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Abstract

Although counterfactual explanations are a pop-
ular approach to explain ML black-box classi-
fiers, they are less widespread in NLP. Most
methods find those explanations by iteratively
perturbing the target document until it is classi-
fied differently by the black box. We identify
two main families of counterfactual explanation
methods in the literature, namely, (a) transpar-
ent methods that perturb the target by adding,
removing, or replacing words, and (b) opaque
approaches that project the target document
into a latent, non-interpretable space where the
perturbation is carried out subsequently. This
article offers a comparative study of the per-
formance of these two families of methods on
three classical NLP tasks. Our empirical ev-
idence shows that opaque approaches can be
an overkill for downstream applications such
as fake news detection or sentiment analysis
since they add an additional level of complex-
ity with no significant performance gain. These
observations motivate our discussion, which
raises the question of whether it makes sense
to explain a black box using another black box.

1 Introduction

The latest advances in machine learning (ML) have
led to significant advances in various natural lan-
guage processing (NLP) tasks (Devlin et al., 2019;
Liu et al., 2019; Sanh et al., 2019), such as text gen-
eration, fake news detection, sentiment analysis,
and spam detection. These notable improvements
can be partly attributed to the adoption of methods
that encode and manipulate text data using latent
representations. Those methods embed text into
high-dimensional vector spaces that capture the un-
derlying semantics and structure of language, and
that are suitable for complex ML models.

Despite the impressive gains in accuracy
achieved by modern ML algorithms (Devlin et al.,
2019; Brown et al., 2020), their utility can be dimin-
ished by their lack of interpretability (Shen et al.,

2020). This has, in turn, raised an increasing in-
terest in ML explainability, the task of providing
appropriate explanations for the answers of black-
box ML algorithms (Jacovi, 2023). Indeed, a model
could make correct predictions for the wrong rea-
sons (Gururangan et al., 2018; McCoy et al., 2019).
Unless the ML model is a white box, explaining
the results of such an agent requires an explanation
layer that elucidates the internal workings of the
black box in a post-hoc manner.

While there are several ways to explain the out-
comes of an ML model a posteriori, there has
been a growing emphasis on counterfactual ex-
planations, a domain that has experienced notable
popularity over the last five years (Guidotti, 2022;
Miller, 2019). A counterfactual explanation is a
counter-example that is similar to the original text,
but that elicits a different outcome in the black
box (Wachter et al., 2018). Consider the classifier
depicted in Figure 1, for sentiment analysis applied
to the review “This is a good article” — classified
as positive. In this toy example, a counterfactual
could be the phrase “This is a poor article”. This
explanation tells us that the adjective “good” was a
possible reason for this sentence to be classified as
positive, and changing the polarity of that adjective
may change the classifier’s response.

Counterfactual explanation methods operate by
increasingly perturbing the target text until the an-
swer from the model — often a classifier — changes.
Those perturbations can be conducted transpar-
ently by adding, removing, or changing words and
syntactic groups (Martens and Provost, 2014; Yang
et al., 2020; Ross et al., 2021) in the original tar-
get text as depicted in Figure 1. Since removing
or adding words from a text can lead to unrealis-
tic texts, more recent methods (Hase and Bansal,
2020; Robeer et al., 2021; S. Punla and C. Farro,
2022) embed the target text in a latent space that
captures the underlying distribution of the model’s
training corpus. Perturbations are then carried out
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Figure 1: The mechanism employed to perturb the target documents by the transparent and opaque methods.
Transparent techniques, on the left, convert the input text to a vector representation, where ‘1’ indicates the presence
of the input word and ‘0’ denotes a replacement. Opaque methods, as on the right, embed words from the target text
into a latent space and perturb the text in this high-dimensional space.

in this space and then brought back to the space of
words to guarantee realistic counterfactual explana-
tions. These explanation methods rely on opaque
sophisticated techniques to compute those expla-
nations (Li et al., 2021), which is tantamount to
explaining a black box with another black box.

Based on this somehow paradoxical observation,
we conduct a comparative study of various transpar-
ent and opaque post-hoc counterfactual explanation
approaches. Rather than two distinct categories, the
studied methods define a continuum, as some meth-
ods may combine transparent and non-interpretable
techniques. Our study aims to understand whether
it is worth resorting to latent approaches to explain
complex ML models. The experimental results sug-
gest that for some downstream NLP tasks, learning
a latent representation for explanation purposes can
be an overkill. To strengthen our point, we present
and evaluate two novel transparent approaches for
counterfactual explanations.

The paper is structured as follows. Section 2 sur-
veys the existing counterfactual explanation meth-
ods. Section 3 introduces two novel transparent
methods, which we then analyze in the light of
the spectrum of existing transparent and opaque
techniques (Section 4). We then elaborate on the
experimental protocol of our comparative study in
Section 5. The results of our experimentations are
presented in Section 6. Section 7 discusses our
findings and concludes the paper.

2 Related Works

Counterfactual explanation methods compute con-
trastive explanations for ML black-box algorithms
by providing examples that resemble a target in-
stance but that lead to a different answer in the
black box (Wachter et al., 2018). These counterfac-
tual explanations convey the minimum changes in

the input that would modify a classifier’s outcome.
Social sciences (Miller, 2019) have shown that
human explanations are contrastive and Wachter
et al. (2018) have illustrated the utility of coun-
terfactual instances in computational law. When
it comes to NLP tasks, a good counterfactual ex-
planation should be fluent (Morris et al., 2020),
i.e., read like something someone would say, and
be sparse (Pearl, 2009), i.e., look like the target
instance.

Counterfactual approaches have gained popu-
larity in the last few years. As illustrated by the
surveys, first by Bodria et al. (2021) and later by
Guidotti (2022), around 50 additional counterfac-
tual methods appeared in a one-year time span. De-
spite this surge of interest in counterfactual expla-
nations, their study for NLP applications remains
underdeveloped (Ross et al., 2021). In the follow-
ing, we elaborate on the existing counterfactual ex-
planation methods for textual data along a spectrum
that spans from transparent to opaque approaches.

Transparent Approaches. Given an ML classifier
and a target text (also called a document), trans-
parent techniques compute counterfactual explana-
tions in a binary space. Each dimension represents
the presence (1) or absence (0) of a word from a
given vocabulary. Hence, to perturb a text, these
methods toggle on and off Os and 1s, where Os
are tantamount to adding, removing, or replacing
words until the classifier yields a different answer.
This was first proposed by Martens and Provost
(2014) who introduced Search for Explanations
for Document Classification (SEDC), a method
that removes the words for which the classifier ex-
hibits the highest sensitivity. More recently, Ross
et al. (2021) developed Minimal Contrastive Edit-
ing (MICE), a method that employs a Text-To-
Text Transfer Transformer to fill masked sentences.



Yang et al. (2020) presented Plausible Counterfac-
tual Instances Generation (PCIG), which generates
grammatically plausible counterfactuals through
edits of single words with lexicons manually se-
lected from the economics domain.

Opaque Methods. We define opaque approaches
as those perturbing the input text in a latent space in
R™. Methods such as Decision Boundary (Hase and
Bansal, 2020), xSPELLS (S. Punla and C. Farro,
2022) or cfGAN (Robeer et al., 2021) operate in
three phases. First, they embed the target text onto
a latent space. This is accomplished by employing
specific techniques such as Variational AutoEn-
coder (VAE) in the case of xSPELLS, or a pre-
trained language model (LM) for cfGAN. Second,
while the classifier’s decision boundary is not tra-
versed, these methods perturb the latent represen-
tation of the target phrase. This is done by adding
Gaussian noise in the case of XSPELLS, whereas
cfGAN resorts to a Conditional Generative Adver-
sarial Network. Finally, a decoding stage produces
sentences from the latent representation of the per-
turbed documents.

There also exist methods such as Polyjuice (Wu
et al., 2021), Generate Your Counterfactuals
(GYC) (Madaan et al., 2021) and Tailor (Ross et al.,
2022) that perturb text documents in a latent space,
but can be instructed to change particular linguis-
tic aspects of the target text, such as locality or
grammar tense. Such methods are not particularly
designed to compute counterfactual explanations
but are rather conceived for other applications such
as data augmentation.

Unlike pure word-based perturbation meth-
ods, latent representations are good at preserv-
ing semantic closeness for small perturbations.
That said, these methods are not free of pitfalls.
First, methods such as XSPELLS and ¢cfGAN are
deemed opaque since a latent space is not human-
understandable (Shen et al., 2020). Moreover, exist-
ing latent-based approaches do not seem optimized
for sparse counterfactual explanations — one of the
defining features of a counterfactual. We show this
through our experimental results that suggest that
a minor alteration in the latent space can cause a
significant alteration in the original space.

3 Two Novel Transparent Methods

Before elaborating on our study, we introduce two
novel counterfactual explanation techniques, aimed
to enrich the middle ground between fully opaque

and fully transparent approaches. The methods are
called Growing Language and Growing Net, and
both depend on an iterative process that replaces
words within a target text z = (x1,...,24) € X
(x; € X are words from a vocabulary X) until
the predicted class of a given classifier f : X —
Y changes. The goal of such a procedure is to
compute sparse counterfactual explanations with
the fewest modified words.

Algorithm 1 Explore

Require: target text x = (z1,...,xq4) € X, classifier f;
SIMWORDS(-) — retrieves similar words
Hyper-parameters: n = 2000

Ensure: one or multiple counterfactual instances

1: fori < 1toddo
2: W; < SIMWORDS(x;, POS(x;))

3: end for

4: Initialize Z = (2',...,2™) as n copies of

5: Initialize C <+ 0; ny, <+ 0

6: while n,, <dAC =0do

7 Nm < N, + 1

8

for j + 1tondo > For each copy of «

9: for ! + 1 to n,, do _
10: k < random(0, d) >k:z =k
11: zi < random word from W
12: end for
13: if f(z) # f(z;) then
14: C «+ CU{z}

15: end if

16: end for
17: end while
18: return C'

Algorithm 2 Growing Net

Require: a target text x = (z1,...,xq4) € X, classifier f;
1: C < explore(x, f, WN_SIMWORDS 43— (-))
2: return argmax . - Wu-P(c, x)

Algorithm 3 Growing Language

Require: target text © = (z1,...,zq) € X, classifier f;
Hyper-parameters: 7 = 0.02; 6 = 0.9; 0,i, = 0.4;
1: C+ 0
2: while 6 > 0,;, N\C =0 do
3: C + CUexplore(z, f,LM_SIMWORDS(-))
4: 0+ 0—71
5: end while
6: return argmin .||z — c||o

Algorithm 1 outlines the iterative exploration
process employed by Growing Language and
Growing Net. In the first step (lines 1 to 3), both
approaches generate d sets of potential word re-
placements W7, ..., W, for each word z; in the
target document x. Those replacements must have
the same part-of-speech (POS) tag as x;. The ex-
ternal module to obtain those word replacements
depends on the method. These modules are de-
tailed later. Subsequently, our methods create arti-



THIS IS NOT AN INTERE\STIN@ BOOK

— N\
/\

r—=-
/ Lot

Synonyms Antonyms Antonyms

N J |

(a) Growing Net

Synonyms

N

THIS IS NOT AN INTERESTING BOOK
—

(b) Growing Language

Figure 2: The mechanism to compute potential word replacements in Growing Net navigates the tree structure of
WordNet. Conversely, Growing Language embeds words into a latent space on which it looks for nearby words.

ficial documents iteratively (lines 6 and 17) while
some words in the original document remain non-
replaced (n,, < d), or while we have not found any
counterfactuals. At each iteration, the exploration
keeps n copies of the original text () on which we
replace n,, individual words (x;) with randomly
selected words from their respective sets of poten-
tial replacements (Wj). Lines 13-15 check if the
resulting phrases are counterfactual instances.

For example, consider the target review, “This is
not an interesting book”, classified as negative by
a sentiment analysis model. In the first round, our
routine produces artificial reviews with only one
modified word. Subsequent rounds will replace
two words and so on (lines 9 to 12).

Growing Net. This method capitalizes on the
rich structure of WordNet (Fellbaum, 1998) to
identify potential word replacements. WordNet
is a lexical database and thesaurus that organizes
words and their meanings into a semantic tree of
interrelated concepts. The method is described
in Algorithm 2, and uses the module WN_SIM-
WORDS. In the exploration phase, Growing Net
uses WN_SIMWORDS to find words at a distance
of at most d in the WordNet hierarchy among syn-
onyms, antonyms, hyponyms, and hypernyms for a
given word z; to replace. This process is illustrated
in Figure 2a. In our experiments we set d = 1 as
this value already yields good results — higher val-
ues would incur longer runtimes. The exploration
returns a set of counterfactuals, from which Grow-
ing Net selects the one with the highest Wu-Palmer
Similarity (Wu-P) (Wei and Ngo, 2007) as final
explanation. This similarity score for text relies on
Wordnet, and takes into account the relatedness of
the concepts in the phrase, e.g., via the path length
to their most common ancestor in the hierarchy.

Growing Language. This approach leverages
the power of language models (LM) to restrict the

space of possible word replacements via the mod-
ule LM_SIMWORDSy (see Algorithm 3). Given
a word z; to replace, LM_SIMWORDSy embeds
the word onto the latent space of an LM, as il-
lustrated in Figure 2b. Then LM_SIMWORDSy re-
trieves words whose latent representation is at a
distance of 6 at most. In our experiments, we ini-
tially set this threshold to 0.8 on a scale from 0
to 1. If for a given #, Growing Language cannot
find counterfactual instances, the distance thresh-
old is relaxed, i.e., reduced by 7 (set to 0.02 in
our experiments), so that the exploration routine
considers more words. Should multiple counter-
factuals be found, Growing Language selects the
one with the fewest modifications compared to the
original document (minimal LO distance). For our
experiments, we employed Spacy (Honnibal and
Montani, 2017), but any language model capable
of embedding words and offering word distances
could be applied in this context.

4 Interpretability Spectrum

We have presented counterfactual explanation tech-
niques as either opaque or transparent. However,
the landscape is more nuanced, for these techniques
actually define a spectrum, which we depict in Fig-
ure 3. The spectrum spans from the most transpar-
ent methods on the left to the most opaque ones on
the right. We elaborate on the various regions of
this spectrum in the following.

Fully Transparent. At the leftmost end of the
spectrum, we find the method SEDC (Martens
and Provost, 2014), which perturbs text instances
by hiding only highly sensitive words within
the text. We place Growing Net on the right
of SEDC, because it goes beyond simple word
masking. Instead, it substitutes words judiciously
via an external interpretable asset, namely Wordnet.
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Figure 3: Spectrum for counterfactual explanation techniques that goes from the most transparent methods on the
left to the most opaque on the right. Transparent methods perturb documents in a binary space; opaque methods do

it in a latent space.

Transparent. Methods like PCIG (Yang et al.,
2020), MICE (Ross et al., 2021), and Growing Lan-
guage are considered more opaque than Growing
Net, because they employ a latent space to iden-
tify semantically close word substitutions. Despite
this reliance on black-box techniques, we consider
them transparent because the search for counterfac-
tuals is still carried out in the space of words.
Partially Opaque. Polyjuice, Tailor, and GYC
fall in the category of partially opaque methods,
as they leverage control codes to perturb the target
document. Control codes are specific instructions
that adapt the perturbation of the target text so that
it complies with a specific task, such as translating,
summarizing, or changing the tense of a text. While
these modifications occur in a latent space, the
inclusion of control codes provides some level of
clarity regarding why a modification influences the
model’s prediction.

Fully Opaque. On the far right of the inter-
pretability spectrum, we encounter fully opaque
approaches such as Decision Boundary, xSPELLS
and cfGAN. These methods perturb instances in
a latent space, making it challenging for users to
discern the underlying process of counterfactual
generation.

This interpretability spectrum provides valuable
insights into the transparency and opacity of coun-
terfactual explanation methods, allowing for a more
nuanced understanding of their capabilities.

5 Experimental Protocol

Having introduced the spectrum of counterfactual
explanation methods across the interpretability axis,
we now describe the experimental setup designed
to evaluate those methods. The code of the stu-
died methods, the datasets, and the experimental re-
sults are available at https://anonymous.4open.
science/r/ebbwbb-4B55/README . md

5.1 Methods

We picked a set of representative domain-agnostic
methods from all regions of the spectrum depicted
in Figure 3. These include SEDC and Growing
Net among the fully transparent methods, Growing
Language among the transparent ones', Polyjuice
among the partially opaque ones, and xSPELLS
and cfGAN from the fully opaque group.

5.2 Tasks & Datasets

We conduct the evaluation on three popular down-
stream tasks: (a) spam detection in messages, (b)
sentiment analysis, and (c) detection of fake news
from newspaper headlines. The datasets associ-
ated to these tasks consist of two target classes,
and contain between 4000 and 10660 textual doc-
uments. The average number of words in each
document is between 11.8 and 20.8 as reported
in Table 1. Except for the fake news dataset, we
downloaded the data from Kaggle. The fake news
dataset was constructed by us and its description
is available in our repository https://anonymous.
4open.science/r/ebbwbb-4B55/README . md.

No. of words Accuracy (%)

Dataset Instances

Total ~ Average MLP RF BERT
Fake 19419 11.8 4025 84 84 91
Polarity 11646 20.8 10660 72 67 82
Spam 15587 18.5 8559 100 100 100

Table 1: Information about the experimental datasets.
The “average” column denotes the average number of
words per instance (document).

5.3 Black-box Classifiers

Our evaluation uses two distinct black-box classi-
fiers implemented using the scikit-learn library and

'PCIG relies on domain specific rules from economics;
MICE is computationally expensive according to the authors.
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already employed in (S. Punla and C. Farro, 2022).
These black boxes are (i) a Random Forest (RF)
consisting of 500 tree estimators, (ii) a multi-layer
perceptron (MLP) with token counts as input, and
(iii) a classifier based on DistillBERTZ. For the RF
and the MLP, we employed both the foken count
and #f-idf vectorizers to convert text into proper
inputs for the models.

We used 70% of the instances for training, and
the remaining for testing. The classifiers’ test per-
formances are shown in Table 1. The counterfac-
tual explanations were computed for instances in
those test sets.

6 Results

We now present the results of our evaluation, orga-
nized in four rounds of experiments categorized ac-
cording to two aspects. First, we assess the quality
of the produced counterfactual explanations based
on two essential criteria: (i) minimality, and (ii)
plausibility. Second, we evaluate the methods
themselves in terms of (iii) flip change, and (iv)
runtime. For each evaluated method and black-
box classifier, we computed counterfactual expla-
nations for 100 target texts extracted from the test
sets of our datasets.

2https://is.gd/z1j3jIN

6.1 Counterfactual Quality

A high-quality textual counterfactual explanation
tells us what are the most sensitive parts or as-
pects of the target phrase, that otherwise changed,
would lead to a different classification outcome. It
follows then that such an explanation must (i) in-
cur minimal changes w.r.t the target phrase (sparse
changes), and (ii) be linguistically plausible, i.e.,
sound like something a person would naturally
write or say (Guidotti, 2022).
Minimality. We quantify the minimality criterion
by measuring the distance between the counterfac-
tual and the target sentence. Figure 4 and 5 display
the results of our minimality assessments, consid-
ering both the Levenshtein distance and the cosine
similarity within the embedding space of the BERT-
Sentence model (Reimers and Gurevych, 2019).
This dual approach ensures a comprehensive eval-
uation, accounting for both lexical similarity and
latent features, including aspects of style.
Notably, our findings reveal that methods posi-
tioned in the middle-ground, particularly Growing
Net, performed favorably compared to opaque ap-
proaches, both in terms of the number of words
modified and semantic comparison. It is worth not-
ing that xSPELLS introduced the most significant
changes to the original text — contradicting one
of the main functional requirements of a counter-
factual explanation (Wachter et al., 2018). Simi-
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Dataset Fake Spam Polarity

Black box MLP RF BERT MLP RF BERT MLP RF BERT
SEDC 095 0.82 1 047 042 056 092 093  0.98
Grow. Net 090 038 0.88 044 029 084 097 098 090
Grow. Lang. 0.84 0.84 0.77 0.58 061 0.17 092 092 092
Polyjuice 026 023 021 0.17 0.14 0.16 033 031 029
xSPELLS 068 078 0.77 098 095 091 091 076 0091
cfGAN 0.18 0.12 009 014 005 003 050 050 048

Table 2: Average label flip per dataset and black box of the six counterfactual methods (1 better).

larly, we observe a high variance in the minimality
of the counterfactuals generated by Polyjuice, in-
dicating that some counterfactuals were notably
distant from their corresponding target instances.
While these methods introduced minor perturba-
tions to the original text, these modifications oc-
curred within a latent space. Nothing guarantees,
however, that these minor adjustments translate
into visually subtle modifications of the target
phrase when the resulting phrase is brought back
to the original space. As an example, consider the
target text “This is one of Polanski’s best films.”
from the polarity dataset. For the DistillBERT clas-
sifier, cfGAN returns the counterfactual “this is one
of shot kingdom intelligence’ s all”, which looks
completely unrelated to the target text. Conversely,
the transparent method SEDC produces the coun-
terfactual “This is one of MASK MASK MASK”,
whereas Growing Language outputs “This is one
of Polanski’s worst films.” .

Additionally, we noted first that when the com-
plexity of the classifier increases, the counterfactual
explanations generated by SEDC lie farther from
the original text. Secondly, we observe minor varia-
tions dependent on the vectorizer employed by the
classifiers (count or tf-idf). Hence, for the subse-
quent phase of the evaluation, we present results
exclusively for the tf-idf vectorizer.

Plausibility. While linguistic plausibility is typi-
cally evaluated through user studies (Madaan et al.,
2021; Wu et al., 2021), we approximate it here fol-
lowing the techniques from Ross et al. (2021, 2022).
Thus, we use perplexity scores based on a GPT lan-
guage model (Brown et al., 2020), by calculating
the average mean squared error (MSE) loss when
predicting every token in the counterfactual from
the previous ones. Figure 6 presents the plausibility
of the counterfactuals. To enhance comparability,
we normalized perplexity scores based on the max-
imum perplexity observed across the entire set of
counterfactuals, where lower scores indicate higher
plausibility. Notably, SEDC and Polyjuice gen-
erated texts with the lowest plausibility, which is
expected since SEDC masks words, leading some-
times to nonsensical sentences. In contrast, cfGAN
demonstrated the highest plausibility, while both
Growing Net and Language achieved perplexity
scores similar to those of xXSPELLS.

6.2 Method Quality

We now compare the quality of the counterfactual
explanation methods themselves based on (iii) label
flip rate, which measures how frequently a method
produces an instance classified differently by the
model, and (iv) runtime, the time it takes for each
method to generate a counterfactual explanation.



dataset method MLP RF BERT
SEDC 31 (14) 13 (6) 15 (3)
Grow. Net 2(1) 1(1) 7(1)
fake Grow. Lang. 55 (28) 55(13) 34 (12)
Polyjuice 38 (8) 70 (185) 29 (4)
cfGAN 1(0) 1(0) 1(0)
xSPELLS 84 (6) 86 (7) 16 (1)
SEDC 21 (13) 16 (9) 16 (6)
Grow. Net 1(1) 1(1) 114
spam Grow. Lang. 60 (16) 57 (14) 88 (43)
Polyjuice 32(7) 62 (184) 33 (15)
cfGAN 1(0) 1(0) 1(0)
xSPELLS 219 (17) 198 (16) 22(1)
SEDC 13 (10) 12 (9) 21 (6)
Grow. Net 1(1) 1(1) 9(2)
polarity  Grow. Lang. 75 (33) 74 (32) 65 (29)
Polyjuice 81 (30) 82 (48) 29 (4)
cfGAN 1(0) 1 (0) 1(0)
xSPELLS 136 (19) 115(11) 24 (2)

Table 3: Average runtime in seconds of the studied
counterfactual methods (and standard deviation).

Label flip rate. Table 2 provides an overview of
the label flip results. It is noteworthy that except
for the spam dataset, transparent methods achieve
the highest label flip rate. This highlights the ef-
fectiveness of replacing words with antonyms as
a means to discover counterfactuals. Additionally,
xSPELLS exhibits strong performance for the spam
dataset and similar label flip rates to transparent
methods on polarity. We also emphasize that both
Growing Net and Growing Language can be fine-
tuned for a more exhaustive search by adjusting
their parameters, for example by lowering the min-
imal similarity threshold (6,,;, in Alg. 3) or by go-
ing further in WordNet’s tree structure (higher d in
Alg. 2). While this can enhance the label flip rate,
it may result in longer runtimes.

Runtime. Finally, Table 3 details the average and
standard deviation of the runtime for each counter-
factual explanation method across datasets and clas-
sifiers. Notably, cfGAN and Growing Net emerged
as the fastest methods for generating counterfactu-
als. However, it is important to note that cfGAN
requires the training of the Variational AutoEn-
coder (VAE) on each specific dataset, a process
that incurs long training times. The time needed for
fine-tuning varies, ranging from 4300 seconds for
fake news title detection to 6755 seconds for spam
detection. Furthermore, we observe that xXSPELLS
and Growing Language exhibit the slowest runtime
performance. Growing Language, for instance, re-
quires approximately 60 seconds to generate a sin-
gle counterfactual, while xXSPELLS exhibits run-

times, ranging from 16 seconds for fake news detec-
tion to 219 seconds for spam detection. These re-
sults reveal that, in contrast to opaque methods such
as xSPELLS, transparent approaches like Growing
Net are fast enough for real-time explainability.

7 Discussion & Conclusion

Our evaluation provides valuable insights into the
landscape of counterfactual explanations for down-
stream NLP tasks. One of the most striking find-
ings is that complexity, often associated with the
use of neural networks and latent spaces, does not
necessarily equate to superior performance in this
context. Surprisingly, our results demonstrate that
simpler approaches, characterized by a systematic
and judicious strategy for word replacement, con-
sistently yield satisfactory outcomes across all qual-
ity dimensions. The results of our study prompt
a deeper reflection on the optimal strategies for
generating counterfactual explanations in the field
of NLP. It invites readers to embrace simplicity
and transparency whenever the constraints of the
application allow it.

Furthermore, our findings underscore the critical
importance of transparency and interpretability in
Al and ML, especially in high-stakes applications.
The paradox of explaining a black box with another
one calls into question the development of opaque
approaches when transparent methods suffice, or
when transparency is one of the goals in the first
place. When focused on NLP applications, our
results also call for reflection on the meaning and
goal of explanations. If the task is to understand
which aspects of a text should change to get a dif-
ferent outcome, a counterfactual explanation that
drastically changes every word in the text may not
be understandable. On the contrary, a counterfac-
tual based on simple word-masking, albeit simple,
may be perceived as implausible. This could ham-
per the goal of explanations as a means to elicit
trust in users.

We therefore expect our findings to encourage
the development of more transparent and inter-
pretable Al systems that foster trust and account-
ability in every step of the Al-driven decision-
making processes, either for prediction, recommen-
dation, or explanation. Last but not least, we be-
lieve that the lessons drawn from this paper could
be naturally ported to other explanation paradigms.



Limitations

We remind the reader that the evaluation was con-
ducted on three well-studied downstream applica-
tions, namely polarity analysis, fake news detec-
tion, and spam detection. Our results might there-
fore not generalize to other NLP tasks in special-
ized domains or different languages. While this
work puts transparent approaches in the spotlight,
our results suggest that plausible counterfactual ex-
amples need external domain-adapted knowledge
either in the form of language models or knowledge
graphs. These may not always be available though.
Finally, our evaluation was based on popular cri-
teria and metrics for counterfactual explanations.
Specialized applications may still take into account
additional criteria such as diversity or actionability.
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