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Abstract

Although counterfactual explanations are a pop-001
ular approach to explain ML black-box classi-002
fiers, they are less widespread in NLP. Most003
methods find those explanations by iteratively004
perturbing the target document until it is classi-005
fied differently by the black box. We identify006
two main families of counterfactual explanation007
methods in the literature, namely, (a) transpar-008
ent methods that perturb the target by adding,009
removing, or replacing words, and (b) opaque010
approaches that project the target document011
into a latent, non-interpretable space where the012
perturbation is carried out subsequently. This013
article offers a comparative study of the per-014
formance of these two families of methods on015
three classical NLP tasks. Our empirical ev-016
idence shows that opaque approaches can be017
an overkill for downstream applications such018
as fake news detection or sentiment analysis019
since they add an additional level of complex-020
ity with no significant performance gain. These021
observations motivate our discussion, which022
raises the question of whether it makes sense023
to explain a black box using another black box.024

1 Introduction025

The latest advances in machine learning (ML) have026

led to significant advances in various natural lan-027

guage processing (NLP) tasks (Devlin et al., 2019;028

Liu et al., 2019; Sanh et al., 2019), such as text gen-029

eration, fake news detection, sentiment analysis,030

and spam detection. These notable improvements031

can be partly attributed to the adoption of methods032

that encode and manipulate text data using latent033

representations. Those methods embed text into034

high-dimensional vector spaces that capture the un-035

derlying semantics and structure of language, and036

that are suitable for complex ML models.037

Despite the impressive gains in accuracy038

achieved by modern ML algorithms (Devlin et al.,039

2019; Brown et al., 2020), their utility can be dimin-040

ished by their lack of interpretability (Shen et al.,041

2020). This has, in turn, raised an increasing in- 042

terest in ML explainability, the task of providing 043

appropriate explanations for the answers of black- 044

box ML algorithms (Jacovi, 2023). Indeed, a model 045

could make correct predictions for the wrong rea- 046

sons (Gururangan et al., 2018; McCoy et al., 2019). 047

Unless the ML model is a white box, explaining 048

the results of such an agent requires an explanation 049

layer that elucidates the internal workings of the 050

black box in a post-hoc manner. 051

While there are several ways to explain the out- 052

comes of an ML model a posteriori, there has 053

been a growing emphasis on counterfactual ex- 054

planations, a domain that has experienced notable 055

popularity over the last five years (Guidotti, 2022; 056

Miller, 2019). A counterfactual explanation is a 057

counter-example that is similar to the original text, 058

but that elicits a different outcome in the black 059

box (Wachter et al., 2018). Consider the classifier 060

depicted in Figure 1, for sentiment analysis applied 061

to the review “This is a good article” – classified 062

as positive. In this toy example, a counterfactual 063

could be the phrase “This is a poor article”. This 064

explanation tells us that the adjective “good” was a 065

possible reason for this sentence to be classified as 066

positive, and changing the polarity of that adjective 067

may change the classifier’s response. 068

Counterfactual explanation methods operate by 069

increasingly perturbing the target text until the an- 070

swer from the model – often a classifier – changes. 071

Those perturbations can be conducted transpar- 072

ently by adding, removing, or changing words and 073

syntactic groups (Martens and Provost, 2014; Yang 074

et al., 2020; Ross et al., 2021) in the original tar- 075

get text as depicted in Figure 1. Since removing 076

or adding words from a text can lead to unrealis- 077

tic texts, more recent methods (Hase and Bansal, 078

2020; Robeer et al., 2021; S. Punla and C. Farro, 079

2022) embed the target text in a latent space that 080

captures the underlying distribution of the model’s 081

training corpus. Perturbations are then carried out 082
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Figure 1: The mechanism employed to perturb the target documents by the transparent and opaque methods.
Transparent techniques, on the left, convert the input text to a vector representation, where ‘1’ indicates the presence
of the input word and ‘0’ denotes a replacement. Opaque methods, as on the right, embed words from the target text
into a latent space and perturb the text in this high-dimensional space.

in this space and then brought back to the space of083

words to guarantee realistic counterfactual explana-084

tions. These explanation methods rely on opaque085

sophisticated techniques to compute those expla-086

nations (Li et al., 2021), which is tantamount to087

explaining a black box with another black box.088

Based on this somehow paradoxical observation,089

we conduct a comparative study of various transpar-090

ent and opaque post-hoc counterfactual explanation091

approaches. Rather than two distinct categories, the092

studied methods define a continuum, as some meth-093

ods may combine transparent and non-interpretable094

techniques. Our study aims to understand whether095

it is worth resorting to latent approaches to explain096

complex ML models. The experimental results sug-097

gest that for some downstream NLP tasks, learning098

a latent representation for explanation purposes can099

be an overkill. To strengthen our point, we present100

and evaluate two novel transparent approaches for101

counterfactual explanations.102

The paper is structured as follows. Section 2 sur-103

veys the existing counterfactual explanation meth-104

ods. Section 3 introduces two novel transparent105

methods, which we then analyze in the light of106

the spectrum of existing transparent and opaque107

techniques (Section 4). We then elaborate on the108

experimental protocol of our comparative study in109

Section 5. The results of our experimentations are110

presented in Section 6. Section 7 discusses our111

findings and concludes the paper.112

2 Related Works113

Counterfactual explanation methods compute con-114

trastive explanations for ML black-box algorithms115

by providing examples that resemble a target in-116

stance but that lead to a different answer in the117

black box (Wachter et al., 2018). These counterfac-118

tual explanations convey the minimum changes in119

the input that would modify a classifier’s outcome. 120

Social sciences (Miller, 2019) have shown that 121

human explanations are contrastive and Wachter 122

et al. (2018) have illustrated the utility of coun- 123

terfactual instances in computational law. When 124

it comes to NLP tasks, a good counterfactual ex- 125

planation should be fluent (Morris et al., 2020), 126

i.e., read like something someone would say, and 127

be sparse (Pearl, 2009), i.e., look like the target 128

instance. 129

Counterfactual approaches have gained popu- 130

larity in the last few years. As illustrated by the 131

surveys, first by Bodria et al. (2021) and later by 132

Guidotti (2022), around 50 additional counterfac- 133

tual methods appeared in a one-year time span. De- 134

spite this surge of interest in counterfactual expla- 135

nations, their study for NLP applications remains 136

underdeveloped (Ross et al., 2021). In the follow- 137

ing, we elaborate on the existing counterfactual ex- 138

planation methods for textual data along a spectrum 139

that spans from transparent to opaque approaches. 140

Transparent Approaches. Given an ML classifier 141

and a target text (also called a document), trans- 142

parent techniques compute counterfactual explana- 143

tions in a binary space. Each dimension represents 144

the presence (1) or absence (0) of a word from a 145

given vocabulary. Hence, to perturb a text, these 146

methods toggle on and off 0s and 1s, where 0s 147

are tantamount to adding, removing, or replacing 148

words until the classifier yields a different answer. 149

This was first proposed by Martens and Provost 150

(2014) who introduced Search for Explanations 151

for Document Classification (SEDC), a method 152

that removes the words for which the classifier ex- 153

hibits the highest sensitivity. More recently, Ross 154

et al. (2021) developed Minimal Contrastive Edit- 155

ing (MICE), a method that employs a Text-To- 156

Text Transfer Transformer to fill masked sentences. 157
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Yang et al. (2020) presented Plausible Counterfac-158

tual Instances Generation (PCIG), which generates159

grammatically plausible counterfactuals through160

edits of single words with lexicons manually se-161

lected from the economics domain.162

Opaque Methods. We define opaque approaches163

as those perturbing the input text in a latent space in164

Rn. Methods such as Decision Boundary (Hase and165

Bansal, 2020), xSPELLS (S. Punla and C. Farro,166

2022) or cfGAN (Robeer et al., 2021) operate in167

three phases. First, they embed the target text onto168

a latent space. This is accomplished by employing169

specific techniques such as Variational AutoEn-170

coder (VAE) in the case of xSPELLS, or a pre-171

trained language model (LM) for cfGAN. Second,172

while the classifier’s decision boundary is not tra-173

versed, these methods perturb the latent represen-174

tation of the target phrase. This is done by adding175

Gaussian noise in the case of xSPELLS, whereas176

cfGAN resorts to a Conditional Generative Adver-177

sarial Network. Finally, a decoding stage produces178

sentences from the latent representation of the per-179

turbed documents.180

There also exist methods such as Polyjuice (Wu181

et al., 2021), Generate Your Counterfactuals182

(GYC) (Madaan et al., 2021) and Tailor (Ross et al.,183

2022) that perturb text documents in a latent space,184

but can be instructed to change particular linguis-185

tic aspects of the target text, such as locality or186

grammar tense. Such methods are not particularly187

designed to compute counterfactual explanations188

but are rather conceived for other applications such189

as data augmentation.190

Unlike pure word-based perturbation meth-191

ods, latent representations are good at preserv-192

ing semantic closeness for small perturbations.193

That said, these methods are not free of pitfalls.194

First, methods such as xSPELLS and cfGAN are195

deemed opaque since a latent space is not human-196

understandable (Shen et al., 2020). Moreover, exist-197

ing latent-based approaches do not seem optimized198

for sparse counterfactual explanations – one of the199

defining features of a counterfactual. We show this200

through our experimental results that suggest that201

a minor alteration in the latent space can cause a202

significant alteration in the original space.203

3 Two Novel Transparent Methods204

Before elaborating on our study, we introduce two205

novel counterfactual explanation techniques, aimed206

to enrich the middle ground between fully opaque207

and fully transparent approaches. The methods are 208

called Growing Language and Growing Net, and 209

both depend on an iterative process that replaces 210

words within a target text x = (x1, . . . , xd) ∈ X 211

(xi ∈ Σ are words from a vocabulary Σ) until 212

the predicted class of a given classifier f : X → 213

Y changes. The goal of such a procedure is to 214

compute sparse counterfactual explanations with 215

the fewest modified words. 216

Algorithm 1 Explore
Require: target text x = (x1, . . . , xd) ∈ X , classifier f ;

SIMWORDS(·)→ retrieves similar words
Hyper-parameters: n = 2000

Ensure: one or multiple counterfactual instances
1: for i← 1 to d do
2: Wi ← SIMWORDS(xi,POS(xi))
3: end for
4: Initialize Z = (z1, . . . , zn) as n copies of x
5: Initialize C ← ∅; nm ← 0
6: while nm < d ∧ C = ∅ do
7: nm ← nm + 1
8: for j ← 1 to n do ▷ For each copy of x
9: for l← 1 to nm do

10: k ← random(0, d) ▷ k : zjk = xk

11: zjk ← random word from Wk

12: end for
13: if f(x) ̸= f(zj) then
14: C ← C ∪ {zj}
15: end if
16: end for
17: end while
18: return C

Algorithm 2 Growing Net
Require: a target text x = (x1, . . . , xd) ∈ X , classifier f ;
1: C ← explore(x, f, WN_SIMWORDSd=1(·))
2: return argmaxc∈CWu-P(c, x)

Algorithm 3 Growing Language
Require: target text x = (x1, . . . , xd) ∈ X , classifier f ;

Hyper-parameters: τ = 0.02; θ = 0.9; θmin = 0.4;
1: C ← ∅
2: while θ > θmin ∧ C = ∅ do
3: C ← C ∪ explore(x, f, LM_SIMWORDSθ(·))
4: θ ← θ − τ
5: end while
6: return argminc∈C ||x− c||0

Algorithm 1 outlines the iterative exploration 217

process employed by Growing Language and 218

Growing Net. In the first step (lines 1 to 3), both 219

approaches generate d sets of potential word re- 220

placements W1, . . . ,Wd for each word xi in the 221

target document x. Those replacements must have 222

the same part-of-speech (POS) tag as xi. The ex- 223

ternal module to obtain those word replacements 224

depends on the method. These modules are de- 225

tailed later. Subsequently, our methods create arti- 226
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(a) Growing Net (b) Growing Language

Figure 2: The mechanism to compute potential word replacements in Growing Net navigates the tree structure of
WordNet. Conversely, Growing Language embeds words into a latent space on which it looks for nearby words.

ficial documents iteratively (lines 6 and 17) while227

some words in the original document remain non-228

replaced (nm < d), or while we have not found any229

counterfactuals. At each iteration, the exploration230

keeps n copies of the original text (x) on which we231

replace nm individual words (xk) with randomly232

selected words from their respective sets of poten-233

tial replacements (Wk). Lines 13-15 check if the234

resulting phrases are counterfactual instances.235

For example, consider the target review, “This is236

not an interesting book”, classified as negative by237

a sentiment analysis model. In the first round, our238

routine produces artificial reviews with only one239

modified word. Subsequent rounds will replace240

two words and so on (lines 9 to 12).241

Growing Net. This method capitalizes on the242

rich structure of WordNet (Fellbaum, 1998) to243

identify potential word replacements. WordNet244

is a lexical database and thesaurus that organizes245

words and their meanings into a semantic tree of246

interrelated concepts. The method is described247

in Algorithm 2, and uses the module WN_SIM-248

WORDSd. In the exploration phase, Growing Net249

uses WN_SIMWORDSd to find words at a distance250

of at most d in the WordNet hierarchy among syn-251

onyms, antonyms, hyponyms, and hypernyms for a252

given word xi to replace. This process is illustrated253

in Figure 2a. In our experiments we set d = 1 as254

this value already yields good results – higher val-255

ues would incur longer runtimes. The exploration256

returns a set of counterfactuals, from which Grow-257

ing Net selects the one with the highest Wu-Palmer258

Similarity (Wu-P) (Wei and Ngo, 2007) as final259

explanation. This similarity score for text relies on260

Wordnet, and takes into account the relatedness of261

the concepts in the phrase, e.g., via the path length262

to their most common ancestor in the hierarchy.263

Growing Language. This approach leverages264

the power of language models (LM) to restrict the265

space of possible word replacements via the mod- 266

ule LM_SIMWORDSθ (see Algorithm 3). Given 267

a word xi to replace, LM_SIMWORDSθ embeds 268

the word onto the latent space of an LM, as il- 269

lustrated in Figure 2b. Then LM_SIMWORDSθ re- 270

trieves words whose latent representation is at a 271

distance of θ at most. In our experiments, we ini- 272

tially set this threshold to 0.8 on a scale from 0 273

to 1. If for a given θ, Growing Language cannot 274

find counterfactual instances, the distance thresh- 275

old is relaxed, i.e., reduced by τ (set to 0.02 in 276

our experiments), so that the exploration routine 277

considers more words. Should multiple counter- 278

factuals be found, Growing Language selects the 279

one with the fewest modifications compared to the 280

original document (minimal L0 distance). For our 281

experiments, we employed Spacy (Honnibal and 282

Montani, 2017), but any language model capable 283

of embedding words and offering word distances 284

could be applied in this context. 285

4 Interpretability Spectrum 286

We have presented counterfactual explanation tech- 287

niques as either opaque or transparent. However, 288

the landscape is more nuanced, for these techniques 289

actually define a spectrum, which we depict in Fig- 290

ure 3. The spectrum spans from the most transpar- 291

ent methods on the left to the most opaque ones on 292

the right. We elaborate on the various regions of 293

this spectrum in the following. 294

Fully Transparent. At the leftmost end of the 295

spectrum, we find the method SEDC (Martens 296

and Provost, 2014), which perturbs text instances 297

by hiding only highly sensitive words within 298

the text. We place Growing Net on the right 299

of SEDC, because it goes beyond simple word 300

masking. Instead, it substitutes words judiciously 301

via an external interpretable asset, namely Wordnet. 302

303
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Figure 3: Spectrum for counterfactual explanation techniques that goes from the most transparent methods on the
left to the most opaque on the right. Transparent methods perturb documents in a binary space; opaque methods do
it in a latent space.

Transparent. Methods like PCIG (Yang et al.,304

2020), MICE (Ross et al., 2021), and Growing Lan-305

guage are considered more opaque than Growing306

Net, because they employ a latent space to iden-307

tify semantically close word substitutions. Despite308

this reliance on black-box techniques, we consider309

them transparent because the search for counterfac-310

tuals is still carried out in the space of words.311

Partially Opaque. Polyjuice, Tailor, and GYC312

fall in the category of partially opaque methods,313

as they leverage control codes to perturb the target314

document. Control codes are specific instructions315

that adapt the perturbation of the target text so that316

it complies with a specific task, such as translating,317

summarizing, or changing the tense of a text. While318

these modifications occur in a latent space, the319

inclusion of control codes provides some level of320

clarity regarding why a modification influences the321

model’s prediction.322

Fully Opaque. On the far right of the inter-323

pretability spectrum, we encounter fully opaque324

approaches such as Decision Boundary, xSPELLS325

and cfGAN. These methods perturb instances in326

a latent space, making it challenging for users to327

discern the underlying process of counterfactual328

generation.329

This interpretability spectrum provides valuable330

insights into the transparency and opacity of coun-331

terfactual explanation methods, allowing for a more332

nuanced understanding of their capabilities.333

5 Experimental Protocol334

Having introduced the spectrum of counterfactual335

explanation methods across the interpretability axis,336

we now describe the experimental setup designed337

to evaluate those methods. The code of the stu-338

died methods, the datasets, and the experimental re-339

sults are available at https://anonymous.4open.340

science/r/ebbwbb-4B55/README.md341

5.1 Methods 342

We picked a set of representative domain-agnostic 343

methods from all regions of the spectrum depicted 344

in Figure 3. These include SEDC and Growing 345

Net among the fully transparent methods, Growing 346

Language among the transparent ones1, Polyjuice 347

among the partially opaque ones, and xSPELLS 348

and cfGAN from the fully opaque group. 349

5.2 Tasks & Datasets 350

We conduct the evaluation on three popular down- 351

stream tasks: (a) spam detection in messages, (b) 352

sentiment analysis, and (c) detection of fake news 353

from newspaper headlines. The datasets associ- 354

ated to these tasks consist of two target classes, 355

and contain between 4000 and 10660 textual doc- 356

uments. The average number of words in each 357

document is between 11.8 and 20.8 as reported 358

in Table 1. Except for the fake news dataset, we 359

downloaded the data from Kaggle. The fake news 360

dataset was constructed by us and its description 361

is available in our repository https://anonymous. 362

4open.science/r/ebbwbb-4B55/README.md. 363

Dataset No. of words Instances Accuracy (%)

Total Average MLP RF BERT

Fake 19419 11.8 4025 84 84 91
Polarity 11646 20.8 10660 72 67 82
Spam 15587 18.5 8559 100 100 100

Table 1: Information about the experimental datasets.
The “average” column denotes the average number of
words per instance (document).

5.3 Black-box Classifiers 364

Our evaluation uses two distinct black-box classi- 365

fiers implemented using the scikit-learn library and 366

1PCIG relies on domain specific rules from economics;
MICE is computationally expensive according to the authors.
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Figure 4: Minimality as the levenshtein edit distance between the closest counterfactual and the target text (↓ better).

Figure 5: Minimality as the Sentence-BERT embedding distance between the closest counterfactual and the target
text (↓ better).

already employed in (S. Punla and C. Farro, 2022).367

These black boxes are (i) a Random Forest (RF)368

consisting of 500 tree estimators, (ii) a multi-layer369

perceptron (MLP) with token counts as input, and370

(iii) a classifier based on DistillBERT2. For the RF371

and the MLP, we employed both the token count372

and tf-idf vectorizers to convert text into proper373

inputs for the models.374

We used 70% of the instances for training, and375

the remaining for testing. The classifiers’ test per-376

formances are shown in Table 1. The counterfac-377

tual explanations were computed for instances in378

those test sets.379

6 Results380

We now present the results of our evaluation, orga-381

nized in four rounds of experiments categorized ac-382

cording to two aspects. First, we assess the quality383

of the produced counterfactual explanations based384

on two essential criteria: (i) minimality, and (ii)385

plausibility. Second, we evaluate the methods386

themselves in terms of (iii) flip change, and (iv)387

runtime. For each evaluated method and black-388

box classifier, we computed counterfactual expla-389

nations for 100 target texts extracted from the test390

sets of our datasets.391

2https://is.gd/zljjJN

6.1 Counterfactual Quality 392

A high-quality textual counterfactual explanation 393

tells us what are the most sensitive parts or as- 394

pects of the target phrase, that otherwise changed, 395

would lead to a different classification outcome. It 396

follows then that such an explanation must (i) in- 397

cur minimal changes w.r.t the target phrase (sparse 398

changes), and (ii) be linguistically plausible, i.e., 399

sound like something a person would naturally 400

write or say (Guidotti, 2022). 401

Minimality. We quantify the minimality criterion 402

by measuring the distance between the counterfac- 403

tual and the target sentence. Figure 4 and 5 display 404

the results of our minimality assessments, consid- 405

ering both the Levenshtein distance and the cosine 406

similarity within the embedding space of the BERT- 407

Sentence model (Reimers and Gurevych, 2019). 408

This dual approach ensures a comprehensive eval- 409

uation, accounting for both lexical similarity and 410

latent features, including aspects of style. 411

Notably, our findings reveal that methods posi- 412

tioned in the middle-ground, particularly Growing 413

Net, performed favorably compared to opaque ap- 414

proaches, both in terms of the number of words 415

modified and semantic comparison. It is worth not- 416

ing that xSPELLS introduced the most significant 417

changes to the original text – contradicting one 418

of the main functional requirements of a counter- 419

factual explanation (Wachter et al., 2018). Simi- 420

6
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Figure 6: Perplexity as the MSE loss of a GPT model on the generated counterfactuals (↓ better).

Dataset Fake Spam Polarity

Black box MLP RF BERT MLP RF BERT MLP RF BERT

SEDC 0.95 0.82 1 0.47 0.42 0.56 0.92 0.93 0.98

Grow. Net 0.90 0.8 0.88 0.44 0.29 0.84 0.97 0.98 0.90

Grow. Lang. 0.84 0.84 0.77 0.58 0.61 0.17 0.92 0.92 0.92

Polyjuice 0.26 0.23 0.21 0.17 0.14 0.16 0.33 0.31 0.29

xSPELLS 0.68 0.78 0.77 0.98 0.95 0.91 0.91 0.76 0.91

cfGAN 0.18 0.12 0.09 0.14 0.05 0.03 0.50 0.50 0.48

Table 2: Average label flip per dataset and black box of the six counterfactual methods (↑ better).

larly, we observe a high variance in the minimality421

of the counterfactuals generated by Polyjuice, in-422

dicating that some counterfactuals were notably423

distant from their corresponding target instances.424

While these methods introduced minor perturba-425

tions to the original text, these modifications oc-426

curred within a latent space. Nothing guarantees,427

however, that these minor adjustments translate428

into visually subtle modifications of the target429

phrase when the resulting phrase is brought back430

to the original space. As an example, consider the431

target text “This is one of Polanski’s best films.”432

from the polarity dataset. For the DistillBERT clas-433

sifier, cfGAN returns the counterfactual “this is one434

of shot kingdom intelligence’ s all”, which looks435

completely unrelated to the target text. Conversely,436

the transparent method SEDC produces the coun-437

terfactual “This is one of MASK MASK MASK”,438

whereas Growing Language outputs “This is one439

of Polanski’s worst films.” .440

Additionally, we noted first that when the com-441

plexity of the classifier increases, the counterfactual442

explanations generated by SEDC lie farther from443

the original text. Secondly, we observe minor varia-444

tions dependent on the vectorizer employed by the445

classifiers (count or tf-idf ). Hence, for the subse-446

quent phase of the evaluation, we present results447

exclusively for the tf-idf vectorizer.448

Plausibility. While linguistic plausibility is typi- 449

cally evaluated through user studies (Madaan et al., 450

2021; Wu et al., 2021), we approximate it here fol- 451

lowing the techniques from Ross et al. (2021, 2022). 452

Thus, we use perplexity scores based on a GPT lan- 453

guage model (Brown et al., 2020), by calculating 454

the average mean squared error (MSE) loss when 455

predicting every token in the counterfactual from 456

the previous ones. Figure 6 presents the plausibility 457

of the counterfactuals. To enhance comparability, 458

we normalized perplexity scores based on the max- 459

imum perplexity observed across the entire set of 460

counterfactuals, where lower scores indicate higher 461

plausibility. Notably, SEDC and Polyjuice gen- 462

erated texts with the lowest plausibility, which is 463

expected since SEDC masks words, leading some- 464

times to nonsensical sentences. In contrast, cfGAN 465

demonstrated the highest plausibility, while both 466

Growing Net and Language achieved perplexity 467

scores similar to those of xSPELLS. 468

6.2 Method Quality 469

We now compare the quality of the counterfactual 470

explanation methods themselves based on (iii) label 471

flip rate, which measures how frequently a method 472

produces an instance classified differently by the 473

model, and (iv) runtime, the time it takes for each 474

method to generate a counterfactual explanation. 475
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dataset method MLP RF BERT

fake

SEDC 31 (14) 13 (6) 15 (3)
Grow. Net 2 (1) 1 (1) 7 (1)
Grow. Lang. 55 (28) 55 (13) 34 (12)
Polyjuice 38 (8) 70 (185) 29 (4)
cfGAN 1 (0) 1 (0) 1 (0)
xSPELLS 84 (6) 86 (7) 16 (1)

spam

SEDC 21 (13) 16 (9) 16 (6)
Grow. Net 1 (1) 1 (1) 11 (4)
Grow. Lang. 60 (16) 57 (14) 88 (43)
Polyjuice 32 (7) 62 (184) 33 (15)
cfGAN 1 (0) 1 (0) 1 (0)
xSPELLS 219 (17) 198 (16) 22 (1)

polarity

SEDC 13 (10) 12 (9) 21 (6)
Grow. Net 1 (1) 1 (1) 9 (2)
Grow. Lang. 75 (33) 74 (32) 65 (29)
Polyjuice 81 (30) 82 (48) 29 (4)
cfGAN 1 (0) 1 (0) 1 (0)
xSPELLS 136 (19) 115 (11) 24 (2)

Table 3: Average runtime in seconds of the studied
counterfactual methods (and standard deviation).

Label flip rate. Table 2 provides an overview of476

the label flip results. It is noteworthy that except477

for the spam dataset, transparent methods achieve478

the highest label flip rate. This highlights the ef-479

fectiveness of replacing words with antonyms as480

a means to discover counterfactuals. Additionally,481

xSPELLS exhibits strong performance for the spam482

dataset and similar label flip rates to transparent483

methods on polarity. We also emphasize that both484

Growing Net and Growing Language can be fine-485

tuned for a more exhaustive search by adjusting486

their parameters, for example by lowering the min-487

imal similarity threshold (θmin in Alg. 3) or by go-488

ing further in WordNet’s tree structure (higher d in489

Alg. 2). While this can enhance the label flip rate,490

it may result in longer runtimes.491

Runtime. Finally, Table 3 details the average and492

standard deviation of the runtime for each counter-493

factual explanation method across datasets and clas-494

sifiers. Notably, cfGAN and Growing Net emerged495

as the fastest methods for generating counterfactu-496

als. However, it is important to note that cfGAN497

requires the training of the Variational AutoEn-498

coder (VAE) on each specific dataset, a process499

that incurs long training times. The time needed for500

fine-tuning varies, ranging from 4300 seconds for501

fake news title detection to 6755 seconds for spam502

detection. Furthermore, we observe that xSPELLS503

and Growing Language exhibit the slowest runtime504

performance. Growing Language, for instance, re-505

quires approximately 60 seconds to generate a sin-506

gle counterfactual, while xSPELLS exhibits run-507

times, ranging from 16 seconds for fake news detec- 508

tion to 219 seconds for spam detection. These re- 509

sults reveal that, in contrast to opaque methods such 510

as xSPELLS, transparent approaches like Growing 511

Net are fast enough for real-time explainability. 512

7 Discussion & Conclusion 513

Our evaluation provides valuable insights into the 514

landscape of counterfactual explanations for down- 515

stream NLP tasks. One of the most striking find- 516

ings is that complexity, often associated with the 517

use of neural networks and latent spaces, does not 518

necessarily equate to superior performance in this 519

context. Surprisingly, our results demonstrate that 520

simpler approaches, characterized by a systematic 521

and judicious strategy for word replacement, con- 522

sistently yield satisfactory outcomes across all qual- 523

ity dimensions. The results of our study prompt 524

a deeper reflection on the optimal strategies for 525

generating counterfactual explanations in the field 526

of NLP. It invites readers to embrace simplicity 527

and transparency whenever the constraints of the 528

application allow it. 529

Furthermore, our findings underscore the critical 530

importance of transparency and interpretability in 531

AI and ML, especially in high-stakes applications. 532

The paradox of explaining a black box with another 533

one calls into question the development of opaque 534

approaches when transparent methods suffice, or 535

when transparency is one of the goals in the first 536

place. When focused on NLP applications, our 537

results also call for reflection on the meaning and 538

goal of explanations. If the task is to understand 539

which aspects of a text should change to get a dif- 540

ferent outcome, a counterfactual explanation that 541

drastically changes every word in the text may not 542

be understandable. On the contrary, a counterfac- 543

tual based on simple word-masking, albeit simple, 544

may be perceived as implausible. This could ham- 545

per the goal of explanations as a means to elicit 546

trust in users. 547

We therefore expect our findings to encourage 548

the development of more transparent and inter- 549

pretable AI systems that foster trust and account- 550

ability in every step of the AI-driven decision- 551

making processes, either for prediction, recommen- 552

dation, or explanation. Last but not least, we be- 553

lieve that the lessons drawn from this paper could 554

be naturally ported to other explanation paradigms. 555
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Limitations556

We remind the reader that the evaluation was con-557

ducted on three well-studied downstream applica-558

tions, namely polarity analysis, fake news detec-559

tion, and spam detection. Our results might there-560

fore not generalize to other NLP tasks in special-561

ized domains or different languages. While this562

work puts transparent approaches in the spotlight,563

our results suggest that plausible counterfactual ex-564

amples need external domain-adapted knowledge565

either in the form of language models or knowledge566

graphs. These may not always be available though.567

Finally, our evaluation was based on popular cri-568

teria and metrics for counterfactual explanations.569

Specialized applications may still take into account570

additional criteria such as diversity or actionability.571
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