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Abstract

We introduce PerturbAgent, a large language model (LLM)-
based multi-agent system for single-cell genetic perturba-
tion studies. In biomedical research, understanding cellular
responses to perturbations is essential for interpreting gene
function and regulatory pathways in single-cell data. Existing
methods focus only on either single-cell analysis pipelines or
perturbation prediction models, and often lack this necessary
biological interpretation. PerturbAgent addresses these limi-
tations, targeting both analysis and prediction tasks while also
generating comprehensive biological interpretations with re-
sults grounded in mechanisms, pathways, and existing knowl-
edge. We further propose MAST++, a general framework that
evaluates agentic performance across profile, reasoning, per-
ception, interaction, and memory, and complement it with bi-
ological validity assessments. On public single-cell Perturb-
seq and RNA-seq datasets, PerturbAgent reliably achieves
high task completion and delivers citation-backed biological
summaries, representing progress toward practical and inter-
pretable agent workflows for scientific discovery.

Introduction

LLM-based agents are systems that combine large language
models with control logic for perception, reasoning, interac-
tion, and memory; their growing use and popularity are re-
shaping scientific discovery, particularly in the drug discov-
ery pipeline (Jumper et al. 2021; Wang et al. 2024a; Zhang
et al. 2025). Unlike traditional models that make one-off
predictions or analyses (Mosqueira-Rey et al. 2023), LLM-
based agents can reason through rationales, invoke tools, and
dynamically interact with environments (Gao et al. 2024a),
other agents (Li et al. 2023; Wu et al. 2023), and humans.
These capabilities position LLM-based agents as a promis-
ing direction for building intelligent systems in science.
Genetic perturbation studies are used to uncover gene
function, regulatory networks, and disease mechanisms
(Datlinger et al. 2017; Gasperini et al. 2019), making them
central to early-stage drug discovery alongside broader
biomedical research. Here, a genetic perturbation refers to
a deliberate alteration of the expression or function of a
gene ¢, and can be denoted as a causal intervention do(G =
g), where G € {0,1,...,npe } indexes the targeted gene
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(G = 0 denotes control cells, i.e. unperturbed condition,
and npert, is the number of perturbations). The perturbation
effect is quantified by comparing the distribution of tran-
scriptional response, P(Y | do(G = g)) to the control
baseline P(Y | do(G = 0)), where Y € R™zenes is the
expression vector across all ngenes measured genes. Perturb-
seq (Dixit et al. 2016) and large-scale CRISPR screens have
enabled systematic profiling of thousands of perturbations
across millions of single cells (Replogle et al. 2022; Adam-
son et al. 2016; Datlinger et al. 2017), generating rich data
resources for discovery. At the scales typical of modern per-
turbation screens, the constraint shifts from running analy-
ses to producing explainable, biologically grounded target
choices; the automation of this process is a clear next step
toward faster, more consistent interpretations of single-cell
biology with clear relevance to target discovery.

However, most existing approaches for automatically ex-
tracting biological insights remain limited in scope. Methods
tend to fall into two categories. Analysis pipelines process
single-cell data through fixed workflows to produce statisti-
cal summaries(Zhou et al. 2024; Su, Long, and Zhang 2025;
Xiao et al. 2024), but lack predictive and explanatory capa-
bility. Prediction models forecast transcriptional responses
to perturbations (Ramakrishnan et al. 2025; Adduri et al.
2025; Roohani, Huang, and Leskovec 2024) but cannot di-
rectly produce biological insight from their output. Recent
extensions have attempted to improve tool coverage and task
generality, yet remain limited to workflow execution without
deeper biological reasoning (Huang et al. 2025). This moti-
vates the integration of analysis, prediction, interpretation
and the intelligence of agents in a single framework.

We therefore introduce PerturbAgent, a multi-agent
framework for automated discovery in genetic perturbation
studies. PerturbAgent orchestrates agents equipped with rea-
soning, coding, tool use, and memory. By integrating ex-
isting analysis and modelling tools, it executes multi-step
tasks, invokes bioinformatics and prediction modules, and
generates biologically meaningful explanations. This es-
tablishes an explainable workflow that combines statistical
analysis with transcriptional-response prediction, and mir-
rors how a human biologist plans, experiments, reflects, and
interprets results.

Our approach makes three key contributions:

* A novel agentic framework. A multi-agent architecture



for genetic perturbation studies that integrates reasoning,
coding, tool use, and memory.

* Unified analysis—prediction—interpretation integra-
tion. Integration of classical single-cell analysis with
perturbation-prediction models in a single workflow, en-
abling the translation of outputs into structured biological
explanations and hypotheses.

¢ Comprehensive evaluation framework. We extend the
Multi-Agent System Failure Taxonomy (Cemri et al.
2025, MAST) to a general task-agnostic framework
(MAST++), combined with task-specific metrics to
jointly assess agentic performance and biological valid-

ity.

Related Work
Agents for Biological Analysis & Discovery

Early efforts to integrate LLMs into biological analysis em-
phasised workflow automation over scientific reasoning or
interpretation. AutoBA is a single-agent system that auto-
mates multi-omics pipelines but remains bound to prede-
fined workflows (Zhou et al. 2024).

Multi-agent systems (e.g. CellAgent (Xiao et al. 2024))
improve modularity via specialised agent roles; BioMas-
ter (Zhou et al. 2024) further incorporates retrieval-
augmented generation (RAG) for domain-specific informa-
tion and reports higher task success across bioinformatics
workflows. However, these systems still focus on dry-lab au-
tomation and quantitative outputs without interpretation.

General biomedical agents, e.g. Biomni (Huang et al.
2025), integrate CodeAct with extensive toolkits to generate
code and visual summaries across various biomedical tasks.
However, it does not yet provide deeper domain-specific
downstream introspection beyond descriptive summaries.

To close the discovery loop, BioDiscoveryAgent
(Roohani et al. 2024) uses LLM reasoning to propose
candidates for gene perturbation. While promising, its
hypotheses are limited to gene lists without mechanistic
explanations or quantitative prediction.

Perturbation Prediction Models

Early generative models such as CPA (Lotfollahi et al. 2023)
and sVAE+(Lopez et al. 2023) use latent-variable genera-
tive decoders with fixed likelihood assumptions, which can
limit modelling of heterogeneous, non-Gaussian expression
responses and typically do not generalise to unseen target
genes. More recent approaches add prior biological struc-
ture to improve generalisability: GEARS (Roohani, Huang,
and Leskovec 2024) uses knowledge graphs built from gene
co-expression and gene ontology (GO) relationships, while
foundation models such as scGPT (Cui et al. 2024) and sc-
Foundation (Hao et al. 2024) are pre-trained on large single-
cell atlases and fine-tuned for perturbation prediction. How-
ever, benchmarking studies have highlighted that these mod-
els fail to outperform simple linear baselines on out-of-
distribution (OOD) perturbations (Ahlmann-Eltze, Huber,
and Anders 2025). Furthermore, most methods primarily op-
timise for mean shifts in expression rather than full distribu-
tional changes across cells.

Motivated by these limitations, LLMPert (Martens,
Donovan-Maiye, and Ferkinghoff-Borg 2024) introduces
LLM-informed gene embeddings to support generalisation
to unseen perturbations, and LLMHistPert (Ramakrishnan
et al. 2025) extends this idea to distributional prediction
by modelling per-gene expression as histograms, capturing
higher-order statistics and cellular heterogeneity. Comple-
mentarily, STATE (Adduri et al. 2025) targets transfer across
cellular and experimental contexts via “state” embeddings
trained on large observational and perturbed corpora, im-
proving robustness to shifts in population composition and
context.

Overview of PerturbAgent

We design two main modules in PerturbAgent; Analysis
and Prediction. Analysis extracts interpretable insights from
perturbation data, such as differentially expressed genes,
clustering patterns and pathway enrichment, which gives in-
sights with biology domain expertise, facilitating new hy-
pothesis generation; while prediction can infer perturbation
outcomes, which offers a simulation of unseen genes, per-
turbations, or cellular contexts, providing exploratory refer-
ences that guide future experimental design.

Additionally, both tasks share a common objective of in-
terpretation: connecting quantitative results to biological
understanding, implications and future directions, as well as
discussing technical quality and uncertainty.

Architecture

PerturbAgent is implemented as a multi-agent system oper-
ating on a stateful LangGraph workflow. LangGraph pro-
vides a graph abstraction, where the state of the system
is represented and updated as the workflow progresses. In
PerturbAgent, the state tracks variables including loaded
datasets, intermediate analysis results, model predictions,
and memory records, ensuring the contextual information is
preserved throughout the workflow.

The workflow (Fig. 1) consists of four nodes—Generate,
Execute, Critic, and Report—in addition to the standard Start
and End nodes. These nodes are connected by conditional or
unconditional directed edges, allowing the system to transi-
tion between reasoning, execution, reflection, and reporting
stages. Specifically:

* Generate produces reasoning traces, candidate solution
or code as text;

» Execute runs generated code or tool calls;

* Critic reviews solution against task goal and criticise can-
didate solution, identifies errors, and provides feedbacks
for improvement;

* Report synthesises biologically interpretable summaries.

Following the taxonomy by Gao et al. (2024b), Al agents
typically include four key capabilities: perception, inter-
action, reasoning, and memory. Additionally, Wang et al.
(2024a) includes a profile module to describe the agent roles.
PerturbAgent incorporates all these modules within a three-
agent setup, each with a specialised role and shared state
access.
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Figure 1: The illustration of PerturbAgent’s architecture comprising three agents.

The profiles are embedded into system prompts at initial-
isation. The first is a scheduler agent for specifying the task
type (analysis or prediction), make plans and coordinates
workflow execution or termination. The second is a biomed-
ical specialist agent responsible for reasoning, code gener-
ation, execution, and error handling. The third is a report
agent, which can summarise final results into interpretable
outputs for domain experts. Coordination between agents is
achieved by passing LangGraph state objects with textual
natural language and structural data files.

For reasoning, the biomedical specialist agent combines
ReAct for stepwise planning with checklist updates (Yao
et al. 2023), and Reflexion for reflection and feedback (Shinn
et al. 2023). Both paradigms are applied Chain-of-Thought
(CoT) prompting (Wei et al. 2023), supporting multi-step
reasoning and improvement. For interaction, the biomed-
ical specialist agent employs the CodeAct paradigm (Wang
et al. 2024b) for action representation to interact with Python
environment by only code, not natural language, enabling it
to access analysis pipeline software, invoke pretrained mod-
els and query biological databases or APIs. For short-term
memory and context management, PerturbAgent utilises
LangGraph’s MemorySaver (LangChain 2025) module to
isolate sessions with different thread id and persist work-
flow states in a dictionary, so intermediate variables, execu-
tion logs and tool outputs remain available across nodes in
the LangGraph workflow for the same conversation.

Task 1: Perturbation Analysis Module

Preprocessing. PerturbAgent supports both single-cell
and pseudobulk! perturbation data, providing perspectives
at both cell and perturbation levels. During preprocessing,
the agent performs standard quality-control procedures, fil-
tering low-quality cells and genes, normalising expression
counts, and applying scaling or log transformations to en-
sure consistent data quality for downstream analyses.

Downstream analysis tasks. The analysis module han-
dles two categories of tasks that reflect standard single-cell
workflows or perturbation-specific analyses with rich inter-
pretable outputs, both chosen to evaluate the agent’s ability
to orchestrate multi-step pipelines:

!Pseudobulk refers to the perturbation-level expression matrix
obtained by averaging single-cell expressions across cells with the
same perturbation label.

1. classical single-cell analysis: (i) identification of differ-
entially expressed (DE) genes, (ii) unsupervised cluster-
ing of cell states, (iii) detection of cluster marker genes,
and (iv) pathway enrichment analysis of DE genes.

2. perturbation-specific single-cell/pseudobulk analyses
extend these pipelines to assess the effect sizes of pertur-
bations for different aspects: pathway activity on strong
and weak perturbations, correlation of perturbation effect
profiles, and identification of functional modules such as
integrator complexes.

These tasks require the agents to manage statistical work-
flows, handle multimodal resources, and generate biologi-
cally meaningful interpretations.

Supporting resources. PerturbAgent integrates multiple
external biological knowledge bases covering gene func-
tions, ontology, molecular pathways, protein interactions
and complexes. These resources enable the agent to contex-
tualise statistical outputs within relevant molecular systems
and mechanisms, supporting higher-level biological reason-
ing.

Task 2: Perturbation Prediction Module

The second module of PerturbAgent focuses on perturba-
tion prediction, aiming to forecast gene expression profiles
under unseen perturbations. It takes single-cell datasets as
input and produces predicted expression profiles along with
evaluation results.

Prediction settings. Two prediction settings are consid-
ered to assess model generalisability:

1. Within-cell-line: The model trains on the cell line and
tests on the unseen cells in the same cell line, with train-
ing set and testing set randomly split in 8:1.

2. Cross-cell-line zero-shot: A held-out cell line is unseen
during training, which requires the model to extrapolate
perturbation effects to novel cellular contexts without
adaptation.

These settings evaluate a model’s ability to capture in-
distribution effects (within-cell-line), and generalise to com-
pletely novel contexts (zero-shot). We aim to use the result
to further specify the roles of each model as the agent’s tools.

Data, inputs, outputs. Let X € R™u X" denote the
single-cell expression matrix of control cells and Xjeq €
[R7pereetis X Neene the single-cell expression matrix of perturbed



cells, where 7ipers_cents 18 the number of perturbed cells, ncy
is the number of control cells, and 7geqe is the number of
downstream genes. Each row corresponds to a single cell,
and columns correspond to gene expression features. Meta-
data such as cell line identity, batch and perturbation labels
are denoted by C.

The goal of perturbation prediction is to learn a mapping

f: (XpethClrlac) — j)a

where Y represents the predicted perturbation response,
which can take several forms depending on the model in-
terface:

¢ Predicted pseudobulk profile: Apm € R XTgene | pepy-
resenting the estimated mean expression of each gene
across all cells under each perturbation (e.g. MLP Mean).

¢ Predicted distributional profile: prert € R7wern XNgene X B
where each gene under each perturbation is represented
by a B-bin probability vector describing its predicted ex-
pression distribution across cells (e.g. MLP Hist).

* Predicted single-cell expression: X,o; € R7el*Meere,
providing cell-level predictions of gene expression under
each perturbation (e.g. STATE).

Downstream outputs include evaluation metrics and sim-
ulated results such as differential-expression (DE) gene lists

or pathway enrichment derived from ).

Model interface. PerturbAgent implements a general in-
terface for pretrained perturbation prediction models. Each
model is abstracted as Biomedical specialist agent’s tool that

receives input tensors (Xcy1, Xper, C) and outputs Y. This
interface allows integration of models trained under differ-
ent paradigms (mean-level, distributional, or cell-specific).
The system can therefore adapt to future advances in pertur-
bation modelling by simply registering new models in the
framework.

Routing strategy. Model routing is manually specified ac-
cording to the task objective and data characteristics. The
scheduler agent selects appropriate models for within-cell-
line or cross-cell-line settings based on i) prior model prop-
erties and ii) empirical performance results. Future exten-
sions could enable adaptive routing and weighted fusion
based on dynamic performance feedback.

Downstream analyses. Predicted profiles can be further
integrated into the analysis pipelines from TASK1 to sim-
ulate new experimental conditions and generate hypotheses.
For instance, DE testing and pathway enrichment can be per-
formed on Xpm to identify potential regulators and mecha-
nistic targets.

System Design for Interpretability

Interpretability in PerturbAgent is achieved by the explicit
design of its reasoning, memory structures, and report gener-
ation. Each reasoning iteration within the LangGraph work-
flow is fully traceable, producing structured outputs that re-
veal the agent’s decision-making process. This design en-
ables scientists not only to view final results but also exam-
ine the reasoning path that led to them.

Transparent reasoning and action traceability. Com-
ponents of conversation history including reasoning traces
(planning and reflections), agent actions in code, and can-
didate solutions are wrapped in XML-style tags. This rep-
resentation allows the entire workflow to be parsed and
searched, ensuring that each decision and tool invocations
are explicitly traceable in system logs. Chain-of-thought
(CoT) prompting is used for stepwise reasoning, while the
Reflexion mechanism guides self-evaluations and refine-
ment steps, providing a record of how errors are detected
and corrected.

Structured reporting and biological interpretability.
Beyond executing pipelines and producing numerical re-
sults, the Report Agent translates analytical and predictive
outputs into biologically meaningful interpretations. It maps
differential gene lists and perturbation responses to enriched
pathways, functional modules, and cell-type—specific regu-
latory mechanisms, bridging quantitative computation with
biological reasoning. Specifically, the report generation fol-
lows a prompt template for comprehensive biological in-
terpretation, including: (i) executive summary; (ii) method-
ological description; (iii) key findings; (iv) mechanism-
level interpretation (e.g., pathway- and network-level ef-
fects, comparison with known biology); (v) technical val-
idation and discussion of data quality, reliability, potential
confounders and limitations; (vi) implications and future di-
rections (clinical relevance and suggested follow-up experi-
ments). Full prompt is included in Appendix .

Through these design choices, PerturbAgent transforms au-
tomated computation into a transparent and interpretable sci-
entific workflow.

Evaluation Framework

We evaluate PerturbAgent at two levels: (i) fask-specific
evaluation that quantify the biological validity of its analysis
and prediction outputs, and (ii) fask-agnostic (agent-level)
evaluation that assess the robustness and efficiency of the
agentic system.

Task-specific Evaluation

Analysis metrics. We assess two major aspects of single-
cell and perturbation analyses:

1. Pipeline correctness. We inspect execution logs and out-
puts to verify: the appropriateness of quality control and
normalisation, correctness of clustering, feature analysis,
marker gene identification, pathway enrichment and in-
vocation of APIs or databases for analysis.

2. Interpretation quality. Following the work from Ding
etal. (2024), we design a prompt-based rubric to evaluate
the automatically generated reports on the logical coher-
ence of reasoning, evaluability of generated solution, and
interpretation accuracy and clarity.

Prediction metrics. For perturbation prediction, we eval-
uate model performance at gene level and perturbation level.
Formal definitions of these metrics are provided in Ap-
pendix .



Evaluation

MAST Failure modes Interpretations Metrics Metric Categories
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Figure 2: Summary of our task-agnostic evaluation frame-
work (MAST++), and the corresponding MAST failure
modes (Cemri et al. 2025).

(i) Gene-level differential expression (DE) metrics.
These metrics assess whether the model captures the cor-
rect direction and magnitude ranking of gene-level changes
of perturbation effects. We use (a) directional agreement to
quantify the the proportion of genes whose predicted and
true log-fold changes share the same sign, and (b) Spearman
rank correlation between predicted and true fold changes for
each perturbation.

(ii) Perturbation-level metric. At the perturbation level,
we adopt the perturbation discrimination score from Adduri
et al. (2025) to evaluate how closely each predicted tran-
scriptional profile matches its corresponding ground truth
relative to all other perturbations. This score ranks predicted
post-perturbation profiles by their Manhattan distance to the
observed profiles, with higher values indicating more accu-
rate recovery of perturbation-specific expression patterns.

Task-agnostic (Agent-level) Evaluation

We propose a general task-agnostic evaluation framework,
MAST++, which extends the Multi-Agent System Failure
Taxonomy (Cemri et al. 2025, MAST) for scientific multi-
agent systems. MAST++ reinterprets and reclassifies the 14
failure modes of MAST into five key agent modules (profile,
perception, reasoning, interaction, and memory), and addi-
tionally introduces a new system-level aspect, addressing the
gaps, overlaps, and ambiguities in MAST. This framework
defines 12 interpretable metrics, providing a comprehensive
basis for assessing multi-agent capabilities and reliability.

Agent-module metrics.

¢ Profile: role compliance rate (how often an agent follows
its assigned role).

* Perception: task and termination perception rates (cor-
rect understanding of task objectives and stop condi-
tions).

Table 1: Summary of Replogle Perturb-seq datasets (Re-
plogle et al. 2022).

Dataset #Cells #Ctrls #Perturbs #Genes

K562_gwps 1,989,578 75,328 9,866 8,248
K562 essential 310,385 10,691 2,057 8,563
RPE1 247914 11,485 2,393 8,749

* Reasoning: reflection correctness rate (validity of self-
critique) and reasoning correctness rate (validity of gen-
erated CoT plans).

* Interaction: action-reasoning alignment score (consis-
tency between reasoning trace and the agent’s actions)
and inter-agent communication efficiency (the rate of
successful information exchange including sharing, ask-
ing, and receiving information).

* Memory: context retention with respect to conversation
reset, step repetition, and task derailment.

System-level metrics. We also monitor system-level reli-
ability and efficiency by:

* Workflow completion: premature termination rate, re-
flecting whether the agent completes all required steps
without halting early.

» Execution: error recovery rate (fraction of runtime errors
successfully resolved).

« Efficiency: token usage (total, reasoning, and execution
tokens) and average conversation turns required for task
completion.

Overall, these metrics evaluate both biological validity of
analysis and prediction, and the agent robustness and ef-
ficiency about whether the system plans, reasons, and re-
covers consistently throughout execution. This evaluation
framework offers a transparent and reproducible view of
PerturbAgent’s behaviour across diverse scientific work-
flows.

Experiment Setup
Data and Resources

Perturb-seq. We use three Perturb-seq datasets from Re-
plogle et al. (2022): K562 genome-scale (K562_gwps),
K562 essential-scale (K562_essential), and RPEl
essential-scale (RPE1) (Table 1). For each, both single-
cell and pseudobulk AnnData are available (Gemgroup Z-
normalised and filtered UMI per cell > 0.01).

scRNA-seq PBMC. We additionally use Peripheral Blood
Mononuclear Cells (PBMC) scRNA-seq dataset in MEX
format (10x Genomics 2017) (2,700 cells, 32,738 genes) for
a standard single-cell pipeline sanity check.

System Setup

Agent setup In the experiments, we use GPT-04 mini as
PerturbAgent’s backbone LLM for its strong performance
in coding and reasoning benchmarks (Jain et al. 2024; Patil
et al. 2025; Chiang et al. 2024).



The agent operates in a PythonREPL backend with
Python 3.12 runtime with scientific/bioinformatics pack-
ages, and custom tools, for (i) pathway/annotation queries
to the biological databases/APIs and (ii) inference wrap-
pers for pretrained perturbation prediction models. Execu-
tion logs and intermediate artefacts are tracked for down-
stream verification. Agent profile prompts are designed to
support CoT reasoning, planning, and the ReAct+CodeAct
paradigm, with clear termination conditions, access to rel-
evant data and tools, and XML-wrapped message compo-
nents (Appendix for the complete prompt template).

Perturbation prediction models as agent’s tools. In this
work, we demonstrate three most recent prediction models
with different strengths, including MLP Mean and MLP Hist
in LLMHistPert, and STATE as agent’s tools.

For the model pretraining, LLMHistPert is trained under
the default parameter setting. STATE is trained for 60,000
steps under le-4 learning rate with a batch size of 16 and
model hyperparameters listed in Appendix 5. For the gene
embeddings, LLMHistPert uses gene embeddings of gene
text from GenePT (Chen and Zou 2024) and protein se-
quences from ProtT5 (Elnaggar et al. 2022). Following Ad-
duri et al. (2025), STATE conditions on cell/context repre-
sentations and perturbations; we adopt the published setup
with State Embeddings as gene embeddings.

Agent’s Tasks Overview

Analysis. Two classes of analyses are conducted, each
mapped to specific datasets:

1. Classical single-cell analysis, performed on the PBMC
dataset (10x Genomics 2017) to demonstrate the agent’s
ability to execute a standard single-cell workflow.

2. Perturbation-specific single-cell or pseudobulk analy-
sis, performed on the Replogle perturb-seq datasets (Re-
plogle et al. 2022) to demonstrate the agent’s ability to
interpret perturbation effects beyond standard single-cell
analysis pipeline.

Prediction. Prediction experiments are applied on the
essential-scale Perturb-seq of two cell lines in Replogle
dataset (K562_essential, RPE1) (Replogle et al. 2022),
using three models (MLP Mean (Ramakrishnan et al. 2025),
MLP Hist (Ramakrishnan et al. 2025), STATE (Adduri et al.
2025)) as the agent’s tools.

As specified in PerturbAgent overview, we perform two
kinds of prediction tasks: i) within-cell-line inference, ii)
cross-cell-line zero-shot inference.

Results
Analysis Tasks

Pipeline correctness

i. Execution correctness and completeness. PerturbAgent
demonstrated high execution reliability across standard
single-cell and perturbation analysis pipelines. In the qual-
ity controls of PBMC data, PerturbAgent successfully ex-
ecuted the pipeline and applied appropriate thresholds for
cell-level and gene-level filtering. The only exception is

when the agent explicitly stated in its plan that quality con-
trol was optional (“Quality filtering (if desired; here we
proceed directly)”’). Among individual steps, mitochondrial
gene filtering was the most frequently omitted (skipped in
4/10 runs), while normalisation was well applied in all ex-
ecutions. These results indicate that PerturbAgent can au-
tonomously and robustly execute multi-step analytical work-
flows with minimal task failure.

ii. Output quality and alignment with manual analyses.

The quality of PerturbAgent’s analytical outputs was
comparable to those from human scientists. For unsuper-
vised clustering, cluster quality was assessed by the appro-
priateness of the resolution. Leiden partitioning yielded be-
tween 5 and 12 clusters across runs, matching the reason-
able biological granularity and human baselines. As shown
in Appendix Fig. 4, the agent’s clustering patterns exhibit
a close visual alignment with those from manual analyses.
In feature selection and perturbation-specific analyses, Per-
turbAgent correctly identified relevant features according to
task queries (Appendix Fig. 6) and generated interpretable
results consistent with the original publication.

Downstream analyses further support the agent’s biolog-
ical validity. For DE analysis, the overlap between agent-
and human-derived marker genes reached a median Jac-
card similarity of 0.93 across 10 runs, demonstrating high
reproducibility and reliability (Appendix Fig. 5). In per-
turbation analyses, PerturbAgent successfully distinguished
strong versus weak perturbations and reproduced pathway-
level findings consistent with Replogle et al. (2022). Specif-
ically, 17 out of the top 20 significantly enriched KEGG
pathways overlapped between PerturbAgent and the human-
generated results for both strong and weak perturbations
with a broadly consistent ranking of pathway significance
(Fig. 3), confirming the agent’s ability to recover the correct
biological signals and capture their relative importance.

Interpretation quality

Interpretability of generated reports from PerturbAgent was
evaluated using the prompt-based rubric revised from Ding
et al. (2024), against the strong baseline agent Biomni. To
ensure reliable evaluation, we employed Gemini 2.5 Flash as
the external evaluator, chosen for its low hallucination rate
(0.7%) on the Vectara Hallucination Leaderboard (Hughes,
Bae, and Li 2023).

PerturbAgent achieved high scores across logical co-
herence, evaluability, and interpretation clarity (Table 2).
While its logical coherence score (4.4) was slightly be-
low that of Biomni (4.9), PerturbAgent substantially outper-
formed Biomni in interpretation clarity and accuracy (4.8
vs. 3.1). PerturbAgent produced more structured, contextu-
alised, and mechanism-level biological explanations, with
consideration of analysis quality and uncertainty (see Fig.
7). In contrast, Biomni’s outputs are accurate and coherent,
yet remain as a workflow summary with minimal interpreta-
tion, limiting scientific value for exploratory research.

Prediction Tasks

PerturbAgent invoked pretrained perturbation prediction
models under two evaluation settings: within-cell-line
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Figure 3: Comparison of KEGG pathway enrichment results in K562_gwps between Replogle et al. (2022) and PerturbAgent
for (a) strong and (b) weak perturbations.

Evaluation Aspect

PerturbAgent

Biomni

Logical Coherence

Evaluability

Interpretation Clarity
& Accuracy

Mean = 4.4. Strong overall consistency with immunology (e.g.,
interferon-driven responses, T cell transitions). A few cases lost
points due to over-extrapolation and lack of evidence for causal
conclusion (observational findings presented as mechanistic).

Mean = 5.0. All claims specific, testable with standard work-
flows; validation strategies were explicit.

Mean = 4.8. Provided multi-layered (DEGs — pathways —
functions) interpretations, contextualized in immunology, and

Mean = 4.9. Very sound and descriptive;
avoided over-interpretation but sometimes
overly cautious.

Mean = 5.0. Equally strong, but conclusions
were more straightforward and less layered.

Mean = 3.1. Accurate but narrow in scope;
mainly cell-type annotation (e.g., PPBP/PF4

transparent about limitations.

markers) with little biological depth, statisti-
cal context, or caveats.

Table 2: Comparison of interpretation quality between PerturbAgent and Biomni across evaluation aspects, auto-evaluated and

summarised by Gemini 2.5 Flash.

and cross-cell-line zero-shot transfer, using datasets
K562_essential and RPE1. Model performance was
assessed using gene-level DE metrics (directional agree-
ment and Spearman correlation of log fold changes), and
perturbation-level discrimination scores.

In within-cell-line context, Table 3 shows that within
K562 cell line, MLP Mean achieves overall the highest ac-
curacy across metrics, with MLP Hist following closely be-
hind. For the RPEI cell line, though STATE attains the high-
est direction match, MLP Mean and MLP Hist remain com-
petitive. These results indicates that simple MLP architec-
tures with LLM-informed embeddings from UniProt+GPT
are sufficient for in-domain predictions.

In cross-cell-line zero-shot context (Table 4), STATE
consistently outperformed the MLP variants across most
metrics across both held-out cell lines, demonstrating the
strongest transferability to unseen cellular contexts amongst
the testing models. MLP Hist achieves the highest Spearman
correlation of log fold-changes in testing RPE1 cell line,
whereas MLP Mean did not dominate on any metric in ei-
ther cell line. These results are generally consistent with the
respective model designs; the MLP variants do not contain
mechanisms for generalisability over cell types.

Routing strategy. Based on these empirical results, Per-
turbAgent adopts a metric-based routing strategy: MLP
Mean is prioritised for within-cell-line inference, while
STATE is selected for cross-cell-line prediction. MLP Hist
as the second strongest in either setting, serves as a substitute

Table 3: Within-cell-line prediction results of mean expres-
sions for downstream genes.

Method dir. agree  Spearman(LFC) PDiscNorm
K562_essential
STATE 0.6013 0.1843 0.5052
MLP Mean  0.6481 0.4395 0.6653
MLP Hist 0.6415 0.4265 0.6573
RPE1
STATE 0.7557 0.5007 0.5152
MLP Mean 0.6849 0.5516 0.6609
MLP Hist 0.6784 0.5383 0.6611

when these preferences are not available. Across ten predic-
tion tasks (five in-domain, five zero-shot), the scheduler cor-
rectly invoked the intended model in all cases, confirming
the system’s adherence to routing rules. This suggests under
manual specification, PerturbAgent can effectively follow
routing rules for model selection in prediction tasks. In the
future, PerturbAgent can incorporate more prediction mod-
els with their strengths as prior knowledge, and employ a
fusion mechanism to dynamically weight and combine their
outputs, potentially improving accuracy.



Table 4: Cross-cell-line zero-shot results. Best in bold.

Method dir. agree Spearman(LFC) PDiscNorm
Holdout K562 _essential
STATE 0.5742 0.1293 0.5731
MLP Mean  0.5291 0.0941 0.5004
MLP Hist 0.5308 0.0995 0.5006
Holdout RPE1
STATE 0.5472 0.0724 0.5038
MLP Mean  0.5254 0.1193 0.5003
MLP Hist 0.5334 0.1414 0.5005

Agent Capabilities & Task-Agnostic Evaluation

In addition to task-specific correctness, we assessed
PerturbAgent’s general agentic performance using task-
agnostic metrics in MAST++. Each task type (classical
single-cell analysis, perturbation analysis, and prediction)
was repeated for 10 independent runs to ensure robustness.

Reliability and error recovery. Across all 30 runs, Per-
turbAgent encountered minor execution errors in 28 runs
(mostly due to mismatched gene-set names during enrich-
ment analysis) and successfully fixed all of them by auto-
correcting code or re-planning, yielding an error recovery
rate of 1.0. This demonstrates high code generation qual-
ity and robust reasoning-driven self-correction, with mini-
mal execution overhead for error handling.

Reasoning and reflection. PerturbAgent consistently pro-
duced logically coherent plans and self-evaluations. For rea-
soning correctness, all generated analysis checklists were
manually judged biologically appropriate. The mandatory
reflection step identified missing or incomplete outputs in
26 of 30 workflows (86.7%), confirming the agent’s ability
to critique and improve its own solutions.

Interaction and communication. PerturbAgent’s actions
such as tool calls and code executions highly aligned with
reasoning checklists or reflections. Only in 3/30 runs, Per-
turbAgent successfully detected missing steps during reflec-
tion but failed to take actions to correct the problem, result-
ing in an action—reasoning mismatch.

Inter-agent communication within PerturbAgent system
was generally effective. Tool invocations were passed to
the executable environment by the Biomedical Specialist
agent. The Report agent tracked multiple output files and
aggregated them with the conversation history passed from
Biomedical Specialist agent. Across 30 runs, no information
withholding or coordination failures, failure to ask for clari-
fication, or ignoring other agent’s inputs were observed.

Memory. PerturbAgent effectively retained task objec-
tives and contextual information throughout each Lang-
Graph thread, with no conversation reset or task derailment
observed. Step repetition never occurred at the action level,
namely, the agent never reverted to past code execution or
tool calls. At the reasoning level, the agent occasionally as-
sumed premature completion, but successfully recognised
the oversight during reflection and re-executed the missing

step. These observations demonstrate PerturbAgent’s reli-
able context retention across multi-step workflows.

Workflow completion In 77% of cases, PerturbAgent’s
reflection successfully identified incomplete tasks and redi-
rected execution accordingly. In the remaining runs, reflec-
tion either failed to detect incompleteness (4/30) or detected
it but failed to act (3/30), overall resulting in seven prema-
ture terminations. Premature termination may result from
multiple factors discussed above. Direct causes include in-
sufficient reflection or action-reasoning mismatches, while
indirect causes may relate to memory design. Accordingly, a
future direction for improvement is to strengthen reasoning
capability and action tracking, and adopt a more structured
memory module to prevent unintended overwriting, thereby
improving completion rates.

Discussion & Conclusion

This work presents PerturbAgent, an LLM-based multi-
agent system that unifies analysis, prediction, and literature-
grounded biological interpretation for genetic perturbation
studies. We complement our framework with a comprehen-
sive evaluation, including (i) biological validity via task-
specific metrics, and (ii) MAST++, a task-agnostic frame-
work for assessing agentic performance. Empirically, Per-
turbAgent executes end-to-end pipelines, produces outputs
closely aligned with human-style analyses, supports within-
and cross-cell-line zero-shot use of pretrained prediction
models, and generates structured, mechanism-level reports
with supporting citations.

The present scope of PerturbAgent prioritises the design
of an agentic orchestrator for existing analysis and predic-
tive tools, rather than fine-tuning LLMs or proposing new
pipelines or predictors. Consequently, performance depends
on the underlying LLM, the quality and coverage of pre-
trained predictors and analysis tools. In our current imple-
mentation, the model selection preference is manually spec-
ified in system prompts and the critique process uses a fixed
number of critic rounds, rather than a learned or adaptive
router or fusion mechanism.

Several important extensions remain for future work.
First, while our evaluation includes automated assessments
of report interpretability and biological plausibility, LLM-
based auto-grading may introduce biases, motivating ex-
pert human evaluation to assess mechanistic correctness,
the faithfulness and the accuracy of cited evidence. Sec-
ond, as end-to-end agentic baselines for perturbation anal-
ysis remain limited, broader comparisons and systematic
ablations (e.g., removing Reflexion, memory, or individual
tools) would strengthen attribution of performance gains and
clarify the contribution of each component. Third, our exper-
iments focus on small Perturb-seq datasets; extending to ad-
ditional perturbation settings, modalities, and datasets (and
where feasible, prospective studies in collaboration with
wet-lab partners) would further establish robustness and
practical utility. Together, these directions will help move
PerturbAgent towards an intelligent, interpretable agentic
system within a closed loop of biomedical discovery.



References

10x Genomics. 2017. PBMC from a healthy donor
3k, no cell sorting). https://www.10xgenomics.com/
datasets/pbmc-from-a-healthy-donor-no-cell-sorting-3-k-
1-standard-2-0-0. Accessed: 2025-09-01.

Adamson, B.; Norman, T. M.; Jost, M.; Cho, M. Y.; Nuiiez,
J. K.; Chen, Y.; Villalta, J. E.; Gilbert, L. A.; Horlbeck,
M. A.; Hein, M. Y; et al. 2016. A multiplexed single-cell
CRISPR screening platform enables systematic dissection of
the unfolded protein response. Cell, 167(7): 1867-1882.

Adduri, A. K.; Gautam, D.; Bevilacqua, B.; Imran, A.; Shah,
R.; Naghipourfar, M.; Teyssier, N.; Ilango, R.; Nagaraj, S.;
Dong, M.; et al. 2025. Predicting cellular responses to
perturbation across diverse contexts with State. bioRxiv
2025.06.26.661135.

Ahlmann-Eltze, C.; Huber, W.; and Anders, S. 2025. Deep-
Learning-Based Gene Perturbation Effect Prediction Does
Not yet Outperform Simple Linear Baselines. Nature Meth-
ods, 22(8): 1657-1661.

Cemri, M.; Pan, M. Z.; Yang, S.; Agrawal, L. A.; Chopra,
B.; Tiwari, R.; Keutzer, K.; Parameswaran, A.; Klein, D.;
Ramchandran, K.; et al. 2025. Why do multi-agent LLM
systems fail? arXiv 2503.13657.

Chen, Y.; and Zou, J. 2024. GenePT: A Simple But Ef-
fective Foundation Model for Genes and Cells Built From
ChatGPT. bioRxiv 2023.10.16.562533.

Chiang, W.-L.; Zheng, L.; Sheng, Y.; Angelopoulos, A. N.;
Li, T.;; Li, D.; Zhang, H.; Zhu, B.; Jordan, M.; Gonzalez,
J. E.; et al. 2024. Chatbot arena: An open platform for eval-
uating llms by human preference, 2024. arxiv 2403.04132,
2(10).

Cui, H.; Wang, C.; Maan, H.; Pang, K.; Luo, F.; Duan, N.;
and Wang, B. 2024. scGPT: Toward Building a Foundation
Model for Single-Cell Multi-Omics Using Generative Al.
Nature Methods, 21(8): 1470-1480.

Datlinger, P.; Rendeiro, A. F.; Schmidl, C.; Krausgruber, T.;
Traxler, P.; Klughammer, J.; Schuster, L. C.; Kuchler, A.; Al-
par, D.; and Bock, C. 2017. Pooled CRISPR screening with
single-cell transcriptome readout. Nature Methods, 14(3):
297-301.

Ding, N.; Qu, S.; Xie, L.; Li, Y.; Liu, Z.; Zhang, K.; Xiong,
Y.; Zuo, Y.; Chen, Z.; Hua, E.; Lv, X.; Sun, Y.; Li, Y.; Li, D.;
He, F.; and Zhou, B. 2024. Automating Exploratory Pro-
teomics Research via Language Models. arXiv 2411.03743.

Dixit, A.; Parnas, O.; Li, B.; Chen, J.; Fulco, C. P,; Jerby-
Arnon, L.; Marjanovic, N. D.; Dionne, D.; Burks, T.; Ray-
chowdhury, R.; et al. 2016. Perturb-Seq: dissecting molecu-
lar circuits with scalable single-cell RNA profiling of pooled
genetic screens. Cell, 167(7): 1853-1866.

Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rehawi, G.;
Wang, Y.; Jones, L.; Gibbs, T.; Feher, T.; Angerer, C.;
Steinegger, M.; Bhowmik, D.; and Rost, B. 2022. ProtTrans:
Toward Understanding the Language of Life Through Self-
Supervised Learning. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 44(10): 7112-7127.

Gao, C; Lan, X.; Li, N.; Yuan, Y.; Ding, J.; Zhou, Z.; Xu, F;
and Li, Y. 2024a. Large language models empowered agent-
based modeling and simulation: A survey and perspectives.
Humanities and Social Sciences Communications, 11(1): 1-
24,

Gao, S.; Fang, A.; Huang, Y.; Giunchiglia, V.; Noori, A.;
Schwarz, J. R.; Ektefaie, Y.; Kondic, J.; and Zitnik, M.
2024b. Empowering Biomedical Discovery with Al Agents.
Cell, 187(22): 6125-6151.

Gasperini, M.; Hill, A. J.; McFaline-Figueroa, J. L.; Martin,
B.; Kim, S.; Zhang, M. D.; Jackson, D.; Leith, A.; Schreiber,
J.; Noble, W. S.; et al. 2019. A genome-wide framework for
mapping gene regulation via cellular genetic screens. Cell,
176(1): 377-390.

Hao, M.; Gong, J.; Zeng, X.; Liu, C.; Guo, Y.; Cheng, X;
Wang, T.; Ma, J.; Zhang, X.; and Song, L. 2024. Large-Scale
Foundation Model on Single-Cell Transcriptomics. Nature
Methods, 21(8): 1481-1491.

Huang, K.; Zhang, S.; Wang, H.; Qu, Y.; Lu, Y.; Roohani,
Y.; Li, R.; Qiu, L.; Li, G.; Zhang, J.; Yin, D.; Marwaha, S.;
Carter, J. N.; Zhou, X.; Wheeler, M.; Bernstein, J. A.; Wang,
M.; He, P.; Zhou, J.; Snyder, M.; Cong, L.; Regev, A.; and
Leskovec, J. 2025. Biomni: A General-Purpose Biomedical
Al Agent. bioRxiv 2025.05.30.656746.

Hughes, S.; Bae, M.; and Li, M. 2023. Vectara Hallucination
Leaderboard.

Jain, N.; Han, K.; Gu, A.; Li, W.-D.; Yan, F; Zhang,
T.; Wang, S.; Solar-Lezama, A.; Sen, K.; and Stoica, I.
2024. LiveCodeBench: Holistic and Contamination Free

Evaluation of Large Language Models for Code. arXiv
2403.07974.

Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek,
A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A;
Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov,
S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.;
Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.;
Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Se-
nior, A. W.; Kavukcuoglu, K.; Kohli, P.; and Hassabis, D.
2021. Highly accurate protein structure prediction with Al-
phaFold. Nature, 596(7873): 583-589.

LangChain, I. 2025. LangGraph. https://pypi.org/project/
langgraph/. Released: Sep 7, 2025; accessed 2025-09-23.

Li, G.; Hammoud, H.; Itani, H.; Khizbullin, D.; and
Ghanem, B. 2023. Camel: Communicative agents for”
mind” exploration of large language model society. Ad-
vances in Neural Information Processing Systems, 36:
51991-52008.

Lopez, R.; Tagasovska, N.; Ra, S.; Cho, K.; Pritchard, J. K.;
and Regev, A. 2023. Learning Causal Representations of
Single Cells via Sparse Mechanism Shift Modeling. arXiv
2211.03553.

Lotfollahi, M.; Klimovskaia Susmelj, A.; De Donno, C.;
Hetzel, L.; Ji, Y.; Ibarra, I. L.; Srivatsan, S. R.; Naghipour-
far, M.; Daza, R. M.; Martin, B.; Shendure, J.; McFaline-
Figueroa, J. L.; Boyeau, P.; Wolf, F. A.; Yakubova, N.;



Giinnemann, S.; Trapnell, C.; Lopez-Paz, D.; and Theis, F. J.
2023. Predicting Cellular Responses to Complex Perturba-
tions in High-throughput Screens. Molecular Systems Biol-
0gy, 19(6): el1517.

Mirtens, K.; Donovan-Maiye, R.; and Ferkinghoff-Borg, J.
2024. Enhancing generative perturbation models with LLM-
informed gene embeddings. In ICLR 2024 Workshop on Ma-
chine Learning for Genomics Explorations.

Mosqueira-Rey, E.; Hernandez-Pereira, E.; Alonso-Rios, D.;
Bobes-Bascaran, J.; and Fernandez-Leal, A. 2023. Human-
in-the-loop machine learning: a state of the art. Artificial
Intelligence Review, 56(4): 3005-3054.

Patil, S. G.; Mao, H.; Cheng-Jie Ji, C.; Yan, F.; Suresh, V;
Stoica, I.; and E. Gonzalez, J. 2025. The Berkeley Func-
tion Calling Leaderboard (BFCL): From Tool Use to Agen-
tic Evaluation of Large Language Models. In Forty-second
International Conference on Machine Learning.

Ramakrishnan, K.; Hedley, J. G.; Qu, S.; Dokania, P. K.;
Torr, P. H.; Prada-Medina, C. A.; Fauqueur, J.; and Martens,
K. 2025. Modeling Gene Expression Distributional Shifts
for Unseen Genetic Perturbations. arXiv 2507.02980.

Replogle, J. M.; Saunders, R. A.; Pogson, A. N.; Huss-
mann, J. A.; Lenail, A.; Guna, A.; Mascibroda, L.; Wagner,
E. J.; Adelman, K.; Lithwick-Yanai, G.; et al. 2022. Map-
ping information-rich genotype-phenotype landscapes with
genome-scale Perturb-seq. Cell, 185(14): 2559-2575.

Roohani, Y.; Huang, K.; and Leskovec, J. 2024. Predicting
Transcriptional Outcomes of Novel Multigene Perturbations
with GEARS. Nature Biotechnology, 42(6): 927-935.

Roohani, Y.; Lee, A.; Huang, Q.; Vora, J.; Steinhart, Z.;
Huang, K.; Marson, A.; Liang, P.; and Leskovec, J. 2024.
BioDiscoveryAgent: An Al Agent for Designing Genetic
Perturbation Experiments. arXiv 2405.17631.

Shinn, N.; Cassano, F.; Berman, E.; Gopinath, A.;
Narasimhan, K.; and Yao, S. 2023. Reflexion: Lan-
guage Agents with Verbal Reinforcement Learning. arXiv
2303.11366.

Su, H.; Long, W.; and Zhang, Y. 2025. BioMaster: Multi-
agent System for Automated Bioinformatics Analysis Work-
flow. bioRxiv 2025.01.23.634608.

Wang, L.; Ma, C.; Feng, X.; Zhang, Z.; Yang, H.; Zhang,
J.; Chen, Z.; Tang, J.; Chen, X.; Lin, Y.; et al. 2024a. A
survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6): 186345.

Wang, X.; Chen, Y.; Yuan, L.; Zhang, Y.; Li, Y.; Peng, H.;
and Ji, H. 2024b. Executable Code Actions Elicit Better
LLM Agents. arXiv 2402.01030.

Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.;
Xia, F.; Chi, E.; Le, Q.; and Zhou, D. 2023. Chain-of-
Thought Prompting Elicits Reasoning in Large Language
Models. arXiv 2201.11903.

Wu, Q.; Bansal, G.; Zhang, J.; Wu, Y.; Zhang, S.; Zhu, E.;
Li, B.; Jiang, L.; Zhang, X.; and Wang, C. 2023. Autogen:

Enabling next-gen LLM applications via multi-agent con-
versation framework. arXiv 2308.08155, 3(4).

Xiao, Y.; Liu, J.; Zheng, Y.; Xie, X.; Hao, J.; Li, M.; Wang,
R.; Ni, E; Li, Y.; Luo, J.; et al. 2024. Cellagent: An llm-
driven multi-agent framework for automated single-cell data
analysis. arXiv 2407.09811.

Yao, S.; Zhao, J.; Yu, D.; Du, N.; Shafran, I.; Narasimhan,
K.; and Cao, Y. 2023. ReAct: Synergizing Reasoning and
Acting in Language Models. arXiv 2210.03629.

Zhang, Z.; Dai, Q.; Bo, X.; Ma, C.; Li, R.; Chen, X.; Zhu,
J.; Dong, Z.; and Wen, J.-R. 2025. A survey on the mem-
ory mechanism of large language model-based agents. ACM
Transactions on Information Systems, 43(6): 1-47.

Zhou, J.; Zhang, B.; Li, G.; Chen, X.; Li, H.; Xu, X.; Chen,
S.; He, W.; Xu, C.; Liu, L.; et al. 2024. An AI Agent for
Fully Automated Multi-Omic Analyses. Advanced Science,
11(44): 2407094.

Appendix

Definitions of Metrics for Perturbation
Prediction

(i) Gene-level differential expression (DE) metrics: We
choose these metrics because they focus on assessing
whether models capture the correct direction and the mag-
nitude ranking of gene-level perturbation effects, which are
the important properties of DE analysis and directly reflect
the biological validity of predictions.

* Direction Agreement. This metric quantifies the propor-
tion of overlapping genes that matches predicted and ob-
served expression change direction. For each perturba-
tion p, let

G =G n G

p,true p,pred

be the set of genes identified as DE in both ground truth
and prediction.

For g € G}, denote log-fold changes as A, (true) and
A,pg (predicted). Directionality agreement is defined as

DirAgree, = MAS Gy - Sign(é?g') = sign(Ayy)}| .
P

» Spearman correlation. We compute the rank correlation
between predicted and true log fold changes:

Spearman,, = prank (Ap, GoE) Ap, B ) ,

P, true

where Gg?tﬁl)e is true DE genes.

(ii) Perturbation-level metric: Discrimination scores
(Adduri et al. 2025). This metric assesses the similarity
between the predicted perturbation expression profiles and
their corresponding ground truth. Given nper distinct pertur-
bations, the ground-truth profile y, for the perterbation p,
and the predicted profile 7,,, we first use Manhattan distance
d (+,-) to calculate the rank of similarity

Tp = Z 1{d (9p> yt) < d(Gp,yp)},
t#p



and further derive its per-perturbation score

PDisc, = —2 €[0,1).
Npert

Therefore, the overall score is the mean over all perturba-

tions
P

PDisc =

PDisc,,.
Npert
per p=1
Finally, the normalised inverse perturbation discrimination

score is
PDiscNorm = 1 — 2PDisc,

where a value of 0 indicates a random prediction and 1 indi-
cates a perfect prediction.

Analysis Results from PerturbAgent
Fig. 4 shows the alignment between the Leiden cluster pat-
tern from human and PerturbAgent.

Fig. 5 shows the generally high Jaccard similarity be-
tween the marker genes identified by PerturbAgent and by
human, across different clusters.

Fig. 6 demonstrates the similarity of feature analysis re-
sult generated by Replogle et al. (2022) and PerturbAgent.

@ PBMC Leiden Clusters (b PBMC UMAP with Leiden Clusters

Figure 4: Comparison of Leiden cluster results between hu-
man (a), and PerturbAgent (b), evaluated on PBMC dataset.

Pretraining of STATE model

Table 5 shows the hyperparameters for training STATE in
both within-cell-line and cross-cell-line experiments.

Table 5: Model hyperparameters for STATE (PertSets)
model.

Parameter Value
cell_set_len 128
hidden_dim 672
n_encoder_layers 4
n_decoder_layers 4
transformer_backbone LLaMA
num_attention_heads 8

Example of Generated Report
Fig. 7 shows an example of the generated report, producing
an 8-page thorough interpretation addressing the query for
K562 cell-line perturbation analysis.
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Figure 5: The similarity of the marker genes for PBMC
dataset obtained by human scientist and PerturbAgent, com-
puted by Jaccard Index.
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Figure 6: The heatmap for the Spearman Correlation be-
tween perturbation features of K562 _gwps data, produced
by Replogle et al. (2022) (a) vs PerturbAgent (b)

The Design of Task-agnostic Metrics

The definition of Multi-Agent System Failure Taxonomy
(MAST) Failure Modes are as follows (Cemri et al. 2025):

* FM-1.1: Disobey task specification - Not following the
given task rules or requirements, which can cause results to
be inaccurate or inefficient.

* FM-1.2: Disobey role specification - Not sticking to
the responsibilities or limits of an assigned role, sometimes
leading the agent to act as if it were in another role.

* FM-1.3: Step repetition - Repeating steps that were al-
ready completed, creating unnecessary delays or chances of
mistakes.

e FM-1.4: Loss of conversation history - Dropping or
overlooking recent context history, reverting the interaction
to an earlier state.

* FM-1.5: Unaware of termination conditions - Failing to
detect or understand when a task or conversation should end,
leading to continuation that is not needed.

* FM-2.1: Conversation reset - Restarting a conversation
without clear reason, which may erase progress or context.

* FM-2.2: Fail to ask for clarification - Not asking follow-



EXECUTIVE SUMMARY

We performed a comparative and integrative analysis of genome-
scale Perturb-seq data collected from K562 cells at two time points
(day 6 and day 8 post-transduction). First, we quantified and

i genes (DEGs)
induced by each genetic perturbation at day 8 versus day 6,
revealing a strong positive correlation (Spearman’s p = 0.78, p <
1e-10) across N = 2276 common perturbations. Second, we

c ions among seven key

derived features at day 8—total mRNA content, on-target
knockdown efficiency, target-gene basal expression, mean
leverage score, -log10(energy p-value), Anderson-Darling DEG
counts, and Mann-Whitney DEG counts—and visualized their
interdependencies in a heatmap. Third, we conducted KEGG 2021
enrichment analyses separately for perturbations eliciting “strong”
transcriptional phenotypes (> 50 DEGs, > 70% knockdown, > 25
quality-filtered cells; n = 72 genes) and “weak” phenotypes (< 5
DEGs, > 70% knockdown, > 25 cells; n = 58 genes). Strong
perturbations were predominantly enriched for core processes
including ribosome biogenesis, spliceosome assembly, DNA

the number of di

replication, and cell-cycle regulation (adjusted p < 1e-8), whereas
weak perturbations showed milder associations with metabolic and
signaling pathways such as PI3K-Akt signaling and MAPK signaling
(adjusted p < 0.01).

Key biological insights include: (1) increased transcriptional
divergence between day 6 and day 8 correlates with on-target
knockdown strength and perturbation "energy” metrics; (2) a
distinct module of features—knockdown efficiency, DEG counts,

< 1e-10), indicating that perturbations eliciting strong
transcriptional changes at day 6 tend to remain potent at day 8.

+ The majority (70%) of perturbations with high DEG counts at day
6 maintained high counts at day 8, indicating stable transcriptional
rewiring by one week post-transduction.

2. Inter-Feature Correlation Structure

and energy p-value—underlies the most potent transcriptional
responses; (3) the pathways perturbed by “strong” guides center
on essential gene-expression machinery and cell-division
regulators, whereas “weak” guides yield subtler effects on
peripheral signaling. Together, these results elucidate mechanistic
links between CRISPR-mediated target suppression and
downstream gene-regulatory networks, guiding future functional
screens in cancer cell models.

METHODOLOGICAL APPROACH

Data Collection and Preprocessing
+ We used pseudo-bulk expression profiles aggregated from single
cells for each guide at days 6 and 8. Characteristic QC filters
included: > 500 UMI counts per cell, < 10% mitochondrial reads,
and detection of the target transcript in > 25 cells per
perturbation.

Differential Expression Analysis
« For each ion, we performed ple And

« Total mRNA content per perturbation = mean UMI count across
all cells.

« Basal expression = mean expression of the target gene in non-
targeting cells.

+ Mean leverage score reflects a guide’s influence on global
expression variance (Cook's distance—derived).

« Energy p-values were computed using perturb-seq's energy-
based scoring; we applied ~log10 transform.

+ Mann-Whitney DEG counts were obtained via Wilcoxon ranksum
tests against non-targeting guides (FDR < 0.05).

Correlation and Enrichment

« Pairwise Spearman correlations among features were computed
and visualized as a clustered heatmap
(day8_feature_spearman_correlation_matrix.csv —
day8_feature_correlation_heatmap.png).

« Guides were stratified into “strong” (> 50 AD-DEGs, > 70% KD, >
25 cells) and “weak” (< 5 AD-DEGs, > 70% KD, 2 25 cells) sets.

« We ran KEGG 2021 over-representation analyses via

ic tests (FDR < 0.05) and extracted top 20 pathways

Darling tests comparing its pseudo-bulk ion distribution to
pooled non-targeting guides; p-values were adjusted by
Benjamini-Hochberg (FDR < 0.05).

« DEGs were called at nominal p < 0.05 post-correction. We
recorded DEG counts per perturbation for days 6 and 8.

Feature Computation
« On-target knockdown (%) was estimated as 1 - (mean guide-

expression/mean NT-expression) when the target gene was
detected.

- Focal adhesion (hsa04510; adj. p = 2.0e-2)
- Metabolic pathways (hsa01100; adj. p = 2.8e-2)

BIOLOGICAL INTERPRETATION

Mechanistic Insights

for each set (strong_enrichment_top20.csv — strong_barplot.png;
weak_enrichment_top20.csv — weak_barplot.png).

KEY FINDINGS

1. DEG Count Concordance between Day 6 and Day 8
« The scatterplot (DEG_counts_day6_vs_day8_scatter.png) of day 6
vs. day 8 DEGs per perturbation showed a Spearman’s p = 0.78 (p

whereas per ions of signaling
only nodes elicit subtler responses at the pseudo-bulk level.

Comparison with Prior Knowledge

« The observed negative correlation between basal expression and

DEG counts parallels emerging evidence that highly expressed
housekeeping genes are buffered against partial knockdown

« Strong perturbations disproportionately target genes encoding

« The heatmap (day8 feature_correlation_heatmap.png) revealed a
high positive correlation (p = 0.72) between on-target knockdown
and Anderson-Darling DEG counts, and between DEG counts and —
log10(energy p-value) (p ~ 0.68).

+ Basal expression of the target gene was moderately inversely
correlated with DEG counts (p = 0.45), consistent with high-
expressed genes being less sensitive to further down-regulation.

» Mean leverage score also correlated with DEG counts (p = 0.56),
highlighting that perturbations reshaping global variance tend to
yield larger DEG signatures.

« Total MRNA content showed only weak associations (|p| < 0.3)
with other features, indicating minimal confounding by library size.

3. KEGG Pathway Enrichment in Strong vs. Weak Perturbations
« Strong per ions enriched for 3

- Ribosome (hsa03010; adj. p = 2.3e-12)

- Spliceosome (hsa03040; adj. p = 4.1e-10)

core transcriptional and translational machinery (e.g., RPS subunits,
SNRNP core proteins). Their suppression rapidly disrupts ribosome

assembly and splicing, leading to widespread transcriptomic
remodeling.
« The high correlation between knockdown efficiency and DEG

counts implies a predominantly on-target effect, with minimal off-

target confounding.

Pathway- and Network-Level Effects

« Enrichment of cell-cycle and DNA-replication pathways among
strong perturbations suggests that loss of essential factors leads to

cell-cycle arrest or aberrant progression, consistent with prior
CRISPR screens in K562 (Li et al., 2014; Wang et al,, 2015).

« Spliceosome pathway hits reflect the vulnerability of erythroid-

lineage cells to splicing perturbations, aligning with known
hematopoietic dependencies (Yoshimi et al., 2019).

(Schmidt et al., 2020).
« The modest enrichment of PI3K-Akt and MAPK pathways among
weak perturbations suggests that, at the population level, signaling
modulators do not drastically alter global transcriptomes within
the 8-day window.

TECHNICAL VALIDATION

Data Quality and Reliability

+ QC metrics (UMI counts, mitochondrial fractions, cell counts per
guide) demonstrated consistent library complexity across
perturbations (median cells/guide = 40).

« Concordant DEG counts across two nonparametric methods
(Anderson-Darling vs. Mann-Whitney; p = 0.85) support
robustness of differential-expression calls.

Potential Confounders and Limitations

~ DNA replication (hsa03030; adj. p = 3.5e-8)

= Cell cycle (hsa04110; adj. p = 1.2e-7) « K562 cells, an erythroleukemia line, rely heavily on ribosomal

~ Proteasome (hsa03050; adj. p = 5.6e-6) biogenesis and splicing to sustain rapid proliferation. Our data
+ Weak perturbations showed modest enrichment for: confirm that perturbations in these modules induce robust

- PI3K-Akt signaling (hsa04151; adj. p = 8.2e-3)

- MAPK signaling (hsa04010; adj. p = 1.4e-2)

Cell Type-Specific Responses « Pseudo-bulk aggregation can mask cell-state-specific effects;
i may be under-

« Residual off-target effects cannot be entirely excluded, although

energy p-value correlations argue against large off-target biases.

+ KEGG enrichment reflects pathway-level associations but does
not reveal directionality or compensatory loops.

CONCLUSIONS

Our comprehensive analysis demonstrates that CRISPR-mediated
perturbations in K562 cells yield reproducible, time-dependent
transcriptional phenotypes strongly linked to on-target knockdown

IMPLICATIONS AND FUTURE
DIRECTIONS

efficiency and perturbation energy metrics. Core processes—
ribosome biogenesis, splicing, DNA replication, and cell-cycle
progression—emerge as the primary hubs whose disruption leads
to the most pronounced transcriptomic rewiring. In contrast,
perturbations of signaling pathways induce more modest changes,

Clinical/Therapeutic Relevance
« Identification of critical ribosomal and splicing factors
underscores potential targets for therapeutic modulation in

ia and other malignancies reliant on high
translational throughput.
« Weakly perturbing signaling nodes may serve as adjuvants to
sensitize cells to combination therapies without broadly disrupting
the transcriptome.

underscoring a functional hierarchy among genetic targets in
proliferative leukemia cells. These findings advance our
mechanistic understanding of gene-regulatory network
vulnerabilities and provide a resource for rational design of future

functional genomics screens and targeted therapies.

Follow-Up Experiments
« Single-cell resolution analysis to uncover cell-cycle phase-specific
transcriptional responses to key perturbations.

« Time-course sampling beyond day 8 to map dynamic rewiring
and recovery processes.

« Combinatorial CRISPR perturbations targeting strong hits (e.g.,
RPS6 + SF3B1) to test synthetic-lethal interactions.

Potential Applications
« Integration with drug-response datasets to predict synergistic

c ic combinations targeting and splicing.
« Extension of the framework to primary hematopoietic cells or
other cancer models to validate context dependency.

Figure 7: The report generated by PerturbAgent, covering comprehensive review and analysis including: Executive Summary,
Methodological Approach, Key Findings, Biological Interpretation, Technical Validation, Implications and Future Directions
and Conclusions.



up questions when information is incomplete or ambiguous,
increasing the risk of wrong decisions.

e FM-2.3: Task derailment - Deviating from the intended
purpose of the task, leading to irrelevant or unhelpful ac-
tions.

* FM-2.4: Information withholding - Not sharing knowl-
edge or insights that could influence other agents’ decisions,
reducing system effectiveness.

* FM-2.5: Ignored other agent’s input - Ignoring or insuf-
ficiently considering suggestions or input from other agents,
possibly reducing collaboration quality.

* FM-2.6: Reasoning-action mismatch - A mismatch be-
tween the logical plan and the actual action taken, resulting
in unexpected or faulty behavior.

* FM-3.1: Premature termination - Ending a task or con-
versation before essential goals are reached or necessary in-
formation is gathered.

* FM-3.3: No or incomplete verification - Skipping or
only partly conducting checks of outcomes, which can al-
low errors to persist or propagate.

* FM-3.3: Incorrect verification - Performing inadequate
or incorrect checks of critical outputs or decisions, poten-
tially causing errors or system risks.

Prompt Templates

Prompt Template for Biomedical Specialist agent’s
profile

Fig. 8 shows the prompt for biomedical specialist agent pro-
file. Red lines and boxes highlights the designs for CoT rea-
soning, planning, and the ReAct+CodeAct paradigm, and
clear termination conditions, access to relevant data and
tools, and instructions for XML-wrapped message.

Prompt Template for Report agent’s profile
You are a computational biologist
expert in perturbation studies,
single-cell genomics and systems
biology.

Generate a comprehensive biological
interpretation report based on the
analysis results.

ORIGINAL RESEARCH QUESTION:
{original_query}
GENERATED OUTPUT FILES:

VISUALIZATIONS GENERATED:
{visualizations}

DATA FILES GENERATED:
{data_files}

ANALYSIS CONTEXT:
{analysis_context}

REPORT REQUIREMENTS:

{report_requirement_system_ prompt}

LLM Invocation Prompt in Reflection

Here is a reminder of what is the user
requested:

{self.user_task}

Examine the previous executions, reasoning,
and solutions.

Check were ALL of the tasks completed?
Check were the outputs actually generated
and saved in the correct place?

Critic harshly on what could be improved?
Think hard what are missing to solve the
task.

BUT, DON’T OVERTHINK THE PROBLEM TOO MUCH.
IF YOU THINK YOU HAVE ACTUALLY RUN ALL THE
STEPS AND COMPLETED THEM, PLEASE JUST GIVE
"No improvement" to end thinking.

Prompt Template for Biological Report

Figure 9 shows the prompt template for biological report, in-
cluding (i) executive summary; (ii) methodological descrip-
tion; (iii) key findings; (iv) mechanism-level interpretation;
(v) technical validation and discussion of data quality, reli-
ability, potential confounders and limitations; (vi) implica-
tions and future directions.

Prompt for Interpretability Quality Evaluation

Prompt for Auto-evaluation: Logical Coherence
(Single—-cell / Perturbation context)

Assess the logical coherence and biological
plausibility of a provided AI-generated
conclusion based on fundamental principles
of molecular biology, single-cell
transcriptomics, and perturbation analysis.
Evaluate:

a) Consistency with known gene or cell

type functions

b) Adherence to established biological
mechanisms in perturbation responses

(e.g., knockdown effects, compensatory pathways)

c) Plausibility of proposed molecular or
cellular mechanisms given perturbation
context

d) Overall logical coherence and

internal consistency of the interpretation
Score on a scale of 0 - 5:

+ 0: Fundamentally flawed; contradicts
basic principles of molecular/cell biology
«+ 1: Major inconsistencies; proposed
perturbation effects are highly unlikely
given current knowledge

«+ 2: Some logical gaps; parts of the
conclusion are plausible but significant
aspects are questionable

+ 3: Generally sound; mostly coherent

with biology, but includes a few questionable
assumptions



Prompt for Biomedical Specialist Profile

You are a biomedical code agent specializing in any biomedical analysis. You use
code execution as your primary method for solving tasks, thinking through prob-
lems step by step.

When given a task:

1. First, make a detailed plan as a checklist:
1. [ ] First step

2. [ ] Second step

2. Follow the plan step by step. Updating the checklist with current status:
1. [v'] Completed step

2. [x] Failed step (explain why)

3. [ ] Modified step

AT EACH STEP in the plan:

1) You should first provide current checklist status and your reasoning for this step
using <reasoning>...</reasoning> given the conversation history,

2) then, interact with a programming environment by Python code and receive the
corresponding output within <observation></observation>. Your code should be
enclosed using "<execute>" tag, e.g. <execute> print("Hello World!") </execute>

AFTER COMPLETE ALL THE STEPS:
Summarise the steps using <solution>...</solution>. IMPORTANT: Only output
this tag when **all** steps are finished!!

IMPORTANT: When saving files, always use the complete file path and ensure the
output directory exists.
Keep track of all generated files for potential biological interpretation reporting.

You have many chances to interact with the environment to receive the observation.
So you can decompose your code into multiple steps!

When calling the existing python functions in the function dictionary, YOU MUST
SAVE THE OUTPUT and PRINT OUT the result.

Available Tools: {tools}

Available Data: {data}

Available Software: {software}

Available Supporting Database/Datasets: {support_data}

Remember!!! In each response, you must first include <reasoning> tag, then in-
clude EITHER <execute> or <solution> tag. Not both at the same time. Do not
respond with messages without any tags. No empty messages.

Figure 8: Prompt for biomedical specialist agent profile, designed to support CoT reasoning, planning, and the ReAct+CodeAct
paradigm, with clear termination conditions, access to relevant data and tools, and XML-wrapped message components.



Prompt for Report Generation

REPORT REQUIREMENTS:

Generate a comprehensive biological interpretation report with the following sec-
tions:

1. *EXECUTIVE SUMMARY **

- Brief overview of the analysis performed

- Key findings and their biological significance
- Main conclusions

2. *METHODOLOGICAL APPROACH**

- Summary of analytical methods used

- Rationale for chosen approaches

- Data processing and quality control steps

3. #*KEY FINDINGS**

- Detailed interpretation of each major result

- Biological significance of observed patterns

- Statistical significance and effect sizes

4. **BIOLOGICAL INTERPRETATION**

- Mechanistic insights from the data

- Pathway and network-level effects

- Cell type-specific responses (if applicable)

- Comparison with known biological knowledge
5. *TECHNICAL VALIDATION**

- Assessment of data quality and reliability

- Potential confounding factors

- Limitations of the analysis

6. **IMPLICATIONS AND FUTURE DIRECTIONS**
- Clinical or therapeutic relevance

- Suggested follow-up experiments

- Potential applications

7. *CONCLUSIONS**

- Summary of main biological insights

- Significance for the field

- Answer to the original research question

WRITING GUIDELINES:

- Use scientific language appropriate for a research publication

- Provide specific examples and quantitative details when available

- Reference relevant biological pathways, processes, and prior literature concepts

- Be critical about limitations and alternative interpretations

- Focus on biological mechanisms and functional implications

- Use proper scientific terminology for single-cell analysis or perturbation studies
and genomics

Generate a detailed, publication-quality biological interpretation report.

Figure 9: The prompt that specifies the structure and content required for Report agents to generate comprehensive biological
interpretation reports.



« 4: Logically robust;
known biology, only minor caveats

« 5: Exemplary logical coherence; fully
consistent with current knowledge, while
accounting for potential complexities in
single—-cell data

Al-generated conclusion:

[Insert AI conclusion here]

Provide output in the following format:
« Strengths in biological reasoning:

« Weaknesses or questionable aspects:

« Suggestions for improving biological

aligns well with

plausibility:
+ General assessment:
.« Score (0 - 5): <0/1/2/3/4/5>

Prompt for Auto—-evaluation: Evaluability
(Single-cell / Perturbation context)

Assess the degree to which the AI-generated
conclusion can be effectively evaluated
based on available data, established
single-cell / perturbation workflows,
scientific feasibility. Consider:

a) Clarity and specificity of the conclusion
b) Adherence to observable statistical
trends

c) Availability of established methods to
test the claim

d) Existence of related studies in the
literature

e) Technical feasibility of wvalidation using
perturbation datasets

f) Expected timeframe for validation
(immediate vs. long-term studies)

g) Ethical considerations (if relevant,
e.g., therapeutic applications of
perturbations)

Score on a scale of 0 5:

« 0: Not evaluable; too vague,
data or methods exist

« 1: Minimally evaluable; unclear conclusion
with very limited assessable elements

« 2: Partially evaluable; somewhat clear,
but lacks crucial details.

Some methods exist, but major limitations
remain

« 3: Moderately evaluable; mostly clear,
with sufficient data/methods for partial
assessment

« 4: Highly evaluable; clear, specific,

and testable with current data and

workflows

« 5: Fully evaluable; exceptionally clear
and specific, with abundant data and
standard methods

available for comprehensive validation
AI-generated conclusion:

[Insert AI conclusion here]

and

no relevant

Provide output in the following format:
+ Key factors influencing evaluability:

+ Suggested evaluation procedure (data +
methods) :
+ Challenges in evaluation (if any):

+ Suggestions for improving evaluability:
+ General assessment:
« Score (0 5): <0/1/2/3/4/5>

Prompt for Auto-evaluation:
Clarity and Accuracy
(Single—-cell / Perturbation context)

Assess the clarity, completeness, and
biological depth of the AI-generated
interpretation. Focus on how well it
explains the biological meaning of

results, connects them to known mechanisms,
and provides coherent, insightful
reasoning beyond simple descriptive
summaries. Evaluate:

Interpretation

a) Clarity and structure of explanation

b) Biological accuracy and correct use

of terminology

c) Depth of interpretation | does it

go beyond reporting results to discuss
mechanisms, implications, or causal reasoning?
d) Integration of evidence | are statistical

findings meaningfully connected and
contextualised?

e) Awareness of uncertainty or alternative
explanations

f) Overall interpretive insight

Score on a scale of 0 - 5:

+ 0: Uninterpretable; incoherent or
purely descriptive without biological meaning
+ 1: Minimal interpretation; restates
results with little context or insight
+ 2: Surface-level interpretation; some

relevant points but lacks integration or depth

« 3: Competent but limited; clear and
mostly accurate, provides basic explanation
+ 4: In-depth interpretation; connects
multiple findings, discusses mechanisms and
implications clearly

+ 5: Comprehensive and insightful; deeply
integrates data, mechanisms, and reasoning,
demonstrating expert-level interpretive depth
and biological understanding

AI-generated conclusion:
[Insert AI conclusion here]

Provide output in the following format:

+ Strengths in biological interpretation:

+ Missing aspects or superficial points:

+ Suggestions for deepening interpretation:



Table 6: Average token usage per task.

Task Total Input Reasoning(out) Execution(out)
PBMC analysis 7,978 2,824 1,058 2,295
Perturbation analysis 9,046 3,970 1,246 3,316
Prediction 6,435 4,143 611 462

« General assessment:
« Score (0 - 5): <0/1/2/3/4/5>

Average Token Usage of PerturbAgent in
Different Tasks

Table 6 shows the average token usage of PerturbAgent in
classical single-cell PBMC analysis, perturbation analysis,
and prediction tasks. The token calculation excludes internal
LangGraph prompts.

The input tokens include user query, system prompts,
and observation from the environment. Output reason-
ing tokens correspond to the reasoning trace wrapped in
<reasoning> tag, while output execution tokens corre-
spond to the generated code.



