Understanding Tool-Integrated Reasoning

Heng Lin Zhongwen Xu
Tencent Tencent
Tsinghua University zhongwenxu@tencent. com
Abstract

We study why Tool-Integrated Reasoning (TIR) makes Large Language Models
(LLMs) more capable. While LLMs integrated with tools like Python code inter-
preters show great promise, a principled theory explaining why this paradigm is
effective has been missing. We provide the first formal proof that TIR fundamen-
tally expands an LLM’s capabilities, enabling previously impossible reasoning
paths (Support Expansion) and making complex strategies practical within a fi-
nite token budget (Feasible Support). We conduct comprehensive experiments
on challenging mathematical benchmarks, leveraging a Python interpreter as the
external tool. Our results show that TIR models solve a class of problems that
are fundamentally out of reach for pure-text models, even on tasks requiring deep
abstract insight, not just calculation. We further identify the emergent cognitive
patterns that illustrate how models learn to think with tools. To stably guide model
behavior, we introduce Advantage Shaping Policy Optimization (ASPO), a novel
algorithm that modifies the advantage directly, effectively encouraging desired tool-
use behaviors without the training instability and performance loss of traditional
reward shaping. Overall, our work provides the first principled explanation for
TIR’s success, shifting the focus from the mere fact that tools work to why and
how they enable more powerful reasoning.

1 Introduction

Large language models (LLMs) have rapidly progressed from fluent generators to general-purpose
problem solvers. Nevertheless, purely text-based reasoning often struggles with tasks that demand
precise calculation, long-horizon search, or faithful verification. As a powerful and empirically
successful paradigm, Tool-Integrated Reasoning (TIR) [4}[10] has emerged to address these limitations.
Systems equipped with external tools have consistently and significantly outperformed their pure-text
counterparts[11} [12} [17]. However, despite the widespread recognition of TIR’s effectiveness, a
principled account of the fundamental mechanisms—specifically why and when it helps—is still
missing.

The central thesis of this work is that tool integration fundamentally breaks the capability ceiling of
pure-text models. We provide the first formal proof that TIR enables a strict expansion of the model’s
empirical support by introducing deterministic, non-linguistic state transitions. This allows the model
to generate correct trajectories that are otherwise impossible. Furthermore, we introduce the concept
of token efficiency to argue that for many complex algorithms, natural language simulations are
intractably verbose, making tools a practical necessity for unlocking a vastly larger set of feasible
problem-solving strategies.

We validate these theoretical claims through comprehensive experiments on challenging mathematical
benchmarks, showing that our TIR model decisively outperforms its pure-text counterpart. We also
reveal that TIR’s benefits are not confined to computationally-intensive problems but extend to those
requiring significant abstract insight. Case studies of the model’s behavior further illuminate how it
leverages this expanded capability, revealing three emergent cognitive patterns of tool use.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

Finally, in exploring how to further optimize TIR models, we identify a practical algorithmic challenge:
guiding model behavior, such as encouraging earlier tool use, via traditional reward shaping often
leads to training instability in GRPO-like algorithms [[15}4]]. To address this, we propose Advantage
Shaping Policy Optimization (ASPO), a novel algorithm that circumvents the reward function and
instead applies a stable, controllable bias directly to the advantage function. Our experiments show
that ASPO successfully guides model behavior with early tool invocation and increased tool usages
without compromising task performance or training stability.

2 Method

In this section, we formalize the argument that integrating an external computational tool, such as
a code interpreter, fundamentally enhances a LLM’s capabilities; similar principles apply for other
tools and we have informal discussions in Appendix [F] We then introduce ASPO, a novel and stable
algorithm designed to guide the model’s tool-usage behavior without compromising performance.

2.1 Support Expansion via Tool Integration

We begin by establishing that augmenting an LLM with a deterministic external tool enables it to
generate trajectories that were previously impossible.

Our theory adopts the theoretical framework proposed by Wu et al. [16], which formalizes the
limitations of standard on-policy reinforcement learning [3} |8, [14] on training LLMs. We briefly
introduce the key concepts (a detailed review is provided in Appendix [B). The support of a model
with distribution p, supp(p), is the set of all trajectories it can generate with non-zero probability. The
Support Preservation Theorem [16] formalizes the “invisible leash” of Reinforcement Learning
with Verifiable Rewards (RLVR), stating that the support of the RL-trained policy is a subset of the
support of the base model. A more practical variant of support supp(p) is the empirical support,
supp.. (p), which only includes trajectories with a probability greater than a small threshold ¢; in what
follows, theory on TIR models will be made under this empirical-support view.

We compare a pure-text model (gx;) With a TIR model (pyir) that uses an identical underlying LLM
but is augmented with a deterministic external tool (e.g., a Python interpreter). Now we present the
first theorem and its proof sketch (a complete proof is provided in Appendix [C):

Theorem 2.1 (Strict Expansion of Empirical Support via Tool Integration). There exists an € > 0
and a family of problem instances such that

supp.. (Grext) C supp. (prir)-

Proof Sketch. (Inclusion C) is trivial, as the TIR model can simply choose not to use tool. (Strictness
C) relies on a constructive proof using random oracle. The TIR model can deterministically solve
the oracle problem in a single step. In contrast, the pure-text model must guess the high-entropy
m-bit output, succeeding with a probability (27"") that becomes negligible for any practical threshold
E. O

Unlike pure-text models, which are constrained by Support Preservation Theorem, tool integration
breaks the “invisible leash™ and creates a strict expansion of the model’s support.

2.2 Token Efficiency and Feasible Support under a Budget

While Theorem [2.1| shows tools unlock impossible trajectories, a deeper question is whether a pure-
text model can achieve the same outcomes by simulating the computational process of tool use
through natural language? The answer is no, due to a vast difference in token efficiency. We define
the token cost of a trajectory, cost(y), as the sum of all tokens consumed. For example, in any task
involving iteration, a programmatic solution has a near-constant O(1) token cost, whereas a natural
language simulation’s cost scales with the computation size. The tables in Appendix [E]illustrate this
stark disparity for common algorithmic patterns. This motivates a practical, budget-aware analysis,
based on the set of strategies a model can feasibly execute within a token budget B.

Definition 2.2 (Computational Equivalence Class). Two trajectories are computationally equivalent
if they solve the same problem using the same core algorithm. This relation partitions the space of all
trajectories)V into equivalence classes, where each class [y] represents an algorithmic “strategy”.

Definition 2.3 (Feasible Support under Budget B). An algorithmic strategy, represented by equiv-
alence class [y], is within the feasible support of a model M under token budget B, denoted
[y] € suppg (M), if and only if

Jy €yl st M(y'|z) >0 and cost(y’) < B.

This definition captures a model’s practical ability to realize a problem-solving strategy within
operational constraints, which leads to our second theorem and proof (see details in Appendix [D):

Theorem 2.4 (Strict Supremacy of Tool-Integrated Feasible Support). For any non-trivial algorith-
mic problem class and any token budget B, there exists a problem size np such that:

supp g (Grex:) C supp g (Prir)-

Proof Sketch. (Strictness C) follows from the divergent scaling of the natural language. For any
finite budget B, we can choose a problem size np large enough that the token cost of a natural
language simulation exceeds B, while the O(1) programmatic representation remains feasible. [

This theorem shows that tool integration is a necessity, as the verbosity of natural language makes
many algorithmic strategies infeasible for pure-text models within a finite budget.

2.3 Algorithmic Improvement: Advantage Shaping Policy Optimization

To encourage a more dynamic tool-use style, we aimed to train the model to invoke tool earlier.
However, a naive approach of adding an early-code bonus to reward proved highly unstable, because
the group normalization of GRPO-like algorithm would catastrophically amplify the auxiliary bonus
and distorts the learning objective in some cases (see details in Appendix[G).

To circumvent this, we propose Advantage Shaping Policy Optimization (ASPO). Instead of
manipulating the reward, we directly modifies the final advantage value Agqyec for correct and
code-containing responses:

5o — mean(p)

Ai = Acorrect,i + Chp (mean(L)

—k- Acorrecl,ia k- Acorrect,i) 9

where p and L are the sets of first code invocation positions and total response lengths for all correct,
code-containing responses within the group. J is a negative coefficient to encourage early code
invocation, and k is a clipping hyperparameter that bounds the magnitude of auxiliary advantage
within a proportion of the basic advantage of correctness.

ASPO succeeds by directly applying a controlled bias to the advantage function. This ensures the
primary correctness signal is never lost and the early-code incentive always remains a subordinate
nudge, not the main objective (see detailed analysis in Appendix [G). In essence, ASPO provides a
robust and generalizable framework for shaping model behavior without sacrificing training stability
or task performance, as shown in our experiments (Section [3.2).

3 Experiments

All experiments are based on the Qwen3-8B model [13]], with a focus on challenging mathematical
problem solving. We compare our proposed TIR model, which can execute code to assist in reasoning,
against a pure-text RL baseline (see Figured]in Appendix [H). Both models were trained using the
DAPO algorithm [20]. Our primary evaluation benchmarks are AIME24, AIME25, and Omni-MATH-
512, a challenging 512-problem subset of Omni-MATH [5]]. Detailed setup is in Appendix [H]

10 (a) AIME24 10 (b) AIME25 (c) Omni-MATH (512)
0.8
0.9 0.9 o
é 0.8
0.6
ﬁ 0.8 o
o ' 05
07 —— TR 06
Pure-text 0.4
0.6 0.5
1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256
Number of samples k Number of samples k Number of samples k

Figure 1: Pass@Fk curves for the TIR (RL trained) and pure-text models (Qwen3-8B) across three
benchmarks: (a) AIME24, (b) AIME25, and (c) Omni-MATH-512. The detailed numerical data
corresponding to this figure are provided in the Appendix

3.1 TIR Breaks the Capability Ceiling and is Universally Effective

To empirically test our theory, we use the pass @k metric [2], as it provides a robust measure of a
model’s underlying problem-solving potential. As shown in Figure[T} the TIR model’s performance is
unequivocally superior to the pure-text baseline across all benchmarks. Crucially, unlike prior findings
for pure-text RL [21]], the TIR model elevates the entire pass@k curve without the performance
crossover at high k values. This provides strong empirical validation for our theory that TIR expands
the model’s support (Theorem and [2.4). We also visualize the “flow of solvability” on the
Omni-MATH-512 dataset in Figure 5| (Appendix [J), which gives a microscopic analysis: on Omni-
MATH-512, TIR achieves a capability expansion of 15.4%, with only 1.8% capability shrinkage,
demonstrating a significant expansion of the model’s support.

A critical question is whether this advantage is confined to purely computational problems. To
investigate, we introduce a metric called “algorithmic friendliness,” which scores problems from 1
(highly abstract) to 5 (directly algorithmic) based on a detailed rubric (see Appendix [K). We used
Gemini 2.5 Pro [6] to classify all Omni-MATH-512 problems, finding the dataset to be well-balanced
and not skewed towards simple computational tasks (Figure[7(f) in Appendix [[). We then plotted the
pass@Fk curves for each algo friendliness group (Figure [7(a)-(e)), showing that TIR’s benefits are
universal. While the performance gap is largest on highly algorithmic problems (as expected), the
TIR model maintains a significant and consistent advantage even on problems requiring the most
abstract reasoning (friendliness scores 1.0-2.5).

This demonstrates that TIR’s role extends beyond a simple calculator or a direct algorithm-
implementer; the model is leveraging the code interpreter in more complex and sophisticated ways,
learning to think with tools. The qualitative analysis on model outputs also support this, which reveals
three emergent cognitive patterns of tool-use: (1) Insight-to-computation transformation. The
model first engages in text-based reasoning to transform an abstract problem into a computationally
tractable form. It then use the code to execute a algorithm (e.g., search, DP) on this newly formulated
sub-problem. (2) Exploration and verification via code. This pattern is particularly prevalent in
problems with low algo friendliness. For problems with unclear solution paths, the model uses the
interpreter as an interactive sandbox. It formulates conjectures, writes short code snippets to test them,
and iteratively refines its strategy based on the feedback, allowing it to discover insights through
empirical experimentation. (3) Offloading complex calculation. In the most direct usage, the model
delegates complex or tedious calculations to the interpreter. The first two patterns represent new
algorithmic strategies that are infeasible for pure-text models due to prohibitive token costs. Such
dynamic and flexible code invocation enables the TIR model to break the capability ceiling of its
pure-text counterpart. Detailed analysis and examples of these patterns are provided in Appendix

3.2 Empirical Analysis of ASPO for Early Code Invocation

In this section, we empirically validate our ASPO algorithm, designed to encourage earlier code
invocation. Figure [2|confirms that ASPO maintains stable training and final test accuracy, unlike the
naive reward-shaping approach which quickly collapses. This stability ensures the primary goal of
correctness is not sacrificed. Having established its safety, we confirm ASPQO’s effectiveness. As
shown in Figure 3] ASPO dramatically shifts the model’s behavior, reducing the average first code
invocation position from 4,000 tokens to under 1,000. Concurrently, the model becomes a much

(a) Training accuracy (b) Test accuracy (AIME25 avg@16)
0.90 0.675

0.650

0.625

0.600

0.575

0.70 “ Reward-based Approach 0.550
20 40 60 80 0 20 40 60 80
raining steps raining steps
T t T t
—— Baseline —— ASPO (6= —1.5,k=0.7) —— ASPO (6= —2,k=0.9)

Figure 2: The (a) training and (b) testing accuracy of the baseline and ASPO algorithm, with
two parameters setting: a conservative setting (§ = —2.0,k = 0.7) and an aggressive setting
(6 =-2.5k=0.9).

(a) Response length (b) Code invocation timing (c) Code ratio
12000 7000 1.0
6000
11000
5000 0.8
10000 4000
0.6
9000 3000
8000 2000 0.4
1
7000 000
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
(d) Code pass ratio (e) Code rounds (f) Code line

0.90 30

0.85

2.5 25

0.80 2.0

0.75 15 20
—e— Baseline 10

0.70 —— 6=-15k=0.7 : is
—— 6=-2,k=09 0.5

0.65

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

Training steps Training steps Training steps

Figure 3: Evaluation results of the baseline and ASPO algorithm on AIME25. (a) Response length,
(b) code invocation timing, (c) code ratio, (d) code pass ratio, (¢) code rounds and (f) code lines.

more active tool user: the average number of code rounds per response more than doubles, from
1.3 to 3.3, and the code ratio approaches nearly 100%. This shows a clear transformation from a
conservative, late-stage “calculator” usage pattern to an early, iterative, and exploratory “interactive
partner” paradigm. Importantly, this behavioral shift is achieved without inducing reward hacking.
We manually inspected a large number of samples and found no instances of the model inserting
trivial or meaningless code early in its response merely to satisfy the incentive. Ultimately, ASPO
demonstrates that it can precisely guide model’s behavior without compromising the stability or
accuracy of its core learning objective.

4 Conclusions

In this work, we established a formal theoretical framework explaining why Tool-Integrated Reasoning
(TIR) is effective. We proved that TIR fundamentally expands an LLM’s empirical and feasible
support, breaking the “invisible leash” of pure-text models and making complex algorithmic strategies
practically achievable. Our experiments empirically validated these claims, showing that TIR’s
benefits are universal, extending even to problems requiring abstract reasoning. To address the
challenge of guiding tool-use, we introduced ASPO, a stable and effective algorithm for shaping
agent behavior. Ultimately, our findings advocate for a paradigm shift towards viewing LLMs as core
reasoning engines that delegate tasks to specialized tools, a direction for which ASPO provides a
robust control methodology.

References

[1] Fei Bai, Yinggian Min, Beichen Zhang, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng
Liu, Zhongyuan Wang, and Ji-Rong Wen. Towards effective code-integrated reasoning. arXiv
preprint arXiv:2505.24480, 2025.

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[3] Team DeepSeek. DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning.
Nature, 645:633-638, 2025.

[4] Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan
Jiang, Jinxin Chi, and Wanjun Zhong. ReTool: Reinforcement learning for strategic tool use in
LLMs. arXiv preprint arXiv:2504.11536, 2025.

[5] Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark
for large language models. arXiv preprint arXiv:2410.07985, 2024.

[6] Team Gemini. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities. arXiv preprint arXiv:2507.06261, 2025.

[7] Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani,
and Jiawei Han. Search-R1: Training LLMs to reason and leverage search engines with
reinforcement learning. arXiv preprint arXiv:2503.09516, 2025.

[8] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tiilu 3: Pushing
frontiers in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

[9] Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin,
Baixuan Li, Zhengwei Tao, Xinyu Wang, et al. WebSailor: Navigating super-human reasoning
for web agent. arXiv preprint arXiv:2507.02592, 2025.

[10] Xuefeng Li, Haoyang Zou, and Pengfei Liu. ToRL: Scaling tool-integrated RL. arXiv preprint
arXiv:2503.23383, 2025.

[11] OpenAl. Introducing GPT-5. Blog post, Aug 2025. URL https://openai.com/index/,
gpt-5/. Accessed on August 22, 2025.

[12] OpenAl. Introducing 03 and o4-mini. Blog post, April 2025. URL https://openai.com/
index/introducing-o03-and-o04-mini/. Accessed on August 22, 2025.

[13] Team Qwen. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

[14] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[15] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. DeepSeekMath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[16] Fang Wu, Weihao Xuan, Ximing Lu, Zaid Harchaoui, and Yejin Choi. The invisible leash: Why
RLVR may not escape its origin. arXiv preprint arXiv:2507.14843, 2025.

[17] xAlL Grok 4. Blog post, Jul 2025. URL https://x.ai/blog/grok-4. Accessed on August
22,2025.

[18] Zhongwen Xu, Xianliang Wang, Siyi Li, Tao Yu, Liang Wang, Qiang Fu, and Wei Yang. Agents
play thousands of 3D video games. arXiv preprint arXiv:2503.13356, 2025.

[19] Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Zejun Ma, and Bo An. SimpleTIR:
End-to-end reinforcement learning for multi-turn tool-integrated reasoning. arXiv preprint
arXiv:2509.02479, 2025.

https://openai.com/index/gpt-5/
https://openai.com/index/gpt-5/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://x.ai/blog/grok-4

[20] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, et al. DAPO: An open-source LLM
reinforcement learning system at scale. arXiv preprint arXiv:2503.14476, 2025.

[21] Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang.
Does reinforcement learning really incentivize reasoning capacity in LLMs beyond the base
model? arXiv preprint arXiv:2504.13837, 2025.

A Related Work

A significant body of work focuses on developing RL frameworks for strategic tool use. Feng et al.
[4]] propose ReTool, an RL-based framework that demonstrates high data efficiency for learning tool
use. Similarly, Li et al. [10] introduce ToRL, a method designed to address the challenges of scaling
tool-integrated RL to more complex and demanding scenarios. Bai et al. [[1] document methods for
effective code-integrated reasoning. This paradigm shares the goal of augmenting LLM reasoning
with external Python execution. Focusing on training from base models, Xue et al. [19] present
SimpleTIR, an end-to-end framework for multi-turn TIR that enables stable training from scratch, a
process they refer to as the “Zero” setting.

While these methods show empirical success, other research investigates the theoretical limitations of
RL on LLM reasoning. Yue et al. [21]] empirically find that RL does not incentivize novel reasoning
capacity. Providing a theoretical framework to explain such findings, Wu et al. [16] propose the
“invisible leash” theory, suggesting that models may struggle to discover reasoning paths outside their
original knowledge distribution.

Beyond programmatic tools like Python interpreters, another line of work integrates search engines
to equip LLMs with up-to-date knowledge via RL. Jin et al. [7] propose Search-R1, where LLMs
interleave reasoning with real-time queries, trained with outcome-based rewards and stabilized by
masking retrieved tokens, achieving strong multi-turn QA performance. To tackle uncertainty in
complex web tasks, Li et al. [9] introduce WebSailor, a post-training method that narrows the gap
with proprietary agents.

B The Theoretical Background

To ground our proof, we adopt the theoretical framework proposed by Wu et al. [[16], which formalizes
the limitations of standard on-policy reinforcement learning [3| |8, |14] on training LLMs.

Definition B.1 (Support of a Model (adapted from [16])). Let) be the space of all possible generative

trajectories. The support of a model with distribution p(y|x) is the set of all trajectories that can be
generated with a non-zero probability for a given prompt x:

supp(p) :={y € V| p(ylz) > 0}

Definition B.2 (Empirical Support (from Wu et al. [[16])). For a threshold € > 0, define the empirical
support of p as

supp.(p) == {y € V | p(y|z) > €}.

This definition is central to understanding a model’s intrinsic capabilities. The following theorem
from Wu et al. [16] establishes a key constraint for models trained with Reinforcement Learning from
Verifiable Rewards (RLVR) [8, 3]

Theorem B.3 (Support Preservation under RLVR (from Wu et al. [16]])). Let 7 (y|x) be an RLVR-
trained policy distribution initialized from a base model with distribution q(y|x). For any prompt
x, the support of the trained policy is a subset of the support of the base model:

supp(mo) supp(q)
This implies that if q(y*|x) = 0 for a correct trajectory y*, then RLVR can never discover y*.

Theorem formalizes the “invisible leash”: RLVR can only re-weight probabilities within the
model’s pre-existing support. We next show a strictly stronger, practical statement under an empirical-
support view.

C The Detailed Proof of Support Expansion

We consider two types of LLMs in this work. A pure-text model is a standard language model
with distribution gy that generates tokens exclusively from its vocabulary V. We compare this to a
tool-integrated model, a system (M, ©O) with distribution prir, which pairs a language model M with
a deterministic external oracle O (e.g., a Python interpreter). The generative process for this model
includes not only probabilistic token generation from)V but also deterministic tool-use transitions. In
such a transition, the model M emits a tool call y.,y1, the oracle executes it, and the resulting output
Yout = O(Yean) is deterministically returned as the next state.

Now we present the detailed proof of Theorem [2.1]

Proof. The proof proceeds in two parts. First, we establish the subset relationship (C), and second,
we prove the relationship is strict (%) by demonstrating the existence of trajectories accessible only
to the tool-integrated model.

Part 1: Proving supp(gext) C supp(prir)

Let y be an arbitrary trajectory in the support of the pure-text model, such that gex(y|z) > 0.
The trajectory y consists exclusively of tokens from the vocabulary V. The tool-integrated model
Prir can generate this same trajectory by adopting a policy of never invoking the external oracle
O. Since its generative capabilities subsume those of gy, it can assign a non-zero probability to
the trajectory y. Thus, for any y € supp(gex:), it follows that y € supp(prr), establishing that
supp(Giext) < supp(prir)-

Part 2: Proving Strictness

To prove strictness, we use a constructive approach based on a standard cryptographlc primitive: a
random oracle. Let us consider a problem instance where the solution requires computing Yoy =
H(z), where H is a random oracle. A random oracle is a theoretical black box that, for any new
input query, returns an output chosen uniformly at random from its output space (e.g., {0, 1}™), but
deterministically returns the same output for repeated queries of the same input. This construction is
theoretically convenient and serves as an idealization of practical cryptographic hash functions (e.g.,
SHA-256). For a model without access to the oracle, its only strategy to find yoy is to guess it. The
probability of correctly guessing a specific m-bit string is 27"".

Now, consider a trajectory y* = (Ypefixs Youts Yaufix) that involves computing H (x). We assume the
underlying language model for both pyr and gy, is identical. The tool-integrated model pr can
invoke the oracle to obtain y,y,; deterministically. In contrast, the pure-text model, gx¢, must guess
Yout from an output space of size 2™, succeeding with a probability of only 27"". Thus, the total
probabilities of producing y* are directly related:

Gext (Y |2) = prir(y*|x) - 27™.

For any non-negligible probability prir (y*|2) and a sufficiently large m, the corresponding Gex (y*|)
becomes arbitrarily small. We can therefore always choose an ¢ such that gex(y*|z) < & <
prir (y*|x). So we find that y* ¢ supp, (giext) While y* € supp, (prir). This establishes strictness. [J

D The Detailed Proof of Feasible Support Supremacy
Here we present the detailed proof of Theorem [2.4]

Proof. The proof requires showing both inclusion (C) and strictness (#).

Inclusion (C): Any algorithmic strategy that is feasibly executable by a pure-text model within
budget B is, by definition, also executable by a tool-integrated model that simply abstains from using
its tool.

Strictness (#): We must show there exists an algorithmic class [y4] in suppg(prir) but not in
supp g (Grext)- This follows directly from the divergent scaling properties of natural language versus
programmatic representations, as illustrated in Tables For any algorithm whose pure-text
simulation cost scales with problem size n (e.g., 2(n), (V' + E)), we can choose a size np such
that the cost exceeds any finite budget B. The programmatic representation, costing O(1), remains

within budget. Thus, for a sufficiently large problem size, the corresponding algorithmic classes are

in the feasible support of prr but not gext, proving strict inclusion.

E Examples on Token Efficiency

O

Table 1: Contrasting Token Efficiency for an Iterative Task (/N — 00)

Programmatic Approach (Python)

Natural Language Reasoning

A symbolic, abstract representation of the com-
putation. The token cost is constant and indepen-
dent of N.

A concrete, step-by-step enumeration of the com-
putation. The token cost scales with the magni-
tude of N.

N can be 10,000,000 or more
for i in range(N):

Perform some check

check (i)

"Okay, to solve this, I must check every number.
First, for n=1, I perform the check...
Next, for n=2, I perform the check...
Next, for n=3, I perform the check...

(This enumeration continues for millions of
steps)

Finally, for n=10,000,000, I perform the
check..."

Token Cost: A few dozen tokens. Scales as
O(1). This is highly efficient and scalable.

Token Cost: Proportional to V. Scales as Q(NV).
This is inefficient and becomes intractable for
large N, quickly exceeding any feasible context
window.

Table 2: Contrasting Token Efficiency for Solving Large Linear Systems

Programmatic Approach (Python)

Natural Language Reasoning

A single call to a highly optimized numerical li-
brary solves Ax = b. The token cost is constant,
independent of the matrix dimension n.

A detailed explanation of Gaussian elimination,
requiring a description of each row operation.
The token cost scales with the matrix size.

import numpy as np

A is a large n x n matrix,
e.g., n=1000
X = np.linalg.solve(A, D)

"To solve the system, we perform Gaussian elim-
ination. First, to eliminate the first variable from
the second row, we subtract Aa 1 /A1 times the
first row from the second row. We must do this for
all n — 1 rows below the first. Next, we use the
new second row to eliminate the second variable
from the rows below it... (This narration contin-
ues for O(n?) elements and O(n?) operations)."

Token Cost: A few tokens. Scales as O(1).
Enables solving massive systems within a tiny
token budget.

Token Cost: Proportional to the number of ele-
ments in the matrix to sketch. Scales as Q(n?).
A full narration would scale as Q(n?).

Table 3: Contrasting Token Efficiency for a Dynamic Programming Task (Fibonacci Sequence)

Programmatic Approach (Python)

Natural Language Reasoning

A compact representation of the recurrence rela-
tion, with a token cost independent of the input
integer N.

A verbose, step-by-step calculation of every sub-
problem’s solution, with a token cost that grows
with V.

memo = {0: O, 1: 1}

def fib(n):
if n in memo: return memo [n]
memo [n] = fib(n-1) + fib(n-2)

return memo [n]

"To get fib(5), I need fib(4) and fib(3). Fib(2) is
Sfib(1)+fib(0) = 1+0 = 1. Fib(3) is fib(2)+fib(1)
= 1+1 = 2. Fib(4) is fib(3)+fib(2) = 3+1 = 4. So,
fib(5) is fib(4)+fib(3) = 4+2 = 6... Wait, let me
recheck. fib(4) is 3+2=5. No, fib(4) is 2+1=3.
Okay, so fib(5) is 3+2=5."

Token Cost: O(1)

Token Cost: Q(N)

Table 4: Contrasting Token Efficiency for Search Algorithms

Programmatic Approach (Python)

Natural Language Reasoning

An abstract procedure for state-space traversal,
using data structures like a queue and a set.

A full, step-by-step narration of the entire explo-
ration process, including every node visited and
every state change of the queue.

from collections import deque

def bfs(graph,
queue deque ([start_node])
visited {start_node}
while queue:
node queue .popleft ()
Process node
for neighbor in graph[node
1:
if neighbor not in
visited:
visited.add(neighbor)
queue . append (neighbor)

start_node) :

"I start at node 'A’. Queue is [’A’], visited is "A’.
I pop "A’. Its neighbors are 'B’, "C’. Queue is
now [’B’, "C’], visited is 'A’)B’,C’. I pop 'B’. Its
neighbor is ’D’. Queue is now ['C’, 'D’], visited
is 'A’’B’C’’D’. I pop °C’..." (and so on)

Token Cost: Constant cost for the algorithm’s
definition. Scales as O(1).

Token Cost: Proportional to the number of ver-
tices and edges, V + E. Scales as Q(V + E).

10

F Extensions to Other Tools and Interactions with Environments

Our arguments in Sections and[2.2]extend beyond Python to a broad family of external tools and
interactive settings. At a high level, any interface that (i) affords state transitions not expressible by
next-token sampling alone and/or (ii) delivers high information per token of I/0 will both expand
support (Section [2.T) and strictly enlarge feasible support under a token budget (Section [2.2)).

Search and Retrieval Agents. Consider web search, retrieval APIs, or domain databases (e.g.,
scholarly indices, code search). Let an external retriever implement a (possibly stochastic) mapping
R : (g, s) — r, where ¢ is a query issued by the LLM and s is the (latent) world/index state at the
time of the call. Even when R is not perfectly deterministic, the trajectory that includes the returned
snippet 7 is unreachable for a pure-text model unless it guesses the salient facts in r token-by-token.
This mirrors the random-oracle argument in Theorem as the entropy of r conditioned on (g, x)
grows, the probability that a pure-text model reproduces r by chance decays exponentially, while a
tool-augmented model obtains 7 via a single call. Hence support expands, and under any fixed budget
B the feasible set also strictly expands once the text-only paraphrase of » would exceed B.

Checkers, Verifiers, and Program Runners. Beyond “heavy” computation, many tools act as
verifiers: unit tests, symbolic algebra checkers, SAT/SMT solvers, theorem provers, type checkers,
or even a Python REPL used only to validate a candidate answer. Such tools add deterministic
pruning transitions to the trajectory graph: incorrect branches are cut immediately with O(1) tokens.
This reduces the exploration burden under RLVR-style training and enlarges the set of practically
reachable strategies under a budget.

Stateful External Memory. Tools can expose memory larger and more persistent than the model’s
context: key—value caches, external scratchpads, vector stores, or file systems. Each call updates an
external state m;1 1 = U(my, a;) and reads views v; = V(m;) at O(1) token cost. Strategies that
require memory |m| > B are impossible to realize faithfully in pure text (which must inline m), but
become feasible when memory lives outside the context window.

Proposition F.1 (Informal; External State as Unbounded Scratchpad). Suppose an algorithm requires
Q(n) writable memory cells for problem size n. If a tool exposes these cells with per-step I/O
O(1), then for sufficiently large n, the algorithm’s equivalence class lies in supp g (prr) but not in

supp g (Grext) for any fixed B.

Embodied and Interactive Environments. When the LLM acts in an MDP or game environ-
ment [I8], the environment transition s;1 = FE(s¢, a;) is itself an external oracle. Our earlier
support-expansion argument applies verbatim: trajectories that include specific environment obser-
vations or states are unreachable by text-only generation unless they are guessed token-by-token.
Token-efficiency arguments also lift: environment interactions can realize long-horizon plans with
summarized textual traces, whereas a pure-text simulation would require enumerating each counter-
factual step.

Noisy or Non-Deterministic Tools. Stochastic returns (e.g., fluctuating search rankings) do not
invalidate support expansion. What matters is the existence of some positive-probability outputs with
substantial conditional entropy that are infeasible to reproduce via text within budget. In other words,
determinism is a convenience, not a necessity, for our conclusions.

Composing Multiple Tools. Real agents chain retrieval, computation, verification, and environment
actions. Composition behaves monotonically:

Proposition F.2 (Informal; Monotone Closure under Composition). Let Tq,. .., T be tools with
per-call costs that sum to at most B. If each T; individually yields a strict feasible-support gain
for some subproblem family at size n;, then there exist composite tasks for which the sequential (or
branched) use of {T;} yields a strict feasible-support gain over any pure-text policy at the same total
budget.

Takeaway. “Python” is merely one instantiation of a broader principle, our extensions unify code
execution, search, verification, memory, and embodied interaction under the same analytical lens.

11

G Detailed Analysis of ASPO

The TIR models often default to a conservative strategy: completing the majority of their abstract
reasoning via text before invoking the code interpreter for the final-step calculation or verification.
This overlooks a potentially more powerful paradigm where the interpreter is used as an exploratory
tool throughout the reasoning process. We hypothesize that encouraging the model to invoke code
earlier could foster a more dynamic, flexible, and hypothesis-driven reasoning style, potentially
unlocking novel problem-solving strategies.

To encourage the earlier code invocation, our initial and most direct approach was to introduce an
early-code reward directly into the reward function. For each response ¢ that is both correct and
code-containing in a group of samples, we added a reward term r; that penalizes later code invocation:
: ; — mean
R;=1-+7r, where 7, =24"-clip pli(p),fc,c :

‘ ‘ std(p)

where p is the set of first code invocation positions for all correct, code-containing responses within
the group. Furthermore, ¢ is a negative coefficient to encourage early code invocation, and c is
a clipping hyperparameter. However, this seemingly innocuous modification proved to be highly
destabilizing during training (see experimental details in Section [3.2]and Figure[2](a)). In algorithms
like GRPO that rely on group normalized advantage, this design has a critical flaw. In the common
scenario where all samples in a group are correct, the primary reward signal (the constant ‘1°) is
entirely eliminated by the normalization. The advantage calculation then becomes:

R; —mean(R) (1+7}) — (1 + mean(r’)) 7} — mean(r)

A = std(R) std(r’) T sd(r)

This leads to a catastrophic outcome: (1) the primary signal about answer correctness disappears,
(2) the auxiliary signal r; is amplified to the same magnitude as the original primary signal, and (3)
due to the nature of standardization, approximately half of these correct responses receive a negative
advantage and are thus heavily penalized, solely because their code invocation is later than the group’s
average.

To circumvent the distorting effects of reward normalization, we developed a more robust method
that we term Advantage Shaping Policy Optimization (ASPO). Instead of manipulating the reward,
we directly modify the final advantage value after the standard correctness-based advantage A orect
has been calculated. For any response 7 that is both correct and contains code, we compute the new
advantage A; as follows:

5 i~ mean(p)

A= Acorrect,i + clip (mean(L)

) —k- Acorrecl,iy k- Acorrect,i))

where p and L are the sets of first code invocation positions and total response lengths for all correct,
code-containing responses within the group. Furthermore, 4 is a negative coefficient to encourage
early code invocation, and k is a clipping hyperparameter that bounds the magnitude of auxiliary
advantage within a proportion of the basic advantage of correctness.

This formulation has several key merits, primarily by circumventing the uncontrollable effects of
advantage normalization inherent to reward-based modifications. First, it addresses a critical flaw in
the reward-based approach: the inability to guarantee a positive advantage for all correct answers.
After adding the auxiliary reward, a correct response’s total reward could fall below the group average,
leading to a negative GRPO normalized advantage, which effectively punishes a correct solution.
Second, the GRPO normalization process itself introduces uncontrollable volatility: the std(R) in
the denominator unpredictably scales the auxiliary signal, making its influence inconsistent across
different groups.

Our ASPO algorithm resolves both issues. By applying a clipped bias directly to Acorect, We ensure
the final advantage remains positive and that the early-code incentive is always a subordinate nudge,
never overwhelming the primary objective of correctness. Furthermore, this approach bypasses
the volatile scaling effect of std(R) entirely. Finally, the choice to normalize the code invocation
position by the mean response length mean (L) rather than the standard deviation of positions std(p)
is deliberate. The latter is unstable: when invocation positions in a group are tightly clustered, a small
std(p) would excessively amplify the signal, whereas a more stable denominator like mean(L) is

12

consistent and meaningful. This method allows us to stably and effectively encourage early code
invocation, the empirical results of which are detailed in Section[3.2]

In essence, ASPO provides a general and robust framework for guiding a model’s behavior towards
desired styles or properties without compromising the primary learning objective (e.g., accuracy). By
directly manipulating the advantage values, ASPO avoids the instabilities that can arise from altering
the reward function, particularly in GRPO-like algorithms that rely on reward normalization. This
method ensures that the incentive for the desired behavior (in this case, earlier code invocation) acts
as a stable adjustment. The core principles of ASPO could be readily adapted to encourage other
desirable behaviors in a variety of scenarios, offering a reliable approach to shape model conduct
while preserving training stability and overall task performance.

H Experimental Setup

0.90 (a) Training accuracy (b) Test accuracy
9 —— TR
_ X 0.65 Pure-text
NS [}
22 0.85 ©
3 3
© J 0.60
5 <
Y 0.80 n /
< — TIR g 0.55
Pure-text =
0.75 <
) 20 40 60 80 0 20 40 60 80
Training steps Training steps

Figure 4: The (a) training and (b) testing accuracy of the TIR and pure-text RL. on Qwen3-8B model.
The AIME2S5 accuracy (b) is the average of 16 responses.

Model and Datasets. All experiments are based on the Qwen3-8B model [13]]. For our training
data, we randomly sample 10,000 English problems from the DAPO dataset [20] due to limited
computational resources. Since our aim is to fundamentally understand the mechanisms of TIR
rather than to improve absolute accuracy of benchmarks, this dataset is sufficient for our purpose,
in contrast to the extensive training datasets used in other literature [20} 4]. Our primary evaluation
benchmarks are AIME24, AIME?2S5, and a challenging subset of the Omni-MATH dataset [5]]. For
the latter, due to the large size of the dataset, we curated the 512 most difficult problems that are
amenable to reliable, rule-based evaluation, which we denote as Omni-MATH-512.

Training Protocol. We train two main models for comparison: our proposed TIR model, which can
execute code to assist in its reasoning process, and a pure-text RL model as a baseline (as shown
in Figure {). Both models are trained for 3 epochs using the DAPO algorithm [20]], a variant of
GRPO [3]]. During training, we use a rollout batch size of 96 problems, with 8 responses sampled
per problem, a maximum response length of 16,384 tokens, and a sampling temperature of 1.0 to
encourage exploration.

Evaluation Protocol. For evaluations, we set the sampling temperature to 0.6 and maximum response
length to 16,384 tokens unless otherwise specified.

13

I Pass@k Data

Table|5|shows the detailed pass @k results for the TIR and pure-text models across the three bench-
marks, evaluated with the max sample size of 256.

Table 5: Pass@F results for the TIR model and the pure text model

Kk AIME24 AIME25 Omni-MATH-512
TIR Pure Text TIR Pure Text TIR Pure Text
1 0.7829 0.6331 0.6841 0.5184 0.5128 0.3585
2 0.8408 0.7184 0.7818 0.6065 0.5885 0.4208
4 0.8632 0.7703 0.8395 0.6730 0.6437 0.4707
8 0.8825 0.8050 0.8792 0.7262 0.6869 0.5153
16 0.9024 0.8312 09117 0.7613 0.7232 0.5570
32 0.9173 0.8496 0.9339 0.7810 0.7545 0.5942
64 0.9312 0.8645 0.9503 0.7979 0.7802 0.6271
128 0.9480 0.8813 0.9625 0.8250 0.8018 0.6575
256 0.9667 0.9000 0.9667 0.8667 0.8203 0.6836

J Capability Expansion and Shrinkage

Pure-text

Unsolved
31.6%

Solved
68.4%

Flow of Problem Solvability

Jointly Unsolved 16.2%

Expansion 15.4%

Shrinkage 1.8%

Preservation 66.6%

TIR

Unsolved
18.0%

Solved
82.0%

Figure 5: The flow of problem solvability on Omni-MATH-512 when transitioning from the pure-text
model to the TIR model, evaluated at £ = 256. A detailed version is provided in Figure@

14

Solved Prob. (0.5, 0.75]

Unsolved

Share: 31.6%

Solved Prob. (0, 0.25]
Share: 25.8%

Solved Prob. (0.25, 0.5]

Share: 5.9%

Share: 8.2%

Solved Prob. (0.75, 1]
Share: 28.5%

Flow of Problem Solvability
Pure-text

TIR

Unsolved

Share: 18.0%

Solved Prob. (0, 0.25]

Share: 20.9%

Solved Prob. (0.25, 0.5]

Share: 8.8%

Solved Prob. (0.5, 0.75]

Share: 8.6%

Solved Prob. (0.75, 1]

Share: 43.8%

Figure 6: The detailed flow of problem solvability on Omni-MATH-512 when transitioning from the
pure-text model to the TIR model. The solved probability of each problem is evaluated at k = 256.

K Rubric for Algorithmic Friendliness

Table[6]shows the rubric we use for Gemini Pro APIs [6] to classify the math problems.

Table 6: Rubric for assessing the “algorithmic friendliness” of problems.

Score Level Description Required Insight
5 Very High (Direct The problem is a textbook example for None beyond basic
Application) a standard algorithm (e.g., backtrack- arithmetic.
ing). The problem statement itself al-
most serves as the specification. Almost
no mathematical insight is needed.
4 High (Minor In- An algorithm provides a clear advantage, Recalling and apply-
sight) but requires a standard, well-known ing a common for-
mathematical identity or simple trans- mula or theorem.
formation to be applied. The mathemat-
ical hurdle is low.
3 Medium (Signifi- A computational solution is effective, A creative, problem-
cant Insight) but only after applying a significant specific trick or a com-
mathematical insight or performing plex modeling effort.
complex problem modeling. The diffi-
culty is substantial.
2 Low (Impractical An algorithm is theoretically possible Insights needed are es-
Algorithm) but highly impractical (enormous search sentially the mathe-
space, precision issues). The algorith- matical solution itself.
mic optimizations are equivalent in dif-
ficulty to the mathematical solution.
1 Very Low (Non- The problem is fundamentally abstract N/A.
computational) and cannot be solved by computation

(e.g., requires a formal proof, deals with
uncountable sets).

15

L. Pass@k Curves for Problems Grouped by Algo Friendliness

(a) Algo friendliness G1 (b) Algo friendliness G2 (c) Algo friendliness G3
—— TIR
0.81 —e— Pure-text 0.8 0.8
X
90.6 0.6 0.6
n
(8]
Q
0.4 0.4 0.4
0.2 0.2 0.2
1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256
3
(d) Algo friendliness G4 (e) Algo friendliness G5 S (f) Dataset Omni-MATH-512
n
= 157
0.8 0.8 Q2 30 141
e}
~ S 120
90.6 0.6 220
w0 Y
A o 70
Q]
0.4 0.4 D10
8 24
C
0.2 0.2 3 o
1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64128256 Gl G2 G3 G4 G5
Number of samples k Number of samples k a Algo friendliness group

Figure 7: (a)-(e) Pass@k curves for the TIR and pure-text models, grouped by problem algo
friendliness. (f) The distribution of algo friendliness scores across the Omni-MATH-512 dataset.
The problems are categorized into five groups based on their algo friendliness scores: 1.0-1.5 (G1),
2.0-2.5 (G2), 3.0-3.5 (G3), 4.04.5 (G4), and 5.0 (G5).

16

M Emergent Cognitive Patterns of Tool Integration

The quantitative results of the previous sections demonstrate that TIR is universally effective, but
they do not fully explain how. If the model’s advantage is not limited to algorithmically amenable
problems, how exactly is it leveraging the code interpreter to solve problems requiring abstract
insight? Through qualitative analysis of model outputs, we have identified three distinct and recurring
patterns of code utilization that answer this question.

Pattern 1: Insight-to-computation transformation. In this primary pattern, the model’s first
step is not to code, but to reason. It engages in non-trivial, text-based analysis to deconstruct a
complex problem, applying mathematical insights to transform it into a state that is amenable to a
programmatic solution. The code interpreter is then invoked to execute a genuine algorithm (such
as search, enumeration, or DP) that efficiently solves this newly formulated sub-problem under a
limited computational resource. Unlike straightforward sequential calculations one might perform
with a calculator, these algorithms often possess complex control flows (e.g., loops, recursion) that
are challenging for a language model to emulate or follow step-by-step.

For instance, as shown in Table[7] the model first uses mathematical reasoning to derive a transcenden-
tal equation from the abstract geometric problem. It then employs code to iterate the entire parameter
space of (m, n) pairs, using the Intermediate Value Theorem as a numerical method to efficiently
detect whether a solution exists for each pair.

Table 7: A case of insight-to-computation transformation.

[Question]

Let a # b be positive real numbers and m, n be positive integers. An m + n-gon P has the property that m
sides have length a and n sides have length b. Further suppose that P can be inscribed in a circle of radius
a + b. Compute the number of ordered pairs (m, n), with m, n < 100, for which such a polygon P exists for
some distinct values of ¢ and b.

[Response]
Okay, let’s try to tackle this problem step by step.

We need to find the number of ordered pairs (m, n) where m,n < 100 such that this equation has solutions
for a and b with a # b. ... So, substituting into the equation:

m - arcsin(z/2) + n - arcsin((1 — x)/2) =«

But how can I find all such (m, n) pairs? Since m and n are up to 100, perhaps we can write a program to
check for each possible pair (1, n) whether there exists an x in (0, 1) such that the equation is satisfied.
But how to implement this check in Python? The problem is that the equation is transcendental and might
not have an analytical solution, so numerical methods would be needed. For each (m,n), we can define a
function f(z) = m - arcsin(x/2) 4+ n - arcsin((1 — x)/2) — m, and check if there’s a root of f(z) = 0
in (0,1), excluding = 0.5. But how to check for roots? For example, we can use the Intermediate Value
Theorem. If f(x) changes sign over an interval, there’s a root in that interval.

Now, let’s proceed to write the Python code.
<code>

import math

def has_solution(m, n):
def f(x):
return m * math.asin(x/2) + n * math.asin((1 - x)/2) - math.pi

Check interval (0, 0.5)

left = 0.0001

right = 0.4999

if f(left) * f(right) < O0:
return True

Check interval (0.5, 1)

17

left = 0.5001

right = 0.9999

if f(left) * f(right) < O:
return True

return False
count = 0
for m in range (1, 101):
for n in range(1l, 101):
if has_solution(m, n):

count += 1

print (count)

</code>
<interpreter> 940 </interpreter>

Wait, but the code is written in Python, and the interpreter output is 940. So the final answer is .

Pattern 2: Exploration and verification via code. For problems where the solution path is not
immediately obvious, the model utilizes the code interpreter as an interactive sandbox for exploration
and hypothesis testing. Instead of committing to a single line of reasoning, it formulates conjectures
and writes short code snippets to test them, observe their outcomes, and iteratively refine its strategy
based on the feedback. This pattern is particularly prevalent in problems with low algorithmic
amenability, where it allows the model to build confidence and discover insights through empirical
experimentation.

Table [provides a clear instance of pattern 2: exploration and verification via code. The model first
derives a candidate value of A = /3 from a simple case, then uses the code interpreter to numerically
explore more different scenarios. The feedbacks validate its initial hypothesis and pivot its strategy
from further exploration toward constructing a rigorous algebraic proof.

These first two patterns represent a fundamental departure from pure-text reasoning. As we established
in Section |2} they constitute entirely new Computational Equivalence Classes, new strategies for
solving problems. While a pure-text model might theoretically be able to simulate these processes,
the token cost of doing so would be astronomical. The step-by-step, trial-and-error nature of the
exploratory pattern, in particular, would lead to a blow-up in token length. Therefore, these strategies
lie far outside the Feasible Support under Budget B for any practical context window, making them
uniquely accessible to the TIR paradigm.

Table 8: A case of exploration and verification via code.

[Question]
Find the largest real number \ with the following property: for any positive real numbers p, g, r, s there exists
a complex number z = a + bi(a, b € R) such that

b > Ma| and (pz® +2¢2° + 2rz +) - (q2° + 2p2® + 252 + 1) = 0.

[Response]

Okay, let’s try to tackle this problem step by step......

But how do we approach this? Maybe we can think about the problem by considering specific cases ... Perhaps
the worst case occurs when p = g and r = s? ...Let’s try to consider a symmetric case. ... Maybe choosing
p=q=1andr = s =1. Let’s try that. ...

The roots are z = —1 and roots of 2% 4 z 4 1 = 0, which are %“/g Let’s compute their |b|/|al:
-1+
- %*@ Sa=-1/2,b=+V3/2.

18

So |b] = v/3/2, |a] = 1/2. So |b]/|a| is V/3.

So for this case, A can be as large as /3. But this is just for this specific case. ...

This is getting a bit abstract. Maybe we can consider a case where both P(z) and Q(z) have roots with
minimal |b|/|al|, and find what that value is. ...when ¢ is very small. Let me try to find its roots numerically
for a specific small ¢. Let me write a Python code snippet to find the roots of P(z) = 23 4+2224+022+40.1.

<code>

import numpy as np

Coefficients for P(z) = z~3 + 2z"2 + 0.2z + 0.1
coeffs = [1, 2, 0.2, 0.1]

roots = np.roots(coeffs)

print (roots)

</code>
<interpreter> [-1.92303902+0.j, -0.03848049+0.22476716j, -0.03848049-0.22476716j]

</interpreter>

For these complex roots, |b]/|a| is 0.2248,/0.0385 ~ 5.83. ... Wait, but this case gives a high value of |b|/|a].
So maybe the worst case is when the minimal such value is low. ...
But how to find that? It seems challenging without more insight. ... Alternatively, consider using symmetry.
...But if we set s = 4qr/p, for example, let’'ssetp = 1,¢ = 1,7 = 1, then s = 4*x1x1/1 = 4. So
P(2) = 2% +22% + 22 4 4. Let’s find its roots. Using numpy again:

<code>

import numpy as np

coeffs = [1, 2, 2, 4]
roots = np.roots(coeffs)
print (roots)

</code>
<interpreter> [-2.00000000e+00+0.j, 1.66533454e-16+1.41421356j, 1.66533454e-16-1.41421356j]

</interpreter>

So |b|/|a] is infinite (since a is nearly zero), but for practical purposes, this suggests that for this case, there
are roots with very large |b|/|a|. So this case is not helpful. ... This suggests that for this case, we can achieve

b]/]a| up to v/3.

Let’s think of a case where the ratio is lower than v/3. ...Let me consider the case where p = ¢ = 1,7 =
1,5 = 2. Then P(z) = 2% 4 222 4 22 4 2. Let’s find its roots using numpy.

<code>

import numpy as np

coeffs = [1, 2, 2, 2]
roots = np.roots(coeffs)
print (roots)

</code>
<interpreter> [-1.54368901+0.j, -0.22815549+1.11514251j, -0.22815549-1.11514251j]

</interpreter>

So |b]/]a] = 1.115/0.228 = 4.89. The real root has |b|/|a| = 0. So again, the maximum is 4.89.
This doesn’t seem to help. ... Let me think of a different approach. ...

Let me assume that there is a root z = a + bi with |b] = A|a|. Let’s assume a 7 0. Then, b = Aa orb = —Xa.
Let’s assume b = Aa. ... Substitute z = a + Aai = a(1 + Xi) into P(2) = pz® + 2¢2* + 2rz + s = 0.
Since a # 0 and X is non-zero (otherwise, we have real roots), we can divide both sides by Aa:

pa’(3 =N +4ga+2r =0

19

This is one equation.
From the equation, since all terms except the first are positive, we must have (3 — A\?) < 0, which implies
A? > 3, 0or A > /3. This suggests that for any non-real root, the ratio [b|/|a| must be greater than /3.

So, we have two key pieces of information:

1. We found a specific case (p = ¢ = r = s = 1) where the largest available ratio is exactly v/3. This
means \ cannot be greater than /3.

2. Our general proof shows that for any case with a non-real root, the ratio must be greater than or
equal to v/3. This means A must be at least v/3.

Combining these, the largest possible value for) is exactly .

Pattern 3: Offloading complex calculation. This is the most direct pattern of tool use, where the
model has a clear, linear path to the solution but delegates complex or tedious calculations to the
interpreter. This usage aligns with the naive view of TIR as a “calculator”, but its importance should
not be understated. By offloading these steps, the model minimizes the risk of unforced computational
errors that frequently derail long chains of pure-text thought, thereby preserving the integrity of the
overall reasoning process.

A representative example is shown in Table[9] Here, the model first performs the text-based reasoning
to establish a solution path, then uses the interpreter as a precision tool to execute the series of
intricate vector and algebraic computations that would be highly prone to manual error.

In conclusion, these emergent patterns reveal a sophisticated interplay between the LLM’s reasoning
capabilities and the code interpreter’s computational power. The model is not merely using a tool; it
is thinking with tools. This signifies a fundamental shift in strategy: rather than simply delegating
calculations from an otherwise unchanged, text-based line of thought, the model learns to generate
novel problem-solving approaches that are intrinsically synergistic with the interpreter. It formulates
plans that leverage programmatic strengths like iteration and DP from the outset, developing new
“Computational Equivalence Classes” that were previously inaccessible. Such dynamic and flexible
code invocation enables the TIR model to break the capability ceiling of its pure-text counterpart.

Table 9: A case of offloading complex calculation.

[Question]

Let acute triangle ABC' have circumcenter O, and let M be the midpoint of BC'. Let P be the unique
point such that /BAP = /CAM,/CAP = /BAM, and ZAPO = 90°. If AO = 53,0M = 28, and
AM = 75, compute the perimeter of ABPC.

[Response]
Okay, let’s try to solve this problem step by step.

Alternatively, maybe using coordinate geometry. Let me think about setting up coordinates.

First, compute A;, A, numerically.
Az = (75V13) /7, A, =450/7

Then compute vectors AB and AC, their lengths, unit vectors, angle bisector direction, then reflect AM over
this direction to get the direction of AP. Then find the intersection of this line with the circle.
But implementing all this in code is time-consuming, but let’s try. Let me write the code.

<code>

import math
Given values

A0 = 53
OM = 28

20

AM = 75

Compute Ay
Ay = 450 / 7
Compute Ax
sqrt13 = math.sqrt (13)
Ax = (75 * sqrt13) / 7

Coordinates of A

= (Ax, Ay)

Coordinates of 0

= (0, 28)

Coordinates of M

= (0, 0)

Coordinates of B and C
(-45, 0)

(45, 0)

QW H I H O H > H

Function to compute vector from pointl to point2
def vector(pl, p2):
return (p2[0] - p1[0], p2[1] - pi1[1])

Compute vectors AB and AC
AB = vector (A, B)
AC = vector (A, C)

Compute lengths of AB and AC
len_AB = math.hypot (AB[0], AB[1])
len_AC = math.hypot (AC[0], AC[1])

Compute unit vectors
unit_AB = (AB[0]/len_AB, AB[1]/1len_AB)
unit_AC (AC[0]/1len_AC, AC[1]/1len_AC)

Angle bisector direction
angle_bisector_dir = (unit_AB[0] + unit_AC[0], unit_AB[1] +
unit_ACT[1])

Vector AM
AM_vec = vector (A, M)

Function to reflect a vector over another vector
def reflect_vector (v, axis):

Normalize the axis vector

axis_len = math.hypot (axis[0], axis[1])

if axis_len == O0:
return v
axis_unit = (axis[0]/axis_len, axis[1]/axis_len)

Dot product
dot = v[0] * axis_unit[0] + v[1] * axis_unit[1]

Projection of v onto axis
proj = (dot * axis_unit[0], dot * axis_unit[1])

Reflection
reflected = (2*dot*axis_unit[0] - v[0], 2*dot*axis_unit[1] - v
[11)

return reflected

Reflect AM_vec over angle bisector direction
AP_dir = reflect_vector (AM_vec, angle_bisector_dir)

21

Normalize AP_dir to get direction

AP_dir_len = math.hypot (AP_dir [0],

AP_dir [1])

AP_dir_unit = (AP_dir [0]/AP_dir_len, AP_dir[1]/AP_dir_len)

Parametric line for AP:
Find intersection with circle with diameter AO

A + t *x AP_dir_unit

Equation of circle with diameter AO

(x - mid_x)~"2 + (y - mid_y) "2

mid_x = (A[0] + O[O

mid_y

r

#
#
#

#
#
#

(A[1] + 0O[1
= A0 / 2

Parametric equations for line AP
x = A[0O] + t *x AP_dir_unit [0]
A[1] + t * AP_dir_unit [1]

y

1)/2
1)/2

Substitute into circle equation

(x - mid_x)~2 + (y - mid_y) "2

Expand and solve

def solve_for_t():

t_

x = A[0] + t x
y = A[1] + t *

for t

dx
dy

dx = AP_dir_unit [0]

r-2

r-2

dy = AP_dir_unit [1]
Expand (x - mid_x)~2 + (y - mid_y)~2 = r~2
(A[O] + t*dx - mid_x)~2 + (A[1] + t*dy - mid_y)~2 = r~2
Expand terms
a = dx**x2 + dy*x*2
b = 2 x (dx*(A[0] - mid_x) + dy*(A[1] - mid_y))
c = (A[0] - mid_x)**2 + (A[1] - mid_y)**2 - rx*2
Solve a*t~2 + b*t + ¢ = 0
discriminant = b**2 - 4*xaxc
if discriminant < O:
return None
tl = (-b + math.sqrt(discriminant)) / (2xa)

t2 = (-b - math.sqrt(discriminant)) / (2*a)

return tl1, t2

values = solve_fo

if t_values:

t = t_values [0]
itself

r_tQ)

Choose one solution, the other might be A

px = A[0] + t * AP_dir_unit [0]
py = A[1] + t * AP_dir_unit [1]

P = (px, py)

else:

P = None

Now compute perimeter of triangle BPC
if P:

def distance(pl,

return math.hypot (p1[0]-p2[0],

BP = distance (B,
CP distance (C,
BC = distance (B,
perimeter = BP +
print (perimeter)

else:

p2):

P)
P)
c)
CP + BC

22

pill1]-p2[11)

print ("No intersection found")

</code>
<interpreter> 192.0 </interpreter>

The code computes the perimeter of triangle BPC and returns 192.0. Therefore, the answer is .

23

	Introduction
	Method
	Support Expansion via Tool Integration
	Token Efficiency and Feasible Support under a Budget
	Algorithmic Improvement: Advantage Shaping Policy Optimization

	Experiments
	TIR Breaks the Capability Ceiling and is Universally Effective
	Empirical Analysis of ASPO for Early Code Invocation

	Conclusions
	Related Work
	The Theoretical Background
	The Detailed Proof of Support Expansion
	The Detailed Proof of Feasible Support Supremacy
	Examples on Token Efficiency
	Extensions to Other Tools and Interactions with Environments
	Detailed Analysis of ASPO
	Experimental Setup
	Pass@k Data
	Capability Expansion and Shrinkage
	Rubric for Algorithmic Friendliness
	Pass@k Curves for Problems Grouped by Algo Friendliness
	Emergent Cognitive Patterns of Tool Integration

