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Abstract001

Chart question answering (CQA) has become a002
critical multimodal task for evaluating the rea-003
soning capabilities of vision-language models.004
While early approaches have shown promising005
performance by focusing on visual features or006
leveraging large-scale pre-training, most exist-007
ing evaluations rely on rigid output formats and008
objective metrics, thus ignoring the complex,009
real-world demands of practical chart analy-010
sis. In this paper, we introduce ChartMind, a011
new benchmark designed for complex CQA012
tasks in real-world settings. ChartMind covers013
seven task categories, incorporates multilingual014
contexts, supports open-domain textual outputs,015
and accommodates diverse chart formats, bridg-016
ing the gap between real-world applications017
and traditional academic benchmarks. Further-018
more, we propose a context-aware yet model-019
agnostic framework, ChartLLM, that focuses020
on extracting key contextual elements, reducing021
noise, and enhancing the reasoning accuracy of022
multimodal large language models. Extensive023
evaluations on ChartMind and three represen-024
tative public benchmarks with 14 mainstream025
multimodal models show our framework signif-026
icantly outperforms the previous three common027
CQA paradigms: instruction-following, OCR-028
enhanced, and chain-of-thought, highlighting029
the importance of flexible chart understanding030
for real-world CQA. These findings suggest031
new directions for developing more robust chart032
reasoning in future research.033

1 Introduction034

Chart question answering (Ma et al., 2024; Qin035

et al., 2022) is a prominent multimodal task de-036

signed to evaluate the reasoning capabilities of037

vision-language models, especially their multi-038

modal perception ability and local reasoning ability.039

Early studies treat CQA as a discriminative task,040

focusing on directly modeling visual elements to041

answer questions (Kafle et al., 2018; Chang et al.,042

2022). However, these methods often struggle with043

generalization due to their inability to capture the 044

semantic and visual richness of charts. Hence, re- 045

searchers introduce more visual semantic infor- 046

mation (e.g., OCR) to enhance the multimodal 047

perception ability (Liu et al., 2023; Wang et al., 048

2023a). Recent studies have shown the potential 049

of multimodal large language models (LLMs) on 050

the CQA task by adopting large-scale multimodal 051

pre-training (Kim et al., 2022; Lee et al., 2023) or 052

chain-of-thought (COT) reasoning (Li et al., 2024b; 053

Wei et al., 2024), suggesting that leveraging large- 054

scale datasets and supervised fine-tuning improves 055

the interpretation of multimodal charts. 056

Several benchmarks (Zaib et al., 2022; Bajić 057

and Job, 2023; Huang et al., 2024) have been pro- 058

posed to better understand the strengths and weak- 059

nesses of multi-modal LLMs for CQA. However, 060

human evaluations often suffer from high variabil- 061

ity and instability due to individual and cultural dif- 062

ferences, leading many existing benchmarks (Kafle 063

et al., 2018; Mahinpei et al., 2022) to rely pre- 064

dominantly on automatic metrics (e.g., F1 scores). 065

While such approaches effectively evaluate the ac- 066

curacy of a single answer (e.g., “2024" for “What 067

is the largest value in column X?"), they do not 068

fully capture the need for complex and multi-step 069

reasoning commonly required in real-world sce- 070

narios. Many professional data analysis tasks de- 071

mand advanced inference, such as multi-hop rea- 072

soning or synthesizing information from multiple 073

charts. Consequently, most existing benchmarks 074

have widely ignored the logical steps involved in 075

such inferencing, focusing instead on whether the 076

answer includes the correct keyword or value. 077

In addition, as shown in Figure 1, we summa- 078

rize three main challenges in existing benchmarks: 079

multilingual charts, diverse formats, and questions 080

lacking a single definitive answer, such as chart 081

summarization. Models need to handle both visual 082

comprehension and logical reasoning. To extract 083

meaningful information, they must first recognize 084
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Figure 1: Key Challenges in CQA Benchmarks: (A) Predominantly monolingual, limiting multilingual applicability
in chart question answering; (B) Fixed formats and metrics, restricting adaptability to diverse charts; (C) Emphasis
on deterministic answers, overlooking complex reasoning, such as trend analysis, and summarization.

visual elements, such as colors, structures, and spa-085

tial relationships. Then, they must analyze the logi-086

cal connections between elements and answer com-087

plex queries, such as performing calculations, iden-088

tifying trends, and finding relationships within the089

data. Moreover, the wide range of real-world chart090

types (e.g., bar charts, line charts, scatter plots) cre-091

ates higher demands for models to generalize and092

perform well on new and unseen formats.093

To address these challenges, we introduce Chart-094

Mind, a multilingual benchmark designed for high-095

level chart reasoning across seven task categories.096

It includes both English and Chinese charts, pro-097

viding the first dual-language evaluation setting098

for chart QA. Compared to prior benchmarks that099

focus on single-answer prediction, ChartMind sup-100

ports open-ended outputs such as summarization101

and trend analysis. This design narrows the gap be-102

tween academic benchmarks and real-world chart103

usage scenarios. To support better performance104

in these complex tasks, we propose ChartLLM, a105

structured context modeling framework that explic-106

itly extracts semantic components—titles, legends,107

axes—from charts and feeds them into the model.108

Unlike procedural reasoning like CoT, ChartLLM109

reduces cognitive burden by pre-structuring rele-110

vant visual information, improving the robustness111

and generalizability of existing MLLMs.112

To validate our benchmark, we conduct a com-113

prehensive study of 14 mainstream multimodal114

models, comparing ChartLLM-based approaches115

with three widely used CQA paradigms: (1)116

instruction-following methods driven by predefined117

prompts, (2) OCR-enhanced methods that priori-118

tize text extraction, and (3) COT-based methods119

emphasizing step-by-step reasoning.120

Our contributions are as follows: (1) We intro- 121

duce ChartMind, the first benchmark for com- 122

plex CQA tasks in real-world settings. Covering 123

seven task categories, multilingual contexts, and di- 124

verse chart formats, it bridges the gap between real- 125

world applications and traditional academic bench- 126

marks. (2) We propose ChartLLM, a context- 127

aware yet model-agnostic framework that focuses 128

on extracting key contextual elements, reducing 129

noise, and enhancing the reasoning accuracy of 130

MLLMs. (3) Through experiments across seven 131

task categories, two languages, and seven chart for- 132

mats, we show that ChartLLM outperforms preva- 133

lent CQA paradigms. These findings highlight the 134

need for flexible chart understanding and foster 135

advanced research on real-world chart analysis. 136

2 Related Work 137

In contrast, ChartLLM uses structured semantic 138

cues from charts—such as titles, legends, and 139

axes—to guide model reasoning, without relying 140

on step-by-step decomposition. 141

CQA Methods. The development of CQA meth- 142

ods (Zeng et al., 2024; Li et al., 2024b; Xu et al., 143

2023) has evolved from early discriminative ap- 144

proaches to structured reasoning and large-scale 145

pretraining (Zhou et al., 2023; Li et al., 2023; 146

Huang et al., 2024; Tan et al., 2024). Early mod- 147

els like IMG+QUESS (Kafle et al., 2018) and V- 148

MODEQA (Chang et al., 2022) use CNNs for vi- 149

sual encoding and RNNs for query processing, but 150

suffer from limited generalization due to weak rea- 151

soning and OOV handling. OCR-enhanced meth- 152

ods (Liu et al., 2023; Wang et al., 2023a) con- 153

vert chart visuals into text, aiding value extrac- 154

tion but introducing noise and losing spatial cues. 155
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Dataset Avg. Ans. Instances Language Diverse Task Topic Chart Pie Scatter Common Grouped Stacked Complex Common
Length Number Format Format Format Format Format Bar Bar Bar Line Line

ChartQA (Masry et al., 2022) 1.15 2,500 English 1 1 3 3 ✓ ✗ ✓ ✗ ✗ ✗ ✓

MMC-Benchmark (Liu et al., 2024a) 1.08 2,126 English 1 4 5 2 ✗ ✓ ✗ ✗ ✗ ✗ ✓

PaperQA (Lu et al., 2023) 1.26 107 English 1 1 2 4 ✓ ✓ ✓ ✗ ✗ ✗ ✓

OpenCQA (Kantharaj et al., 2022a) 55.73 1,159 English 1 1 4 4 ✓ ✓ ✓ ✗ ✗ ✗ ✓

Chart-to-Text (Kantharaj et al., 2022b) 73.49 3,474 English 1 1 3 4 ✓ ✓ ✓ ✗ ✗ ✗ ✓

LineCap (Mahinpei et al., 2022) 13.63 1,930 English 1 1 1 2 ✗ ✗ ✗ ✗ ✗ ✓ ✓

ChartMind 119.69 757 EN&ZH 2 7 6 7 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of ChartMind with Existing Chart QA Datasets.

COT-based models (Li et al., 2024b; Wei et al.,156

2024) decompose reasoning steps to improve in-157

terpretability, yet depend on structured input and158

struggle with varied chart layouts. Other methods159

like Donut (Kim et al., 2022) and Pix2Struct (Lee160

et al., 2023) remove OCR dependency via end-161

to-end training, while instruction-following mod-162

els (Achiam et al., 2023) leverage large-scale163

vision-language pretraining but still fall short on164

multilingual support and high-level reasoning. Re-165

cent work such as ChartInsights (Wu et al., 2024b)166

targets low-level factual QA, whereas ChartLLM167

uses structured semantic cues—titles, legends,168

axes—to support multilingual and high-level tasks169

without relying on CoT-style decomposition.170

CQA Benchmarks. The development of CQA171

models necessitates reliable benchmarks to evalu-172

ate performance across diverse tasks (Zaib et al.,173

2022; Bajić and Job, 2023). Existing datasets fall174

into Factoid Question Answering (FQA), Open-175

Domain Question Answering (OQA), and Caption-176

ing (CAP) categories (Huang et al., 2024). FQA177

datasets, such as ChartQA (Kafle et al., 2018),178

MMC-Bench (Liu et al., 2024a), and PaperQA (Lu179

et al., 2023), assess factual queries, including nu-180

merical extractions, trend identification, and rela-181

tional interpretations, relying on predefined chart182

types for objective reasoning. OQA datasets like183

OpenCQA (Kantharaj et al., 2022a) introduce open-184

ended questions but enforce rigid output structures185

and rely on automated metrics like BLEU, limiting186

adaptability to complex reasoning. CAP datasets,187

including Chart-to-Text (Kantharaj et al., 2022b)188

and LineCap (Mahinpei et al., 2022), generate tex-189

tual chart descriptions but remain constrained by190

structured evaluation metrics. ChartMind addresses191

these gaps by combining high-level semantic tasks,192

multilingual data, and diverse chart types to sup-193

port broader and more flexible evaluation. Table 1194

compares representative CQA benchmarks.195

3 Construction of ChartMind196

Figure 2 presents an overview of our three-stage197

data construction pipeline, including chart collec-198

tion, GPT-based generation, and human validation. 199

Each stage is described below. 200

3.1 Stage I: Chart Collection and Processing 201

To build a diverse and realistic chart QA bench- 202

mark, we collect over 1,200 charts from open- 203

source platforms, including GitHub repositories, 204

public datasets, and Overleaf-based academic 205

projects. All content complies with permissive 206

licenses (e.g., CC BY 4.0, MIT). Charts span 207

multiple formats—pie, bar (common, grouped, 208

stacked), line (common, complex), and scatter 209

plots—covering domains such as economics, edu- 210

cation, and technology. 211

We remove charts that are blurry, lack proper 212

axis or legend labels, or contain unreadable text. 213

This filtering step ensures that remaining charts 214

support meaningful reasoning and are visually ac- 215

cessible to models. These cleaned charts serve as 216

the input to the next stage. 217

3.2 Stage II: Prompt-based QA Generation 218

Given a chart, we generate diverse QA pairs for 219

seven tasks (e.g., summarization, classification, 220

suggestion) using GPT-4o (Achiam et al., 2023). 221

For each task type, we design a dedicated prompt 222

template that includes a few-shot example, output 223

format instructions, and style control. Prompts are 224

adapted to the chart type and domain to ensure 225

contextual grounding. To avoid redundancy, we 226

apply controlled randomness (e.g., varying prompt 227

temperature and phrasing) and use clustering on 228

question embeddings to eliminate duplicates. Fig- 229

ure 2 (Stage II) illustrates this process. 230

3.3 Stage III: Human Validation 231

Each generated QA pair is reviewed by at least 232

two annotators with over two years of chart QA 233

research experience. Annotators follow a unified 234

protocol and examine: (1) semantic alignment be- 235

tween question and chart, (2) accuracy and consis- 236

tency of answers, (3) proper use of terminology 237

and metrics. We revise or discard pairs with hallu- 238

cinated entities, incorrect reasoning, or weak chart 239

grounding. 240
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Figure 2: Data Construction Pipeline for the ChartMind.
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Figure 3: Language and task distribution in ChartMind.

Answer Rewriting. GPT-generated answers are241

not automatically accepted. Annotators verify ref-242

erences to chart elements (e.g., trends, labels, time243

ranges) and rewrite unclear or incorrect responses.244

textcolorblueFor example: Question: What does245

this chart suggest about AI patent trends between246

2013 and 2022? GPT-4o Answer: They increased247

significantly. Human Answer: The chart shows a248

consistent rise in AI patent filings, particularly in249

machine learning, highlighting growing investment250

in AI research during this period.251

Final Filtering. Only QA pairs that pass human252

validation and align with visual evidence are in-253

cluded in ChartMind. Our process draws on best254

practices from TableBench (Wu et al., 2024a) and255

ArXivQA (Li et al., 2024a). Annotators help refine256

task definitions by identifying unclear cases.257

3.4 Data Summary and Task Complexity258

Language and Topic Diversity. As shown in259

Figure 3, ChartMind includes 59.71% English and260

40.29% Chinese questions, enabling bilingual eval-261

uation across all seven task types. While Chinese262

is not a low-resource language, high-quality chart263

reasoning data in Chinese remains rare. ChartMind264

Technology

Economy

Society

Education

Medicine

Other

12.
71%

2.59%
3.06%
2.82%

10.82%

68.00%

Figure 4: Topic distribution in ChartMind.

Task Samples Query Length Answer Length
(Min / Max) (Min / Max)

Chart Conversion 140 11 / 477 5 / 55
Chart OCR Recognition 139 13 / 351 8 / 59
Suggestions 88 17 / 492 13 / 53
Chart Classification Analysis 37 360 / 503 72 / 79
Chart Summarization 34 76 / 335 12 / 113
Chart Assistance 76 9 / 276 12 / 41
Information Positioning 140 11 / 208 11 / 35

Total 757 9 / 503 5 / 113

Table 2: Task Type Statistics in ChartMind.

provides a first step toward multilingual bench- 265

marking, and we plan to expand to more languages 266

in future releases. 267

Figure 4 illustrates the topic breakdown, where 268

economic charts dominate with 68.00%, followed 269

by education and technology. 270

Task Coverage and Reasoning Demands. Ta- 271

ble 2 summarizes the distribution and complexity 272

of QA samples across the seven task categories. 273

The seven task types differ in language structure, 274

visual grounding, and reasoning depth. Summa- 275

rization and Classification require long, structured 276

responses, while Positioning and OCR involve pre- 277

cise short-form grounding. This diversity supports 278

balanced evaluation of reasoning and generation. 279
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4 ChartLLM280

4.1 Problem Definition281

CQA is a task that involves providing an answer282

A to a natural language question Q, based on the283

information contained in a chart C. The answer284

A may take various forms, depending on the type285

of question. Specifically, A could be a numerical286

value, a categorical label, an entity set, or an open-287

domain sentence. These different answer types re-288

quire distinct reasoning capabilities, ranging from289

retrieval-based reasoning (e.g., extracting numeri-290

cal values) to analytical reasoning (e.g., identifying291

patterns and trends in the chart). Formally, the an-292

swer A is represented as a collection of values or293

entities {a1, a2, . . . , ak}, where k ∈ N+.294

4.2 Reasoning Methods295

Instruction-following (Wei et al., 2021) and In-296

context learning (Dong et al., 2024) refer to strate-297

gies that optimize input for LLMs to generate prac-298

tical outputs based on task-specific instructions and299

context. These methods enable models to leverage300

the provided task instructions to guide reasoning301

and output generation. To fully assess the reasoning302

capabilities of LLMs for CQA, we propose three303

distinct reasoning methods that aim to evaluate the304

model’s reasoning performance.305

Instruction-following-based methods Such306

methods (Wei et al., 2021) leverage task-specific307

instructions to guide LLMs in reasoning tasks.308

The model utilizes a prompt to interpret chart data309

and generate answers. The prompt P provides310

additional contextual guidance for the natural311

language question Q, specifying how the model312

should reason over the chart data. The reasoning313

process can be expressed as:314

M(C,Q, P ) → A (1)315

where M represents the model, C is the chart, Q is316

the natural language question, P is the instruction317

prompt, and A is the answer. This approach can be318

applied in both fine-tuning and zero-shot settings,319

allowing the model to adapt to tasks based on the320

provided instructions.321

OCR-enhanced methods OCR-enhanced meth-322

ods (Liu et al., 2023) augment reasoning by incor-323

porating textual content extracted from charts using324

OCR tools. These tools provide the model with ad-325

ditional information embedded in the chart, which326

may not be directly accessible through its visual 327

content. The reasoning process is formulated as: 328

M(C,Q,O(C)) → A (2) 329

where O(C) denotes the OCR-extracted content 330

from the chart C. OCR tools offer essential support 331

in understanding chart-based queries by enhancing 332

the model’s input with relevant textual data. 333

COT-based methods COT-based methods (Wei 334

et al., 2022) break down the reasoning process 335

into intermediate steps to improve both the accu- 336

racy and interpretability of the model’s responses. 337

This approach decomposes the reasoning into a 338

sequence of logical steps, which enhances the 339

model’s ability to solve complex tasks. The process 340

is represented as: 341

M(C,Q) → {r1, r2, . . . , rk} → A (3) 342

where r1, r2, . . . , rk represent intermediate reason- 343

ing steps, and A is the final answer. CoT is partic- 344

ularly useful for tasks requiring step-by-step rea- 345

soning, such as analyzing trends, identifying pat- 346

terns, or extracting structured insights from com- 347

plex chart data. 348

4.3 ChartLLM: Context Extraction for CQA 349

The ChartLLM is designed to enhance CQA by 350

extracting and structuring relevant contextual infor- 351

mation from a chart. Given a chart C, the context 352

Ccontext = {T, L,X, Y }, where T is the title, L 353

is the legend, X is the X-axis label, and Y is the 354

Y-axis label, is generated to represent the essential 355

elements of the chart. This approach minimizes ir- 356

relevant data and focuses solely on the components 357

required for accurate reasoning in CQA tasks. To 358

extract Ccontext, predefined prompts, such as "Ex- 359

tract key information from the chart, including title, 360

legend, and X and Y-axis information," guide the 361

model in identifying the necessary elements of the 362

chart. This ensures the extracted context is concise, 363

relevant, and foundational for reasoning. Unlike 364

step-by-step CoT reasoning, ChartLLM focuses on 365

structured context modeling, reducing the model’s 366

perceptual burden by presenting semantically key 367

components upfront. 368

The reasoning objective for ChartLLM is to pre- 369

dict the answer A that maximizes the conditional 370

probability given the question Q and the extracted 371

context Ccontext. This can be expressed as: 372

A = argmaxa∈A
∑n

i=1 ECcontext,Q [logP (ai | Ccontext, Q; Θ)]

(4) 373
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Models Size
ChartMind ChartQA Chart-to-Text OpenCQA

ACC Avg.CIDEr Avg.GPT-4o Score Aug. ACC Hum. ACC Avg. ACC Pew. BLEU Statista. BLEU Avg. BLEU Avg. BLEU

Instruction-Following-Based (Wei et al., 2021)

TinyChart† (Zhang et al., 2024a) 3B 5.36 18.45 16.81 93.60 72.16 82.88 10.84 27.04 18.94 19.62
ChartInstruct† (Masry et al., 2024) 7B 9.82 24.55 15.05 82.40 40.64 61.52 12.81 39.39 26.10 14.78
ChartLlama† (Han et al., 2023) 7B 20.54 21.34 12.72 90.36 48.96 69.66 14.23 40.71 27.47 4.70
Sphinx-v2 (Lin et al., 2023) 7B 9.82 25.95 13.69 60.96 43.92 52.44 3.43 4.94 4.19 3.10
LLaVA1.5 (Liu et al., 2024c) 7B 34.82 39.50 15.58 20.12 25.20 22.66 15.70 11.07 13.39 15.17
ViP-LLaVA (Cai et al., 2024) 7B 20.54 37.01 15.56 17.60 26.16 21.88 1.36 2.59 1.98 15.04
LLaVA-NEXT (Liu et al., 2024b) 7B 20.54 47.37 31.09 74.26 46.30 60.28 13.85 6.63 10.24 8.07
IXC-2.5 (Zhang et al., 2024b) 7B 47.30 40.10 43.31 92.40 74.32 83.36 17.69 11.86 14.78 9.39
Qwen2-VL (Bai et al., 2023) 7B 57.14 37.32 47.89 94.10 72.00 83.05 11.07 22.98 17.03 8.26
mPLUG-Owl2 (Ye et al., 2024) 8B 25.00 36.17 14.22 24.13 27.34 25.74 12.83 5.97 9.40 5.34
MiniCPM-v2 (Hu et al., 2024) 8B 22.32 28.48 10.63 91.12 69.02 80.07 22.17 11.01 16.59 20.05
CogVLM (Wang et al., 2023b) 17B 23.21 40.20 29.35 23.95 39.53 31.74 16.38 11.84 14.11 1.75
GLM-4V-plus (GLM et al., 2024) - 59.83 38.36 21.52 16.80 12.80 14.80 5.69 5.71 5.70 7.41
GPT-4o (Achiam et al., 2023) - 61.89 47.25 68.81 95.34 76.06 85.70 17.75 8.70 13.23 13.92

OCR-Enhanced (Liu et al., 2023)

TinyChart† (Zhang et al., 2024a) 3B 6.71 (+1.35) 13.91 (-4.54) 17.91 (+1.10) 94.86 (+1.26) 73.95 (+1.79) 84.41 (+1.53) 13.85 (+3.01) 28.27 (+1.23) 21.06 (+2.12) 20.15 (+0.53)
ChartInstruct† (Masry et al., 2024) 7B 10.01 (+0.19) 32.80 (+8.25) 23.42 (+8.37) 83.74 (+1.34) 42.17 (+1.53) 62.96 (+1.44) 14.95 (+2.14) 40.83 (+1.44) 27.89 (+1.79) 16.01 (+1.23)
ChartLlama† (Han et al., 2023) 7B 22.03 (+1.49) 21.07 (-0.27) 26.70 (+13.97) 90.85 (+0.49) 49.26 (+0.30) 70.06 (+0.40) 16.02 (+1.79) 39.97 (-0.74) 28.00 (+0.53) 5.89 (+1.19)
Sphinx-v2 (Lin et al., 2023) 7B 11.54 (+1.72) 24.14 (-1.81) 17.21 (+3.52) 64.08 (+3.12) 45.49 (+1.57) 54.79 (+2.35) 8.81 (+5.38) 2.39 (-2.55) 5.60 (+1.41) 3.16 (+0.06)
LLaVA1.5 (Liu et al., 2024c) 7B 36.15 (+1.33) 33.49 (-6.01) 21.03 (+5.45) 19.73 (-0.39) 25.95 (+0.75) 22.84 (+0.18) 15.94 (+0.24) 12.67 (+1.60) 14.30 (+0.91) 16.31 (+1.14)
ViP-LLaVA (Cai et al., 2024) 7B 25.38 (+4.84) 36.77 (-0.24) 26.45 (+10.89) 27.12 (+9.52) 24.94 (-1.22) 26.03 (+4.15) 14.13 (+12.77) 14.37 (+11.78) 14.25 (+12.27) 18.08 (+3.04)
LLaVA-NEXT (Liu et al., 2024b) 7B 41.15 (+20.61) 47.83 (+0.46) 31.51 (+0.42) 70.47 (-3.79) 52.68 (+6.38) 61.58 (+1.30) 15.16 (+1.31) 8.82 (+2.19) 11.99 (+1.75) 8.25 (+0.18)
IXC-2.5 (Zhang et al., 2024b) 7B 42.31 (-4.99) 40.35 (+0.24) 45.38 (+2.06) 94.23 (+1.83) 73.40 (-0.92) 83.82 (+0.46) 17.03 (-0.66) 12.34 (+0.48) 14.68 (-0.10) 14.53 (+5.14)
Qwen2-VL (Bai et al., 2023) 7B 42.31 (-14.83) 36.04 (-1.27) 49.28 (+1.39) 94.23 (+0.13) 75.96 (+3.96) 85.10 (+2.05) 11.08 (+0.01) 23.21 (+0.23) 17.15 (+0.12) 11.75 (+3.49)
mPLUG-Owl2 (Ye et al., 2024) 8B 27.62 (+2.62) 30.60 (-5.57) 24.67 (+10.44) 35.58 (+11.45) 37.18 (+9.84) 36.38 (+10.65) 11.82 (-1.01) 7.30 (+1.33) 9.56 (+0.16) 4.45 (-0.89)
MiniCPM-v2 (Hu et al., 2024) 8B 23.04 (+0.72 19.73 (-8.75) 18.10 (+7.47) 92.36 (+1.24) 73.21 (+4.19) 82.79 (+2.72) 20.93 (-1.24) 5.75 (-5.26) 13.34 (-3.25) 20.60 (+0.55)
CogVLM (Wang et al., 2023b) 17B 25.54 (+2.33) 39.00 (-1.20) 36.80 (+7.45) 29.81 (+5.86) 48.72 (+9.19) 39.27 (+7.53) 20.85 (+4.47) 13.88 (+2.04) 17.37 (+3.26) 1.79 (+0.04)
GLM-4V-plus (GLM et al., 2024) - 44.64 (-15.19) 44.83 (+6.47) 35.79 (+14.27) 17.95 (+1.15) 16.87 (+4.07) 17.41 (+2.61) 7.91 (+2.22) 7.63 (+1.92) 7.77 (+2.07) 8.72 (+1.31)
GPT-4o (Achiam et al., 2023) - 49.31 (-12.58) 46.48 (-0.76) 71.79 (+2.98) 96.20 (+0.86) 78.04 (+1.98) 87.12 (+1.42) 20.13 (+2.38) 9.86 (+1.16) 15.00 (+1.77) 14.85 (+0.93)

COT-Based (Wei et al., 2022)

TinyChart† (Zhang et al., 2024a) 3B 6.01 (+0.65) 13.58 (-4.87) 19.30 (+2.49) 94.84 (+1.24) 74.46 (+2.30) 84.65 (+1.77) 12.31 (+1.47) 28.53 (+1.49) 20.42 (+1.48) 20.74 (+1.12)
ChartInstruct† (Masry et al., 2024) 7B 9.96 (+0.14) 31.95 (+7.40) 22.44 (+7.39) 83.35 (+0.95) 42.74 (+2.10) 63.05 (+1.53) 14.34 (+1.53) 41.32 (+1.93) 27.83 (+1.73) 15.25 (+0.47)
ChartLlama† (Han et al., 2023) 7B 21.44 (+0.90) 18.99 (-2.36) 21.77 (+9.04) 91.63 (+1.27) 50.04 (+1.08) 70.84 (+1.18) 15.76 (+1.53) 41.42 (+0.71) 28.59 (+1.12) 6.32 (+1.62)
Sphinx-v2 (Lin et al., 2023) 7B 9.91 (+0.09) 25.03 (-0.92) 16.26 (+2.57) 61.86 (+0.90) 46.79 (+2.87) 54.33 (+1.89) 3.53 (+0.10) 5.09 (+0.15) 4.31 (+0.12) 3.13 (+0.03)
LLaVA1.5 (Liu et al., 2024c) 7B 35.77 (+0.95) 35.61 (-3.89) 19.68 (+4.10) 16.90 (-3.22) 28.57 (+3.37) 22.74 (+0.08) 15.20 (-0.50) 11.66 (+0.59) 13.43 (+0.04) 15.93 (+0.76)
ViP-LLaVA (Cai et al., 2024) 7B 23.31 (+2.77) 36.13 (-0.88) 22.24 (+6.68) 22.12 (+4.52) 28.21 (+2.05) 25.17 (+3.29) 15.48 (+14.12) 12.20 (+9.61) 13.84 (+11.86) 15.67 (+0.63)
LLaVA-NEXT (Liu et al., 2024b) 7B 40.23 (+19.69) 47.44 (+0.07) 27.34 (-3.75) 68.49 (-5.77) 52.13 (+5.83) 60.31 (+0.03) 14.81 (+0.96) 6.29 (-0.34) 10.55 (+0.31) 8.09 (+0.02)
IXC-2.5 (Zhang et al., 2024b) 7B 41.15 (-6.15) 41.23 (+1.13) 46.73 (+3.42) 93.91 (+1.51) 72.82 (-1.50) 83.37 (+0.01) 17.36 (+0.23) 11.92 (+0.06) 14.64 (-0.14) 14.39 (+5.00)
Qwen2-VL (Bai et al., 2023) 7B 40.69 (-16.45) 44.72 (+7.41) 55.12 (+7.24) 94.87 (+0.77) 77.88 (+5.88) 86.38 (+3.33) 16.70 (+5.63) 23.91 (+0.93) 20.30 (+3.27) 10.32 (+2.06)
mPLUG-Owl2 (Ye et al., 2024) 8B 25.89 (+0.89) 35.10 (-1.08) 21.27 (+7.04) 27.56 (+3.43) 31.09 (+3.75) 29.33 (+3.59) 14.00 (+1.17) 7.84 (+1.87) 10.92 (+1.52) 7.88 (+2.54)
MiniCPM-v2 (Hu et al., 2024) 8B 22.78 (+0.46) 28.81 (+0.33) 18.18 (+7.54) 92.37 (+1.25) 71.47 (+2.45) 81.92 (+1.85) 26.56 (+4.39) 12.53 (+1.52) 19.54 (+2.95) 20.30 (+0.25)
CogVLM (Wang et al., 2023b) 17B 24.01 (+0.80) 40.04 (-0.16) 37.14 (+7.79) 27.31 (+3.36) 44.93 (+5.40) 36.12 (+4.38) 17.94 (+1.56) 12.57 (+0.73) 15.26 (+1.15) 3.41 (+1.66)
GLM-4V-plus (GLM et al., 2024) - 41.00 (-18.83) 39.55 (+1.19) 21.68 (+0.16) 18.63 (+1.83) 15.96 (+3.16) 17.30 (+2.50) 6.86 (+1.17) 7.72 (+2.01) 7.29 (+1.59) 8.83 (+1.42)
GPT-4o (Achiam et al., 2023) - 46.15 (-15.74) 48.19 (+0.95) 69.00 (+0.19) 95.39 (+0.05) 77.23 (+1.17) 86.31 (+0.61) 19.20 (+1.45) 9.31 (+0.61) 14.26 (+1.03) 15.42 (+1.50)

ChartLLM-Based

TinyChart† (Zhang et al., 2024a) 3B 7.69 (+2.33) 20.07 (+1.62) 23.21 (+6.40) 95.04 (+1.44) 74.41 (+2.25) 84.73 (+1.85) 14.68 (+3.84) 34.22 (+7.18) 24.45 (+5.51) 21.84 (+2.22)
ChartInstruct† (Masry et al., 2024) 7B 11.54 (+1.72) 34.79 (+10.24) 26.43 (+11.39) 85.93 (+3.53) 43.52 (+2.88) 64.73 (+3.20) 15.52 (+2.71) 41.42 (+2.03) 28.47 (+2.37) 18.53 (+3.75)
ChartLlama† (Han et al., 2023) 7B 22.67 (+2.13) 22.54 (+1.19) 27.58 (+14.85) 91.42 (+1.06) 51.72 (+2.76) 71.57 (+1.91) 17.94 (+3.71) 40.47 (-0.24) 29.21 (+1.74) 7.40 (+2.70)
Sphinx-v2 (Lin et al., 2023) 7B 13.85 (+4.03) 30.11 (+4.16) 23.68 (+9.99) 62.80 (+1.84) 48.00 (+4.08) 55.40 (+2.96) 7.90 (+4.47) 7.35 (+2.41) 7.63 (+3.44) 6.88 (+3.78)
LLaVA1.5 (Liu et al., 2024c) 7B 36.92 (+2.10) 38.39 (-1.11) 26.95 (+11.37) 25.44 (+5.32) 31.68 (+6.48) 28.56 (+5.90) 18.21 (+2.51) 17.83 (+6.76) 18.02 (+4.63) 17.40 (+2.23)
ViP-LLaVA (Cai et al., 2024) 7B 26.23 (+5.69) 41.98 (+4.97) 28.79 (+13.23) 23.96 (+6.36) 29.04 (+2.88) 26.50 (+4.62) 14.31 (+12.95) 14.38 (+11.79) 14.35 (+12.37) 18.72 (+3.68)
LLaVA-NEXT (Liu et al., 2024b) 7B 42.31 (+21.77) 49.40 (+2.03) 34.40 (+3.32) 75.82 (+1.56) 47.68 (+1.38) 61.75 (+1.47) 15.26 (+1.41) 8.93 (+2.30) 12.10 (+1.86) 9.02 (+0.95)
IXC-2.5 (Zhang et al., 2024b) 7B 47.31 (+0.01) 43.38 (+3.28) 51.88 (+8.56) 94.88 (+2.48) 76.24 (+1.92) 85.56 (+2.20) 19.82 (+2.13) 14.70 (+2.84) 17.26 (+2.48) 16.83 (+7.44)
Qwen2-VL (Bai et al., 2023) 7B 57.66 (+0.52) 45.54 (+8.22) 56.10 (+8.21) 94.40 (+0.30) 77.44 (+5.44) 85.92 (+2.87) 20.96 (+9.89) 24.45 (+1.47) 22.71 (+5.68) 18.53 (+10.27)
mPLUG-Owl2 (Ye et al., 2024) 8B 29.38 (+4.38) 40.46 (+4.29) 29.15 (+14.93) 38.76 (+14.63) 40.34 (+13.00) 39.55 (+13.82) 13.01 (+0.18) 8.91 (+2.94) 10.96 (+1.56) 6.26 (+0.92)
MiniCPM-v2 (Hu et al., 2024) 8B 24.21 (+1.89) 38.65 (+10.17) 23.73 (+13.09) 93.84 (+2.72) 71.86 (+2.84) 82.85 (+2.78) 27.68 (+5.51) 24.55 (+13.54) 26.12 (+9.53) 20.88 (+0.83)
CogVLM (Wang et al., 2023b) 17B 26.38 (+3.17) 41.05 (+0.85) 41.85 (+12.50) 33.41 (+9.46) 51.73 (+12.20) 42.57 (+10.83) 21.46 (+5.08) 14.74 (+2.90) 18.10 (+3.99) 2.48 (+0.73)
GLM-4V-plus (GLM et al., 2024) - 60.18 (+0.35) 47.00 (+8.64) 37.19 (+15.67) 19.74 (+2.94) 18.04 (+5.24) 19.66 (+4.86) 9.75 (+4.06) 8.97 (+3.26) 9.36 (+3.66) 9.74 (+2.34)
GPT-4o (Achiam et al., 2023) - 61.89 (+0.00) 50.42 (+3.17) 73.89 (+5.08) 98.63 (+3.29) 79.49 (+3.43) 89.06 (+3.36) 23.65 (+5.90) 11.07 (+2.37) 17.36 (+4.14) 16.04 (+2.12)

Table 3: Performance of multimodal models on ChartMind and three structured-output CQA datasets. The best
results are highlighted in bold, and the second-best results are underlined. †Specialized CQA models.

Here, A is the predicted answer, A represents the374

candidate answer space, Ccontext is the extracted375

context from the chart C, Q is the natural language376

question, ai is the i-th candidate answer, and Θ377

denotes the model parameters.378

5 Experiments379

5.1 Experimental Setup380

We evaluate four paradigms for CQA tasks, in-381

cluding instruction-following, COT-based reason-382

ing, OCR-enhanced methods, and our proposed383

ChartLLM framework. These methods are tested384

on 14 MLLMs from three categories: specialized385

CQA models, general-purpose open-source models,386

and general-purpose closed-source models. The387

evaluation spans four datasets, including our pro-388

posed ChartMind and three structured-output CQA 389

datasets—ChartQA (Masry et al., 2022), Chart-to- 390

Text (Kantharaj et al., 2022b), and OpenCQA (Kan- 391

tharaj et al., 2022a)—which primarily rely on pre- 392

defined answer formats and automated scoring met- 393

rics. In contrast, ChartMind introduces diverse 394

chart formats and open-domain textual outputs, en- 395

abling a more comprehensive assessment of real- 396

world CQA scenarios. Further implementation de- 397

tails, model descriptions, and benchmark specifica- 398

tions are provided in Appendix B. 399

5.2 Main Results 400

To evaluate the effectiveness and robustness 401

of ChartLLM-based methods over OCR- 402

enhanced (Liu et al., 2023) and COT-based (Wei 403

et al., 2022) approaches in open-ended and 404
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Models Size Avg. GPT-4o Score Avg. Human Score

ChartInstruct (Masry et al., 2024) 7B 26.43 22.52
ChartLlama (Han et al., 2023) 7B 27.58 23.11
TinyChart (Zhang et al., 2024a) 3B 23.21 21.97
mPLUG-Owl2 (Ye et al., 2024) 8B 29.15 29.31
Sphinx-v2 (Lin et al., 2023) 7B 23.68 22.31
CogVLM (Wang et al., 2023b) 17B 41.85 34.96
LLaVA1.5 (Liu et al., 2024c) 7B 26.95 22.93
MiniCPM-v2 (Hu et al., 2024) 8B 23.73 24.01
ViP-LLaVA (Cai et al., 2024) 7B 28.79 30.75
LLaVA-NEXT (Liu et al., 2024b) 7B 34.40 32.31
IXC-2.5 (Zhang et al., 2024b) 7B 51.88 36.61
Qwen2-VL (Bai et al., 2023) 7B 56.10 40.39
GLM-4V-plus (GLM et al., 2024) - 37.19 39.35
GPT-4o (Achiam et al., 2023) - 73.89 50.73

PCC (Cohen et al., 2009) - 93.09

Table 4: Correlation of GPT4o and Human Eval.

structured-output reasoning, Table 3 compares405

their performance across various benchmarks.406

Both OCR-enhanced and COT-based methods407

yield significant improvements (blue text), but408

their effectiveness varies by task. OCR-enhanced409

methods often degrade performance (red text),410

particularly in open-ended reasoning, where redun-411

dancy and noise from textual extraction disrupt412

holistic reasoning. For instance, GPT-4o’s (Achiam413

et al., 2023) ACC in open-ended tasks drops by414

-12.58 with OCR-enhanced methods, reflecting415

their sensitivity to flexible reasoning. COT-based416

methods enhance structured-output reasoning but417

struggle in open-ended tasks, reducing GPT-4o’s418

ACC by -15.74 due to difficulties in integrating419

contextual and visual elements. ChartLLM-based420

methods address these challenges by strategically421

extracting key contextual information and min-422

imizing redundancy, reducing external noise in423

reasoning. By focusing on essential chart elements424

and preserving relevant semantic relationships,425

they achieve superior performance with consistent426

adaptability across both reasoning types. Their427

ability to balance context extraction and noise428

reduction underscores their robustness in handling429

complex chart reasoning.430

5.3 Correlation Analysis of Metrics431

To assess the consistency between automated and432

human evaluation in open-ended CQA, Table 4433

analyzes the correlation between GPT-4o Score434

and Human Score across 14 multimodal models.435

The Pearson Correlation Coefficient (PCC) (Co-436

hen et al., 2009) is 93.09, indicating a strong linear437

relationship. High-performing models like GPT-438

4o (Achiam et al., 2023) and Qwen2-VL (Bai et al.,439

2023) show strong alignment between GPT-4o and440

human scores, validating automated evaluation re-441

liability. Notably, models like mPLUG-Owl2 (Ye442

et al., 2024) and ViP-LLaVA (Cai et al., 2024)443
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Figure 5: Performance of multimodal models across
Chinese and English datasets in ChartMind.

exhibit slight deviations, where human scores 444

marginally exceed automated ones, possibly re- 445

flecting nuanced human judgment in open-ended 446

reasoning. The high PCC confirms GPT-4o Score 447

as a robust proxy for human evaluation, reinforcing 448

its applicability in open-ended CQA. 449

5.4 Sensitivity Analysis 450

Language-Level Analysis. To evaluate the sen- 451

sitivity of different paradigms to multilingual chal- 452

lenges in CQA, we analyze model performance 453

across English and Chinese charts in ChartMind. 454

Figure 5 compares results under each method 455

across both languages, grouped by paradigm to 456

highlight method robustness. We observe a consis- 457

tent performance gap across models: Chinese tasks 458

are generally more difficult, reflecting challenges 459

in tokenization, OCR quality, and implicit reason- 460

ing common in Chinese chart labels. Instruction- 461

following models such as GPT-4o (Achiam et al., 462

2023) and LLaVA1.5 (Liu et al., 2024c) show sig- 463

nificant degradation in Chinese due to weaker mul- 464

tilingual grounding. OCR-enhanced methods help 465

mitigate these gaps by injecting extracted text, es- 466

pecially in Chinese, where axis labels and titles are 467

often more semantically informative. COT-based 468

methods help slightly but introduce more variance, 469

especially in visual tasks where decomposition is 470

less intuitive. ChartLLM-based methods consis- 471
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Figure 6: Performance of multimodal models on seven tasks in ChartMind.

tently achieve the best cross-lingual performance.472

By explicitly structuring chart context before rea-473

soning, ChartLLM reduces noise and enhances se-474

mantic alignment, leading to more stable perfor-475

mance in both languages.476

Task-Level Analysis. To explore how different477

paradigms handle diverse CQA tasks, we evalu-478

ate model performance across seven task types in479

ChartMind. As shown in Figure 6, these tasks480

vary in difficulty. Chart Conversion and Chart481

Summarization are the most challenging, involv-482

ing semantic fusion and cross-modal reasoning.483

In contrast, Suggestions and Information Position-484

ing focus on localized extraction and are compar-485

atively easier. Instruction-following methods of-486

ten struggle with complex tasks, showing unstable487

outputs due to weak multimodal alignment. OCR-488

enhanced approaches perform well in text-heavy489

scenarios like Chart OCR Recognition, but degrade490

on tasks such as Summarization, where excess raw491

text introduces noise and misleads the model. COT-492

based methods help in procedural reasoning tasks493

like Suggestions, but fall short in integrative tasks494

such as Chart Assistance, where linear step-by-495

step thinking cannot capture multimodal depen-496

dencies. ChartLLM-based methods consistently497

demonstrate robust performance across all task498

types. By explicitly modeling structural context499

before reasoning, ChartLLM improves semantic500

grounding in complex settings while preserving501

precision in simpler tasks. This balance highlights502

its adaptability and makes it particularly effective503

for real-world CQA.504

Chart-Type-Level Analysis. We examine how 505

different paradigms perform across chart types of 506

varying complexity in ChartMind. Tasks involving 507

Pie and Stacked Bar charts require high-context 508

reasoning, while Complex Line charts mainly in- 509

volve direct value extraction. Instruction-following 510

models struggle with layout-heavy formats; OCR- 511

enhanced methods perform well on text-dense 512

charts but falter when visual cues dominate. COT- 513

based methods show moderate stability but lack se- 514

mantic depth. ChartLLM consistently outperforms 515

others by explicitly modeling contextual elements, 516

enabling it to generalize across both visually intri- 517

cate and text-sparse chart types. A full breakdown 518

is provided in Appendix D. 519

6 Conclusion 520

We introduce ChartMind, the first benchmark for 521

complex CQA in realistic settings. It addresses 522

key gaps in prior work by supporting multilingual 523

charts, open-ended outputs, and seven distinct task 524

types. Across four paradigms and 14 multimodal 525

models, our results show that ChartLLM—a model- 526

agnostic, context-aware framework—consistently 527

outperforms OCR and CoT methods, establishing 528

a strong baseline for future CQA research. Future 529

work will explore multi-turn dialogues, cross-chart 530

reasoning, and hybrid chart–text queries to support 531

more advanced and realistic use cases. 532

Limitations 533

ChartMind provides a benchmark for complex 534

CQA evaluation, yet several limitations remain. 535
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First, the dataset primarily relies on publicly avail-536

able charts, potentially introducing biases in data537

distribution and task complexity. Ensuring broader538

representativeness requires further dataset expan-539

sion and diversification. Second, although Chart-540

Mind defines seven reasoning tasks, real-world541

chart analysis often involves more advanced rea-542

soning, such as multi-turn interactions, cross-chart543

comparisons, and textual-visual information inte-544

gration, which remain underexplored. Third, the545

reliance on automated evaluation methods, such as546

GPT-4 ratings, introduces challenges in capturing547

nuanced human judgment in complex reasoning.548

Addressing these issues requires refining evalua-549

tion methodologies and incorporating more human550

annotations. Future improvements may focus on551

expanding the dataset, enhancing evaluation met-552

rics, and integrating multi-turn reasoning and cross-553

chart analysis to better reflect real-world scenarios.554
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A Chart Types and Tasks in ChartMind752

ChartMind supports a diverse range of chart types753

and reasoning tasks, ensuring a comprehensive754

evaluation of complex reasoning in CQA. As755

shown in Figure 7 The dataset includes seven756

distinct chart types—Pie, Common Bar, Scatter,757

Grouped Bar, Complex Line, Stacked Bar, and758

Common Line—capturing varied visual structures759

and data representations. Additionally, ChartMind760

defines seven reasoning tasks: Chart Conversion,761

Chart OCR Recognition, Suggestions, Chart Assis-762

tance, Chart Classification, Chart Summarization,763

and Information Positioning, covering key aspects764

of multimodal chart understanding. These distribu-765

tions illustrate ChartMind’s ability to comprehen-766

sively assess complex multimodal reasoning, span-767

ning diverse chart types and reasoning paradigms.768

Compared to prior benchmarks, ChartMind pro-769

vides a broader evaluation scope, capturing the770

complexity of real-world CQA tasks.771

B Experimental Setup Details772

B.1 Implementation Details773

To assess the performance of models on com-774

plex CQA tasks in real-world settings, we experi-775

ment with four types of paradigms. First, we test776

MLLMs in the instruction-following setting (Zhou777

et al., 2023), where we use prompts to evaluate their778

ability to answer chart-related questions. Second,779

we apply COT-based methods (Wei et al., 2022),780

which break down reasoning processes into inter-781

mediate steps to generate answers. Third, we adopt782

OCR-enhanced methods inspired by DePlot (Liu783

et al., 2023), which extract chart content as text and784

use it as input for multimodal reasoning models. Fi-785

nally, we propose the ChartLLM method, which en-786

hances reasoning performance by extracting struc-787

tured contextual information, such as chart titles,788

legends, and axes, using Qwen2-VL (Bai et al.,789

2023), and feeding this information into models for790

further analysis.791

B.2 Models792

We evaluate 14 MLLMs across three categories:793

specialized CQA models, general-purpose open-794

source multimodal models, and general-purpose795

closed-source multimodal models. The majority of796

the models have a parameter size of approximately797

7B, with a few exceptions, including smaller mod-798

els such as TinyChart (Zhang et al., 2024a) with 3B799

parameters and larger models like CogVLM (Wang800

et al., 2023b) with 17B parameters. For special- 801

ized CQA models, we include ChartInstruct (Masry 802

et al., 2024), ChartLlama (Han et al., 2023), and 803

TinyChart (Zhang et al., 2024a). These models are 804

specifically trained on CQA datasets, making them 805

particularly suited for tasks requiring precise un- 806

derstanding of chart-related queries. Among open- 807

source general-purpose multimodal models, we 808

evaluate mPLUG-Owl2 (Ye et al., 2024), Sphinx- 809

v2 (Lin et al., 2023), CogVLM (Wang et al., 2023b), 810

LLaVA1.5 (Liu et al., 2024c), MiniCPM-v2 (Hu 811

et al., 2024), ViP-LLaVA (Cai et al., 2024), LLaVA- 812

NEXT (Liu et al., 2024b), IXC-2.5 (Zhang et al., 813

2024b), and Qwen2-VL (Bai et al., 2023). These 814

models leverage extensive multimodal training 815

datasets, including CQA data, and exhibit strong 816

performance on chart-related tasks. Finally, closed- 817

source general multimodal models, including GPT- 818

4o (Achiam et al., 2023) and GLM-4V-plus (GLM 819

et al., 2024), are state-of-the-art models with ad- 820

vanced multimodal reasoning capacities, provid- 821

ing strong competition to existing open-source sys- 822

tems. 823

B.3 Benchmarks and Metrics 824

To comprehensively evaluate multimodal CQA 825

tasks, we adopt three representative structured- 826

output reasoning datasets—ChartQA (Masry et al., 827

2022), Chart-to-Text (Kantharaj et al., 2022b), and 828

OpenCQA (Kantharaj et al., 2022a)—alongside our 829

proposed benchmark, ChartMind. ChartQA and 830

Chart-to-Text primarily take a chart and a natural 831

language question as input and generate structured 832

textual answers, such as numerical values, categor- 833

ical labels, or predefined captions, making them 834

well-suited for factual extraction tasks. OpenCQA, 835

despite allowing open-ended queries, constrains 836

responses to structured formats evaluated by au- 837

tomated metrics like BLEU, limiting its ability to 838

assess flexible reasoning. To address these con- 839

straints, ChartMind introduces a more comprehen- 840

sive evaluation by supporting diverse chart types, 841

open-ended textual outputs, and seven complex 842

reasoning tasks, enabling a broader assessment of 843

multimodal reasoning. Models are evaluated using 844

Accuracy and CIDEr for structured assessments, 845

while GPT-4o score and Human score serve as 846

open-ended evaluation metrics, with GPT-4o score 847

as the primary metric, as detailed in Appendix C. 848

The structured-output datasets are evaluated using 849

Accuracy and BLEU score. 850
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Chart Classification AnalysisSuggestions Chart SummarizationChart Assistance Information PositioningChart Conversion

Based on the chart, please convert  the 
chart into a table and output it in 
markdown format.

| Entity | Percentage |\n|---|---|\n| 
Individuals | 45.00% |\n| 
Corporations | 20.00% |\n| 
Foundations | 20.00% |\n| 
Government | 10.00% |\n| Other | 
5.00% |

Please extract the donation amounts 
for each type of donation shown in 
the bar chart and convert the 
extracted OCR data into a formatted 
data table.

| Donation Type | Donation 
Amount(USD) |\n|---|---|\n| Online 
donations | 500 |\n| Donations by 
mail | 400 |\n| Donations in person | 
300 |\n| Donations by phone | 450 |

Based on the corresponding information 
of male and female height and weight 
in the chart, analyze the differences in 
the relationship between male and …

The scatter plot shows the 
relationship between height and 
weight for both males and females. 
The data points for males are 
generally higher on the y-axis …

The chart has the following categories: 
pie chart, regular bar chart … Please 
determine the category of the chart 
based on the graphs shown in this image. 

Based on the chart, summarize the trends 
in healthcare coverage in the US 
population from 2000 to 2025. Note: 
Please provide a detailed analysis process.

According to this grouped bar 
chart, which art-related venues do 
visitors over 50 prefer the most?

According to the grouped bar 
chart, visitors over 50 prefer 
theaters the most… this age 
cohort shows a significant 
preference for theaters.

In the chart, the area 
representing the average time 
spent by users on the Twitter 
platform in 2021 is the 
segment of the red bar that 
extends above the black part.

Please mark the area representing 
the average time spent by users 
on the Twitter platform in 2021 
on the chart.

Chart OCR Recognition

The chart in the image shows 
two lines representing …Based 
on the detailed analysis, the 
category of the chart shown in 
the image is a complex line 
chart.

Based on the chart, from 2000 to 
2025 … This trend indicates that 
over these 25 years, there has 
been a significant expansion in 
the scope of healthcare coverage.

7 Chart Tasks

Pie Common Bar Scatter Grouped Bar Complex Line Stacked Bar Common Line 

7 Chart Types

Figure 7: Overview of the seven chart types and seven reasoning tasks included in ChartMind.

C GPT-4o Scoring Prompt Design851

The GPT-4o score prompt evaluates the perfor-852

mance of models on CQA tasks by assessing two853

key dimensions: output quality and output correct-854

ness. Output quality focuses on the fluency of the855

model’s answer, the completeness of its reasoning856

process, and its ability to follow instructions accu-857

rately. Output correctness measures the overall ac-858

curacy of the reasoning, the correctness of the data,859

and the logical alignment with the human reference860

answer or chart content. The input to the prompt861

includes a JSON object containing the question, the862

human reference answer, and the model-generated863

answer. The output is also formatted as a JSON864

object, which includes a detailed explanation of865

the scoring rationale along with scores for both di-866

mensions. The full design of the scoring prompt is867

visualized in Figure 8.868

D Chart-Type-Level Analysis869

To evaluate the sensitivity of different paradigms870

to diverse chart types in CQA tasks, we analyze871

their performance across seven chart types in Chart-872

Mind. Figure 9 presents a detailed breakdown of873

model performance. Chart types exhibit varying874

complexity, with Pie and Stacked Bar being the875

most challenging due to their reliance on integrated876

contextual reasoning, while simpler types like Com-877

plex Line primarily require straightforward data ex-878

traction. Instruction-following methods (Wei et al.,879

2021), such as GPT-4o (Achiam et al., 2023) and880

LLAVA1.5 (Liu et al., 2024c), show significant per-881

formance drops in high-complexity charts, under-882

scoring their limitations in managing holistic rea-883

soning tasks. OCR-enhanced methods (Liu et al.,884

2023) excel in text-heavy charts such as Grouped 885

Bar, leveraging their ability to extract textual infor- 886

mation, but struggle with tasks like Scatter that de- 887

mand comprehensive visual-semantic integration. 888

COT-based methods (Wei et al., 2022) demonstrate 889

moderate performance across most chart types, per- 890

forming relatively well in structured charts like 891

Common Line, yet falling short in tasks requiring 892

high-contextual reasoning. ChartLLM-based meth- 893

ods achieve the highest overall performance, ex- 894

celling in high-difficulty charts by effectively us- 895

ing critical contextual elements and showcasing 896

adaptability to diverse chart types. These results 897

highlight the necessity of contextual reasoning for 898

high-performance chart understanding. 899

E Error Analysis 900

Figure 10 illustrates specific examples of the four 901

major error types observed in the ChartMind: value 902

recognition errors, judgment errors, calculation er- 903

rors, and color recognition errors. These examples 904

highlight typical failure cases, such as incorrect 905

identification of numerical values in bar segments 906

(value recognition), flawed logical reasoning or 907

mismatched context interpretation (judgment), in- 908

accurate arithmetic operations (calculation), and 909

misassociation of chart elements with their respec- 910

tive colors in legends or overlapping areas (color 911

recognition). The figure provides detailed scenar- 912

ios, such as errors in identifying peak values, inter- 913

preting differences in chart segments, and miscalcu- 914

lating relationships between visual elements. These 915

cases emphasize the challenges faced by models in 916

aligning visual interpretation with reasoning accu- 917

racy. 918
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You are a professional **chart-based question-answering evaluation expert**. You need to evaluate the model's performance based on **charts**, 
**questions**, **human reference answers**, and **model answers**. In your evaluation, please analyze the performance in two dimensions in detail:

1. **Output Quality (0-1 points)**: Evaluate whether the model's answer is fluent, whether the reasoning process is complete, and whether the instructions are 
accurately followed.
2. **Output Correctness (0-1 points)**: Assess whether the reasoning is correct overall, whether most of the data is accurate, and whether the model's answer 
aligns with the logic of the human reference answer.

### Input Format
The input is a JSON object with the following fields:

"question": "string, the question description",  
"human_reference": "string, the human reference answer",  
"model_answer": "string, the model's generated answer"

### Scoring Criteria
- **Output Quality Score (0-1 points)**:

- **0 points**: The expression is not fluent, the reasoning process is lacking, or the instructions are not followed.
- **1 point**: The expression is generally clear and fluent, the logic is reasonable, and it adheres to the instructions.

- **Output Correctness Score (0-1 points)**:
- **0 points**: The reasoning process is incorrect, the data is inaccurate, or the key elements such as labels, colors, etc., are not correctly identified.
- **1 point**: The reasoning process is generally reasonable, the key data in the model's answer is mostly consistent with the reference answer or the chart 

content, and it aligns with the question requirements, even if it is not 100% consistent with the human reference answer.

### Output Format
The output should be a JSON object, including a detailed analysis and score:

```json
{

"reason": "string, please use Chinese to describe in detail the quality and correctness of the model's output, including the reasoning process and data 
accuracy. Specially compare the data with human reference answers and chart content, and explain the basis for the score.",

"quality_score": "int, the output quality score (0 or 1)",
"correctness_score": "int, the output correctness score (0 or 1)"

}

### Task Requirements
Based on the chart information and model responses, conduct a detailed analysis of the model's reasoning logic and data accuracy, providing specific reasons 
for scoring. Note that the reference answers are only examples; the model's response should be generally reasonable and consistent with the question in terms of 
logic and data.

Figure 8: Prompt design for GPT-4o score.
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Figure 9: Performance of multimodal models across chart types, categorized by four paradigms.
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Value Recognition Error Judgment Error

Calculation Error Color Recognition Error

Please locate the area in the chart where
the average score of 6th-grade students
is depicted.

The average score of 6th-grade students is depicted at the highest
point on the chart, where the score is 95.

The graph shows the average scores of students in grades 4th to 8th. Here
are the key observations:\n\n- The average score starts at 87 in the 4th
grade.\n- It increases to 91 in the 5th grade.\n- The score peaks at 92 in the
6th grade.\n- It then decreases to 90 in the 7th grade.\n- Finally, it increases
again to 92 in the 8th grade.\n\nThe highest average score is in the 6th
grade, and the lowest is in the 4th grade.

Is the Not at all value of Use military
force wisely more than Handle an
international crisis?

In the chart, we can see two different policy areas:- **Use military force
wisely** (Wise use of military force)
- "Not at all" (Not at all): 51%
- **Handle an international crisis** (Handling an international crisis) …
compared to using military force wisely. Therefore, the answer is "No"
meaning the "Not at all" value for "Use military force wisely" is not
greater than that for "Handle an international crisis."

The answer to this question is Yes.

Please mark the area where the
number of art museums in Germany in
2021 is located.

The area where the number of art museums in Germany in 2021 is located
is represented by the blue segment in the bar chart for Germany. This
segment starts at the 50-mark on the y-axis … Therefore, the number of
art museums in Germany in 2021 is between 50 and 100.

In this bar chart, the number of art museums in Germany for the year
2021 is represented in orange. In the \"Germany\" column, the orange
area represents the number of museums. Please look at the orange area in
the middle of the third bar …

Based on the chart, what is the difference
between the highest and lowest number of
artworks sold during the Renaissance era?

Based on the information from the chart … is 400, and the lowest is
150. The difference between these two figures is 400 - 150 = 250.

According to the information from the chart, the highest number of
artworks sold during the Renaissance era is 400, and the lowest
number of artworks sold during this period might be 180. The
difference between these two figures is 400 - 180 = 200. Therefore …
during the Renaissance era is 200.

Figure 10: The four major error types in ChartMind.
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