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Abstract
Compared to frame-based methods, computational neuro-
morphic imaging using event cameras offers significant ad-
vantages, such as minimal motion blur, enhanced temporal
resolution, and high dynamic range. The multi-view consis-
tency of Neural Radiance Fields combined with the unique
benefits of event cameras, has spurred recent research into
reconstructing NeRF from data captured by moving event
cameras. While showing impressive performance, existing
methods rely on ideal conditions with the availability of uni-
form and high-quality event sequences and accurate cam-
era poses, and mainly focus on object level reconstruction,
thus limiting their practical applications. In this work, we
propose AE-NeRF to address the challenges of learning
event-based NeRF from non-ideal conditions, including non-
uniform event sequences, noisy poses, and various scales of
scenes. Our method exploits the density of event streams and
jointly learn a pose correction module with an event-based
NeRF (e-NeRF) framework for robust 3D reconstruction
from inaccurate camera poses. To generalize to larger scenes,
we propose hierarchical event distillation with a proposal e-
NeRF network and a vanilla e-NeRF network to resample
and refine the reconstruction process. We further propose an
event reconstruction loss and a temporal loss to improve the
view consistency of the reconstructed scene. We established
a comprehensive benchmark that includes large-scale scenes
to simulate practical non-ideal conditions, incorporating both
synthetic and challenging real-world event datasets. The ex-
perimental results show that our method achieves a new state-
of-the-art in event-based 3D reconstruction.

Introduction
The rapid advancement of 3D reconstruction techniques has
enabled the generation of high-fidelity novel views from
camera captures of a scene, further fostering numerous
downstream applications, including robotics (Zhang et al.
2023; Zhou et al. 2023; Kerr et al. 2022; Feng et al. 2024;
Ma et al. 2024), 3D games (Xia et al. 2024; Condorelli and
Luigini 2024), and scene understanding (Zhu et al. 2024a;
Yu et al. 2024b). However, in environments with suboptimal
lighting or rapid object motion, standard RGB cameras often
struggle to capture enough scene information and may expe-
rience overexposure, underexposure, or motion blur, making
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Figure 1: Comprison of novel view synthesis (NVS) and
pose correction using existing event-based methods. The
scene is captured by an event camera with 360-degree non-
uniform motion and poses are estimated from COLMAP.

the captured images unsuitable for 3D scene reconstruction.
In contrast, neuromorphic sensors, like event cameras (Gal-
lego et al. 2020; Shao et al. 2023) which detect individual
changes in brightness through a sequence of asynchronous
events based on polarity rather than absolute intensities, pro-
vide significant advantages in such challenging situations
due to their high dynamic range and temporal resolution.

Unfortunately, integrating event cameras into 3D re-
construction techniques remains challenging because these
cameras capture relative brightness changes, which cannot
be directly used to reconstruct scenes in alignment with
human visual perception. Some methods combine depth
map (Li et al. 2023) or standard cameras with event cam-
eras to reconstruct 3D scenes, sacrificing the advantages of
high temporal resolution offered by event cameras. Other ap-
proaches use stereo visual odometry (VO)(Zhou, Gallego,
and Shen 2021) or SLAM(Gao et al. 2023) to address these



issues, but they can only reconstruct sparse 3D models like
point clouds. The sparsity limits their broader applicability.
Additionally, another method (Nehvi et al. 2021) initially
represents objects as rough templates and then updates their
deformations to align with events. However, these methods
rely on template initialization, cannot address the impact of
inaccurate poses, limited to specific object category scenes.

Neural Radiance Fields (NeRFs) (Mildenhall et al. 2020)
has revolutionized the field of 3D scene reconstruction by
learning neural 3D scene representation from dense image
captures. It also inspired Event-based NeRF reconstruction
methods, such as Ev-NeRF (Hwang, Kim, and Kim 2023),
PAEv3d (Wang et al. 2024), Event-NeRF (Rudnev et al.
2023), and Robust e-NeRF(Low and Lee 2023). These meth-
ods bridge NeRF with event stream (or additional RGB
frame) captured by event cameras for 3D reconstruction and
are desinged for handling scenes with extreme light condi-
tion or fast object motion. Nevertheless, these methods face
fundamental challenges in non-ideal conditions that align
with real-world scenarios. Firstly, these methods rely on
ground truth poses (for synthetic data) or poses derived from
complicated motion capture system (for real-world data) to
train NeRF. This reliance is impractical in everyday set-
tings, where the common approach for estimating poses
from captured images is to use off-the-shelf Structure-from-
Motion techniques, such as COLMAP (Schonberger and
Frahm 2016). However, the accuracy of COLMAP rapidly
degrades when handling low-quality RGB frames produced
by event cameras, posing substantial challenges for the real
applications of exisiting event-based NeRFs. Secondly, non-
uniform camera movement is common in real-world sce-
narios, which can lead to inconsistencies in the density of
the event stream captured by event camera, and further af-
fect the reconstruction qualtiy of event-based NeRFs. Ad-
ditionally, existing methods mainly focus on reconstruct-
ing simple objects and suffer significant performance degra-
dation when generalized to larger scenes. Figure 1 illus-
trates an example of using existing event-based NeRFs in a
large scene with non-ideal conditions. It is evident that both
E2VID+NeRF (Rebecq et al. 2019) and Ev-NeRF (Hwang,
Kim, and Kim 2023) fail to reconstruct the 3D scene, while
Robust-e-NeRF (Low and Lee 2023) also shows low fidelity.

In this work, to tackle the challenges of event-based NeRF
reconstruction from non-ideal conditions and large scene,
we make the following contributions:

• We propose AE-NeRF, a joint pose-NeRF training
framework, which facilitates event-based NeRF recon-
struction under various non-ideal conditions, particularly
with inaccurate poses and uneven event density. As pre-
sented in Figure 1, it can effectively correct the inaccu-
rate poses for better 3D reconstruction.

• We introduce a proposal network-based sampling strat-
egy to address local minima optimization and large-scale
generalization issues.

• We propose an event-based 3D reconstruction dataset
with different complex scenes based on an improved ver-
sion of ESIM(Rebecq et al. 2018), setting a benchmark
for event-based NeRF reconstruction in large scenes.

Comprehensive experiments validates that our method
significantly outperforms prior state-of-the-art on both syn-
thetic and real-world datasets.

Related Work

3D Scene Representations

Prior research has investigated various methods for repre-
senting 3D scenes. Traditional approaches using explicit
representations, such as point clouds (Qi et al. 2017;
Achlioptas et al. 2018), meshes (Wang et al. 2018; Liu
et al. 2020), and voxels (Byravan et al. 2023; Sitzmann
et al. 2019), often struggle with fixed topology and lim-
ited quality in novel view synthesis. To address these is-
sues, 3D Gaussian Splatting (3D-GS) (Kerbl et al. 2023) has
been proposed, offering advantages in fast rendering speed
and high-quality novel view synthesis. However, it requires
point cloud initialization and does not effectively utilize the
single-pixel characteristics of event stream, limiting the de-
velopment of event data streams in 3D Gaussian Splatting.

NeRF (Mildenhall et al. 2020) has made significant strides
by encoding continuous volumetric representations of shape
and color within a multi-layer perceptron (MLP). This suc-
cess has driven extensive research across computer vision,
including large-scale scene reconstruction (Zhang et al.
2020; Barron et al. 2021; Tancik et al. 2022; Byravan et al.
2023), scene editing (Cheng et al. 2024), scene understand-
ing (Zhi et al. 2021), SLAM (Zhu et al. 2024b; Rosinol,
Leonard, and Carlone 2023), and generation (Tang et al.
2024; Yu et al. 2023a,b; Pang et al. 2024). For unbounded
or large-scale scenes, methods like Mip-NeRF360 (Barron
et al. 2022) have enabled scene-level reconstruction, while
Block-NeRF (Tancik et al. 2022) and BungeeNeRF (Xi-
angli et al. 2022) have extended this to city-scale recon-
struction. The integration of single-pixel event data with
NeRF through pixel ray marching leverages the high dy-
namic range and temporal resolution of event data, ensuring
high geometric consistency and texture fidelity in the recon-
structed results.

NeRF-based Reconstruction with Event Stream

In contrast to traditional 3D reconstruction methods, the
application of event cameras in NeRF-based 3D recon-
struction remains underexplored. Current NeRF techniques
mainly focus on dense or sparse multi-view image recon-
struction (Lu et al. 2024; Zou et al. 2024), often incorporat-
ing optical flow (Wang et al. 2023a), depth maps (Deng et al.
2022; Li et al. 2023), or point clouds (Truong et al. 2023; Jin
et al. 2023). Early attempts to reconstruct NeRFs from event
data include Ev-NeRF (Hwang, Kim, and Kim 2023), E-
NeRF(Klenk et al. 2023), EventNeRF (Rudnev et al. 2023),
and Robust e-NeRF (Low and Lee 2023). However, these
approaches face limitations, such as reliance on precise cam-
era trajectories in EventNeRF and the need for high-quality
event streams in Ev-NeRF. In cases of inaccurate pose esti-
mation or complex scenes, these methodologies struggle to
maintain geometric consistency and texture fidelity.
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Figure 2: Overview of AE-NeRF. For each event e in the batch E , randomly sampled from the raw sequences, we sample the
timestamp tsamp between the previous timestamp ti and the current timestamp ti+1. We then use a pose correction network
with timestamps-poses pairs to interpolate discrete poses with dense timestamps, yielding corrected poses at ti, ti+1, and tsamp.
With these corrected poses, we process the event ray through scene warping and apply a two-stage e-NeRF to resample weights
and distances, which infers the predicted log-radiance of pixel v. The predicted event reconstruction difference and temporal
gradient are then computed against the ground truth, utilizing distillation loss and distortion loss for regularization. Finally, a
learning-based approach is employed for color correction to refine tone mapping.

Preliminary
Neural Radiance Fields
Our model draws its inspiration from the NeRF approach
and the neural network Fθ(·) processes a 3D coordinate xi ∈
R3 and a ray direction di ∈ S2, outputting the density σi ∈
R and the emitted radiance ci ∈ R3:

Fθ : (γx(xi), γd(di))→ (σi, ci), (1)
Here, γ(·) is a sinusoidal positional encoding function

capturing high-frequency spatial information. Rendering
each pixel involves sampling N points along a ray r(x0,d),
where x0 is the ray’s origin at the camera’s focal point. The
pixel color L̂(r) is computed as:

L̂(r) =

N∑
i=1

wici, δi = ∥xi+1 − xi∥ ,

wi = exp

(
−

i−1∑
l=1

σlδl

)
(1− exp (−σiδi)) .

(2)

The ray is rendered by sampling coarse distances tc from
a uniform distribution and sorted, followed by generating
coarse weights wc with an MLP. Fine distances tf are then
sampled from the histogram with tc and wc, and sorted:

tc ∼ U [tn, tf ], tc = sort({tc}),
tf ∼ hist(tc, wc), tf = sort({tf}).

(3)

What’s more, we adopt the normalization trick proposed
in (Barron et al. 2022) to compute the ray distance s.

Event Generation Model
An event ek = (vk, pk, tk) represents a brightness change
detected by an event camera at time tk, with pixel location
vk = (xk, yk) and polarity pk ∈ {−1,+1}. The polarity in-
dicates positive or negative changes in logarithmic illumina-
tion, based on thresholds C+1 and C−1. We adopt the event
generation model from Robust e-NeRF (Low and Lee 2023),
where an event camera captures log-radiance changes, pro-
ducing an event stream E :

E = {e | e = (v,p, ti , ti+1 )} , (4)

where each event records the current timestamp ti+1 and the
previous timestamp ti from the same pixel v.

An event with polarity p is triggered when the log-
radiance difference at a pixel reaches the contrast threshold
Cp and the condition is expressed as:

∆ logL := logL(v, ti+1 )− logL(v, ti) = pCp . (5)

For color event cameras, L represents the radiance of light
after passing through the color filter in front of the pixel.

Methodology
This work addresses the challenge of novel view synthesis
based on event neural implicit representations, in the non-
uniform motion and unbounded-scene regime. Especially,
we assume access to only discontinuous input views with
noisy camera pose estimates in real-world scenarios.

To correct pose estimation and obtain continuous poses,
we introduce a pose correction network ψ(·) using dense



timestamps as the main driving signal for the joint pose-
NeRF training, thereby solving the challenge of imperfect
poses. Moreover, to enhance eNeRF’s ability to represent
unbounded scenes, we draw inspiration from (Barron et al.
2022) and utilize hierarchical event distillation. This ap-
proach trains two MLPs, with one resampling and predict-
ing volumetric density and the other handling color estima-
tion and image rendering, and thus encourages the learned
scene geometry to be consistent across all viewpoints perfor-
mance. Next, we propose and improve several normalization
loss functions to render event rays for supervision, based
on the event generation model. These functions generalize
effectively to various real-world conditions, allowing joint
optimization on randomly sampled event batches Ebatch to
boost novel view rendering quality and further tackle the
overfitting problem. Finally, instead of using gamma correc-
tion, we employ a learning-based approach for color correc-
tion to refine tone mapping. It restores photorealistic colors
from relative light intensities, enhancing overall model per-
formance. The overall pipeline is shown in Figure 2.

Pose Correction for Continuity
Since we are accustomed to capturing RGB images and
event data streams with event cameras like DAVIS346 (Tav-
erni 2020), it is inaccurate to directly estimate poses P̂E
from RGB or gray images IE using COLMAP with fixed
sampled time TE . The timestamp of each event ti ∈ TE
and image Ii ∈ IE can form a time-image pair, serving as
prior information. We achieve continuous time-pose map-
ping through the correction network ψ(·). The time-image
pairs are embedded via a sparse head, and each timestamp ti
is also embedded. As shown in Figure 3 (a), this maps time
to a helical axis representation ψ := (t;TE , P̂E)→ SE(3).

This pose correction network generates a continuous 6-
DoF pose as a function of time, making it highly suitable
for handling asynchronous events. Unlike other event-based
NeRF approaches (Low and Lee 2023) that use trajectory
interpolation or turntable poses, we address the joint prob-
lem of learning neural 3D representations and optimizing
imperfect event poses, similar to BARF (Lin et al. 2021).
The process can be formulated as follows:

P̂corr(ti) = ψ(ti, TE , P̂E) (6)

where P̂corr(ti) is the corrected pose at time ti, ψ(·) is the
correction module. This mapping transforms the time-image
pairs into a continuous SE(3) pose representation, ensuring
accurate pose estimationfor asynchronous event streams.

Hierarchical Event Distillation
The pose correction network favors a global and continu-
ous solution that remains consistent across all training event
sequences. However, the reconstructed scene often exhibits
inconsistencies when viewed from novel viewpoints, due to
the lack of fine sampling strategies for unbounded scenes
during training. We propose a two-phase jointly optimized
e-NeRF, designed to ensure that the learned geometry is con-
sistent from any viewing direction.
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+ ReLU
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Encoder

Camera TrajectorySampled Timestamp

Inaccurate Estimated Poses

Time Input

Corrected Pose

Time-Poses

Timestamp

25
6

Sparse 
Head

Time 
Embedding

25
6C 25
6

25
6

Correction 
Pose P(ti)

Corrected

32 32 32 32 +

Figure 3: Framework of Pose Correction Network and
Color Correction Network.

Scene warping It has been demonstrated that space warp-
ing functions, such as NDC warping (Mildenhall et al. 2020)
and inverse sphere warping (Barron et al. 2023; Wang et al.
2023b), are effective for rendering unbounded scenes. We
primarily use NDC warping for object-level scenes and em-
ploy uniform space warping C(·) for unbounded scenes, as
defined below:

C(x) =

{
x ∥x∥ ≤ 1(
2− 1

∥x∥

)(
x

∥x∥

)
∥x∥ > 1

(7)

Two-phase Jointly Optimized e-NeRF We use a larger
vanilla e-NeRF alongside a smaller proposal e-NeRF, re-
peatedly evaluating and resampling numerous samples from
the proposal e-NeRF. This approach allows our model to ex-
hibit higher capacity than existing e-NeRF methods, with
only slightly increased training costs. Utilizing a small MLP
to model the proposal distribution does not compromise ac-
curacy, indicating that distilling the NeRF MLP is simpler
and more effective than view synthesis, as shown below:

F p
φ(t, ŵ) ◦ F v

θ (t, w) : (γx(C(x)), γd(d))→ (σ, c) (8)

In joint optimization process, a supervised method is needed
to ensure consistency between the histograms produced
by the proposal e-NeRF F p

φ(t, ŵ) and the vanilla e-NeRF
F v
θ (t, w), as detailed in the following sections. Inspired by

Mip-NeRF 360 (Barron et al. 2021), we adopt its histogram
boundary function B(·), which calculates the sum of pro-
posal weights that overlap with interval T :

B(t̂, ŵ, T ) =
∑

j:T∩T̂j ̸=∅

ŵj . (9)

To maintain consistency between the two histograms, for all
intervals Ti, wi within (t, w), the conditionwi ≤ B(t̂, ŵ, Ti)
must be satisfied. This requirement resembles the additivity
property of outer measures in measure theory.



This consistency ensures that the distributions between
two-phase e-NeRFs remain relatively stable during resam-
pling processes. With the boundary function, we can effec-
tively constrain weights distribution of the proposal e-NeRF
to match that of the vanilla e-NeRF, thus achieving a more
efficient sampling process. It boosts the precision of sam-
pling and the rendering quality during the training process.

Rendering Event Ray for Supervision
Overfitting directly to the training event streams leads to a
compromised event neural radiance field that collapses to-
wards the provided views, even when assuming perfect cam-
era poses. With noisy and imperfect input poses, this issue is
further exacerbated, making the L2 reconstruction loss un-
suitable as the primary signal for joint pose-eNeRFs train-
ing. We apply several event regularization losses, to enforce
learning a globally consistent 3D solution across the opti-
mized scene geometry and camera poses.

Event Distillation Constraint. As mentioned earlier, we
jointly optimize the proposal e-NeRF and vanilla e-NeRF,
penalizing only the proposal weights that underestimate the
distribution implied by the vanilla e-NeRF. Overestimation
is expected since proposal weights are generally coarser and
form an upper envelope over NeRF weights. This loss is sim-
ilar to a half-quadratic version of the chi-squared histogram
distance used in statistics and computer vision. We intro-
duce the event threshold C̄ = 1

2 (C
−1 + C+1) to normalize

this loss, further constraining the sampling distribution. For-
mally, the proposal loss is defined as:

ℓp(t, w, t̂, ŵ) =
∑
i

1

wi
max(0,

wi − B(t̂, ŵ, Ti)
C̄

)2 (10)

Event Reconstuction Constraint. The main idea is aimed
to use the log-radiance map ∆ log L̂ := log L̂(v, ti+1 ) −
log L̂(v, ti) rendered from the training viewpoints to match
ground truth relative light intensity ∆ logL. Instead of L2
Reconstruction loss of NeRF, this difference is normalized
using the event threshold for supervision, as follows:

ℓr (e) =
MSE(∆ log L̂,∆ logL)

C̄2
(11)

Note that when using a color event camera, L̂ refers to the
single-channel rendered radiance, where the color channel is
determined by the pixel’s color filter (Low and Lee 2023).

Event Temporal Constraint. To accurately capture the
density of event streams under non-uniform motion, we
compute the error between the predicted log-radiance gradi-
ent and the target log-radiance gradient, leveraging the high
sampling rate of event cameras (Gallego et al. 2020). The
predicted time gradient, obtained via auto-differentiation, is
represented as Gpred = ∂

∂t logL(v, t), and is defined by:

ℓg(e) =

∣∣∣∣Ggt − Gpred

Ggt

∣∣∣∣ (12)

Here, the target gradient Ggt ≈ pCp

ti+1−ti
is computed as a

finite difference approximation, with sampling at tsam .

Event Distortion Constraint. However, we notice that
the depth consistency of the rendered results was not satis-
factory, exhibiting some pathological depth issues. Inspired
by total variance regularization (Michel et al. 2011), we
adapted the smoothing from neighboring pixels to an inte-
gral over the distances between all points along the normal-
ized ray. This integral is scaled by the weights assigned to
each point by the vanilla e-NeRF, enforcing self-supervised
smoothness and consistency of the ray weights:

ℓd(s, w) =
∑
i,j

wiwj

∣∣∣∣si + si+1

2
− sj + sj+1

2

∣∣∣∣ (13)

In short, we use four normalized loss functions to su-
pervise the model training with sampling a batch of events
Ebatch and formally, the total training loss L is defined as:

L =
1

|Ebatch |
∑

e∈Ebatch

(αℓr + βℓg + γℓp + ηℓd) (14)

Color Correction of Synthesized Views
Event cameras capture changes in log-radiance, leading to
an offset in the predicted log-radiance log L̂ from the NeRF
reconstruction. Additionally, consistent color channel ambi-
guities, akin to unknown black levels and ISO in images,
arise from spectral sensitivity differences between event and
standard cameras. These can be corrected reconstruction
with affine adjustments based on reference images, with pa-
rameters optimized via ordinary least squares.

However, this method tends to perform poorly in scenes
with multiple objects or complex textures environments. To
further improve this process, we adopt a learning-based ap-
proach. As shown in Figure 3(b), we employ a color correc-
tion network F(·) to learn the correction process for RGB
images of validation views in each scene and predict the
color ĉ of test viewpoints from log-radiance intensity:

ĉ = F(log L̂) (15)

This approach allows for adaptive and precise tone map-
ping, capable of handling complex variations in the data.

Experiments
We utilize novel view synthesis (NVS) as a benchmark
to demonstrate that our method can effectively reconstruct
NeRF from event cameras, particularly in scenes with inac-
curate pose estimation and sparse, noisy data caused by non-
uniform motion. The NVS benchmark tests are conducted on
both synthetic and real sequences. In addition, we perform
ablation studies on pose optimization and losses to assess
the impact of each component in our method.

Event Datasets. For synthetic scenes, similar to Ev-NeRF
and Event NeRF, we utilize the synthetic dataset from NeRF
(Mildenhall et al. 2020) and design additional synthetic
event sequences, including event data streams, estimated
poses from COLMAP, ground truth poses, and RGB images,
using Blender (Community 2018). Our dataset includes four
scenes inspired by Deblur-NeRF (Ma et al. 2022a) and four



Methods
Easy Settings Hard Settings Easy Settings Hard Settings

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

E2VID+NeRF 18.92 .8328 .3167 18.92 .8328 .3167 15.60 .6212 .3298 15.60 .6212 .3298

Ev-NeRF 27.72 .9356 .0891 25.44 .8903 .1275 18.26 .7256 .2718 17.82 .6959 .2943

Event NeRF 26.81 .9183 .1007 24.92 .8783 .1377 17.99 .7048 .2881 17.68 .6933 .2996

Robust e-NeRF 28.38 .9462 .0578 28.37 .9464 .0578 21.48 .9033 .1204 21.41 .9028 .1207

Ours(w.o. ψ ) 28.17 .9441 .0541 28.13 .9436 .0550 22.83 .9105 .1169 22.79 .9098 .1172

Ours(w. ψ ) 28.96 .9512 .0478 28.90 .9503 .0485 24.28 .9324 .0975 24.23 .9324 .0981

Table 1: Comparison of NVS for synthetic scenes. Average performance is shown for object-level scenes in blue and for
scenes from the proposed dataset in orange . The best and second-best results are highlighted in bold and underline.
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Figure 4: Qualitative Comprison of Novel View Synthesis with AE-NeRF.

additional custom scenes created with Blender and ESIM.
These sequences are simulated in “Realistic Synthetic 360-
degree” environments, which are rich in complexity and

texture, making them ideal for NVS evaluation. Following
the approach of Robust e-NeRF (Low and Lee 2023), we
classify the camera trajectories into simple and challenging



categories, detailed in the appendix. For real-world experi-
ments, we use event sequences from the TUM-VIE dataset
(Klenk et al. 2021), which primarily capture forward mo-
tion with a Prophesee Gen 4 event camera under linear and
spiral movements, providing event data, ground truth poses,
and grayscale images. To simulate real-world conditions, we
also estimate images using COLMAP to obtain noisy poses.

Baseline Methods. We compare our method with a sim-
ple baseline method E2VID+NeRF which combines the
well-known event-to-video reconstruction method E2VID
with NeRF, and recent excellent works Ev-NeRF, Event
NeRF and Robust e-NeRF.

Evaluation Metrics. The experimental results on both
synthetic and real-world datasets are evaluated through the
novel view synthesis task using quantitative metrics and
qualitative comparisons of rendered images. Akin to pre-
vious studies, we use widely adopted evaluation metrics
to compare synthesized images with corresponding ground
truth images: PSNR, SSIM, and LPIPS to quantify the sim-
ilarity between color-corrected synthesized novel views and
target novel views. Moreover, we use rotation error (RE) and
translation error (TE) to measure the accuracy of pose learn-
ing, further validating the model’s performance.

Methods E2VID Ev- Event Robust Ours
NeRF NeRF NeRF e-NeRF (w. ψ )

PSNR↑ 15.81 17.79 17.61 18.97 19.69
SSIM↑ .6338 .7856 .7672 .8223 .8470
LPIPS↓ .3072 .2138 .2203 .1964 .1882

Table 2: NVS Comparison the TUM-VIE dataset.

Evaluation on Synthetic Event Stream
We evaluate our method on the NeRF synthetic dataset
and proposed dataset comprising eight scenes. As shown
in Table 1, our method demonstrates notable improvement
in large-scale scenes, though its impact is less pronounced
in object-level scenes. It effectively preserves structural in-
tegrity, particularly at geometric discontinuities, such as the
wheel in the “lego” scene and the ground in the “outdoor
pool” scene. In contrast, the baseline method introduces sig-
nificant background noise in the depth maps, whereas ours
achieves clearer depth representations. Furthermore, our ap-
proach produces sharper renderings, while the benchmark
results appear blurrier. Quantitative and qualitative compar-
isons are detailed in Table 1 and Figure 4.

Evaluation on Real Event Stream
We randomly select four scenes (desk1, desk2, office, bike)
with different objects and materials for establishment. As
stated in Figure 4, our approach faithfully reconstructs the
main structures of objects even if there are some fog noises
around them. In the scene of ”bike” , the benchmark infers
wrong geometries of the bike and leads to large variances in
depth predictions. Moreover, the texture and depth map of
wall in the scene of ”desk” is wrongly rendered. In contrast,

ours maintains relatively clean shapes and sharper bound-
aries. And we additionally compute the metrics for the four
scenes and the results are listed in Table 2.

Ablations Study
Pose Correction. We evaluate proposed model between
the ground truth poses and corrected estimated poses in out-
door pool and diningroom with hard settings, as well as of-
fice and bike in real scenes, shown in Figure 1 and Table 3.
It is evident that the pose correction network is significant
in rectifying camera poses, particularly in complex environ-
ments where the camera motion is non-linear.

Scenes Synthetic Easy Synthetic Hard TUM-VIE
(w. ψ ) ✓ ✗ ✓ ✗ ✓ ✗

RE ↓ 0.085 0.086 0.127 0.881 0.431 1.283
TE ↓ 0.867 0.872 1.472 3.751 1.676 4.487

Table 3: Ablation study of pose correction.

Loss Functions. We conclude the evaluation in the scenes
same with pose correction ablation settings, in Table 4,
the contribution of all the losses introduced above. Adding
event time derivative for supervision from Eq.(12) improves
PSNR by +3.39dB which is further increased when the event
camera’s trajectory is irregular. Similarly, we evaluate on
adding the event distortion loss in Eq.(13) and performance
increases in this case, with a +0.57dB increase when adding
this loss. The best performance is achieved when both are
combined with an overall increase of +4.87dB in PSNR.

ℓp ℓr ℓg ℓd PSNR ↑ SSIM ↑ LPIPS ↓
✓ ✓ 19.80 .8356 .1811
✓ ✓ ✓ 23.19 .8852 .1494
✓ ✓ ✓ 20.37 .8413 .1775
✓ ✓ ✓ ✓ 24.67 .8971 .1337

Table 4: Ablation study of constrained loss.

Conclusion
This paper presents AE-NeRF, a novel approach designed
to robustly reconstruct objects and scenes directly from
moving event cameras under diverse real-world conditions.
By leveraging the multi-view consistency of Neural Radi-
ance Fieldsand the unique advantages of event cameras,
our method addresses the challenges of inaccurate cam-
era pose estimation and unbounded scene modeling through
nonlinear scene parametrization, hierarchical distillation,
and innovative regularizers. Comprehensive experiments on
both synthetic and real-world datasets demonstrate that
our method significantly outperforms state-of-the-art ap-
proaches and baseline benchmarks in terms of rendering
quality and robustness. Our results highlight the effective-
ness in enhancing novel view synthesis, even in complex en-
vironments. We will release our code and dataset to support
further research and development in this field.
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Implementation Details
Datasets
Dataset Description Existing event synthetic datasets
for scene reconstruction, such as those introduced by
NeRF(Mildenhall et al. 2020) and E2NeRF (Qi et al. 2023),
focus on object-level scenes. However, there is a notable
lack of event synthetic datasets that cover large-scale scenes.
Deblur-NeRF (Ma et al. 2022b) and EvaGaussians (Yu et al.
2024a) has introduced five larger-scale datasets with ac-
companying blender source files, but these datasets con-
sist of rendered RGB images and do not include event se-
quences. To address this gap, we select four of the scenes
from Deblur-NeRF and create four additional scenes our-
selves, as shown in Figure 5. We generate synthetic event se-
quences for these scenes using ESIM (Rebecq, Gehrig, and
Scaramuzza 2018), aiming to evaluate the model’s general-
ization ability in larger scenes.

In real-world scenarios, 3D event reconstruction methods
such as PAEv3D (Wang et al. 2024) and Ev-NeRF (Hwang,
Kim, and Kim 2023) have been limited to object-level
scenes. It is due to the constraints imposed by the need for
dense and perfect pose acquisition and the resolution limits
of event cameras. Datasets like TUM-VIE(Klenk et al. 2021)
and EDS (Hidalgo-Carrió, Gallego, and Scaramuzza 2022),
which are used for event-based visual odometry tasks, pro-
vide perfect poses and high-quality event sequences. How-
ever, their scenes are not fully suitable for 3D reconstruction
and novel view synthesis tasks. Additionally, due to the ab-
sence of a motion capture system for perfect and consistent
poses, we are currently unable to capture real-world scene
datasets. Consequently, we choose to quantitatively evaluate
the model’s performance on real-world scenes using a subset
of scenes from the TUM-VIE dataset.

Dataset Settings We conduct experiments on both syn-
thetic and real-world scenes to evaluate our method. For the
synthetic scenes, we use the object-level dataset (chair, hot-
dog, materials, ficus, mic, drum, lego) from NeRF. Due to
the constraints on scene size, we design and generate several
synthetic event sequences using Blender (Community 2018)
and ESIM (Rebecq, Gehrig, and Scaramuzza 2018), includ-
ing four datasets from the Deblur-NeRF work including out-
door pool, factory, cozyroom and tanabata and four addi-
tional datasets we create (Capsule, Dining Room, Garbage
and Expressway). These sequences are simulated in ”Realis-
tic Synthetic 360-degree” scenes, which feature complex en-
vironments and texture details. As shown in Table 5, we set
the sampling rate for ground truth poses, normal images, and
RGB images in Blender to 250Hz. We then use COLMAP to
estimate the poses, thereby simulating real-world scenarios
where camera poses are not error-free. The contrast thresh-
olds in the ESIM simulator are set to C+1 = C−1 = 0.25
based on our empirical observations.

Inspired by Robust e-NeRF (Low and Lee 2023), we
divide the camera trajectories into simple and challeng-
ing settings. In the simple setting, the camera moves at
a uniform speed (with RGB images potentially containing
some motion blur; we use slightly motion-blurred images
for COLMAP and render a separate set of non-blurred im-

ages for validation and testing). In the challenging setting,
the camera speed oscillates between 1/8× and 8× of the orig-
inal speed at a frequency of 1Hz. Moreover, we use 100 sur-
rounding viewpoints as the validation set and 100 randomly
select novel viewpoints as the test set to evaluate the perfor-
mance of our model.

Given the difficulty of obtaining absolutely accurate poses
in real-world scenarios, our real-world experiments were
conduct using event sequences from the TUM-VIE dataset.
These sequences were captured indoors using a motion cap-
ture system to obtain forward-facing event camera data,
ground truth poses, and gray images, under both linear and
spiral camera movements, with a Prophesee Gen 4 event
camera. We select four scenes (mocap-desk1,mocap-desk2,
office-maze, bike) from this dataset. Additionally, we ran-
domly select 30 novel views to evaluate the performance of
our approach. Finally, although the task setting of PAEv3D
dataset is not entirely aligned with our objectives, we still
performd a comparison with their method. The results of this
comparison are presented in the following section.

Settings Value

Event E -

RGB images IE 250Hz

Normal images NE 250Hz

Ground Truth Poses PE 250Hz

Positive Threshold of ESIM C+1 0.25

Negative Threshold of ESIM C−1 0.25

Refractory Period 0 ns

Estimated Poses P̂E 250Hz

Table 5: Detailed Settings of Proposed Synthetic Datasets

Model Architecture
AE-NeRF adopts Mip-NeRF360(Barron et al. 2021) as the
NeRF backbone due to its ability to produce high-quality
reconstructions with relatively low memory consumption.
Specifically, we utilize the implementation provided by the
NerfAcc toolbox (Li, Tancik, and Kanazawa 2022). The pa-
rameters of the embedded Multi-Layer Perceptron (MLP)
are initialized using the PyTorch-default method rather than
Xavier initialization. Moreover, we replace all Rectified Lin-
ear Unit (ReLU) activations in the hidden layers with Soft-
Plus, as it is infinitely differentiable, which facilitates the
optimization of ℓg .

Initially, we employ the pose correction network ψ(·) to
enhance the accuracy of the estimated poses, as outlined
in Algorithm 1. The network ψ(·) refines time-estimated
poses by integrating spatial and temporal information within
a structured architecture. The network begins by process-
ing the time-estimated poses (P̂E , TE) through a sparse
head, which consists of a linear layer that outputs a 256-
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Figure 5: Proposed Synthetic Datasets of AE-NeRF.

dimensional pose embedding, followed by SoftPlus activa-
tion. Simultaneously, the specific time instance ti is pro-
cessed through another linear layer, also producing a 256-
dimensional time embedding, activated by SoftPlus. These
two embeddings are then combined into a single representa-
tion, which is further enhanced by a Sinusoidal Encoder that
injects smooth temporal information. The enriched repre-
sentation is subsequently passed through a sequence of four
fully connected layers, each with 256 hidden units and Soft-
Plus activation, refining the feature representation. Finally,
the network outputs the corrected pose P̂corr(ti) via a lin-
ear transformation applied to the refined embedding. This
architecture effectively integrates spatial and temporal cues,
enabling precise pose correction in dynamic environments.

Then, we employ a proposal e-NeRF with four layers and
256 hidden units for the MLP layers, and a Vanilla e-NeRF
with eight layers and 1024 hidden units for the MLP layers.
Both configurations use SoftPlus for internal activation and
density activation. We input samples for two stages of eval-
uation and resampling for each proposal e-NeRF to generate
(t̂, ŵ), and then use half the number of samples to evaluate
a single stage of vanilla e-NeRF to generate (t, w).

Additionally, we add a small ϵ = 0.001 to the positive raw
radiance output from the NeRF model (i.e., L̂ = L̂ + ϵ) to
improve the numerical stability of the predicted log-radiance
L̂. This augmentation imposes a lower bound of ϵ on the
radiance our method can model, ensuring L̂ > ϵ.

For both synthetic and real scenes, we appropriately pre-
define the Axis-Aligned Bounding Box (AABB), as well as
the near and far bounds of the back-projected rays used for
volume rendering, for each scene.

Training
We implemente our method using the code frameworks of
PyTorch-Lightning, Robust e-NeRF(Low and Lee 2023),
and NerfAcc(Li, Tancik, and Kanazawa 2022), and con-
ducted the training on an Nvidia A6000 GPU. The train-
ing loss weights for all experiments are set as follows:
λα = 1.00, λβ = λη = 0.001, and λγ = 0.0025. Follow-
ing the recommendations from Instant-NGP (Müller et al.
2022) and Robust e-NeRF (Low and Lee 2023), we applied a
weight decay of 10−6 to the MLP to mitigate overfitting. The

Algorithm 1: Pose Correction Network ψ(·)

1: Input: Time-Estimated Poses (P̂E , TE ), Time Input ti
2: Output: Corrected Pose P̂corr(ti)

3: Pembedding ← ReLU(Linear(P̂E , TE))
4: Tembedding ← ReLU(Linear(t))
5: C ← Pembedding + Tembedding

6: C ← Sinusoidal Encoder(C)
7: for i = 1 to 4 do
8: C ← ReLU(Linear(C))
9: end for

10: P̂corr(ti)← Linear(C)
11: Return P̂corr(ti)

model underwent 50,000 training iterations, with the learn-
ing rate reduced by a factor of 0.33 at 20,000, 30,000, and
36,000 iterations (i.e., at 50%, 75%, and 90% of the training
process), as utilized in NerfAcc (Li, Tancik, and Kanazawa
2022). We employ the Adam optimizer with an initial learn-
ing rate of 0.01 and default hyperparameters provided by
PyTorch(Paszke et al. 2019). The total time of training pro-
cess takes 5 hours and 30 minutes.

During the joint optimization of the contrast threshold, a
higher learning rate of 0.05 is assigned to its parameter to
ensure rapid convergence. The event batch size is dynami-
cally adjusted based on the average number of ray samples
required to render a single pixel, akin to the approach used in
Instant-NGP, to maximize GPU memory utilization. Specif-
ically, each batch of events contained approximately 65,536
samples in total.

Additionally, for both the real scene target novel view
poses and the synthetic scene poses without correction, we
interpolate the unsynchronized constant-rate camera poses
using Linear Interpolation (LERP) and Spherical Linear In-
terpolation (SLERP).

Additional Experiment Results
Visualization of Ray Sampling
Instant-NGP leverages an occupancy grid to efficiently
cache scene density using a binarized voxel grid. During ray
sampling, the grid is traversed with predetermined step sizes,
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allowing the algorithm to bypass empty regions by query-
ing the voxel grid. Conceptually, the binarized voxel grid
serves as an estimator of the radiance field, offering signif-
icantly faster readout. Formally, this estimator represents a
binarized density distribution along the ray, governed by a
conservative threshold σ̂ and the corresponding piecewise
linear transmittance T (ti):

σ̂(ti) = 1 [σ(ti) > τ ] (16)

As a result, the piecewise constant probability density
function (PDF) can be expressed as:

p(ti) =
σ̂(ti)∑n
j=1 σ̂(tj)

(17)

T (ti) = 1−
i−1∑
j=1

σ̂(tj)∑n
j=1 σ̂(tj)

(18)

However, this method exhibits suboptimal performance in
complex scenes due to its inadequate sampling approach.
To address this limitation, we propose an adaptive sam-
pling strategy, employing a two-phase e-NeRF model that

enhances ray sampling efficiency and accelerates PDF con-
struction.

Our method estimates the PDF along the ray using dis-
crete samples directly. In the vanilla e-NeRF, the coarse
MLP is trained with a volumetric rendering loss to output
a set of densities. This process yields a piecewise constant
PDF σ(ti) and and a piecewise linear transmittance T (ti):

p(ti) = σ(ti) exp (−σ(ti) dt) (19)

T (ti) = exp

− i−1∑
j=1

σ(tj) dt

 (20)

As illustrated in the Figure 6, our proposed e-NeRF model
demonstrates superior performance compared to Instant-
NGP in capturing fine-grained details. While there is a slight
trade-off in overall performance, the expressiveness and
consistency of our model are significantly improved.

Quantitative Analysis of Pose Correction
With noisy input poses, the problem of reconstruction be-
comes amplified, as shown in the quantitative results and
ablation study in this paper. Thus, the approach of combin-
ing dense event data to correct pose significantly improves
both continuity and accuracy, as demonstrated in Figure 7.
In the optimization results for event sequences under uni-
form camera motion, both COLMAP estimations and AE-
NeRFoptimizations exhibit high accuracy and consistency.
However, in scenarios involving non-uniform camera mo-
tion, COLMAP’s pose estimates become significantly inac-
curate due to motion ambiguity. In contrast, our method ef-
fectively corrects these erroneous poses, leading to superior
reconstruction performance.

Qualitative Analysis of Losses
Figure 8 illustrates the impact of various loss functions on
the ficus scene simulated under hard settings, the capsule
scene and the tanabata scene sequences simulated under
hard settings. It can be observed that with the inclusion of
ℓg , the ficus scene exhibits clearer texture and geometric fea-
tures. Meanwhile, the capsule and tanabata scenes demon-
strate good reconstruction at close distances, albeit with the
presence of floaters and depth inconsistencies at nearer dis-
tances. Furthermore, the results of the proposed approach
combining ℓg and ℓd show a reduction in floaters and depth
inconsistencies, along with sharper high-frequency details,
particularly in challenging environments.

Quantitative Analysis in PAEv3D Datasets
In addition to the text experiments, we extend our evalu-
ation by conducting further assessments on the dataset in-
troduced by PAEv3D, which represents our latest advance-
ment in event sequence-based 3Dreconstruction. For this
purpose, we selected three representative scenes (bread,
bounty, and telescope) to carry out a comprehensive quanti-
tative analysis, as summarized in Table 6. Although the sce-
narios presented in this dataset do not entirely correspond
to the specific conditions and challenges of our task, our
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proposed method consistently demonstrates superior perfor-
mance compared to existing approaches. This is particularly
evident in the quantitative metrics, where our model exhibits

a notable improvement. Specifically, we observe an overall
increase of +0.403 dB in PSNR, underscoring the model’s
enhanced capability to generalize across varied and complex
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Figure 8: Synthesized novel views with and without losses.

EventNeRF PAEv3D Robust e-NeRF Ours

PSNR 20.273 25.903 25.812 26.306

SSIM .9172 .9401 .9377 .9452

LPIPS .2278 .0753 .0718 .0715

Table 6: Quantitative Analysis of Novel View Synthesis in the PAEv3D Datasets. We highlight the best-performing results
with bold, and the second-performing result with underline.

environments. These results highlight the robust expressive-
ness of our approach, affirming its potential to effectively

handle diverse real-world scenarios, even those that deviate
from the original task settings.



Limitation
Due to the absence of real-world datasets featuring accu-
rate poses, non-uniform motion, and high-quality event se-
quences, our current approach is limited to reconstructing
the event NeRF model using synthetic event sequences un-
der complex conditions. Future research can explore more
sophisticated 3D scene event reconstruction as challenging
real-world datasets become available within the community.


