmodel to extract features and
further expanded this approach to MDTVSFA [16] to explore the ef-
fectiveness of training a unifiedmodel acrossmultiple datasets. Ying
et al.[45] introduces a local-to-global architecture for predicting
the overall video quality and leveraged the proposed PVQ Mapper
to better learn spatial and temporal features. Wang et al.[40] inves-
tigates the impact of content, technical quality, and compression
level on video quality. Xu et al.[44] incorporates a Graph Convo-
lution Module into VQA to capture long-distance and cross-scale
relations. Sun et al.[37] proposes an efficient network that directly
extracts quality-aware features from raw pixels of video frames,
while extracting the motion features for accurately prediction.

Later, as the Visual Transformer evolves, Transformer-based
methods [19, 20, 41–43] begin to exhibit strong performance in
VQA tasks. However, the Visual Transformer takes a high compu-
tational cost, often relying on scaling or cropping video samples
to reduce the cost. To overcome the limitations associated with
traditional scaling and cropping strategy, Wu et al.[41] introduces a
grid-based sampling method, allowing for the simple and efficient
use of Video Swin Transformer [22] for end-to-end training and fine-
tuning, while maintaining a focus on global information. Building
on this grid-based approach, DOVER [43] explores the influence of
Aesthetics and Technical quality on subjective evaluations; SAMA
[20] further refines the grid-based sampling method by incorpo-
rating scaling and masking strategies to encompass multi-scale
information within regular-sized inputs. Despite the improvements
brought by grid-based sampling to DNN-based methods in assess-
ing the quality of 1080P videos, challenges persist when dealing
with higher-resolution content (4K and beyond). These methods
face significant limitations as they only sample a small fraction of
the video’s content, impacting their performance adversely.

2.3 Databases for Video Quality Assessment
Databases are crucial for VQA tasks. Many VQA Databases [7, 9,
29, 30, 34, 35, 39, 45] are built to tackle the challenge of VQA prob-
lems. Among them, early VQA databases [30, 34] usually consist
of limited numbers of source reference sequences (SRC) and then
introduce different degradations such as compression artifacts or
transmission errors to generate distorted sequences. Subsequently,
some in-the-wild databases [7, 9, 35, 39] have significantly pro-
moted the development of VQA tasks, due to their large diversity
of content, different levels of degradations and diverse types of
distortions. However, a considerable number of the videos in these
databases are of low resolution, which does not meet the urgent
requirements on the evaluation of high-resolution video sequences,
especially in the Quality Control (QC) of the delivery of Full-High
Definition (HD) or Ultra-HD source videos. For instance, KoNViD-
1k [9] consists of 540P videos. With the increasing popularity of 4K
videos, some databases [4, 24] that exclusively include 4K videos
are proposed. However, these databases are built by conducting
compression and up-scaling on a few SRC videos, resulting in the
simplicity of video scenes. In contrast, our constructed 4K dataset
is built on 200 4K videos with a diverse range of scenes and quality
levels.

2.4 Quality Assessment for 4K Images/Videos
Only a few methods [23, 47] have been specifically designed for 4K
image/video quality assessment tasks due to the unique challenges
posed by high-resolution content. Zhu et al.[47] proposes to select
three cropped patches with size 240 × 240 within 4K images based
on local variances for efficiently extracting features. Lu et al.[23]
utilizes texture complexity measure to select three patches with
size 240 × 240 as inputs into their proposed BTURA model for
4K content quality assessment. Moreover, BTURA is trained by
utilizing an extra information that whether a 4K content is true or
pseudo, which could potentially restrict the practical applications
of BTURA.
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Figure 2: Overall of our proposed method. We utilize a Swin Transformer as the Encoder to extract features.

3 PROPOSED METHOD
The pipeline of our proposed method is illustrated in Fig. 2. As
shown in the figure, the Full-Pixel Covering (FuPiC) sampling and
training strategy is implemented on the frames extracted from
the 4K video. The grey area that outputs the score for each frame
represents FuPiC. In this process, the Swin Transformer is equipped
as the encoder to extract the features for the input frames, and a
proposed region-aware scoring scheme is utilized to predict the
frame score based on the patch score. After FuPiC, the scores of all
extracted frames are aggregated to compute the final score for the
video. Moreover, we use multi-frequency feature fusion to improve
the performance of our method. In this section, we first briefly
introduce the Swin Transformer in Sec. 3.1. Following that, we
introduce FuPiC in detail (Sec. 3.2). Then we present the region-
aware scoring scheme in Sec. 3.3. The multi-frequency feature
fusion is described in Sec. 3.4. Finally, we introduce the dataset we
constructed for the NR 4K VQA task in Sec. 3.5.

3.1 Brief Introduction of Swin Transformer
The Visual Transformer [5] has achieved significant success in
the field of computer vision, including image/video quality assess-
ment [11, 19, 20, 41–43]. However, the Visual Transformer con-
ducts self-attention across the entire content, leading to excessive
computational burden. In contrast, the Swin Transformer [21] per-
forms self-attention within windows and employs shift window
operations to ensure that self-attention covers the entire content.
This method significantly reduces computational complexity while
maintaining model effectiveness, enabling GPUs to handle larger
pixel content as input. Therefore, our method utilizes the Swin
Transformer as the encoder to extract features from video frames.

3.2 FuPiC Sampling and Training Strategy
A basic Swin Transformer is typically trained on training samples of
224 × 224 or 384 × 384 pixels due to the limitations of Windows and

the computational capabilities of standard GPUs.[21]. Even when
opting for the larger size of 384 × 384 pixels, it remains significantly
smaller than the resolution of 4K videos. To tackle the issue, the
sampling strategy in FuPiC partitions each frame of 4K video into
non-overlapping patches with the size of 384 × 384 pixels as the
training samples. Compared with resizing the 4K frame into the
size of 384 × 384 pixels, our proposed sampling strategy can retain
the full details of the 4K video as illustrated in Fig. 3.

(a) (b)

Figure 3: Comparison of the same region in FuPiC and resiz-
ing strategies. On the left side of each example is the patch
with the size of 384 × 384 pixels sampled by FuPiC, while
on the right side is the corresponding region after resizing
the 4K frame to 384 × 384 pixels. Details can be seen more
clearly when zoomed in.

Following the sampling strategy, the patches with the size of
384 × 384 can be inputted into the network to achieve training or
inference. However, the network training process typically super-
vises individual samples within one batch, treating each sample as a
"supervision unit". This leads to a situation where each patch must
be assigned a score for training. Nevertheless, since each patch rep-
resents only a portion of a video frame, we cannot assign the same
score of the video to each patch. Therefore, the training strategy
of FuPiC is proposed to supervise the subset of training samples in
one batch rather than each individual training sample. Specifically,
the training strategy of FuPiC arranges for all the patches (samples)
from the same 4K frame to be in the same training batch, and the
frame ID of each patch is also inputted. In each training iteration,
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the outputs for patches(training samples) are transformed into the
outputs for frame (subsets of samples) by Eq. 1.

O𝑘
𝑓
=

N∑︁
𝑖=1

o𝑘𝑖 /𝑁, (1)

where o𝑘
𝑖
represents the network output of each sample from the

same frame, k is the frame ID, N indicates the number of parti-
tioned patches and O𝑘

𝑓
denotes the predicted score for frame k.

Subsequently, O𝑘
𝑓
can be supervised by the subjective score S𝑘

𝑓
of

frame k, utilizing Mean Squared Error (MSE) loss as defined by the
equation:

L = ∥O𝑘
𝑓
− S𝑘

𝑓
∥22 . (2)

To summarize, the proposed FuPiC sampling and training strat-
egy can input all the original content of the 4K video frame in the
form of multiple patches while treating a complete 4K frame as a
"supervision unit".

3.3 Region-aware Scoring Scheme
Utilizing FuPiC sampling and training strategy, our method ensures
the entirety of 4K video content can be fed into the network for
training, and each frame is treated as a "supervision unit". However,
Eq. 1 assumes that each sample from this unit impacts the unit
equally. This assumption introduces a challenge, as different sam-
ples (patches) from the same frame may not uniformly influence
the quality of the frame. Consequently, it becomes imperative to
devise a scheme for aggregating the scores of individual samples,
obtained through parallel network outputs, into a final score for
the frame.

To tackle this challenge, region-aware scoring scheme is pro-
posed to consider the samples as a series of regions within the
entire frame. Subjective quality scores provided by viewers are
often influenced by distinct regions within the video, such as areas
of focus, background, zones impacted by motion blur, and regions
with intricate details. To mimic the varied effects that different re-
gions may exhibit, the network outputs weights w𝑘

𝑖
for all parallel

input patches, reflecting their potential influence on the frame’s
quality. Once these weights are computed, the contribution of each
region to the overall quality y𝑘

𝑗
and region-aware score of frame k

can be calculated as:

y𝑘𝑗 = w𝑘
𝑗 /

N∑︁
𝑖=1

w𝑘
𝑖 , (3)

O𝑘
𝑓
=

N∑︁
𝑖=1

y𝑘𝑖 × o𝑘𝑖 . (4)

With the region-aware score O𝑘
𝑓
, the network can still be trained

following Eq. 2. During inference, the scores for all sampled frames
with intervals of 𝑡 are calculated, and the final score is obtained by
averaging the frame scores, as shown in Eq. 5.

Q = (
T//t∑︁
𝑗=1

O 𝑗

𝑓
)/(𝑇 //𝑡), (5)

where Q represents the final score of the video predicted by the
network, and T represents the total number of frames of the video.
In our method, 𝑡 is set to be 10.

3.4 Multi-frequency Feature Fusion
For high-quality 4K videos with richer high-frequency information,
existing VQA methods typically feed spatial information directly
into the network for training. However, the critical details might be
overlooked by the convolution and down-sampling in the shallow
layers of DNNs, which leads to less accurate quality predictions for
high-quality 4K content.

To address this, multi-frequency feature fusion is proposed to cap-
ture sufficient detail information, which utilizes the Haar Transform
(HT) to convert 4K videos from the spatial to the frequency domain.
A standard HT layer reduces the spatial size of the input while
increasing the channel number by a stride-2 convolution with four
kernels including 𝑳𝑳⊤,𝑯𝑳⊤, 𝑳𝑯⊤,𝑯𝑯⊤, where 𝑳 = 1√

2
[1, 1]⊤

and 𝑯 = 1√
2
[1,−1]⊤. The low-pass filter 𝑳𝑳⊤ acts as the average

pooling on feature maps while the three high-pass filters capture
edge-like information with different orientations.

To accurately demonstrate the HT’s ability to capture details
in 4K videos, we select two 4K videos with similar scenes and
extracted frames that are highly similar to each other. By applying
HT to these frames and comparing the results, visualizations can be
observed in Fig. 4. In this figure, the upper half represents a frame
from a higher-scoring 4K video, while the lower half represents a
frame from a lower-scoring 4K video. Direct observation of spatial
information reveals high quality in both cases. However, upon closer
examination of different frequency domains, numerous distinctions
become evident, with the higher-scoring video exhibiting richer
detail. Therefore, pre-extracting these abundant details in various
frequency domains using HT can prevent the loss of such detail
information during Linear Embedding. This approach enables the
network to more effectively focus on the crucial details essential
for 4K VQA.

Specifically, we down-sample the patches half to their original
scale through HT. The spatial information of the patches is then
represented in the low-frequency component obtained through
average pooling, while the high-frequency details from the original
scale are preserved in three different edge-like high-frequencymaps.
Assume that the patches derived from a frame are contained within
the set P and we consider an element 𝑝 from P as an example.
Suppose the original scale patch 𝑝 ∈ R3×𝑙×𝑙 , where 𝑙 represents the
height and weight of 𝑝 . Then, the four components resulting from
the Haar Transform are 𝑝avg, 𝑝1ℎ , 𝑝

2
ℎ
, and 𝑝3

ℎ
, where 𝑝avg, 𝑝1ℎ , 𝑝

2
ℎ
,

and 𝑝3
ℎ
∈ R3×

𝑙
2 ×

𝑙
2 . We employ linear embedding layers with shared-

weight to transform these multi-frequency maps into embeddings.
The network then adaptively fuses these embeddings. The specific
process is as follows:

𝑝avg, 𝑝
1
ℎ
, 𝑝2

ℎ
, 𝑝3

ℎ
= Split(HT(𝑝)), (6)

𝒛 = 𝛼1LE(𝑝avg) + 𝛼2LE(𝑝1ℎ) + 𝛼3LE(𝑝2ℎ) + 𝛼4LE(𝑝3ℎ), (7)
where 𝒛 represents the input embeddings of the encoder, LE repre-
sents the Linear Embedding Layer and 𝛼𝑖 represents the learnable
parameters. Multi-frequency feature fusion enables the network to
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Figure 4: Comparing on multi-frequency of two similar frames from different videos.

focus on capturing more detail information regarding edges (ex-
tracted from the high-frequency maps). It is noteworthy that, apart
from the computation involved in the HT itself, we do not introduce
any additional computational cost. Moreover, the input size of the
encoder is reduced to 1/4 of that without multi-frequency feature
fusion, leading to a significant decrease in computational burden.

3.5 4K Video Dataset
3.5.1 Data collection. 200 video clips from the digital masters of
movies, television dramas, and TV shows are collected from an
online video streaming platform, xxxx.com, guided by a criteria
that the era, genre, and region of these video clips are distributed
as balanced as possible. Firstly, 10 ten-second video sequences
are randomly clipped from each of 200 source videos, resulting
in a total of 2000 ten-second video clips. Then 200 representative
video clips are sampled from the 2000 clips, where the sampling
strategy in [39, 44] is adopted. In the sampling process, several
video indicators obtained by using [1] are considered including
spatial activity, temporal activity, noise, brightness, and contrast.
Finally, the distributions of video indicators are shown in Fig. 5,
and some video clip samples are illustrated in Fig. 7. It should be
noted that these videos are from the digital masters of the video
streaming platform, thus, the original resolutions of these videos
are ranged from 720P to 4K, with almost the best quality level at
the corresponding era/region and the corresponding resolution. In
addition, there is also the possibility that the digital master has been
post-processed, such as through super-resolution or enhancement,
and might have suffered various distortions. All these videos are
then up-scaled to 4K for evaluation.

3.5.2 Subjective Experiment. In our experiment, the PC method
[10] is adopted where the subject is forced to choose which of the
two stimuli is preferred. PC is sensitive to the conditions with small
differences so that the accurate and reliable subjective opinions for
the 4K videos can be obtained. However, the number of compar-
isons increases exponentially with the number of processed video
sequences (PVSs). So we adopt the strategies in [17] to limit the
number of comparisons while maximizing the accuracy that can
be reached. Specifically, each observer needs to watch 100 pairs of
ten-second 4K videos and choose the better one from each pair. The
two stimuli are displayed in a side-by-side way on two 4K 27-inches

spatial activity temporal activity noise brightness contrast
Indicators

0

20

40

60

80

100

Pe
rc

en
ta

ge

Bins
Bin 1
Bin 2
Bin 3
Bin 4
Bin 5

Figure 5: Distribution percentage of video indicators. The
normalized feature space of each indicator is uniformly di-
vided into 5 Bins.
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Figure 6: Distribution percentage of MOS in our dataset.

screens (HP-Z27K G3). The viewing distance is approximately 1.6H.
All test environment follows ITU-R BT500[33]. The comparison
list for the subsequent observer is based on the previous subjec-
tive results. On average, each stimulus is observed 100 times in
the experiment. The quality scores are re-scaled from 0 to 1. The
distribution of the final MOS scores is shown in Fig. 6. Some video
clips and their subjective scores are presented in Fig. 7.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. Experiments are carried out on our developed 4K
dataset, which encompasses a diverse range of scenes and quality
levels. In addition, two frequently used open-source VQA datasets
are included to validate the applicability of our method across
different high-resolution VQA tasks. Specifically, one dataset is
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Figure 7: Frames of video samples in our dataset. Details can be seen more clearly when zoomed in. The MOS scores of the
videos that (a)∼(b) belong to are 0.08, 0.20, 0.29, 0.41, 0.58, 0.68, 0.72, and 0.81, respectively.

LIVE-Qualcomm [7] dataset, comprising 1080P videos, while the
other is the YouTube-UGC [39] dataset, where 35% of the videos
are either 1080P or 4K videos.

4.1.2 Methods for comparison. Five deep learning-based methods
are used for comparison, including two methods without special
design on data sampling including VSFA [8] and BVQA-2022 [14];
three methods with grid-based sampling strategy including FAST-
VQA [41], DOVER [43] and SAMA [20].

4.2 Performance Criteria
We employ two metrics, including the Pearson Linear Correlation
Coefficient (PLCC) and the Spearman Rank-Order Correlation Co-
efficient (SRCC), to evaluate the performance of VQA. The PLCC
computes the linear predictability of the VQA algorithm, and the
SRCC assesses the prediction monotonicity. Their values are in the
range of [0,1] and the higher value means the better performance.

To guarantee unbiased dataset partitioning and equitable compar-
isons, we randomly divide the datasets into an 80% training set and
a 20% testing set, performing this split 10 times and presenting the
median SRCC and PLCC scores. For LiveVQC, LIVE-Qualcomm, and
YouTube-UGC datasets, we cite comparison results directly from
existing literature when available. For methods not documented in
published works, we retrain and evaluate them according to their
original optimization protocols.

4.3 Performance Comparison
The quantitative comparison results are shown in Table 1. From
Table 1, it could be observed that on our dataset specifically con-
structed for 4K VQA, our method shows significantly better perfor-
mance over other methods. Specifically, it outperforms the second-
best method by 0.063 (an increase of 7.4%) and 0.050 (an increase of
5.7%) on SRCC and PLCC, respectively. This proves the effective-
ness of our approach in capturing all information of 4K content. On
LIVE-Qualcomm, a dataset that exclusively contains 1080P videos,
our method also achieves state-of-the-art performance, outperform-
ing the second-best method with improvements of 0.004 and 0.011
on SRCC and PLCC, respectively. This demonstrates our method’s

capability on accurately predicting the quality of high-resolution
videos that close to 4K resolution. On YouTube-UGC, our method
secures second place, scoring 0.011 lower on PLCC than DOVER
[43]. A possible reason is that our method is designed for captur-
ing detailed information, and loses its advantage in low-resolution
videos, while 42% of videos in YouTube-UGC are 360P or 480P.
Overall, the comparison experiments illustrate how our method is
effective not just for 4K but also for other high-resolution VQA.

It is worth noting that our method has served in one of the
world’s most well-known video streaming platforms. It has already
provided reliable video quality evaluations in practical business
scenarios such as Ultra-HD video QC, digital master QC, video
enhancement/super-resolution evaluation, etc.

4.4 Ablation Studies
4.4.1 Ablation Studies for the Proposed Method. To see the per-
formance contribution of each component within our method, we
conduct ablation studies by forming the following baseline models.
(a) “Plain Model I”: We resize the 4K video frames and input them
directly into the network to obtain frame scores. (b) “Plain Model
II”: We crop patches from the 4K video frames randomly and input
them into the network, utilizing the video score to supervise the cor-
responding patches. (c) “Plain Model w/ FuPiC”: A baseline that
only utilizes the proposed FuPiC sampling and training strategy.
(d) “(c) w/ Region-aware Scheme”: A baseline that utilizes both
the proposed FuPiC strategy and region-aware scoring scheme.

The results of the ablation studies are listed in Table 2, where
the final method outperforms all the baselines noticeably. (i) The
performance of the plain models (a) and (b) is significantly poor,
which highlights that resizing or cropping the video would cause
the loss of crucial details or result in the omission of essential visual
information. (ii) The result of (c) shows significant improvement
compared with (a) and (b), proving the importance of maximizing
video information fed into the network. (iii) When comparing (c)
with (d), it is evident that not utilizing the region-aware scheme
shows a decline in SRCC and PLCC by 0.038 and 0.040, respectively.
This indicates that reasonably combining the results of the patches
is highly effective. (iv) Against (d), our final method increases SRCC
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Table 1: Performance comparison on four datasets. Bold: best; and Underline: 2nd-best.

Method Source Data Sampling LIVE-Qualcomm YouTube-UGC Our 4K dataset Weighted Average
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

VSFA [8] ACMMM2019 Traditional 0.737 0.732 0.724 0.743 0.718 0.737 0.725 0.740
BVQA-2022 [14] TCSVT2022 Traditional 0.817 0.828 0.831 0.819 0.814 0.822 0.827 0.821
FAST-VQA [41] ECCV2022 Grid-based 0.819 0.851 0.855 0.852 0.851 0.867 0.849 0.853

DOVER [43] ICCV2023 Grid-based 0.736 0.789 0.890 0.891 0.838 0.862 0.862 0.874
SAMA [20] AAAI2024 Grid-based 0.815 0.829 0.881 0.880 0.848 0.882 0.868 0.873

Proposed Method Proposed Proposed 0.823 0.862 0.876 0.883 0.914 0.932 0.873 0.886

Table 2: Results of ablation studies for the proposed method.

Method Setting SRCC PLCC

(a) Plain Model I 0.759 0.790
(b) Plain Model II 0.819 0.824
(c) Plain Model w/ FuPiC 0.834 0.853
(d) (c) w/ Region-aware Scheme 0.872 0.893
(e) Proposed Method 0.914 0.932

and PLCC by 0.042 and 0.039, respectively. This suggests that effec-
tively capturing the details of 4K videos from the frequency domain
enables the network to assess video quality more accurately. More-
over, we conduct an experiment on replacing the shared linear
projection with distinct linear projection, the results decrease by
0.035 and 0.027 on SRCC and PLCC, respectively, suggesting that
there is no need to utilize different linear projection specifically
designed for different frequency information. Instead, a simple
projection is enough.

Table 3: Results of ablation studies for non-local/position
information.

Method Setting SRCC PLCC

w/ Non-local Information 0.914 0.930
w/ Positional Information 0.906 0.918

Proposed Method 0.914 0.932

4.4.2 Ablation Studies for Non-local/Position Information. In addi-
tion to the previous experiments, we set up two more baselines to
study whether the incorporation of non-local or positional infor-
mation is useful to our proposed method or not. (f) “w/ Non-local
Information”: We integrate embeddings containing information
from neighboring regions with those of the current patch, feed-
ing these combined features into the network. (g) “w/ Positional
Information”: We introduce learnable position encodings based
on the spatial locations of the patches. These encodings are also
merged with the embeddings of the current patch before being fed
into the network.

The results presented in Table 3 indicate that fully leveraging
the detailed information in 4K videos and reasonably combin-
ing the results from different regions is sufficient. Adding non-
local/positional information would increase computational cost
and even lead to a decline in performance.

(a)

(b)

Figure 8: Visualization of the region-aware scheme. The right
side shows the visualization of the finalweight for each patch,
with darker green indicating higher importance.

4.5 Visualization on Region-aware Scoring
Scheme

In addition to comparative results, The visualization of the weights
for the regions in 4K frame predicted by our Region-aware Scoring
Scheme is illustrated in Fig. 8. The figure shows that the network
effectively focuses on the relatively important regions, which proves
highly beneficial for the 4K VQA task.

5 CONCLUSION
A novel and highly efficient NR 4K VQA method is presented in the
paper. The main component of this method is the proposed FuPiC
sampling and training strategy, which can feed all the original
content of 4K frames into our VQA network under computational
resource limitations. A region-aware scoring scheme is designed to
mimic human subjective perception, where each sub-region con-
tributes differently to the overall score of the 4K frame. Additionally,
a novel multi-frequency feature fusion approach is developed to
enhance the performance of the proposed method and significantly
reduce inference time. Experiments prove the effectiveness of the
proposed method on our constructed 4K video quality dataset and
other open-source video quality datasets, resulting in high practi-
cability.
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