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ABSTRACT

Contrastive learning has found extensive applications in computer vision, natural
language processing, and information retrieval, significantly advancing the fron-
tier of self-supervised learning. However, the limited availability of labels poses
challenges in contrastive learning, as the positive and negative samples can be
noisy, adversely affecting model training. To address this, we introduce instance-
wise attention into the variational lower bound of contrastive loss, and proposing
the AttentionNCE loss accordingly. AttentioNCE incorporates two key compo-
nents that enhance contrastive learning performance: First, it replaces instance-
level contrast with attention-based sample prototype contrast, helping to mitigate
noise disturbances. Second, it introduces a flexible hard sample mining mecha-
nism, guiding the model to focus on high-quality, informative samples. Theoret-
ically, we demonstrate that optimizing AttentionNCE is equivalent to optimizing
the variational lower bound of contrastive loss, offering a worst-case guarantee for
maximum likelihood estimation under noisy conditions. Empirically, we apply
AttentionNCE to popular contrastive learning frameworks and validate its effec-
tiveness. The code is released at: https://anonymous.4open.science/
r/AttentioNCE-55EB

1 INTRODUCTION

The pursuit of learning effective feature representations from unlabeled data has long been a long-
standing goal in machine learning Wu et al.|(2018);|Zhuang et al.|(2019); Chuang et al.| (2020); |Chu
et al.| (2023). Contrastive learning, as a powerful branch of self-supervised learning, driven by the
pretext tasks of contrasting semantically similar positive examples with semantically unrelated neg-
ative examples to facilitate model pretraining. Contrastive learning and has demonstrated promising
results |Grill et al.[(2020); [Liu et al.| (2021); [Tong et al.| (2023)), garnering extensive adoption across
various domains such as computer vision |Chen et al.|(2020a), natural language processing [Radford
et al.| (2021); Luo et al.|(2023)), information retrieval |Liu & Wang| (2023)), and other domains, even
outperforms supervised learning in certain tasks Misra & Maaten|(2020); [He et al.| (2020).

Within instance-level contrastive learning Wu et al.| (2018)); (Oord et al.| (2018)); Chen et al.| (2020a);
Grill et al.,| (2020); [He et al.| (2020), positive and negative labels are typically assigned based on
co-occurrence |Liu et al.| (2021) of input data, which often leads to label noise. For instance, in
methods like CPC, SimCLR, and MOCO, positive examples are samples that co-occur with anchor
data (e.g., augmented images or multimodal signals in videos). However, these positive examples
may not always share semantic meaning with the anchor data, such as in cases of excessive cropping
in images, leading to false positives. Negative instances typically comprise random samples that do
not co-occur with the anchor data, yet they can unintentionally share semantic similarities with the
anchor, resulting in false negatives. This noise arises from the absence of supervisory signals and
the reliance on co-occurrence for automatic labeling, a process that inevitably generates both false
positives and false negatives.

Noisy labels pose several challenges for contrastive learning. Firstly, they complicate likelihood
modeling. The process of optimizing contrastive loss essentially aims to maximize the likelihood of
identifying positive samples from a set of negatives |Li et al.|(2021). However, since the ground -
truth labels for both positive and negative samples are not available, likelihood modeling becomes
complicated. Secondly, the occurrence of false positives and false negatives result in semantically
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unrelated samples are erroneously pulled together while semantically related samples are pushed
apart, which will disrupt the semantic structure of embeddings Wang & Liu| (2021). Previous re-
search [Chuang et al.| (2022} 2020); Robinson et al.| (2021); Wu et al.| (2023) has shown that the
presence of false positive and false negative examples significantly lead to performance drop. More-
over, while contrastive learning benefits from the mining of hard samples Robinson et al.| (2021)),
existing research predominantly concentrates on hard negative mining, overlooking the potential
benefits that could arise from the incorporation of hard positive mining. This oversight restricts the
potential for further performance enhancements.

In this paper, we introduce a latent space to decompose the contrastive loss and derive its variational
lower bound, which results in the proposal of the AttentionNCE loss as an alternative optimization
target. AttentionNCE enables us to optimize the contrastive loss indirectly and provides a worst -
case guarantee for maximum likelihood estimation under noisy conditions. To tackle the challenge
of noisy perturbations, we utilize an attention mechanism to derive sample prototypes for contrast.
By aggregating information from multiple samples, these prototypes assist in mitigating the effects
of noisy perturbations during instance - level contrast. Finally, as we realize that high - quality hard
samples can enhance contrastive learning, we incorporate a flexible and lightweight mechanism to
mine both hard positive and hard negative samples, ensuring that the model focuses on high - quality
and informative samples.

The contributions of this paper can be summarized as follows:

* We propose the AttentionNCE contrastive loss and theoretically prove that optimizing At-
tentionNCE is equivalent to optimizing the variational lower bound of the original con-
trastive loss, which provides a worst - case guarantee for maximum likelihood estimation
(MLE) under noisy conditions.

 AttentionNCE incorporates attention - based sample prototype contrast to alleviate the im-
pact of noise perturbations. Moreover, it includes a flexible hard - sample - mining mecha-
nism to guide the model to focus on high - quality and informative samples.

* We apply the AttentionNCE loss to popular contrastive learning frameworks and validate
its effectiveness.

2 RELATED WORK

Self-supervised learning is a branch of unsupervised learning that aims to exploit the internal struc-
ture of data Wu et al.| (2018)) for learning without relying on manual annotations. It achieves this
through carefully designed pretext tasks He et al.[(2020). These tasks typically include predicting
arbitrary parts of the input based on observed parts |Liu et al.| (2021), such as autoencoder-based re-
construction |Bengio et al.|(2006)), context prediction [Doersch et al.|(2015)), colorization Zhang et al.
(2016), rotation prediction |Gidaris et al.| (2018]), among others. Another common type of pretext
task involves predicting similar or not, or formulating it as classifying semantically related positive
samples from semantically unrelated negative samples |(Gutmann & Hyvirinen| (2010); |(Oord et al.
(2018). This paradigm is also known as contrastive learning, which relieves the encoder from pixel-
level information reconstruction and has shown promising results in various tasks [Robinson et al.
(2021)); [Than et al.| (2020); /Wang & Isola (2020); Saunshi et al.[(2019).

Contrastive learning has garnered significant attention in recent years as a self-supervised tech-
nique for representation learning [Bachman et al.| (2019); Hjelm et al.| (2019); Henaff] (2020); Misra
& Maaten| (2020); [Wang & Isolal (2020);|Chen et al.|(2020b); [Radford et al.| (2021)); [Li et al.| (2021)).
Although the specific choices of representation encoder f and similarity measure may vary depend-
ing on the task |Gutmann & Hyvarinen| (2010); [Devlin et al.| (2018); He et al.| (2020); [Dosovitskiy
et al.| (2014)), they all share a common underlying principle of bringing positive pairs closer while
pushing negative pairs apart to train the representation encoder f through the optimization of a
contrastive loss [Wang & Isolal (2020); (Gutmann & Hyvérinen| (2010); |Oord et al.| (2018); [Hjelm
et al.| (2018); [Wang & Isolal (2020). Building upon this idea, several popular contrastive learning
frameworks have been proposed, such as SimCLR |Chen et al| (2020a), MOCO He et al.| (2020),
BYOL |Grill et al.{(2020), and SimSiam |Chen & He|(2021). However, in the self-supervised setting
of contrastive learning, the issues of false positive samples (Chuang et al.| (2022} and false negative



Under review as a conference paper at ICLR 2025

examples [Chuang et al.|(2020); Robinson et al.|(2021)) can arise, which can degrade the performance
of contrastive learning [Wang & Liu/(2021);|Wu et al.| (2023)).

3 METHOD

3.1 CONTRASTIVE LEARNING AS MAXIMUM LIKELIHOOD ESTIMATION

Let X denotes a set of samples {z", 27, -,z }, where " denotes a positive sample that is
semantically related to anchor z, while 27", - - - , 2, represent negative samples that are semantically
unrelated to the anchor . We consider an embedding function fy parameterized by 6, which maps
a sample x to a normalized d-dimensional embedding f(x), let @ = f(z) represent the embedding
of an anchor (query) x. The embedding of a positive example is denoted as k™ = f(z™), while the
embedding of a negative example is denoted as k— = f(x7).

The probability of classifying a positive sample from a set of N negative samples is modeled using
following conventional parametric softmax formulation |Oord et al.[(2018):

exp(qTkt/7) + S0 exp(qTk; /7))’

where q” k measures the similarity between the query and key, while 7 is a temperature scalling that
controls the concentration of the softmax distribution. Equation [1|describes the likelihood of classi-
fying the positive key from N negative keys, parameterized by the weights of embedding function
fo. The maximum likelihood is achieved when the embedding of the positive pair, i.e., the similarity
between the query and the positive key q"kt — 400, or when the embedding of the negative pair,
i.e., the similarity between the query and the negative key quj_ — —00,j € {1,2,---N}. Itis
important to note that the embedding induces a metric over the sample space d(z, ") = ||q —kT||.
For embeddings lies on the surface of a hypersphere of radius 1/7, there exists a one-to-one cotre-

spondence between Euclidean distance and similarity d(z,z%) = /2/72 — 2q"k*. As a result,
the maximum likelihood estimation process serves as a means to effectively bring positive samples
closer to the anchor and push negative samples further apart. Therefore, the process of maximum
likelihood of classifying the positive key from N negative keys in equation [I]is also the process
of finding the optimal parameter 6 that maps semantically related positive samples to be close in
distance, while ensuring that semantically unrelated negative sample pairs are mapped to be far
apart.

It is worth noting that there is a discrepancy in the interpretation of equation|l|in the literature. |L1
et al.| (2021) interprets equation [I] as likelihood, while [Oord et al.| (2018) interprets it as a posterior.
The main reason for this difference lies in the different interpretations of the semantics of matching
scores. However, we do not distinguish between the concepts of maximum likelihood or maximum
posteriori arising from the semantics of positive example scores. This conceptual difference does
not affect the subsequent methods and theories presented in this paper.

In practice, it is common to maximize the logarithm of the equation above, which yields the popular
InfoNCE loss

T+
exp(q k™ /7
Linfonce = —E log T ( N / ) —— . 2
exp(q'kt/7) 4+ 32, exp(qTk; /7)
3.2 DECOMPOSITION OF THE CONTRASTIVE LOSS
In the presence of noise, our set of examples {z, 27 ,...,xz} contains false positives and false

negatives, leading to unreliable positive and negative keys. This complicates the maximum like-
lihood estimation outlined in equation @L To tackle this challenge, we begin by decomposing the
contrastive loss. We define h = [hP* hi® ... h'{¥], representing the prototype features for both
positive and negative samples. The task of identifying a positive sample among negative ones is
linked to the latent variable, which we can model similarly to equation [T|using a softmax formula-
tion. By introducing a distribution ¢(h) over h, we can further decompose the contrastive loss as
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follows:
log P(X|0) = zh:q(h) log P(X|0) = zh:q (fflﬁ?f);
= Saton e )
- zh:q(h) log(W)dh+2h:q(h)logP(lql(|;)7@
= Yy log 224 KL(a(0)|[P(BIX. ) )
g(h) denotes some distribution over h, and 3. q(h) = 1. The first term J(0) =

> naqh)log % in the above equation is the variational lower bound Kingma & Welling
(2013)). We can rewrite the likelihood function as:

log P(X0) = J(0) + KL(¢q(h)||P(h[X,)). (4)
Since the KL divergence is non-negative, 7 (#) lower bounds the likelihood, that is,
log P(X|0) > J(0). (5)

In the presence of noise, maximum likelihood estimation is infeasible. However, the variational
lower bound 7 (6) providing a worst-case guarantee for maximizing the log-likelihood log P(X|6).

3.3 SAMPLE PROTOTYPE WITH INSTANCE ATTENTION

Note that the variational lower bound 7 (6) incorporates a latent variable, h = [hP*, hi®, .- - 'h'(¥],
which we instantiate as a sample prototype derived from the attention mechanism. The motivation
behind this design is straightforward. First, the attention mechanism guides the model to focus
on high-quality samples, ensuring that the sample prototype captures richer and more relevant fea-
tures. Second, by generating h as a prototype from multiple sample features, rather than performing
instance-level contrasts, it becomes more robust to noise in contrastive learning.

Attention for positive samples: We first obtain M views of a sample. For instance, we apply
random augmentations to the anchor sample z, resulting in a set of M positive samples (views) with
their corresponding positive keys {kj‘ M,

= fo(T(x)),i € {1,2,--- M}. (6)

T(-) is a family of random data augmentations, fy(-) is the embedding function. Among these M
positive keys , in order to direct the model’s attention towards positive keys that encodes more class
information, and ignore the keys of semantically irrelevant false-positive examples, we introduce
attention for the M positive keys, which maps a query q and a set of positive keys {k:r}f\il to a
positive key

W—Zm )

where «; represents the weight assigned to each positive key, which is computed based on the
similarity between the query and the corresponding key

o = softmax(q " ki /dpos, 4" K3 /dpos, -+ 4" K7/ dpos)- (8)

dpos 1s scaling factor that controls the concentration of attention on the most reliable positive sam-
ples with the highest similarity. Applying the attention function to the features from M views, the
resultant positive feature can be interpreted as a prototype of positive instances, encoding a richer
set of class-specific information.

Attention for negative samples: For negative examples, the same attention mechanism is applied
to the negative example keys k"~ as well
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' = 5k, ©)

J
where

3 = softmax(q' K /dneg, A" K5 /dnegs* ,q' Ky;/dneg) - N (10)

dneg 1s scaling factor that controls the concentration of attention on the most hard samples with the
highest similarity. The scalar multiplier NV in the equation|10]is designed to ensure that the sum of
weights for the IV negative samples is equal to IV, aligning the negative sample weight sum in the
InfoNCE loss to N (where each sample has a weight of 1). This prevents the computation of an
excessively large or small loss value.

Hard sample mining effect: For a given anchor

point, when the similarity scores of other samples 3 Negative Sample Positive Sample
relative to the anchor point are sorted in ascend- 3

ing order, the negative samples with relatively é ey Negaﬁ"e/ \ Easy Positive
high similarity and the positive samples with rel- g Hard Region

atively low similarity are closer to the decision = ——— ""’Sﬁam};

boundary, as shown in the white area in Fig. [I]
These samples are also known as hard samples.
Focusing on such samples is beneficial for repre-
sentation learning Robinson et al.|(2021) since it
helps the model learn more accurate decision boundaries |Liu & Wang (2023). Attention-based
sample prototypes inherently include a flexible hard sample mining mechanism. This mechanism
enables the prototype to capture a richer features of hard samples near the decision boundary.

Figure 1: Hard sample mining effect.

Specifically, during the generation of positive prototypes, a larger d,,s value can result in more hard
positive samples with low similarity being incorporated into the positive prototypes; while during the
generation of negative prototypes, a smaller d,,c4 value can lead to more hard negative samples with
high similarity being included in the negative prototypes. Consequently, the hard sample mining
effect of AttentionNCE can be flexibly achieved by setting the scaling factors dpos and dycg.

3.4 DEVIRIATION OF ATTENTIONNCE

After deriving the instance prototypes from the attention mechanism, this section will integrate
these prototypes into the variational lower bound, transforming 7(#) into a practical alternative
optimization target. We first simplify the optimization objective 7 (6):

argmeaxj(ﬂ) = argmaxz )log P(X,hl|6) — ;q(h) log g(h)

= argmaxz )log P(X,hl|0). (11)

Given the freedom to choose any distribution for ¢(h), based on equation [7| and equation @ the
distribution ¢(h) is selected as follows:

1, if h= [bP b0, ]
h — ) 9 1 » y N 12
a(h) {0, otherwise. (12)
So
arg max JO) = argmaxz = [bP* hi®, .-+ h}*)]) - log P(X, h|f)

= argmeaxlogP(X, h|f) = arg m;ixlog P(X|h,0) 4 log P(hl|6).

Assuming a uniform prior distribution, P(h|#), for the latent variables, and model the likelihood
P(X|h, ) similar to equation|[I|using softmax formulation, we have

exp(q"h?™/7)

~ — + const.  (13)
exp(qThres/7) + 3770 ) exp(qTh™/7)

arg max J(@) = argmaxlog
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The above equation presents an equivalent optimization objective for the variational lower bound,
utilizing sample prototypes obtained through the attention mechanism as updated keys. This allows
the attention mechanism to be fully integrated into the variational lower bound, resulting in the novel
Attention based InfoNCE (AttentionNCE)

T1,pos
exp(q' hP* /7
Lavenioonce = —E log - ( ¥ /7) e (14)
exp(qThres/7) + 37 exp(qTh;®/7)
The expectation is taken over the tuple of (Jc,xf, e ,:vj\r/[,xf, --+,xy), which means that the

computation of each loss value requires an anchor point, M positives, and N negatives.

Equation [T3] presents the first theoretical insight: opti-
mizing the AttentionNCE loss is equivalent to optimiz-
ing the variational lower bound on the contrastive loss. KL(g(h)||P(h]X, 0))
The second theoretical finding, shown in equation [] is
that the gap between the ideal contrastive loss and the log P(X|0)
variational lower bound is governed by the KL diver-
gence. Due to the non-negativity of KL divergence, the
AttentionNCE loss always lower bounds the InfoNCE \ 4
loss, as illustrated in Fig. 2] Therefore, by optimiz-
ing the AttentionNCE 1.055., we indirect}y optimize .the Figure 2: The relationship between In-
contrastwe; loss, establishing a theoretlca}l founfiagon foNCE and AttentionNCE loss.

for AttentionNCE as an effective alternative optimiza-

tion objective. This means that AttentionNCE offers a

worst-case guarantee for maximum likelihood estimation under noisy conditions. Furthermore, by
leveraging sample prototypes obtained through the attention mechanism for contrast, AttentionNCE
not only reduces impact of individual noise samples but also directs the model’s focus toward higher-
quality samples.

It is also important to note that when g(h) = P(h|X, ), that is KL(¢(h)||P(h|X, #)) = 0, indicat-
ing that AttentionNCE loss provides a tighter lower bound. If we assume that the distribution chosen
in equation [T2] represents the true posterior distribution of sample prototypes, then AttentionNCE
can be formalized as an Expectation-Maximization (EM) algorithm |Dempster et al.| (1977), where
the attention function in the equation [7]and equation [J] corresponds to the expectation step, and
maximizing the AttentionNCE loss corresponds to the maximization step.

J =¥y a(h) log ZEH0

3.5 IMPLEMENTATION OF ATTENTIONNCE. Positive Samples Anchor Negative Samples

;g? 'ﬂ e B3

. . . . s M |
The implementation of AttentionNCE is .
straightforward and can be summarized in
three steps as dipicted in Fig[3} Step 1, encode
M positive examples to obtain their feature
q
IR

t t. .t. k d d Pos Keys Neg Keys
representations as positive Keys, and encode [kf,k;,'H ,kj{[ ki, kg, - ,k;,]

N negative examples to obtain their feature V:Kl lK K| VK
representations as negative keys. Step 2, using
the feature representation of the anchor point

as the query, apply an attention function to }
the query and all positive and negative keys, Updated Positive Keys

Pos Feature Attention Neg Feature Attention

resulting in updated positive and negative keys. kP (k1™ ko, - Ky
Step 3, compute the standard contrastive loss ' 1 '
based on the updated positive and negative Contrastive Loss

keys. The pseudocode for the AttentionNCE

loss is presented in Algorithm|T} Figure 3: Flowchart of AttentionNCE.

Complexity: For the standard contrastive loss,
the matching scores q'k between the anchor
point and all keys need to be computed. Therefore, compared to the standard contrastive loss, Atten-
tionNCE introduces additional computational overhead primarily in two aspects: (i) Encoding M —1
additional positive examples in line[T} In contrast to standard contrastive learning, which encodes
only one anchor point, one positive example, and [V negative examples (with a time complexity of
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Algorithm 1: Pseudocode for AttentionNCE.

Input: Anchor x, M positive samples {z+ M., N negative samples {x
scalling factor dpos, dneg-

Output: AttentionNCE loss.

a=fo(x). {k}l ={fo=") L. {k; o ={fo(;)}i

Update positive key via equation

Update negative keys via equation @

J 1> encoder fy(-),

4 Calculate AttentionNCE via equatlon.;

Result: AttentionNCE loss.

O(2 4+ N)), AttentionNCE additionally encodes M — 1 positive samples, resulting in a time com-
plexity of O(1 + M + N). However, since M is typically a small constant such as 4, the time
complexity remains linear compared to standard contrastive learning. (ii) Applying positive feature
attention and negative feature attention in line[2]and [3] This computational complexity can be con-
sidered negligible compared to the encoding of a single example. This is because we can leverage the
additivity property of inner product operations, where q' hP* = q Z -1 ik Zf\/ll ozqukJr
andq'h"e = q' Bik; = B5; qu So AttentionNCE only requires computmg the matching scores
once similar to the standard contrastlve loss, and the actual additional cost in line 2] and [3] comes
from calculating the attention weights in equatlon@] and equation [I0] which can be negligible.

Relations to previous research: Both AttentionNCE and CMC Tian et al.|(2020) introduce multiple
views. However, in CMC, one sample is fixed as the anchor point, and positives and negatives are
enumerated from the other view to compute the standard contrastive loss. In contrast, we generate
sample prototypes through multiple views and optimize the variational lower bound. ProtoNCE |Li
et al.| (2021)) also considers prototype contrast, yet the prototype in ProtoNCE represents the class
center in unsupervised clustering, which differs from the sample prototypes generated by the at-
tention function in this work. Additionally, HCL |[Robinson et al.| (2021} also takes into account
the mining of hard negative samples. However, HCL achieves this by assuming VMF distribution
for negative keys, while our approach mines hard negative samples via the attention mechanism.
Moreover, only AttentionNCE encompasses the mining of hard positive samples.

4 EXPERIMENTS

4.1 PERFORMANCE ON SMALL-SCALE DATASETS

SimCLR |Chen et al.| (2020a) applies two rounds of augmentation to /N samples, resulting in 2N
samples. The two views of the same sample are positive pairs, while the remaining 2N — 2 samples
serve as negative examples. The standard InfoNCE loss, also referred to as NT-Xent loss in the
original paper, is then computed. To ensure a fair comparison, we follow the same settings as Chen
et al.| (2020a); (Chuang et al.| (2020); Robinson et al.| (2021)), including ResNet50 |[He et al.| (2016)
architecture, data augmentation methods, learning rate, Adam optimizer Kingma & Bal(2014)), and
adhering to the same linear evaluation protocol. The only modification is replacing the InfoNCE
loss with the AttentionNCE loss to pretrain the model. Detailed settings are presented in Tabel [5]in
Appendix. Table [T] presents the top-1 accuracy evaluation results on CIFAR-10/100 Krizhevsky &
Hinton| (2009), STL-10|Coates et al.|(2011), and TinyImageNet|Le & Yang|(2015), with the optimal
and second-best results marked in bold and underlined, respectively.

The results for the comparative methods in lines 1-3 are reported from Robinson et al.|(2021), lines
5-6 from HaoChen et al.| (2021), lines 7-9 from |Wang et al.| (2021), and lines 10-11 from [Zhang
et al.|(2022). While using the same experimental settings as prior work|Chen et al.|(2020a)); Chuang
et al.| (2020); Robinson et al.| (2021), AttentionNCE demonstrates significant improvements over
the baseline method SimCLR that uses InfoNCE loss. Notably, even within 200 training epochs,
AttentionNCE surpasses the performance SimCLR achieves in 400 epochs. Moreover, Figure [
provides a t-SNE visualization of instance features on CIFAR-10, illustrating that the AttentionNCE
loss enables earlier and clearer separation between classes compared to InfoNCE.
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Table 1: Linear Evaluation on Small-scale Datasets.

. CIFARI10 STL10 CIFAR100 Tiny-ImageNet
Line | Method Encoder 00 —cpa00 [ ep200  epd00 | p200 cpd00 epz%o egp400
1 SimCLR (Chen et al.[(2020a)) ResNet50 | 89.2 91.1 78.5 80.2 64.0 66.4 51.6 534
2 DCL (Chuang et al. ResNet50 | 91.7  92.1 81.6 84.3 65.5 67.7 52.2 53.7
3 HCL (Robinson et al.|(2021)) ResNet50 | 91.5 91.9 85.5 87.2 66.3 69.5 554 57.0
4 RINCE (Chuang et al. ) ResNet50 - 91.6 - - - - -

5 SimSam (Chen & He|(2021)) ResNet50 | 87.5 90.3 - - 61.6 65.0 34.8 39.5
6 SpectralCL (HaoChen et al.|(2021)) | ResNet50 | 88.7 90.2 - - 62.5 65.8 41.3 45.4
7 | NPID (Wu etal|(20T8 ResNet50 | - 79.1 - 80.8 - 51.6 - -

8 NPID+CLD (Wang et al.[2021)) | ResNet50 | - 86.7 - 83.6 - 575 -

9 MOCO+CLD (Wang et al.[(2021)) | ResNet50 | - 87.5 - 843 - 58.1 -

10 | SimMoCo (Zhang et al.|(2022] ResNetl8 | 824 - | 80.6 - | 541 - - -
11 SimCo . ResNetl18 | 85.6 - 83.2 - 58.4 - - -
12 SDMP (Ren et al. ResNet50 | 89.5 - - - 68.2 - - -
13 a-CL-direct (Tian|(2022)) ResNet50 | 90.1 91.2 84.7 87.9 66.3 68.5 - -
14 | ADNCE @@) ResNet50 | 90.7 919 | 851 88.0 | 669 693 - -
15 Attention ResNet50 | 92.4 93.1 87.1 89.4 69.8 70.2 56.6 58.6
16 | vs. SimCLR - 321 201 | 861 721 | 5817 381 | 501 527

InfoNCE

AttentioNCE

00 02 04 06 o8 10 ) 02 04 06 o8 10 00 02 04 06 o8 10 00 02 04 06 08 10

Epoch 100 Epoch 200 Epoch 300 Epoch 400

Figure 4: AttentionNCE loss has earlier and better separation between classes (indicated by the dot
color) than InfoNCE loss in the t-SNE visualization of instance feature on CIFAR10.

4.2 PERFORMANCE ON IMAGENET

We evaluated our method on the widely used ImageNet benchmark. Specifically, we tested Atten-
tionNCE within both the SimCLR and MoCo-v3 frameworks, keeping the training protocols and
hyperparameter settings identical to those of SimCLR and MoCo-v3. The only modification was
replacing the InfoNCE loss with our AttentionNCE loss (dpos = 4, dneg = 1, M = 4). Table |2|
demonstrates significant performance improvements of AttentionNCE over InfoNCE in both Sim-
CLR and MoCo-v3 frameworks. We also compare our results with state-of-the-art (SOTA) base-
lines, which enhance SimCLR through techniques such as dynamic dictionaries with momentum
encoders (MoCo-v1/v2/v3), removing negative samples and using stop-gradient techniques (Sim-
Siam, BYOL), or online clustering (SwWAV). All the results of comparative methods are reported
from [Chuang et al.[(2022). While our method may not outperform state-of-the-art approaches, At-
tentionNCE is orthogonal to these advancements. This means it can be seamlessly integrated with
these state-of-the-art techniques to potentially further boost their performance, making Attention-
NCE a complementary and promising enhancement in the field of contrastive learning.

4.3 FURTHER ANALYSIS
4.3.1 HOW DOES THE SCALING FACTOR AFFECT THE PERFORMANCE?

Ablation Study on Hard Sample Mining. Figure [5| shows how different combinations of dpos
and dye affect model performance on the CIFAR-10 and CIFAR-100 datasets. When both d,os and
dneg are set to 10, the attention weight assigned to each sample approaches 1, effectively removing
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Table 2: Linear Evaluation on ImageNet.

Method Backbone | Parameters | Improvement to SiImCLR | Top-1 | Top-5
Supervised |He et al. (2016) ResNet-50 24M - 76.5 -
SimSiam|Chen & He|(2021) ResNet-50 24M No negative pairs 71.3 -
BYOL|Grill et al.[(2020) ResNet-50 24M No negative pairs 74.3 91.6
Barlow Twins|Zbontar et al.|(2021) | ResNet-50 24M Redundancy reduction 73.2 91.0
SwAV |Caron et al.|(2020) ResNet-50 24M Cluster discrimination 75.3 -
SimCLR [Chen et al.|[(2020a) ResNet-50 24M None 69.3 89.0
+RINCE |Chuang et al.|(2022) ResNet-50 24M Symmetry controller q 70.0 89.8
+AttentionNCE(Ours) ResNet-50 24M Attenition Contrast 70.8 91.1
MoCo|He et al.[(2020) ResNet-50 24M Momentum encoder 60.6 -
MoCo-v2 |Chen et al.|(2020c) ResNet-50 24M Momentum encoder 71.1 90.1
MoCo-v3|Chen et al.|(2021) ResNet-50 24M Momentum encoder 73.8 -
+RINCE |Chuang et al.|(2022) ResNet-50 24M Symmetry controller q 74.2 91.8
+AttentionNCE(Ours) ResNet-50 24M Attenition Contrast 74.6 91.9

the effect of hard sample mining. Under these conditions, the model achieves suboptimal results
on both datasets, demonstrating that removing the hard sample mining mechanism has a negative
impact on performance. At this point, compared to InfoNCE, AttentionNCE improves performance
by 0.9% on CIFAR-10 and 2.4% on CIFAR-100. This improvement is primarily due to the use of
sample prototypes, which help mitigate the noise compared to instance-level contrast. Next, we
observe that larger values of dp yield better results on both datasets, as higher attention is given to
hard positive samples. This indicates that mining hard positive samples significantly boosts model
performance. Finally, the selection of d,., differs between the two datasets: CIFAR-10 performs
better with larger dye, values, whereas CIFAR-100 favors smaller dye, values. This suggests that
hard negative sample mining plays a more critical role in CIFAR-100 than in CIFAR-10.

These differences can be attributed to the variation in negative sample noise rates between the two
datasets. While CIFAR-10 and CIFAR-100 employ the same data augmentation strategy and there-
fore have identical positive noise rates, CIFAR-10, with only 10 classes, has a higher negative noise
rate (1/10) compared to CIFAR-100 (1/100). Consequently, the model trained on CIFAR-10 is more
prone to overfitting noisy samples, particularly during extended training. The memorization effect
in deep neural networks |Arpit et al.| (2017) provides insight into this behavior. Specifically, deep
models initially memorize clean training samples and gradually fit noisy data as training epochs in-
crease Zhang et al.|(2021); Han et al.|(2018). Thus, while larger dpos / dneg ratios enhance the model’s
ability to mine hard samples, they also increase the risk of overfitting noisy data. AttentionNCE pro-
vides a flexible approach for hard sample mining, but it requires balancing the exploration of hard
(noisy) samples with the exploitation of easy (clean) samples.
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Figure 5: The impact of different (dpos, dneg) combinations on performance.

4.3.2 DOES A LARGER VALUE OF M LEAD TO BETTER PERFORMANCE?

Ablation Study on Sample Prototypes. M denotes the number of positive examples for generating
positive sample prototype, with M/ > 1. Table 3| presents the effect of varying M on top-1 linear
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evaluation accuracy. When M = 1, meaning only one positive example is used to generate the
positive prototype, the feature of the positive prototype is equivalent to the positive feature itself,
effectively removing the influence of the attention based sample prototype. In this case, Attention-
NCE produces suboptimal results on the CIFAR-10 and STL-10 datasets, indicating that removing
attention-based sample prototypes negatively impacts performance. Secondly, increasing M con-
sistently improves performance. However, beyond M = 3, the benefits diminish, as four views
already provide sufficient information for a given sample. At this point, the sample features derived
from positive attention are representative enough. Therefore, setting M too large is unnecessary and
could introduce excessive computational overhead without yielding additional gains.

Table 3: Impacts of different M on performance.

. AttentionNCE
Dataset ‘Encoder ‘SlmCLR NM=T TM=2 T M=3 | M=4 | M=5 T M=6

CIFAR10 | ResNet50 91.1 922 [ 925 | 928 | 93.1 | 93.0 | 93.2
STL10 ResNet50 80.2 854 | 86.5 | 87.8 | 89.4 89.4

e
N
wn

4.4 ATTENTIONNCE IN SUPERVISED LEARNING

We show the performance of AttentionNCE in a supervised setting to further validate the motiva-
tion for using attention-based sample prototypes for contrast. Specifically, following the SimCLR
framework, we apply augmentation to a batch of N samples, which results in 2N samples. For any
given sample (anchor point), positive samples are the remaining 2N — 1 samples sharing the same
label as the anchor point, while negative samples are those with different labels. This process elim-
inates the cost of false - negative samples. Subsequently, we calculate the AttentionNCE loss. For
SimCLR, labels are utilized to exclude false - negative samples. The data augmentation methods,
network architecture, optimizer, and linear evaluation protocol remain unchanged. Table [ displays
the performance of AttentionNCE in a supervised setting. Without the cost related to false negative
samples, AttentionNCE shows a significant improvement. This is because the sample prototypes
generated from multiple samples by means of attention can encode more information of semantic
classes. In contrast to instance-level contrast, when using prototypes, they are capable of capturing
more general and representative features within a semantic class, which is beneficial for reducing the
influence of noise and variability within individual samples. This advantage backs up the underlying
motivation for generating prototypes using the attention function for contrast.

Table 4: AttentionNCE under supervised settings.

Method CIFARI10 CIFAR100 Tiny-ImageNet
ep200 | ep400 | ep200 | ep400 | ep200 | ep400
SimCLR(Supervised) 93.1 93.6 64.6 68.6 52.7 54.4
AttentionNCE(Supervised) | 93.9 94.2 73.3 73.4 58.9 60.2
vs. baseline 081 | 0.617 | 871 | 487 | 6271 | 587

5 CONCLUSION AND LIMITATIONS

This paper introduces instance-level attention into contrastive learning by integrating attention-based
sample prototypes into the variational lower bound of contrastive loss, resulting in the proposed
AttentionNCE loss. AttentionNCE directs the model’s focus toward more informative and relevant
samples, offering a worst-case guarantee for maximum likelihood estimation under noisy conditions.
Despite its simplicity and ease of implementation, AttentionNCE includes two key components that
enhance performance. First, attention-based sample prototypes help mitigate the impact of noise in
instance-level contrast. Second, the flexible incorporation of hard positive and hard negative sample
mining further boosts performance. However, the balance between exploiting easy (clean) samples
and exploring hard (potentially noisy) samples requires further study. This balance is crucial for
generating more effective sample prototypes, h, and achieving a tighter variational lower bound.
We hope this study will inspire further theoretical analyses in self-supervised contrastive learning
and promote the extension of instance-level attention mechanisms in future methods.

10
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A APPENDIX

In addition to the unique parameters of AttentionNCE, namely positive sample size M, positive
scaling d,,os and negative scaling dyeg, all other hyperparameters, data augmentation methods remain
exactly the same as |Chuang et al.| (2020); [Robinson et al.| (2021)). The detailed parameter settings
for the main results are shown in Table 5} The results for the CIFAR10, CIFAR100, and STL10
datasets were obtained by running the experiments on a cloud server equipped with two NVIDIA
GeForce RTX 3090 GPUs. The results for the Tiny-ImageNet dataset were obtained on a cloud
server with one NVIDIA A100 40GB GPU. All the code and pre-trained models have been released
at: https://anonymous.4open.science/r/AttentioNCE-55EB.

Table 5: Detailed parameter settings.

Parameter Settings CIFARI10 | STL10 | CIFAR100 | Tiny-ImageNet
Positive Sample Size M 4 4 4 4
Positive Scaling dps 1 2.0 1.0 4.0
Negative Scaling d e, 1 0.5 10.0 1.0
Negative Sample Size N 510 510 510 510
Batch Size 256 256 256 256
Optimizer Adam Adam Adam Adam
Learning Rate le-3 le-3 le-3 le-3
Weight Decay le-6 le-6 le-6 le-6
Temperature Scaling 7 0.5 0.5 0.5 0.5
Feature Dimension 128 128 128 128
Data Augmentation Fig E] Fig E] Fig E] Fig E]

train_transform = transforms.Compose( |
transforms.RandomResizedCrop{32),
transforms.RandomHorizontalFlip(p=8.5),
transforms.RandomApply([transforms.Colorlitter(@.4, 0.4, 8.4, ©.1)], p=0.8),
transforms.RandomGrayscale(p=08.2),
GaussianBlur{kernel size=int{@.1 * 32)),
transforms.ToTensor (),

transforms.Mormalize([©.4914, ©.4822, 9.4465], [©.2823, ©.1994, ©.20818])])

Figure 6: PyTorch code for SimCLR data augmentation from (Chuang et al.| (2020).

In the SIMCLR framework, the number of negative samples is related to the batch size as follows:
N = 2 x (Batch Size - 1)
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