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ABSTRACT

In this paper, we introduce the Diff-Instruct* (DI*), an image data-free approach
for building one-step text-to-image generative models that align with human pref-
erence while maintaining the ability to generate highly realistic images. We frame
human preference alignment as online reinforcement learning using human feed-
back (RLHF), where the goal is to maximize the reward function while regular-
izing the generator distribution to remain close to a reference diffusion process.
Unlike traditional RLHF approaches, which rely on the KL divergence for reg-
ularization, we introduce a novel score-based divergence regularization, which
leads to significantly better performances. Although the direct calculation of this
divergence remains intractable, we demonstrate that we can efficiently compute
its gradient by deriving an equivalent yet tractable loss function. Remarkably,
with Stable Diffusion V1.5 as the reference diffusion model, DI* outperforms all
previously leading models by a large margin. When using the 2.6B Stable Diffu-
sion XL architecture, the DI* results in a solid human-preferred one-step model
that is able to generate aesthetic images of 1024× 1024 resolutions. When using
the 0.6B PixelArt-α model as the reference diffusion, DI* achieves a new record
Aesthetic Score of 6.30 and an Image Reward of 1.31 with only a single genera-
tion step, almost doubling the scores of the rest of the models with similar sizes.
It also achieves an HPSv2.0 score of 28.70, establishing a new state-of-the-art
benchmark, with a better layout, richer details, and aesthetic colors.

1 INTRODUCTIONS

Deep generative models have made substantial progress these years, largely transforming the content
creation and editing across various domains (Karras et al., 2020; Nichol & Dhariwal, 2021; Poole
et al., 2022; Kim et al., 2022; Tashiro et al., 2021; Meng et al., 2021; Couairon et al., 2022; Ramesh
et al., 2022; Esser et al., 2024). These models demonstrated exceptional capabilities in generating
high-resolution outputs, such as photorealistic images, videos, audio, and 3D assets (Oord et al.,
2016; Ho et al., 2022; Poole et al., 2022; Brooks et al., 2024), and others (Zhang et al., 2023a; Xue
et al., 2023; Luo & Zhang, 2024; Luo et al., 2023b; Zhang et al., 2023b; Feng et al., 2023; Deng
et al., 2024; Luo et al., 2024d; Geng et al., 2024; Wang et al., 2024; Pokle et al., 2022).

Within this field, two types of generative models have gained significant attention, diffusion models
and one-step generators. Diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020),
or score-based generative models (Song et al., 2020), first progressively corrupt data with diffusion
processes and then train models to approximate the score functions of the noisy data distributions
across varying noise levels. The learned score functions can be used in the reverse process to gen-
erate high-quality samples by iterative denoising the noisy samples through stochastic differential
equations. While DMs can produce high-quality outputs, they often require a large number of model
evaluations, which limits their efficiency in applications.

Different from diffusion models, one-step generators (Zheng & Yang, 2024; Kang et al., 2023a;
Sauer et al., 2023a; Yin et al., 2024; Zhou et al., 2024a; Luo et al., 2024c) have emerged as a
highly efficient alternative to multi-step diffusion models. Unlike DMs, one-step generative models
directly transform latent noises to output samples with a single neural network forward pass. This
mechanism significantly reduced the inference cost, making them ideal for real-time applications
such as text-to-image and text-to-video generations. Many existing works have demonstrated the
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Figure 1: None cherry-picked generated images from one-step 0.6B DiT-DI* model with an record-
breaking HPSv2.0 score of 28.70. After being trained with Diff-Instruct*, the images show better
layouts, rich colors, vivid details, and aesthetic appearance, making them favored in terms of human
preferences. Refer to the Appendix B.1 for the prompts used in comparison.

Figure 2: A visual comparison of our 0.6B DiT-DI* and 0.86B SD1.5-DI* models against other
text-t0-image models. Refer to the Appendix B.1 for the prompts used in comparison.
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leading performances of one-step text-to-image generators (Zhou et al., 2024a; Yin et al., 2024;
Luo et al., 2024c) by employing diffusion distillation (Luo, 2023). However, these works focus
on matching the generator distributions with pretrained diffusion models, without considering the
critical challenge of teaching one-step text-to-image models to satisfy human preferences, which is
one of the most important needs in the age of human-centric AI.

To close this gap, we introduce Diff-Instruct* (DI*), a novel approach to train human-preferred one-
step generators. Inspired by the success of reinforcement learning using human feedback (RLHF) in
training large language models (Christiano et al., 2017; Ouyang et al., 2022), we frame the human-
preference alignment problem as maximizing the rewards with a score-based divergence constraint.
This yields generated samples that not only adhere to user prompts but also improve in aesthetic
quality. Our approach differs from traditional RLHF methods, which rely on Kullback-Leibler (KL)
divergence for distribution regularization. Instead, we propose score-based divergences, which offer
more stable training dynamics and better final performance. While the direct computation of the
score-based divergence is intractable, we develop a novel solution by deriving a tractable gradient
computation method, leading to a tractable pseudo-loss that stands equivalent to the intractable one
in the gradient perspective. With DI*, we are able to train large-scale human-preferred one-step
text-to-image generative models.

In our evaluation, our best 0.6B DiT-DI*-1step model, using diffusion transformer (DiT) (Peebles &
Xie, 2022) as generator architecture and PixelArt-α (Chen et al., 2023) as reference diffusion model,
has set a new benchmark on the COCO-2017 validation prompts dataset. It achieves an ImageRe-
ward (Xu et al., 2023a) of 1.31 and an Aesthetic Score(Schuhmann, 2022) of 6.30, significantly out-
performing the previous leading models such as 2.6B SDXL-DMD2 4-step models (Yin et al., 2024)
and Stable Diffusion XL (Podell et al., 2023) with 25 model steps by 50.5% and 77.0%, respec-
tively. Moreover, this model also reaches a new high with Human Preference Score V2.0 (Wu et al.,
2023) of 28.70, surpassing leading models like SDXL-DMD2, the PixelArt-α, DALL-E 2 (Ramesh
et al., 2022) and the Stable Diffusion XL with Refiners. When using Stable Diffusion V1.5 as the
reference model and the same UNet architecture for the generator, our SD1.5-DI*-1step model with
only 0.86B parameters exceeds the performance of 2.6B SDXL-DMD2 (Yin et al., 2024) and SD1.5-
DPO (Wallace et al., 2024). These results establish Diff-Instruct* as a versatile, architecture-flexible
approach for aligning one-step text-to-image generators with human preferences.

2 PRELIMINARY

Diffusion Models. In this section, we introduce preliminary knowledge and notations about dif-
fusion models. Assume we observe data from the underlying distribution qd(x). The goal of gener-
ative modeling is to train models to generate new samples x ∼ q0(x). Under mild conditions, the
forward diffusion process of a diffusion model can transform initial distribution q0 towards some
simple noise distribution,

dxt = F (xt, t)dt+G(t)dwt, (2.1)
where F is a pre-defined vector-valued drift function, G(t) is a pre-defined scalar-value diffusion
coefficient, and wt denotes an independent Wiener process. A continuous-indexed score network
sφ(x, t) is employed to approximate marginal score functions of the forward diffusion process (2.1).
The learning of score networks is achieved by minimizing a weighted denoising score matching
objective (Vincent, 2011; Song et al., 2020),

LDSM (φ) =

∫ T

t=0

λ(t)E x0∼q0,

xt|x0∼pt(xt|x0)
∥sφ(xt, t)−∇xt

log pt(xt|x0)∥22dt. (2.2)

Here the weighting function λ(t) controls the importance of the learning at different time levels and
pt(xt|x0) denotes the conditional transition of the forward diffusion (2.1). After training, the score
network sφ(xt, t) ≈ ∇xt

log qt(xt) is a good approximation of the marginal score function of the
diffused data distribution.

3 PREFERENCE ALIGNMENT USING DIFF-INSTRUCT*

In this section, we introduce Diff-Instruct*, a general method tailored for training one-step text-
to-image generator according to human preference. We begin with outlining the problem setup and
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defining notations. We frame the training objective as a special form of reinforcement learning using
human feedback (RLHF). We then introduce a family of score-based probability divergences and
show how these divergences effectively regularize the RLHF process to align closely with human
aesthetics and content preferences. Next, we introduce the classifier-free reward and discuss how to
balance the explicit human reward model and the implicit classifier-free reward.

Problem Setup. Assume we have a human reward function r(x0, c), which encodes the human
preference for an image x0 and corresponding text description c. Besides, we also have a pre-trained
diffusion model which will later act as a reference distribution pref (x0) = q0(x0). We assume the
reference diffusion model is specified by the score function

sqt(xt) := ∇xt
log qt(xt) (3.1)

where qt(xt)’s is the underlying distribution diffused at time t according to (2.1). We assume that
the pre-trained diffusion model well captures the ground-truth data distribution, and thus will be the
only item of consideration for our approach.

Our goal is to train a human-preferred one-step generator model gθ that generates images by directly
mapping a random noise z ∼ pz to obtain x0 = gθ(z, c), conditioned on the input text c ∼ C.
The generator’s output distribution, pθ(x0|c), should maximize the expected human rewards while
adhering to the constraints on the divergence to the reference distribution pref (·). Let D(·, ·) be a
distribution divergence. For any fixed prompt c, the training objective is defined as:

θ∗ = argmax
θ

Ex0∼pθ(x0|c)
[
r(x0, c)

]
, s.t. D(pθ(·|c), pref (·|c)) ≤ δ (3.2)

The constraint D(pθ(·|c), pref (·|c)) ≤ δ is often referred to as a trust-region in literature of rein-
forcement learning (Schulman, 2015; Schulman et al., 2017). This objective (3.2) is equivalent to
the minimization of objective (3.3) that adds the constraining term onto the negative reward:

θ∗ = argmin
θ

Ex0∼pθ(x0|c)
[
− αr(x0, c)

]
+D(pθ, pref ) (3.3)

Here α is a coefficient that balances reward influences and D(·) acts as a regularization term.
Traditional reinforcement learning from human feedback (RLHF) methods in large language mod-
els (Ouyang et al., 2022) use the Kullback-Leibler divergences for regularization. Recent work (Luo,
2024) has studied using the integral of KL divergence in objective (3.3) to train one-step text-to-
image generators. However, since the KL divergences are defined with the density ratio of two
distributions, any misalignment of density supports will lead to severe numerical instability, poten-
tially resulting in annoying mode-seeking behavior (Bishop, 2006). Besides, some recent works
have shown that score-based divergences (Zhou et al., 2024b; Luo et al., 2024c) result in better and
more stable performance than KL divergences (Luo et al., 2024b; Yin et al., 2023; Nguyen & Tran,
2023) in the literature of diffusion distillation. Motivated by the above two inspirations, we propose
a novel score-based online PPO algorithm that uses a general family of score-based divergence as
regularization in this paper. We provide solid theoretical foundations of score-based regularization
and its better empirical performances through large-scale text-to-image models.

3.1 GENERAL SCORE-BASED DIVERGENCES

Different from KL divergence, we can define the regularization term D(pθ, pref ) via the following
general score-based divergence. Assume d : Rd → R is a scalar-valued proper distance function
(i.e., a non-negative function that satisfies ∀x,d(x) ≥ 0 and d(x) = 0 if and only if x = 0).
Given a parameter-independent sampling distribution πt that has large distribution support, we can
formally define a time-integral score divergence as

D[0,T ](pθ, pref ) :=

∫ T

t=0

w(t)Ext∼πt

{
d(spθ,t(xt)− sqt(xt))

}
dt, (3.4)

where pθ,t and qt denote the marginal densities of the diffusion process (2.1) at time t initialized
with pθ,0 = pθ and q0 = pref respectively. w(t) is an integral weighting function. Clearly, we have
D[0,T ](pθ, pref ) = 0 if and only if pθ(x0) = pref (x0), a.s. π0.
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Algorithm 1: Diff-Instruct* for training human-preferred one-step text-to-image generators.
Input: prompt dataset C, generator gθ(x0|z, c), prior distribution pz , reward model r(x, c),

reward model scale αrew, CFG reward scale αcfg , reference diffusion model
sref (xt|c, c), assistant diffusion sψ(xt|t, c), forward diffusion pt(xt|x0) (2.1),
assistant diffusion updates rounds KTA, time distribution π(t), diffusion model
weighting λ(t), generator loss time weighting w(t).

while not converge do
freeze θ, update ψ for KTA rounds using SGD by minimizing

L(ψ) = E c∼C,z∼pz,t∼π(t)
x0=gθ(z|c),xt|x0∼pt(xt|x0)

λ(t)∥sψ(xt|t, c)−∇xt log pt(xt|x0)∥22dt.

freeze ψ, update θ using SGD by minimizing loss

LDI∗(θ) =E c∼C,z∼pz,
x0=gθ(z,c)

{
− αrew · r(x0, c) + E t∼π(t),

xt|x0∼pt(xt|x0)

[
− w(t)

{
d′(sψ(xt|t, c)− sref (xt|t, c))

}T{
sψ(xt|t, c)−∇xt

log pt(xt|x0)
}

+ αcfg · w(t)
{
sref (sg[xt]|t, c)− sref (sg[xt]|t,∅∅∅)

}T
xt

]}
(3.7)

end
return θ, ψ.

3.2 DIFF-INSTRUCT*

Recall that gθ is a one-step model, therefore samples from pθ can be implemented through a direct
mapping x0 = gθ(z|c). With the score-based regularization term (3.4), for each given text prompt
c, we can formally write down our training objective to minimize as:

LOrig(θ) = E z∼pz,
x0=gθ(z,c)

[
− αr(x0, c)

]
+D[0,T ](pθ, pref ) (3.5)

Now we are ready to reveal the objective of Diff-Instruct* that we use to train human-preferred one-
step generator gθ. Notice that directly minimizing objective (3.5) is intractable because we do not
know the relationship between θ and corresponding pθ,t. However, we show in Theorem 3.1 that an
equivalent tractable loss (3.6) will have the same θ gradient as the intractable loss function (3.5):

LDI∗(θ) =E z∼pz,
x0=gθ(z)

[
− αr(x0, c) (3.6)

+

∫ T

t=0

w(t)E xt|x0
∼pt(xt|x0)

{
− d′(yt)

}T{
spsg[θ],t(xt)−∇xt

log pt(xt|x0)

}
dt

]
with yt := spsg[θ],t(xt)− sqt(xt).
Theorem 3.1. Under mild assumptions, if we take the sampling distribution in (3.4) as πt = psg[θ],t,
then the θ gradient of (3.5) is the same as the objective (3.6): ∂

∂θLOrig(θ) =
∂
∂θLDI∗(θ).

We will give the proof in Appendix A.1. In practice, we can use another assistant diffusion model
sψ(xt, t) to approximate the generator model’s score function spsg[θ],t(xt) pointwise, which was
also done in the literature of diffusion distillations works such as Zhou et al. (2024a;b); Luo et al.
(2024b;c); Yin et al. (2023; 2024). Therefore, we can alternate between 1) updating the assistant
diffusion sψ(xt, t) using generator-generated samples (which are efficient) and 2) updating the gen-
erator by minimizing the tractable objective (3.6). We name our training method that minimizes
the objective LDI∗(θ) in (3.6) the Diff-Instruct* because it is inspired by Diff-Instruct(Luo et al.,
2024b) and Diff-Instruct++(Luo, 2024) that involves an additional diffusion model and a reward
model to train one-step generators.

3.3 DECOUPLING THE EXPLICIT REWARD AND IMPLICIT GUIDANCE-BASED REWARDS

Classifier-free Guidance Corresponds to Implicit Reward. In previous sections, we have shown
in theory that with explicitly available reward models, we can readily train the one-step generator to
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Figure 3: Comparison of Aesthetic Scores and Image Reward on 1K MSCOCO 2017 validation
prompts of Score-based (DI*) and KL divergence (DI++(Luo, 2024)) for alignment with (3.5).

align with human preference. In this section, we enhance the DI* by incorporating the classifier-free
reward that is implied by the classifier-free guidance of diffusion models.

The classifier-free guidance (Ho & Salimans, 2022) (CFG) uses a modified score function of a form
s̃ref (xt, t|c) := sref (xt, t|∅∅∅) + ω

{
sref (xt, t|c)− sref (xt, t|∅∅∅)

}
to replace the original conditions score function sref (xt, t|c). Using CFG for diffusion models
empirically leads to better sampling quality.

As is first pointed out by Luo (2024), the classifier-free guidance is related to an implicit reward
function. In this part, we derive a tractable loss function that minimizes the so-called classifier-free
reward, which we use together with the explicit reward r(·, ·) in DI*.
Theorem 3.2. Under mild conditions, if we set an implicit reward function as (3.9), the loss (3.8)

Lcfg(θ) =
∫ T

t=0

E z∼pz,x0=gθ(z,c)

xt|x0∼p(xt|x0)

w(t)

{
sref (sg[xt]|t, c)− sref (sg[xt]|t,∅∅∅)

}T
xtdt (3.8)

has the same gradient as the negative implicit reward function (3.9)

−r(x0, c) = −
∫ T

t=0

Ext∼pθ,tw(t) log
pref (xt|t, c)
pref (xt|t)

dt. (3.9)

The notation sg[xt] means detaching the θ gradient on xt. We give the proof of Theorem 3.2 in
Appendix A.2. Theorem 3.2 gives a tractable loss function (3.8) aiming to minimize the negative
classifier-free reward function. Therefore, we can scale and add this loss Lcfg(θ) (3.8) to the DI*
loss (3.6) to balance the effects of explicit reward and implicit CFG reward.

3.4 THE PRACTICAL ALGORITHM

Now it is time for us to introduce the practical algorithm. As Algorithm 1 (and a more executable
version in Algorithm 2) shows, the DI* involves three models, with one generator model gθ, one
reference diffusion model sref and one assistant diffusion model sψ . The reference diffusion does
not need to be trained, while the generator and the assistant diffusion are updated alternatively. Two
hyper-parameters, the αrew and αcfg control the strength of the explicit reward and the implicit
CFG reward during training. The explicit reward model can either be an off-the-shelf reward model,
such as the CLIP similarity score (Radford et al., 2021), or the Image Reward (Xu et al., 2023a) or
trained in-house with researchers’ internal human feedback data. Due to page limitations, we put a
discussion about the meanings of hyper-parameters in Appendix B.2.

Flexibility in Distance Functions. Clearly, various choices of distance function d(.) result in
different training algorithms. For instance, d(yt) = ∥yt∥22 is a naive choice. Interestingly, such a
distance function has been studied in pure diffusion distillation literature in Zhou et al. (2024b;a);
Luo et al. (2024c). In this paper, we draw inspiration from (Luo et al., 2024c) and find that using the
so-called pseudo-Huber distance leads to better performance. The distance and corresponding loss
writes d(y) :=

√
∥yt∥22 + c2 − c, and

D[0,T ](pθ, pref ) = −
{

yt√
∥yt∥22 + c2

}T{
sψ(xt, t)−∇xt

log pt(xt|x0)

}
. (3.10)

Here yt := spsg[θ],t(xt)− sqt(xt).
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4 RELATED WORKS

Diffusion Distillation Through Divergence Minimization. Diff-Instruct* is inspired by research
on diffusion distillation (Luo, 2023) which aims to minimize certain distribution divergence to train
one-step generators. Luo et al. (2024b) first study the diffusion distillation by minimizing the Inte-
gral KL divergence. Yin et al. (2023) generalize such a concept and add a data regression loss for
better performance. Zhou et al. (2024b) study the distillation by minimizing the Fisher divergence.
Luo et al. (2024c) study the distillation using the general score-based divergence. Many other works
also introduced additional techniques and improved the performance (Geng et al., 2023; Kim et al.,
2023; Song et al., 2023; Song & Dhariwal; Nguyen & Tran, 2023; Song et al., 2024; Yin et al., 2024;
Zhou et al., 2024a; Heek et al., 2024; Xie et al., 2024; Salimans et al., 2024; Geng et al., 2024).

Preference Alignment for Diffusion Models and One-step Generators. In recent years, many
works have emerged trying to align diffusion models with human preferences. There are three main
lines of alignment methods for diffusion models. 1) The first kind of method fine-tunes the diffusion
model over a specifically curated image-prompt dataset (Dai et al., 2023; Podell et al., 2023). 2)
the second line of methods tries to maximize some reward functions either through the multi-step
diffusion generation output (Prabhudesai et al., 2023; Clark et al., 2023; Lee et al., 2023) or through
policy gradient-based RL approaches (Fan et al., 2024; Black et al., 2023). For these methods, the
backpropagation through the multi-step diffusion generation output is expensive and hard to scale.
3) the third line, such as Diffusion-DPO (Wallace et al., 2024), Diffusion-KTO (Yang et al., 2024),
tries to directly improve the diffusion model’s human preference property with raw collected data
instead of reward functions. Besides the human preference alignment of diffusion models, Diff-
Instruct++(Luo, 2024) recently arose as the first attempt to improve human preferences for one-
step generators. Though inspired by DI++, DI* uses score-based divergences which are technically
different from the KL divergence used in DI++. Besides, as we show in Section 5.2, DI* archives
better performances than DI++ in Luo (2024).

5 EXPERIMENTS

5.1 EXPERIMENT SETTTINGS

Experiment Settings for SD1.5 and SDXL Experiment. For experiments of SD1.5, we use the
open-sourced SD1.5 of a resolution of 512×512 as our reference diffusion in Algorithm 1. We
implement our experiments based on SiD-LSG (Zhou et al., 2024a) codebase. We construct the
one-step generator with the same architecture as the reference SD1.5 model, following the same
configuration of SiD-LSG. We use the prompts of the LAION-AESTHETIC dataset with an aes-
thetic score larger than 6.25, which resulting a total of 3M text prompts. To better explore the ad-
vantages of our score-based divergence over KL divergence, we refer to a recent work (Luo, 2024)
that uses KL divergence for training and conducts a detailed comparison between two divergences.
We explore different combinations and find that (αrew = 1000, αcfg = 1.5) in Algorithm 1 is the
best. For SD1.5 experiments, we find that training one-step generators from scratch leads to longer
training, therefore we initialize our generator with the weights of the SiD-LSG pre-trained one-step
model. For experiments of SDXL, we use the SDXL(Podell et al., 2023) as the teacher model and
its architecture as the one-step student model. We initialize the one-step generator with the pre-
trained DMD2-SDXL-1step model (Yin et al., 2024), which is a pretty good initialization based on
SDXL architectures. We follow similar settings as the SD1.5 experiment: using a scale for explicit
ImageReward of 1000 and a scale for implicit CFG reward of 8.0.

Experiment Settings for PixelArt-α Experiment. PixArt-α is a high-quality DiT-based(Peebles
& Xie, 2022) open-sourced text-to-image diffusion model. We use the DiT architecture and the
0.6B PixArt-α of a resolution of 512×512 as our reference diffusion to demonstrate the compatibil-
ity of DI* for different neural network architectures. We use the prompts from the training dataset
of PixArt-α (the SAM-Recaptioned Dataset), resulting in a total of 10M prompts. After exploring
different combinations, we find that (αrew = 10, αcfg = 4.5) in Algorithm 1 gives the best per-
formances. For DiT generators with a total of 0.6B parameters, we find that training from scratch
without initialization results in strong results. Therefore we do not apply special initialization for
DiT-based one-step generators. Our best DiT-DI* model in Table 2 is trained from scratch with 8
H100-80G GPUs for 200000 iterations with a batch size of 128. The total wall-clock training costs
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Table 1: Quantitative comparisons of text-to-image models on MSCOCO-2017 validation prompts
(the upper part) and Parti(Yu et al., 2022) Prompts (the under part). DI* is short for Diff-Instruct*.
αr and αc are short for αrew and αcfg in Algorithm 1. † means our implementation. Data means
the model needs image data for training. Sampling means the model needs to draw samples from
reference diffusion models. Reward means the model needs a human reward model for training.
† indicates our implementation. ‡ indicates the same 4-step model of DMD2 but with different
inference steps.

MODEL STEPS TYPE PARAMS IMAGE
REWARD

AES
SCORE

PICK
SCORE

CLIP
SCORE

ADDITIONAL
REQUIREMENTS

SD15-DPO(WALLACE ET AL., 2024) 15 UNET 0.86B 0.20 5.29 0.214 31.07 DATA, SAMPLING
SD15-DPO(WALLACE ET AL., 2024) 25 UNET 0.86B 0.28 5.37 0.218 31.25 PREFERENCE DATA

SD15-LCM(LUO ET AL., 2023A) 1 UNET 0.86B -1.58 5.04 0.194 27.20 DATA, SAMPLING
SD15-LCM(LUO ET AL., 2023A) 4 UNET 0.86B -0.23 5.40 0.214 30.11 DATA, SAMPLING
SD15-TCD(ZHENG ET AL., 2024) 1 UNET 0.86B -1.49 5.10 0.196 28.30 DATA, SAMPLING
SD15-TCD(ZHENG ET AL., 2024) 4 UNET 0.86B -0.04 5.28 0.212 30.43 DATA, SAMPLING

PERFLOW(YAN ET AL., 2024) 4 UNET 0.86B -0.20 5.51 0.211 29.54 DATA, SAMPLING
SD15-HYPER(REN ET AL., 2024) 1 UNET 0.86B 0.28 5.49 0.214 30.82 DATA, SAMPLING
SD15-HYPER(REN ET AL., 2024) 4 UNET 0.86B 0.42 5.41 0.217 31.03 REWARD, SEG-MODEL

SD15-INSTAFLOW(LIU ET AL., 2023) 1 UNET 0.86B -0.16 5.03 0.207 30.68 DATA, SAMPLING
SDXL-BASE(ROMBACH ET AL., 2022) 25 UNET 2.6B 0.74 5.57 0.226 31.83 IMAGE-TEXT
SDXL-BASE(ROMBACH ET AL., 2022) 15 UNET 2.6B 0.68 5.56 0.224 31.99 IMAGE-TEXT

SDXL-DMD2‡-1024(YIN ET AL., 2024) 1 UNET 2.6B 0.82 5.45 0.224 31.78 IMAGE-TEXT
SDXL-DMD2‡-1024(YIN ET AL., 2024) 4 UNET 2.6B 0.87 5.52 0.231 31.50 IMAGE-TEXT
SDXL-DMD2‡-512(YIN ET AL., 2024) 1 UNET 2.6B 0.36 5.03 0.215 31.54 IMAGE-TEXT
SDXL-DMD2‡-512(YIN ET AL., 2024) 4 UNET 2.6B -0.18 5.17 0.206 29.28 IMAGE-TEXT
SD15-DMD2-512(YIN ET AL., 2024) 1 UNET 2.6B -0.12 5.24 0.211 30.00 IMAGE-TEXT
SD21-TURBO(SAUER ET AL., 2023B) 1 UNET 0.86B 0.56 5.47 0.225 31.50 IMAGE-TEXT
SD15-BASE(ROMBACH ET AL., 2022) 15 UNET 0.86B 0.08 5.25 0.212 30.99 IMAGE-TEXT
SD15-BASE(ROMBACH ET AL., 2022) 25 UNET 0.86B 0.22 5.32 0.216 31.13 IMAGE-TEXT
PIXELART-α-512(CHEN ET AL., 2023) 25 DIT 0.6B 0.82 6.01 0.227 31.20 IMAGE-TEXT
PIXELART-α-512(CHEN ET AL., 2023) 15 DIT 0.6B 0.82 6.03 0.226 31.16 IMAGE-TEXT
SD15-SIDLSG(ZHOU ET AL., 2024A) 1 UNET 0.86B -0.18 5.16 0.210 30.04 TEXT

SDXL-DMD2-1024(YIN ET AL., 2024) 1 UNET 2.6B 0.85 5.46 0.225 31.86 IMAGE-TEXT

SD15-DI++(LUO, 2024)† 1 UNET 0.86B 0.82 5.78 0.219 30.30 REWARD

DIT-DI++(LUO, 2024)† 1 DIT 0.6B 1.24 6.19 0.225 30.80 REWARD

SD15-DI*(αr = 0, αc = 1.5) 1 UNET 0.86B 0.34 5.27 0.217 30.83 REWARD
SD15-DI*(αr = 100, αc = 1.5) 1 UNET 0.86B 0.62 5.44 0.218 30.76 REWARD

SD15-DI*(αr = 1000, αc = 4.5) 1 UNET 0.86B 0.73 5.56 0.219 30.71 REWARD
SD15-DI*(αr = 1000, αc = 1.5) 1 UNET 0.86B 0.94 5.83 0.220 30.49 REWARD

SDXL-DI*-1024(αr = 1000, αc = 8.0) 1 UNET 2.6B 0.88 5.56 0.225 32.07 REWARD
DIT-DI*(αr = 1, αc = 4.5) 1 DIT 0.6B 0.98 6.02 0.225 31.00 REWARD

DIT-DI*(αr = 10, αc = 4.5) 1 DIT 0.6B 1.31 6.30 0.225 30.84 REWARD

SDXL-BASE(ROMBACH ET AL., 2022) 15 UNET 2.6B 0.69 5.68 0.224 32.76 IMAGE-TEXT
PIXELART-α-512(CHEN ET AL., 2023) 15 DIT 0.6B 0.96 6.00 0.227 31.76 IMAGE-TEXT
SDXL-DMD2-1024(YIN ET AL., 2024) 1 UNET 2.6B 0.94 5.53 0.225 33.00 IMAGE-TEXT

SDXL-DI*-1024(αr = 1000, αc = 8.0) 1 UNET 2.6B 1.06 5.61 0.225 33.27 REWARD
DIT-DI*(αr = 1, αc = 4.5) 1 DIT 0.6B 0.96 6.06 0.224 31.11 REWARD

DIT-DI*(αr = 10, αc = 4.5) 1 DIT 0.6B 1.26 6.23 0.225 30.64 REWARD

is less than 30 hours. As a comparison, other industry models in Table 1 usually require hundreds of
A100 GPU days for training. Such a low cost might benefit from the property that DI* needs neither
real image data nor samples from reference diffusion models.

Quantitative Evaluations Metrics. We compare our generators with other leading open-sourced
models that are either based on SD1.5 diffusion models or larger models such as SDXL. For all
models, we compute four standard scores in Table 1: the Image Reward (Xu et al., 2023a), the Aes-
thetic Score (Schuhmann, 2022), the PickScore(Kirstain et al., 2023), and the CLIP score(Radford
et al., 2021) on the same 1K prompts randomly sampled from COCO-2017-validation(Lin et al.,
2014) set on the same computing devices. We have compared the results on 1K prompts and 30K
COCO prompts and found similar results. Since our training prompts do not involve COCO valida-
tion prompts, the evaluation of COCO prompts can be viewed as an out-of-training set evaluation.
We also evaluate models with Human Preference Score v2.0 (HPSv2.0) (Wu et al., 2023) in Table 2.
The HPSv2.0 is a standard score for evaluating models’ human preferences across different styles.
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5.2 PERFORMANCES AND FINDINGS

Quantitative Comparison: DI* Achieves SoTA Human Preference Scores. As Table 1 shows,
our best 0.6B DiT-DI* model outperforms all other open-sourced models. It achieves a COCO (out-
of-sample) Image Reward of 1.31, which is 50% better than the second best 2.6B SDXL-DMD2-
4Step model of 1024 resolution. It also outperforms the SDXL model with a margin of 70%. It also
shows an Aesthetic Score of 6.30, which is 14.3% better than the 2.6B SDXL-DMD2-4Step model.
Among SD1.5-based models, our best SD1.5-DI* model outperforms other models with significant
margins. This result demonstrates the compatibility of DI* across UNet and DiT architectures.

As Table 2 shows, our 0.6B DiT-DI* one-step model achieves a record-breaking HPSv2.0 score of
28.70 across open-sourced text-to-image models. It clearly outperforms the autoregressive models
such as 6B CogView2 (Ding et al., 2022), diffusion models such as 5.5B Dalle-E 2 (Ramesh et al.,
2022), 5B GLIDE(Nichol et al., 2021), 2.6B SDXL(Podell et al., 2023), and 4.3B DeepFloyd-XL
with up to 30+ generation steps. Such a lightweight, high-performance, and high-efficiency model
will bring big impacts on applications that need real-time generations.

Qualitative Comparisons. As Figure 1 and Figure 2 show, models trained with DI* show better
layouts, richer colors, and more aesthetic face preferences. We find such an advantage is stronger
for scene generations. Figure 4 shows a visualization of the SD1.5-DI* model in Table 2 before
and after alignments with DI*. It shows that models after alignment produce images with richer
colors. We also evaluate the COCO-FID values of SD1.5-based one-step models with and without
preference alignment with DI*. The FID of the alignment model is 18.44, while the un-alignment
model (the SiD-LSG which we use as the initialization of the one-step generator) has an FID of
8.27. This phenomenon suggests that only using ImageReward(which tends to be subjective) to
align models with DI* can potentially harm objective metrics such as FID and CLIPScore. A naive
solution to hack CLIPScore is to simply include the CLIP score and PickScore as two other sources
of reward when using DI*, which will definitely improve these scores. However, since we want to
verify the generalization ability of one reward to others using DI*, we only use the ImageReward
and observed other scores in this paper.

Score-based Divergence is Better than KL Divergence. In Figure 3 we compare the use of
score-based divergence of DI* and the KL divergence of DI++(Luo, 2024) for RLHF regularization
in (3.5). We fix the αrew = 1000 and αcfg = 1.5 for both DI++ and DI* and use the same Image
Reward as an explicit reward model for training the SD1.5-based one-step generators. As we can
see in Figure 3, for each iteration, DI* has a better score than DI++. Besides, DI* achieves the best
final results. The reason for the worse performance of KL divergence might be its definition, which
involves the ratio of two distributions, which may lead to unstable numerical performances when
two distributions have misaligned density supports.

6 CONCLUSION AND LIMITATIONS

In this paper, we present Diff-Instruct*, a novel approach for aligning human-preferred one-step
text-to-image generators. By formulating the training objective as a maximization of expected hu-
man reward functions with a score-based divergence regularization, we have developed practical
losses and easy-to-implement algorithms. Our results show that DiT-based one-step text-to-image
generators trained with DI* achieve new state-of-the-art human preference performances.

Nonetheless, DI* has its limitations. We empirically find three typical mistakes the generator often
makes. (1) The Generator Sometimes Generates Bad Human Faces and Hands. (2) The aligned
model still can not count correctly. Figure 5 shows some occasional bad generation cases. We be-
lieve that consistently improving both the generator architecture and the reward models will lead to
better models. Besides, we are also interested in following directions that call for further research.
First, in this paper, we only study using only one reward model to train the generator. However,
training generators with multiple rewards is still unexplored. Second, the DI* needs a pre-trained
reward model. However, methods like DPO (Rafailov et al., 2024; Wallace et al., 2024) have put a
new setup that trains generative models directly using human feedback data. Whether it is possible
to develop DPO-like algorithms based on DI* is a promising research direction. Third, it is also in-
teresting to explore training multistep models instead of one-step generators for better performance.
We hope these future directions could contribute more to the community.
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Table 2: HPSv2.0 (upper table) and HPSv2.1 (under table). We compare open-sourced models
regardless of their base model and architecture. † indicates our implementation. ‡ indicates the
same 4-step model of DMD2 but with different inference steps.

MODEL ANIMATION CONCEPT-ART PAINTING PHOTO AVERAGE

GLIDE (NICHOL ET AL., 2021) 23.34 23.08 23.27 24.50 23.55

LAFITE (ZHOU ET AL., 2022) 24.63 24.38 24.43 25.81 24.81

VQ-DIFFUSION (GU ET AL., 2022) 24.97 24.70 25.01 25.71 25.10

FUSEDREAM (LIU ET AL., 2021) 25.26 25.15 25.13 25.57 25.28

LATENT DIFFUSION (ROMBACH ET AL., 2022) 25.73 25.15 25.25 26.97 25.78

COGVIEW2 (DING ET AL., 2022) 26.50 26.59 26.33 26.44 26.47

DALL·E MINI 26.10 25.56 25.56 26.12 25.83

VERSATILE DIFFUSION (XU ET AL., 2023B) 26.59 26.28 26.43 27.05 26.59

VQGAN + CLIP (ESSER ET AL., 2021) 26.44 26.53 26.47 26.12 26.39

DALL·E 2 (RAMESH ET AL., 2022) 27.34 26.54 26.68 27.24 26.95

STABLE DIFFUSION V1.4 (ROMBACH ET AL., 2022) 27.26 26.61 26.66 27.27 26.95

STABLE DIFFUSION V2.0 (ROMBACH ET AL., 2022) 27.48 26.89 26.86 27.46 27.17

EPIC DIFFUSION 27.57 26.96 27.03 27.49 27.26

DEEPFLOYD-XL 27.64 26.83 26.86 27.75 27.27

OPENJOURNEY 27.85 27.18 27.25 27.53 27.45

MAJICMIX REALISTIC 27.88 27.19 27.22 27.64 27.48

CHILLOUTMIX 27.92 27.29 27.32 27.61 27.54

DELIBERATE 28.13 27.46 27.45 27.62 27.67

REALISTIC VISION 28.22 27.53 27.56 27.75 27.77

SDXL-BASE(PODELL ET AL., 2023) 28.42 27.63 27.60 27.29 27.73

SDXL-REFINER(PODELL ET AL., 2023) 28.45 27.66 27.67 27.46 27.80

DREAMLIKE PHOTOREAL 2.0 28.24 27.60 27.59 27.99 27.86

SD15-DPO-15STEP(WALLACE ET AL., 2024) 27.11 26.75 26.70 27.30 26.97

SD15-DPO-25STEP(WALLACE ET AL., 2024) 27.54 26.97 26.99 27.49 27.25

SD15-LCM-1STEP(LUO ET AL., 2023A) 23.35 23.41 23.53 23.81 23.52

SD15-LCM-4STEP(LUO ET AL., 2023A) 26.42 25.79 25.95 26.91 26.27

SD15-TCD-1STEP(ZHENG ET AL., 2024) 23.37 23.16 23.26 23.88 23.42

SD15-TCD-4STEP(ZHENG ET AL., 2024) 26.67 26.25 26.26 27.19 26.59

SD15-HYPER-1STEP(REN ET AL., 2024) 27.76 27.36 27.41 27.63 27.54

SD15-HYPER-4STEP(REN ET AL., 2024) 28.04 27.39 27.42 27.89 27.69

SD15-INSTAFLOW-1STEP(LIU ET AL., 2023) 26.07 25.80 25.89 26.32 26.02

SD15-PEREFLOW-1STEP(YAN ET AL., 2024) 25.70 25.45 25.57 25.96 25.67

SD15-BOOT-1STEP(GU ET AL., 2023) 25.29 24.40 24.61 25.16 24.86

SD21-SWIFTBRUSH-1STEP(NGUYEN & TRAN, 2023) 26.91 26.32 26.37 27.21 26.70

SD21-TURBO-1STEP(SAUER ET AL., 2023B) 27.48 26.86 27.46 26.89 27.71

SDXL-DMD2‡-1STEP-1024(YIN ET AL., 2024) 27.67 27.02 27.01 26.94 27.16

SDXL-DMD2‡-4STEP-1024(YIN ET AL., 2024) 28.97 27.99 27.90 28.28 28.29

SDXL-DMD2‡-1STEP-512(YIN ET AL., 2024) 27.70 27.07 27.02 26.94 27.18

SDXL-DMD2‡-4STEP-512(YIN ET AL., 2024) 27.22 26.65 26.62 26.57 26.76

SD15-DMD2-1STEP-512(YIN ET AL., 2024) 26.31 25.75 25.78 26.59 26.11

SD15-15STEP(ROMBACH ET AL., 2022) 26.76 26.37 26.41 27.12 26.66

SD15-25STEP(ROMBACH ET AL., 2022) 27.04 26.57 26.61 27.30 26.88

SDXL-BASE-15STEP(PODELL ET AL., 2023) 28.25 27.27 27.43 27.43 27.60

SD15-SIDLSG-1STEP(REPORT)(ZHOU ET AL., 2024A) 27.39 26.65 26.58 27.30 26.98

SD15-SIDLSG-1STEP(ZHOU ET AL., 2024A) 26.37 25.85 25.88 26.73 26.20

PIXELART-α-25STEP-512(CHEN ET AL., 2023) 28.77 27.92 27.96 28.37 28.25

PIXELART-α-15STEP-512(CHEN ET AL., 2023) 28.68 27.85 27.87 28.29 28.17

SD15-DI++-1STEP(LUO, 2024)† 28.42 27.84 28.01 28.19 28.12

SDXL-DMD2-1STEP-1024(YIN ET AL., 2024)(αc = 8) 28.45 27.52 27.52 27.75 27.81

SD15-DI*-1STEP(αr = 1000, αc = 1.5)(OURS) 28.56 28.05 28.17 28.31 28.27

SDXL-DI*-1STEP-1024(αr = 1000, αc = 8.0)(OURS) 28.74 28.04 28.14 28.12 28.26

DIT-DI*-1STEP(αr = 10, αc = 4.5)(OURS) 28.78 28.31 28.48 28.37 28.48

DIT-DI*-1STEP(αr = 1, αc = 4.5)(OURS) 29.13 28.51 28.51 28.63 28.70

SD15-15STEP(ROMBACH ET AL., 2022) 23.43 22.91 22.76 24.17 23.32

SDXL-BASE-15STEP(PODELL ET AL., 2023) 29.71 27.69 27.71 25.46 27.64

PIXLART-α-15STEP(CHEN ET AL., 2023) 31.31 29.86 29.56 28.49 29.81

SD15-SIDLSG-1STEP(ZHOU ET AL., 2024A) 22.54 21.53 21.37 23.09 22.13

SDXL-DMD2-1STEP(YIN ET AL., 2024) 29.72 27.96 27.64 26.55 27.97

RCM-IR-2STEP(LI ET AL., 2024) 29.65 31.15 32.00 31.03 30.95

SD15-DI*-1STEP(OURS) 29.00 28.88 29.17 27.68 28.68

SDXL-DI*-1STEP-1024(OURS) 30.74 30.03 30.05 28.00 29.71

DIT-DI*-1STEP(OURS) 33.05 32.37 32.10 30.07 31.90
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BROADER IMPACT STATEMENT

This work is motivated by our aim to increase the positive impact of one-step text-to-image genera-
tive models toward satisfying human preferences. By default, one-step generators are either trained
over large-scale image-caption pair datasets or distilled from pre-trained diffusion models, which
convey only subjective knowledge without human instructions.

Our results indicate that the proposed approach is promising for making one-step generative models
more aesthetic, and more preferred by human users. In the longer term, alignment failures could
lead to more severe consequences, particularly if these models are deployed in safety-critical sit-
uations. For instance, if alignment failures occur, the one-step text-to-image model may generate
toxic images with misleading information, and horrible images that can potentially be scary to users.
We strongly recommend using our human preference alignment techniques together with AI safety
checkers for text-to-image generation to prevent undesirable negative impacts.

REPRODUCIBILITY STATEMENT

We provide extensive details of experimental settings and hyperparameters to reproduce our experi-
mental results. We plan to release our code to ensure transparency and reproducibility of the results.

REFERENCES

Christopher M Bishop. Pattern recognition and machine learning. Springer google schola, 2:1122–
1128, 2006.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
James T. Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffu-
sion transformer for photorealistic text-to-image synthesis. ArXiv, abs/2310.00426, 2023. URL
https://api.semanticscholar.org/CorpusID:263334265.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models
on differentiable rewards. arXiv preprint arXiv:2309.17400, 2023.

Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-
based semantic image editing with mask guidance. ArXiv, abs/2210.11427, 2022.

Xiaoliang Dai, Ji Hou, Chih-Yao Ma, Sam Tsai, Jialiang Wang, Rui Wang, Peizhao Zhang, Simon
Vandenhende, Xiaofang Wang, Abhimanyu Dubey, et al. Emu: Enhancing image generation
models using photogenic needles in a haystack. arXiv preprint arXiv:2309.15807, 2023.

Wei Deng, Weijian Luo, Yixin Tan, Marin Biloš, Yu Chen, Yuriy Nevmyvaka, and Ricky TQ Chen.
Variational schr\” odinger diffusion models. arXiv preprint arXiv:2405.04795, 2024.

Ming Ding, Wendi Zheng, Wenyi Hong, and Jie Tang. Cogview2: Faster and better text-to-image
generation via hierarchical transformers. Advances in Neural Information Processing Systems,
35:16890–16902, 2022.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 12873–12883, 2021.

11

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://api.semanticscholar.org/CorpusID:263334265


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-
tuning text-to-image diffusion models. Advances in Neural Information Processing Systems, 36,
2024.

Yasong Feng, Weijian Luo, Yimin Huang, and Tianyu Wang. A lipschitz bandits approach for
continuous hyperparameter optimization. arXiv preprint arXiv:2302.01539, 2023.

Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep equi-
librium models. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=b6XvK2de99.

Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models
made easy. arXiv preprint arXiv:2406.14548, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and Josh Susskind. Boot: Data-free distillation
of denoising diffusion models with bootstrapping. arXiv preprint arXiv:2306.05544, 2023.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10696–10706, 2022.

Jonathan Heek, Emiel Hoogeboom, and Tim Salimans. Multistep consistency models. arXiv
preprint arXiv:2403.06807, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv preprint arXiv:2204.03458, 2022.

Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
Park. Scaling up gans for text-to-image synthesis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2023a.

Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
Park. Scaling up gans for text-to-image synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10124–10134, 2023b.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Proc. NeurIPS, 2022.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Heeseung Kim, Sungwon Kim, and Sungroh Yoon. Guided-tts: A diffusion model for text-to-speech
via classifier guidance. In International Conference on Machine Learning, pp. 11119–11133.
PMLR, 2022.

12

https://openreview.net/forum?id=b6XvK2de99


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy.
Pick-a-pic: An open dataset of user preferences for text-to-image generation. arXiv preprint
arXiv:2305.01569, 2023.

Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human
feedback. arXiv preprint arXiv:2302.12192, 2023.

Jiachen Li, Weixi Feng, Wenhu Chen, and William Yang Wang. Reward guided latent consistency
distillation. arXiv preprint arXiv:2403.11027, 2024.

Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
distillation. arXiv preprint arXiv:2402.13929, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays,
Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco:
Common objects in context, 2014. URL http://arxiv.org/abs/1405.0312. cite
arxiv:1405.0312Comment: 1) updated annotation pipeline description and figures; 2) added new
section describing datasets splits; 3) updated author list.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024.

Xingchao Liu, Chengyue Gong, Lemeng Wu, Shujian Zhang, Hao Su, and Qiang Liu. Fuse-
dream: Training-free text-to-image generation with improved clip+ gan space optimization. arXiv
preprint arXiv:2112.01573, 2021.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference
on Learning Representations, 2023.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthe-
sizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378, 2023a.

Weijian Luo. A comprehensive survey on knowledge distillation of diffusion models. arXiv preprint
arXiv:2304.04262, 2023.

Weijian Luo. Diff-instruct++: Training one-step text-to-image generator model to align with human
preferences. arXiv preprint arXiv:2410.18881, 2024.

Weijian Luo and Zhihua Zhang. Data prediction denoising models: The pupil outdoes the master,
2024. URL https://openreview.net/forum?id=wYmcfur889.

Weijian Luo, Hao Jiang, Tianyang Hu, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Training
energy-based models with diffusion contrastive divergences. arXiv preprint arXiv:2307.01668,
2023b.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36, 2024a.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36, 2024b.

Weijian Luo, Zemin Huang, Zhengyang Geng, J Zico Kolter, and Guo-Jun Qi. One-step diffusion
distillation through score implicit matching. arXiv preprint arXiv:2410.16794, 2024c.

13

http://arxiv.org/abs/1405.0312
https://openreview.net/forum?id=wYmcfur889


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Weijian Luo, Boya Zhang, and Zhihua Zhang. Entropy-based training methods for scalable neural
implicit samplers. Advances in Neural Information Processing Systems, 36, 2024d.

Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Im-
age synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073,
2021.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Thuan Hoang Nguyen and Anh Tran. Swiftbrush: One-step text-to-image diffusion model with
variational score distillation. arXiv preprint arXiv:2312.05239, 2023.

Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. arXiv
preprint arXiv:2102.09672, 2021.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Ashwini Pokle, Zhengyang Geng, and J Zico Kolter. Deep equilibrium approaches to diffusion
models. Advances in Neural Information Processing Systems, 35:37975–37990, 2022.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-
image diffusion models with reward backpropagation. arXiv preprint arXiv:2310.03739, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Yuxi Ren, Xin Xia, Yanzuo Lu, Jiacheng Zhang, Jie Wu, Pan Xie, Xing Wang, and Xuefeng Xiao.
Hyper-sd: Trajectory segmented consistency model for efficient image synthesis. arXiv preprint
arXiv:2404.13686, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Tim Salimans, Thomas Mensink, Jonathan Heek, and Emiel Hoogeboom. Multistep distillation of
diffusion models via moment matching. arXiv preprint arXiv:2406.04103, 2024.

Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and Timo Aila. Stylegan-t: Unlocking the
power of gans for fast large-scale text-to-image synthesis. In International conference on machine
learning, pp. 30105–30118. PMLR, 2023a.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
tillation. arXiv preprint arXiv:2311.17042, 2023b.

Christoph Schuhmann. Laion-aesthetics. https://laion.ai/blog/
laion-aesthetics/, 2022. Accessed: 2023 - 11- 10.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265. PMLR, 2015.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In The
Twelfth International Conference on Learning Representations.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Yuda Song, Zehao Sun, and Xuanwu Yin. Sdxs: Real-time one-step latent diffusion models with
image conditions. arXiv preprint arXiv:2403.16627, 2024.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based
diffusion models for probabilistic time series imputation. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan
Narang, Dani Yogatama, Ashish Vaswani, and Donald Metzler. Scale efficiently: Insights from
pre-training and fine-tuning transformers. arXiv preprint arXiv:2109.10686, 2021.

Pascal Vincent. A Connection Between Score Matching and Denoising Autoencoders. Neural
Computation, 23(7):1661–1674, 2011.

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8228–8238, 2024.

Yifei Wang, Weimin Bai, Weijian Luo, Wenzheng Chen, and He Sun. Integrating amortized infer-
ence with diffusion models for learning clean distribution from corrupted images. arXiv preprint
arXiv:2407.11162, 2024.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolific-
dreamer: High-fidelity and diverse text-to-3d generation with variational score distillation. arXiv
preprint arXiv:2305.16213, 2023.

15

https://laion.ai/blog/laion-aesthetics/
https://laion.ai/blog/laion-aesthetics/


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
image synthesis. arXiv preprint arXiv:2306.09341, 2023.

Sirui Xie, Zhisheng Xiao, Diederik P Kingma, Tingbo Hou, Ying Nian Wu, Kevin Patrick Murphy,
Tim Salimans, Ben Poole, and Ruiqi Gao. Em distillation for one-step diffusion models. arXiv
preprint arXiv:2405.16852, 2024.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation,
2023a.

Xingqian Xu, Zhangyang Wang, Gong Zhang, Kai Wang, and Humphrey Shi. Versatile diffusion:
Text, images and variations all in one diffusion model. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 7754–7765, 2023b.

Shuchen Xue, Mingyang Yi, Weijian Luo, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhi-Ming
Ma. SA-solver: Stochastic adams solver for fast sampling of diffusion models. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=f6a9XVFYIo.

Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, Qiang Liu, and Jiashi Feng. Perflow:
Piecewise rectified flow as universal plug-and-play accelerator. arXiv preprint arXiv:2405.07510,
2024.

Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Weihan Shen, Xiaolong Zhu, and Xiu Li.
Using human feedback to fine-tune diffusion models without any reward model. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8941–8951, 2024.
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Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
William T Freeman. Improved distribution matching distillation for fast image synthesis. arXiv
preprint arXiv:2405.14867, 2024.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5, 2022.

Boya Zhang, Weijian Luo, and Zhihua Zhang. Enhancing adversarial robustness via score-based
optimization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023a.
URL https://openreview.net/forum?id=MOAHXRzHhm.

Boya Zhang, Weijian Luo, and Zhihua Zhang. Purify++: Improving diffusion-purification with
advanced diffusion models and control of randomness. arXiv preprint arXiv:2310.18762, 2023b.

Bowen Zheng and Tianming Yang. Diffusion models are innate one-step generators. arXiv preprint
arXiv:2405.20750, 2024.

Jianbin Zheng, Minghui Hu, Zhongyi Fan, Chaoyue Wang, Changxing Ding, Dacheng Tao, and
Tat-Jen Cham. Trajectory consistency distillation. arXiv preprint arXiv:2402.19159, 2024.

Mingyuan Zhou, Zhendong Wang, Huangjie Zheng, and Hai Huang. Long and short guidance in
score identity distillation for one-step text-to-image generation. arXiv preprint arXiv:2406.01561,
2024a.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
arXiv preprint arXiv:2404.04057, 2024b.

Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li, Chris Tensmeyer, Tong Yu, Jiuxiang
Gu, Jinhui Xu, and Tong Sun. Towards language-free training for text-to-image generation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 17907–
17917, 2022.

16

https://openreview.net/forum?id=f6a9XVFYIo
https://openreview.net/forum?id=f6a9XVFYIo
https://openreview.net/forum?id=MOAHXRzHhm


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A THEORY

A.1 PROOF OF THEOREM 3.1

Proof. Recall that pθ(·) is induced by the generator gθ(·), therefore the sample is obtained by x0 =
gθ(z|c), z ∼ pz . The term x contains parameter through x0 = gθ(z|c), z ∼ pz . To demonstrate
the parameter dependence, we use the notation pθ(·). Note that pref (·) is the reference distribution.
The alignment objective writes

LOrig(θ) = E z∼pz,
x0=gθ(z|c)

[
− αr(x0, c)

]
+D[0,T ](pθ, pref ) (A.1)

The first loss term of (A.1) αr(x0, c) is easy to compute by directly pushing the generated sample
x0 and the text prompt c into the reward model r(·, ·). However, the second loss term (A.2) is
intractable because we do not explicitly know the relation between θ and pθ,t(·).

D[0,T ](pθ, pref ) :=

∫ T

t=0

w(t)Ext∼πt

{
d(spθ,t(xt)− sqt(xt))

}
dt, (A.2)

We turn to derive the equivalent loss for D[0,T ](pθ, pref ). First we take the θ gradient of (A.2), show

∂

∂θ
D[0,T ](pθ, pref ) =

∂

∂θ

∫ T

t=0

w(t)Ext∼πt

{
d(spθ,t(xt)− sqt(xt))

}
dt (A.3)

= Et,xt∼πtw(t)

{
d′(yt)

}T
∂

∂θ
spθ,t(xt) (A.4)

Notice that pθ,t(·) is induced by first generating samples with one-step generator then adding noise
with diffusion process (2.1), we do not know the term ∂

∂θspθ,t(xt). Therefore the gradient formula
(A.4) is intractable. However, we will show that a tractable loss function can recover the intractable
gradient (A.4), and therefore can be used for minimizing (A.2). Our proof is inspired by the theory
from Vincent (2011), Zhou et al. (2024b) and Luo et al. (2024c).

We first present a so-called Score-projection identity (Theorem A.1), which has been studied in
Zhou et al. (2024b) and Vincent (2011):

Theorem A.1. Let u(·) be a θ-free vector-valued function under mild conditions, the identity holds:

E x0∼pθ,0,

xt|x0∼qt(xt|x0)

u(xt)
T

{
spθ,t(xt)−∇xt

log qt(xt|x0)

}
= 0, ∀θ. (A.5)

We give a short proof of Theorem A.1 as a clarification. Readers can also refer to Vincent (2011) or
Zhou et al. (2024b) as a reference.

Recall the relation between spθ,t(xt) and ∇xt
log qt(xt|x0), we know

spθ,t(xt) = ∇xt
log

∫
pθ,0(x0)qt(xt|x0)dx0

=

∫
pθ,t(x0)∇xt

qt(xt|x0)dx0

pθ,t(xt)

=

∫
∇xt log qt(xt|x0)pθ,t(x0)qt(xt|x0)

pθ,t(xt)
dx0
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We have
E x0∼pθ,0,

xt|x0∼qt(xt|x0)

u(xt)
Tspθ,t(xt) = Ext∼pθ,tu(xt)

Tspθ,t(xt)

=

∫
pθ,t(xt)u(xt)

Tspθ,t(xt)dxt

=

∫
pθ,t(xt)u(xt)

T

∫
∇xt

log qt(xt|x0)pθ,t(x0)qt(xt|x0)

pθ,t(xt)
dx0dxt

=

∫
u(xt)

T

∫
∇xt

log qt(xt|x0)pθ,t(x0)qt(xt|x0)dx0dxt

=

∫ ∫
u(xt)

T∇xt
log qt(xt|x0)pθ,t(x0)qt(xt|x0)dx0dxt

= E x0∼pθ,0,

xt|x0∼qt(xt|x0)

u(xt)
T∇xt

log qt(xt|x0)

If we take the θ gradient on both sides of (A.5), we have

0 = E x0∼pθ,0,

xt|x0∼qt(xt|x0)

{
∂

∂xt

[
u(xt)

T
{
spθ,t(xt)−∇xt log qt(xt|x0)

}]∂xt
∂θ

− u(xt)
T ∂

∂x0

[
∇xt

log qt(xt|x0)

]
∂x0

∂θ

}
+ Ext∼pθ,tu(xt)

T ∂

∂θ

{
spθ,t(xt)

}
(A.6)

So we have an identity

Ext∼pθ,tu(xt)
T ∂

∂θ

{
spθ,t(xt)

}
= − ∂

∂θ
E x0∼pθ,0,

xt|x0∼qt(xt|x0)

{
u(xt)

{
spsg[θ],t(xt)−∇xt log qt(xt|x0)

}}
Notice that the left-hand side of equation (A.7) can be interpreted as the gradient of the loss function
when the parameter dependency of the sampling distribution is cut off, i.e.

Ext∼pθ,tu(xt)
T ∂

∂θ

{
spθ,t(xt)

}
=

∂

∂θ
Ext∼psg[θ],t

{
u(xt)

Tspθ,t(xt)

}
(A.7)

Therefore we have the final equation
∂

∂θ
Ext∼psg[θ],t

{
u(xt)

Tspθ,t(xt)

}
= − ∂

∂θ
E x0∼pθ,0,

xt|x0∼qt(xt|x0)

{
u(xt)

{
spsg[θ],t(xt)−∇xt log qt(xt|x0)

}}
(A.8)

which holds for arbitrary function u(·) and parameter θ. If we set
u(xt) = d′(yt)

yt = spsg[θ],t(xt)− sqt(xt)

Then we formally have

∂

∂θ
Ext∼psg[θ],t

{
d′(yt)

}T{
spθ,t(xt)

}
=

∂

∂θ
E x0∼pθ,0,

xt|x0∼qt(xt|x0)

{
− d′(yt)

}T{
spθ,t(xt)−∇xt log qt(xt|x0)

}
(A.9)

This means that we can use the θ gradient of a tractable loss:

E t,x0∼pθ,0,

xt|x0∼qt(xt|x0)

w(t)

{
− d′(yt)

}T{
spθ,t(xt)−∇xt log qt(xt|x0)

}
(A.10)

to replace the wanted θ gradient (A.3), which can minimize the regularization loss (A.2).

Combining r(x0, c) and (A.10), we have the practical loss

LDI∗(θ) =E z∼pz,
x0=gθ(z)

[
− αr(x0, c) (A.11)

+ E t,xt|x0
∼qt(xt|x0)

w(t)

{
− d′(yt)

}T{
spsg[θ],t(xt)−∇xt

log qt(xt|x0)

}
dt

]
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Remark A.2. In practice, most commonly used forward diffusion processes can be expressed as a
form of scale and noise addition:

xt = α(t)x0 + β(t)ϵ, ϵ ∼ N (ϵ;0, I). (A.12)

So the term xt in equation (A.11) can be instantiated as z ∼ pz, ϵ ∼ N (ϵ;0, I), xt = α(t)x0 +
β(t)ϵ.

A.2 PROOF OF THEOREM 3.2

Proof. Recall the definition of the classifier-free reward (3.9). The negative reward writes

−r(x0, c) = −Et,xt∼pθ,tw(t) log
pref (xt|t, c)
pref (xt|t)

This reward will put a higher reward on those samples that have higher class-conditional probability
than unconditional probability, therefore encouraging class-conditional sampling. It is clear that

∂

∂θ

{
− r(x0, c)

}
= −Et,xt∼pθ,tw(t)

{
∇xt log pref (xt|t, c)−∇xt log pref (xt|t)

}
∂xt
∂θ

= −Et,xt∼pθ,tw(t)

{
sref (sg[xt]|t, c)− sref (sg[xt]|t,∅∅∅)

}
∂xt
∂θ

(A.13)

Therefore, we can see that the equivalent loss

Lcfg(θ) = E t,z∼pz,x0=gθ(z|c)
xt|x0∼p(xt|x0)

w(t)

{
sref (sg[xt]|t, c)− sref (sg[xt]|t,∅∅∅)

}T
xt (A.14)

recovers the gradient formula (A.13).

B IMPORTANT MATERIALS FOR MAIN CONTENT

B.1 PROMPTS FOR FIGURE 1 AND FIGURE 2

Prompts for Figure 1 (from upper left to bottom right):

• A girl examining an ammonite fossil;
• A squirrel driving a toy car;
• A portrait of a statue of the Egyptian god Anubis wearing aviator goggles, white t-shirt and

leather jacket. The city of Los Angeles is in the background;
• A still image of a humanoid cat posing with a hat and jacket in a bar;
• A photograph of the inside of a subway train. There are red pandas sitting on the seats.

One of them is reading a newspaper. The window shows the jungle in the background;
• A capybara made of voxels sitting in a field;
• A teddy bear on a skateboard in times square;
• A sloth in a go kart on a race track. The sloth is holding a banana in one hand. There is a

banana peel on the track in the background;
• A close-up photo of a wombat wearing a red backpack and raising both arms in the air;
• A small cactus with a happy face in the Sahara desert;
• Baker proudly displays her white dog cake in her kitchen;
• A bowl with rice, broccoli and a purple relish;
• An inlet filled with boats of all kinds;
• A black cat sitting on top of the hood of a car;
• A woman wearing a cowboy hat face to face with a horse.

Prompts for Figure 2. The prompts are listed from the up rows to the bottom row:
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• Pirate ship sailing into a bioluminescence sea with a galaxy in the sky, epic, 4k, ultra;
• Digital 2D, Miyazaki’s style, ultimate detailed, tiny finnest details, futuristic, sci-fi, magical

dreamy landscape scenery, small cute girl living alone with plushified friendly big tanuki
in the gigantism of wilderness, intricate round futuristic simple multilayered architecture,
habitation cabin in the trees, dramatic soft lightning, rule of thirds, cinematic;

• saharian landscape at sunset, 4k ultra realism, BY Anton Gorlin, trending on artstation,
sharp focus, studio photo, intricate details, highly detailed, by greg rutkowski.

B.2 MEANINGS OF HYPER-PARAMETERS.

Meanings of Hyper-parameters. As in Algorithm 1, the overall algorithms consist of two al-
ternative updating steps. The first step is to update ψ of the assistant diffusion model by fine-
tuning it with student-generated data. Therefore the assistant diffusion sψ(xt|t, c) can approximate
the score function of student generator distribution. This step means that the assistant diffusion
needs to communicate with the student to know the student’s status. The second step updates the
generator by minimizing the tractable loss (3.7) using SGD-based optimization algorithms such as
Adam (Kingma & Ba, 2014). This step means that the teacher and the assistant diffusion discuss
and incorporate the student’s interests to instruct the student generator.

As we can see in Algorithm 1 (as well as Algorithm 2). Each hyperparameter has its intuitive
meaning. The reward scale parameter αrew controls the strength of human preference alignment.
The larger the αrew is, the stronger the generator is aligned with human preferences. However, the
drawback for a too large αrew might be the loss of diversity and reality. Besides, we empirically
find that larger αrew leads to richer generation details and better generation layouts. But a very large
αrew results in unrealistic and painting-like images.

The CFG reward scale controls the strength of using CFG rewards when training. We empirically
find that the best CFG scale for Diff-Instruct* is the same as the best CFG scale for sampling from
the reference diffusion model. However, αcfg may conflicts with αrew. In the Stable Diffusion
1.5 experiment, we find that using a large CFG reward scale leads to worse human preferences.
Therefore, the proper combination of (αrew, αcfg) asks for careful tuning.

The diffusion model weighting λ(t) and the generator loss weighting w(t) controls the strengths put
on each time level of updating assistant diffusion and the student generator. We empirically find
that it is decent to set λ(t) to be the same as the default training weighting function for the reference
diffusion. And it is decent to set thew(t) = 1 for all time-levels in practice. In the following section,
we give more discussions on Diff-Instruct*.

B.3 MORE DISCUSSIONS ON DIFF-INSTRUCT*

Flexible Choices of Divergences. Clearly, various choices of distance function d(.) result in dif-
ferent training algorithms. In this part, we discuss two instances. The first choice distance func-
tion is a simple squared distance, i.e. d(yt) = ∥yt∥22. The corresponding derivative term writes
d′(yt) = 2yt. In fact, such a distance function recovers the practical diffusion distillation loss
studied in Zhou et al. (2024b;a). The second distance is the pseudo-Huber distance, which shows
more robust performances than the simple squared distance. The pseudo-Huber distance is defined
with d(y) :=

√
∥yt∥22 + c2 − c, where c is a pre-defined positive constant. The corresponding

regularization loss (3.6) writes

D[0,T ](pθ, pref ) = −
{

yt√
∥yt∥22 + c2

}T{
sψ(xt, t)−∇xt

log qt(xt|x0)

}
. (B.1)

Here yt := spsg[θ],t(xt)− sqt(xt).

DI* Does Not Need Image Data When Training. One appealing advantage of DI* is the image
data-free property, which means that DI* requires neither the image datasets nor synthetic images
that are generated by reference diffusion models. This advantage distinguishes DI* from previous
fine-tuning methods such as generative adversarial training (Goodfellow et al., 2014) which require
training additional neural classifiers over image data, as well as those fine-tuning methods over
large-scale synthetic or curated datasets.
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Table 3: HPSv2.0 score of SDXL-based 1-step model alignment using Diff-Instruct*. We mark the
increment over the initial model with green number to demonstrate its trend. We can see that the
increment converges to +0.42.

K IMAGES 0 102 205 307 410 512 614 717 819 922

CONCEPT-ART↑ 27.52 27.64 27.64 27.70 27.78 27.90 27.98 28.02 28.04 28.05
PHOTO↑ 27.75 27.85 27.83 27.88 27.98 28.05 28.10 28.09 28.12 28.09

ANIMATION↑ 28.45 28.52 28.58 28.56 28.68 28.76 28.79 28.78 28.74 28.73
PAINTING↑ 27.52 27.60 27.68 27.73 27.85 27.95 28.04 28.09 28.14 28.11

AVG HPSV2.0↑ 27.81 27.90(+0.09) 27.93(+0.11) 27.97(+0.17) 28.07(+0.26) 28.17(+0.36) 28.23(+0.42) 28.24(+0.43) 28.26(+0.05) 28.24(+0.43)

The Choice of Generator is Flexible across Broader Applications. Another interesting prop-
erty of DI* for alignment is its wide flexibility in the choice of generator models. We can see
that, the theory of DI* only requires the generator to be able to generate output images (or data of
other modalities) that are differentiable with the generator’s parameters. This makes DI* a universal
training method for two reasons. 1) the choice of generator architecture is flexible. The network
architectures for diffusion models require the input and output to have the same dimensions. How-
ever, the DI* does not assign such a restriction to generator network choices. Therefore, pre-trained
GAN generators, such as StyleGAN-T (Sauer et al., 2023a) and GigaGAN (Kang et al., 2023b) are
also compatible with DI*. Besides, we have also shown in Section 5.2 that DI* is compatible with
both UNet-based and DiT-based generator architectures. 2) student networks in broader applications
may also satisfy the requirements of DI*. For instance, the neural radiance field (Mildenhall et al.,
2021) model used in text-to-3D generation using text-to-2D diffusion models can also be viewed as
a generator. Therefore DI* can be used for such scenarios to incorporate human preference in the
training process. Readers can read Poole et al. (2022), Wang et al. (2023) for more introductions.

B.4 EXPERIMENT DETAILS FOR PRE-TRAINING AND ALIGNMENT

The human preference score (HPSv2.0) trend of DI*-SDXL-1step model. During the training
of the DI*-SDXL-1step model, we monitor the change of the HPSv2.0 score as an out-of-sample
validation metric. We initialize the 1-step model with DMD2-SDXL-1step model (Yin et al., 2024),
which is a pretty solid SDXL-based one-step diffusion distillation model. We set the learning rate
of both the one-step generator and the online diffusion model to be 1e − 5 and set an exponential
moving average decay rate of 0.9 for faster convergence. Following the same setting as SD1.5 and
PixelArt-α experiment, we use the ImageReward as the explicit reward, while using a CFG scale
of 8.0 for implicit CFG reward. Table 3 records the HPSv2.0 trend of the alignment process using
Diff-Instruct*.

Detailed Experiment Settings for SD1.5 Experiment. For experiments of SD1.5, we use the
open-sourced SD1.5 of a resolution of 512×512 as our reference diffusion in Algorithm 1. We
implement our experiments based on SiD-LSG (Zhou et al., 2024a) 1, which provides a high-quality
codebase for diffusion model training and distillation. We construct the one-step generator with the
same architecture as the reference SD1.5 model, following the same configuration of SiD-LSG. We
use the prompts of the LAION-AESTHETIC dataset with an aesthetic score larger than 6.25, which
resulting a total of 3M text prompts. We only prepare the text prompts since DI* does not need
image datasets. We use the off-the-shelf Image Reward 2 as our explicit reward model. To better
explore the advantages of our score-based divergence over traditional KL divergence, we refer to a
recent work (Luo, 2024) that uses KL divergence for training and conducts a detailed comparison
between score-based divergences that DI* uses and KL divergences in previous works.

Detailed Experiment Settings for PixelArt-α Experiment. Different from Stabld Diffusion
models, the PixArt-α model is a high-quality open-sourced text-to-image diffusion model. It uses
a diffusion transformer (Peebles & Xie, 2022) to learn marginal score functions in a latent space
encoded by a down-sampled variational auto-encoder (VAE) (Rombach et al., 2022). For the text
conditioning mechanism, the PixelArt-α model uses a T5-XXL text encoder(Raffel et al., 2020; Tay
et al., 2021), which makes the model able to understand long prompts without an obvious length

1https://github.com/mingyuanzhou/SiD-LSG
2https://github.com/THUDM/ImageReward
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restriction. We use the DiT architecture and the 0.6B PixArt-α of a resolution of 512×512 as
our reference diffusion to demonstrate the compatibility of DI* for different kinds of neural net-
work architectures. We use the prompts from the SAM-LLaVA-Caption-10M dataset as our prompt
dataset. The SAM-LLaVA-Caption-10M dataset contains the images collected by Kirillov et al.
(2023), together with text descriptions that are captioned by LLaVA model (Liu et al., 2024). The
SAM-LLaVA-Caption-10M dataset is used for training the PixelArt-α model. Since the PixelArt-α
diffusion model uses a T5-XXL, which is memory and computationally expensive. To speed up
the alignment training, we pre-encoded the text prompts using the T5-XXL text encoder, saved the
encoded embedding vectors, and built the data loaders in-house.

We follow the setting of Diff-Instruct (Luo et al., 2024a) to use the same neural network architecture
as the reference diffusion model for the one-step generator. The PixelArt-α model is trained using
so-called VP diffusion(Song et al., 2020), which first scales the data in the latent space, then adds
noise to the scaled latent data. We reformulate the VP diffusion as the form of so-called data-
prediction proposed in EDM paper (Karras et al., 2022) by re-scaling the noisy data with the inverse
of the scale that has been applied to data with VP diffusion. Under the data-prediction formulation,
we select a fixed noise σinit level to be σinit = 2.5 following the Diff-Instruct and SiD (Zhou et al.,
2024b). For generation, we first generate a Gaussian vector z ∼ pz = N (0, σ2

initI). Then we
input z into the generator to generate the latent. The latent vector can then be decoded by the VAE
decoder to turn into an image if needed.

We put the details of how to construct the one-step generator in the following paragraphs. We
also initialize the assistant diffusion model with the same weight as the reference diffusion. We
use the Image Reward as the human preference reward and use the Diff-Instruct* algorithm 1 (or
equivalently the algorithm 2) to train the generator. We also used the Adam optimizer with the
parameter (β1, β2) = (0.0, 0.999) for both the generator and the assistant diffusion with a batch size
of 128, implemented with BF16 numerical format and the accumulate-gradient training technique.
We use a fixed exponential moving average decay (EMA) rate of 0.95 for all training trials. After
the training, the generator aligned with both strong CFG and reward model shows significantly
improved aesthetic appearance, better generation layout, and richer image details. Figure 2 shows a
demonstration of the generated images using our aligned one-step generator with a CFG scale αcfg
of 4.5 and a reward scale αrew of 10.0.

Construction of the one-step generator. We follow the experiment setting of Diff-Instruct (Luo
et al., 2024b), generalizing its CIFAR10 experiment to text-to-image generation. Notice that the
Diff-Instruct uses the EDM model (Karras et al., 2022) to formulate the diffusion model, as well as
the one-step generator. We start with a brief introduction to the EDM model.

The EDM model depends on the diffusion process
dxt = tdwt, t ∈ [0, T ]. (B.2)

Samples from the forward process (B.2) can be generated by adding random noise to the output of
the generator function, i.e., xt = x0 + tϵ where ϵ ∼ N (0, I) is a Gaussian vector. The EDM
model also reformulates the diffusion model’s score matching objective as a denoising regression
objective, which writes,

L(ψ) =
∫ T

t=0

λ(t)Ex0∼p0,xt|x0∼pt(xt|x0)∥dψ(xt, t)− x0∥22dt. (B.3)

Where dψ(·) is a denoiser network that tries to predict the clean sample by taking noisy samples
as inputs. Minimizing the loss (B.3) leads to a trained denoiser, which has a simple relation to the
marginal score functions as:

sψ(xt, t) =
dψ(xt, t)− xt

t2
(B.4)

Under such a formulation, we actually have pre-trained denoiser models for experiments. Therefore,
we use the EDM notations in later parts.

Let dθ(·) be pretrained EDM denoiser models. Owing to the denoiser formulation of the EDM
model, we construct the generator to have the same architecture as the pre-trained EDM denoiser
with a pre-selected index t∗, which writes

x0 = gθ(z) := d(z, t∗), z ∼ N (0, (t∗)2I). (B.5)
We initialize the generator with the same parameter as the teacher EDM denoiser model.
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Time index distribution. When training both the EDM diffusion model and the generator, we
need to randomly select a time t in order to approximate the integral of the loss function (B.3).
The EDM model has a default choice of t distribution as log-normal when training the diffusion
(denoiser) model, i.e.

t ∼ pEDM (t) : t = exp(s) (B.6)

s ∼ N (Pmean, P
2
std), Pmean = −2.0, Pstd = 2.0. (B.7)

And a weighting function

λEDM (t) =
(t2 + σ2

data)

(t× σdata)2
. (B.8)

In our algorithm, we follow the same setting as the EDM model when updating the online diffusion
(denoiser) model.

Weighting function. For the assistant diffusion updates in both pre-training and alignment, we
use the same λEDM (t) (B.8) weighting function as EDM when updating the denoiser model. When
updating the generator, we use a specially designed weighting function, which writes:

wGen(t) =
1

∥dψ(sg[xt], t)− dqt(sg[xt], t)∥2
(B.9)

xt = x0 + tϵ, ϵ ∼ N (0, I) (B.10)

The notation sg[·] means stop-gradient of the parameter. Such a weighting function helps to stabilize
the training.

In the both Stable Diffusion 1.5 and the PixArt-α experiments, we rewrite the PixelArt-α model in
EDM formulation:

Dθ(x;σ) = x− σFθ (B.11)

Here, following the iDDPM+DDIM preconditioning in EDM, PixelArt-α is denoted by Fθ, x is the
image data plus noise with a standard deviation of σ, for the remaining parameters such as C1 and
C2, we kept them unchanged to match those defined in EDM. Unlike the original model, we only
retained the image channels for the output of this model. Since we employed the preconditioning
of iDDPM+DDIM in the EDM, each σ value is rounded to the nearest 1000 bins after being passed
into the model. For the actual values used in PixelArt-α, beta start is set to 0.0001, and beta end
is set to 0.02. Therefore, according to the formulation of EDM, the range of our noise distribution
is [0.01, 156.6155], which will be used to truncate our sampled σ. For our one-step generator, it is
formulated as:

gθ(x;σinit) = x− σinitFθ (B.12)
Here following Diff-Instruct to use σinit = 2.5 and x ∼ N (0, σinitI), we observed in practice that
larger values of σinit lead to faster convergence of the model, but the difference in convergence speed
is negligible for the complete model training process and has minimal impact on the final results.

Detailed Quantitative Evaluations Metrics To quantitatively evaluate the performances of the
generators trained with different alignment settings, we compare our generators elaborately with
other open-sourced models that are either based on SD1.5 diffusion models or larger models
such as SDXL. For all models, we compute four standard scores: the Image Reward (Xu et al.,
2023a), the Aesthetic Score (Schuhmann, 2022), the PickScore(Kirstain et al., 2023), and the CLIP
score(Radford et al., 2021). Since most existing literature tests the human preference scores with
different prompts which are possibly not available, to make a fair comparison, in our experiment, we
fix 1k prompts from the COCO-2017 (Lin et al., 2014) validation dataset and intensively evaluate a
wide range of existing open-sourced models as SiD-LSG (Zhou et al., 2024a), SDXL-Turbo (Sauer
et al., 2023b), Latent Consistency Model (LCM) (Luo et al., 2023a), Hyper-SD (Ren et al., 2024),
SDXL-Lightning (Lin et al., 2024), Trajectory Consistency Model (TCD) (Zheng et al., 2024),
PeReflow (Yan et al., 2024), InstaFLow(Liu et al., 2023), Diffusion DPO(Wallace et al., 2024),
etc. All models are tested with the same prompts and the same computing devices.

Besides the COCO prompts, we also evaluate generators with open-sourced models with Human
Preference Score v2.0 (HPSv2.0) (Wu et al., 2023) over their benchmark prompts. The HPS is a
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widely used standard benchmark that evaluates models’ capability of generating images of 4 styles:
Animation, concept art, Painting, and Photo. The score reflects the prompt following and the human
preference strength of text-to-image models. We use the HPSv2’s 3 default protocols for evaluations.
Since our generators based on PixArt-α are trained with SAM-recaptioned datasets, we also evaluate
the performances on 30K prompts from the SAM-recap dataset.

Sample Prompts from COCO validation dataests. In this paragraph, we propose some sample
prompts from the COCO validation dataset that we use for calculating scores like Image Reward
and the Aesthetic Scores.

1 This wire metal rack holds several pairs of shoes and sandals
2 A motorcycle parked in a parking space next to another motorcycle.
3 A picture of a dog laying on the ground.
4 A loft bed with a dresser underneath it.
5 Two giraffes in a room with people looking at them.
6 A woman stands in the dining area at the table.
7 Birds perch on a bunch of twigs in the winter.
8 A small kitchen with low a ceiling
9 A group of baseball players is crowded at the mound.

10 This table is filled with a variety of different dishes.
11 A toy dinosaur standing on a sink next to a running faucet.
12 a man standing holding a game controller and two people sitting
13 There is a small bus with several people standing next to it.
14 A bottle on wine next to a glass of wine.
15 A big burly grizzly bear is show with grass in the background.
16 A man standing in front of a microwave next to pots and pans.
17 Three men in military suits are sitting on a bench,
18 Two people standing in a kitchen looking around.
19 A group of men playing a game of baseball on top of a baseball field.
20 A traffic light over a street surrounded by tall buildings.
21 The snowboarder has jumped high into the air from a snow ramp.
22 A smart phone with an image of a person on it’s screen.
23 A man talking on his phone in the public.
24 A cheesy pizza sitting on top of a table.
25 A dog sitting on the inside of a white boat.
26 A guy jumping with a tennis racket in his hand.
27 a close up of a child next to a cake with balloons
28 A man holding a camera up over his left shoulder.
29 A plane flies over water with two islands nearby.
30 A young boy getting ready to catch a baseball in a grass field.

Listing 1: Example Prompts from COCO validation dataset.

B.5 MORE DISCUSSIONS ON FINDINGS OF QUALITATIVE EVALUATIONS

There are some other interesting findings when qualitatively evaluate different models.

• First, we find that the images generated by the aligned model show a better composition
when organizing the contents presented in the image. For instance, the main objects of the
generated image are smaller and show a more natural layout than other models, with the
objects and the background iterating aesthetically. This in turn reveals human preference:
human beings would prefer that the object of an image does not take up all spaces of an
image;

• Second, we find that the aligned model has richer details than the unaligned model. The
stronger we align the model, the richer details the model will generate. Sometimes these
rich details come as a hint to the readers about the input prompts. Sometimes they just come
to improve the aesthetic performance. We think this phenomenon may be caused by the fact
that human prefers images with rich details. Another finding is that as the reward scale for
alignment becomes stronger, the generated image from the alignment model becomes more
colorful and more similar to paintings. Sometimes this leads to a loss of reality to some

3https://github.com/tgxs002/HPSv2
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Figure 4: A visual comparison of the 0.68B SD1.5-DI* model before (initialized with SiD-LSG
pre-trained weights) and after alignments with DI*. We put the prompt in Appendix B.1.

Algorithm 2: Diff-Instruct* Pseudo Code.
Input: prompt dataset C, generator gθ(x0|z, c), prior distribution pz , reward model r(x, c),

reward model scale αrew, CFG reward scale αcfg , reference diffusion model
sref (xt|c, c), assistant diffusion sψ(xt|t, c), forward diffusion p(xt|x0) (2.1), assistant
diffusion updates rounds KTA, time distribution π(t), diffusion model weighting λ(t),
generator IKL loss weighting w(t).

while not converge do
freeze θ, update ψ for KTA rounds by

1. sample prompt c ∼ C; sample time t ∼ π(t); sample z ∼ pz(z);
2. generate fake data: x0 = sg[gθ(z, c)]; sample noisy data: xt ∼ pt(xt|x0);
3. update ψ by minimizing loss: L(ψ) = λ(t)∥sψ(xt|t, c)−∇xt

log pt(xt|x0)∥22;
freeze ψ, update θ using SGD:

1. sample prompt c ∼ C; sample time t ∼ π(t); sample z ∼ pz(z);
2. generate fake data: x0 = gθ(z, c); sample noisy data: xt ∼ pt(xt|x0);
3. explicit reward: Lrew(θ) = −αrewr(x0, c);

4. CFG reward: Lcfg(θ) = αcfg · w(t)
{
sref (sg[xt]|t, c)− sref (sg[xt]|t,∅∅∅)

}T
xt;

5. score-regularization:
Lreg(θ) = −w(t)

{
d′(sψ(xt|t, c)− sref (xt|t, c))

}T{
sψ(xt|t, c)−∇xt log pt(xt|x0)

}
;

6. update θ by minimizing DI* loss: LDI∗(θ) = Lrew(θ) + Lcfg(θ) + Lreg(θ);
end
return θ, ψ.

degree. Therefore, we think that users should choose different aligned one-step models
with a trade-off between aesthetic performance and image reality according to the use case.
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Figure 5: Bad generation cases by aligned DiT-DI* one-step generator model (4.5 CFG + 10.0
reward).

Table 4: Hyperparameters used for Diff-Instruct* on SD1.5 and PixArt-α experiments.

Hyperparameter SD1.5 Experiment PixArt-α Experiment
DM sψ Generator gθ DM sψ Generator gθ

Learning rate 1e-5 1e-5 2e-6 2e-6
Batch size 512 512 256 256
σ(t∗) 2.5 2.5 2.5 2.5
Adam β0 0.0 0.0 0.0 0.0
Adam β1 0.999 0.999 0.999 0.999
EMA decay rate 0.9 0.9 0.95 0.95
Time Distribution pEDM (t)(B.6) pEDM (t)(B.6) pEDM (t)(B.6) pEDM (t)(B.6)
Weighting λEDM (t)(B.8) 1 λEDM (t)(B.8) 1
Number of GPUs 8×H800-80G 8×H800-80G 8×H100-80G 8×H800-80G

With the optimal setting and EDM formulation, we can rewrite our algorithm in an EDM style in
Algorithm 3.
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Algorithm 3: Diff-Instruct* Pseudo Code under EDM formulation.
Input: prompt dataset C, generator gθ(x0|z, c), prior distribution pz , reward model r(x, c),

reward scale αrew, CFG scale αcfg , reference EDM denoiser model dref (xt|c, c),
assistant EDM denoiser dψ(xt|t, c), forward diffusion p(xt|x0) (2.1), assistant EDM
denoiser updates rounds KTA, time distribution π(t), diffusion model weighting λ(t),
generator IKL loss weighting w(t).

while not converge do
fix θ, update ψ for KTA rounds by

1. sample prompt c ∼ C; sample time t ∼ π(t); sample z ∼ pz(z);
2. generate fake data: x0 = sg[gθ(z, c)]; sample noisy data: xt ∼ pt(xt|x0);
3. update ψ by minimizing loss: L(ψ) = λ(t)∥dψ(xt|t, c)− x0∥22;

fix ψ, update θ using StaD:
1. sample prompt c ∼ C; sample time t ∼ π(t); sample z ∼ pz(z);
2. generate fake data: x0 = gθ(z, c); sample noisy data: xt ∼ pt(xt|x0);
3. explicit reward: Lrew(θ) = −αrewr(x0, c);

4. CFG reward: Lcfg(θ) = αcfg · w(t)
{
dref (sg[xt]|t, c)− dref (sg[xt]|t,∅∅∅)

}T
xt;

5. score-regularization:
Lreg(θ) = −w(t)

{
d′(dψ(xt|t, c)− dref (xt|t, c))

}T{
dψ(xt|t, c)− x0

}
;

6. update θ by minimizing DI* loss: LDI∗(θ) = Lrew(θ) + Lcfg(θ) + Lreg(θ);
end
return θ, ψ.

B.6 PYTORCH STYLE PSEUDO-CODE OF SCORE IMPLICIT MATCHING

In this section, we give a PyTorch style pseudo-code for algorithm 3.

1 import torch
2 import torch.nn as nn
3 import torch.optim as optim
4 import copy
5

6 use_cfg = True
7 use_reward = True
8

9 # Initialize generator G
10 G = Generator()
11

12 ## load teacher DM
13 Drf = DiffusionModel().load(’/path_to_ckpt’).eval().requires_grad_(False)
14 Dta = copy.deepcopy(Drf) ## initialize online DM with teacher DM
15 r = RewardModel() if use_reward else None
16

17 # Define optimizers
18 opt_G = optim.Adam(G.parameters(), lr=0.001, betas=(0.0, 0.999))
19 opt_Sta = optim.Adam(Dta.parameters(), lr=0.001, betas=(0.0, 0.999))
20

21 # Training loop
22 while True:
23 ## update Dta
24 Dta.train().requires_grad_(True)
25 G.eval().requires_grad_(False)
26

27 ## update assistant diffusion
28 prompt = batch[’prompt’]
29 z = torch.randn((1024, 4, 64, 64), device=G.device)
30 with torch.no_grad():
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31 fake_x0 = G(z,prompt)
32

33 sigma = torch.exp(2.0*torch.randn([1,1,1,1], device=fake_x0.device) -
2.0)

34 noise = torch.randn_like(fake_x0)
35 fake_xt = fake_x0 + sigma*noise
36 pred_x0 = Dta(fake_xt, sigma, prompt)
37

38 weight = compute_diffusion_weight(sigma)
39

40 batch_loss = weight * (pred_x0 - fake_x0)**2
41 batch_loss = batch_loss.sum([1,2,3]).mean()
42

43 optimizer_Dta.zero_grad()
44 batch_loss.backward()
45 optimizer_Dta.step()
46

47

48 ## update G
49 Dta.eval().requires_grad_(False)
50 G.train().requires_grad_(True)
51

52 prompt = batch[’prompt’]
53 z = torch.randn((1024, 4, 64, 64), device=G.device)
54 fake_x0 = G(z, prompt)
55

56 sigma = torch.exp(2.0*torch.randn([1,1,1,1], device=fake_x0.device) -
2.0)

57 noise = torch.randn_like(fake_x0)
58 fake_xt = fake_x0 + sigma*noise
59

60 with torch.no_grad():
61 if use_cfg:
62 cfg_vector = (Drf(fake_xt, sigma, prompt) - Drf(fake_xt,

sigma, None)
63 else:
64 cfg_vector = None
65

66 pred_x0_rf = Drf(fake_xt, sigma, prompt)
67 pred_x0_ta = Dta(fake_xt, sigma, prompt)
68

69 denoise_diff = pred_x0_ta - pred_x0_rf
70 adp_wgt = torch.sqrt(denoise_diff.square().sum([1,2,3], keepdims=True

) + phuber_c**2)
71 weight = compute_G_weight(sigma, denoise_diff)
72

73 # compute score regularization loss
74 batch_loss = weight * denoise_diff * (fake_D_yn - D_yn)/adp_wgt
75

76 # compute explicit reward loss if needed
77 if use_reward:
78 reward_loss = -reward_scale * r(fake_x0, prompt)
79 batch_loss += reward_loss
80

81 # compute cfg reward loss if needed
82 if use_cfg:
83 cfg_reward_loss = cfg_scale * cfg_vector*fake_x0
84 batch_loss += cfg_reward_loss
85

86 batch_loss = batch_loss.sum([1,2,3]).mean()
87

88 optimizer_G.zero_grad()
89 batch_loss.backward()
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90 optimizer_G.step()

Listing 2: Pytorch Style Pseudo-code of Diff-Instruct*
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