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Abstract— This work underscores the prospect and funda-
mental challenges of deploying robotic radiation detectors in
nuclear safeguards and arms control applications, where safety
and security concerns are of utmost importance. We propose
a performant, minimal-knowledge approach which addresses
information security constraints, with specific emphasis on the
challenge of confirming the absence of undeclared radioactive
sources. We demonstrate a random walk process which requires
no a priori knowledge of the environment and certifies the absence
or presence of sources without revealing any a posteriori informa-
tion. We improve the convergence of this method by incorporating
directional radiation measurements. The constraints of finite time
and physical safety may be addressed by limited, rather than
minimal, knowledge approaches, which illuminates a spectrum
of limited-information contexts not yet thoroughly explored in
this application space.

I. INTRODUCTION

Nuclear safeguards and arms control are cornerstones of
the broader global security mission. Safeguards, which are
measures to verify that nuclear facilities are not misused and
nuclear material is not diverted from peaceful uses, require
verification throughout the nuclear fuel cycle [1], [2]. Arms
control, which is concerned with limiting arms competition and
regulating arsenals, is made possible through declarations, data
exchange, and inspections to verify compliance with agreed
upon limits [3]–[5]. Future agreements will likely require new
verification approaches that minimize the need for access to
sites, such as storage or dismantlement facilities, and treaty
accountable items [6].

The introduction of robotics to the field of nuclear safe-
guards and treaty verification has the potential to be a paradigm
shift in efficiency, effectiveness, and capability [7]–[10]. A
“robotic inspector” enables remote inspections, wherein a
human need not be present at the inspected site, thereby
reducing safety and security concerns. Inspection tasks may
include a variety of typically human-based measures, including
verification of labels and seals, counting of objects, and, of
principle interest here, radiation measurements. The eventual
transition from human-in-the-loop to autonomous inspections
will require a high level of confidence in the systems and
processes [11]. Although robotic systems have been proposed,
and in some cases deployed, for applications in nuclear dis-
aster response and facility monitoring [12]–[14], there remain
significant hurdles for deployment in nuclear safeguards and
treaty verification. Here we highlight relevant considerations
for implementing a robotic detector, particularly considering
the design of algorithms subject to regulation and certification
requirements.
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Certification and Authentication. Regulation and certi-
fication is a fundamental concept in this application space.
Radiation equipment must be certified and authenticated [15]–
[17]. Certification verifies that the system does what it’s
designed to do (and nothing more). Authentication requires
verifying that the system provides genuine data.

Physical Safety. Safety verification is also crucial when
considering the operation of remote or autonomous systems
in environments containing sensitive objects. Potential high-
risk environments encountered in safeguards and arms control
include navigating rows of gas centrifuges for uranium enrich-
ment and searching storage facilities with weapon components
or delivery vehicles. In both scenarios, collisions could be
catastrophic for health and safety, potential damage to infras-
tructure, and diminished trust from the host party.

Privacy. A suitable solution for deploying robotic inspectors
would require that no sensitive information – which may
include images, dimensions, radiation measurements, etc. – is
unnecessarily or inadvertently revealed. Reported methods in
robotic radiation detection primarily perform source localiza-
tion or mapping; as such, many of these techniques assume
either full a priori knowledge of the search environment
or, by consequence of the algorithmic design, reveal full
knowledge of the environment configuration or its radiation
field a posteriori [18]–[22]. We also note that current ap-
proaches do not consider the inverse problem of confirming
the absence of sources. Toward resolving the aforementioned
security concerns, we focus on absence confirmation [23], in
addition to source localization.

II. PROBLEM DEFINITION

Assume that a physical, bounded environment is declared
to contain no radioactive sources. The associated verification
task is to actively explore the two-dimensional obstacle-filled
space such that the robot certifies the absence of sources (or
presence, in the case of non-compliance). Ideal certification
methods should allow for provable correctness (the robot will
return the correct decision) and/or provable privacy (the robot’s
capacity to “leak” information is minimal).

The algorithm we propose takes inspiration from random-
ized, sampling-based motion planners [24], [25] and out-
of-distribution detection [26], with an emphasis on scalar
task-relevant detection as in [27]. When measurements are
consistent with source absence, the robot moves according to
a (“reference”) random walk that explores the space; if the
reading is consistent with source presence, it moves according
to a different (“out-of-distribution”) random walk. Detection
of a shift is accomplished by Kolmogorov-Smirnov (KS)
testing [28] of the composite (realized) action distribution.
Further, because the actions depend only on the detected



counts, the resulting distribution over actions for any source-
free map is theoretically identical; such a property can help
provide evidence that the algorithm never constructs a usable
representation of the space during operation.

III. MINIMAL KNOWLEDGE BASELINE

Practically, we assume that a robot is equipped with the
capacity to rotate and translate in a controllable manner (e.g.,
via encoders on a wheeled system), to detect imminent colli-
sions in a non-destructive fashion, and to accurately acquire
radiation measurements. Such a system can run Alg. 1 (see
App. V-A), wherein the robot “slows down” (i.e., takes smaller
step sizes) when anomalously high counts are detected, such
that a different distribution over step sizes is achieved. The
proposed approach derives the performance properties of the
following lemma:

Lemma 1 (Minimal Knowledge Properties): Assume that
Alg. 1 is run on a traversable map E of outer dimensions
(Lx, Ly). In the discrete case, if E can be observably
discretized to tolerance ϵ > 0, then the expected coverage
time, for any initial configuration, is bounded by Õ( 1

ϵ4 ).
Further, the false positive rate is no greater than p∗.

Proof: The claim follows by initially observing that Alg.
1 is a linear combination of uncorrelated random walks on a
graph GE(V, E) in two dimensions. Results from [29], [30]
give an upper bound on expected coverage time of 2|V ||E|.
Because the connecting edges of a random walk are local, we
can bound the number of edges by |E| ≤ k|V |, thereby giving
a coverage bound of 2k|V |2. Noting that the discretization
has LxLy/ϵ

2 nodes completes the result. The calibration of
the algorithm to p∗ relies on controlling for the pre-selected
number of tests n via the testing threshold of p∗/n. The
resulting union bound is robust to correlation in the input data
to the sequential KS tests.

The general extension of covering time results for two-
dimensional random walks from discrete to continuous space
is given by [31], meaning that the above result can generalize
to models in the continuous setting. Verifying this property and
the privacy characteristics of the minimal-information baseline
is ongoing work.

IV. INCREASING INFORMATION

The addition of an omnidirectional radiation detector, such
as [32], [33], enables a similar pseudo-random walk policy.
In the absence of a prevailing source, the direction is random
due to the Poisson-distributed counting statistics; if a source is
present, the robot more expeditiously switches to the “slowed
down” policy. The inclusion of directionality manifests as
noisy gradient ascent, with similar functionality as infotaxis
[34], but with a less detailed sensor model. Fig 1 demonstrates
the convergence of the proposed approach with and without
the addition of directional information. Sample random walk
trajectories are visualized in Fig. 3, as are the cumulative
density functions (Fig. 4) corresponding to the same observed
environments (see App. V-C).

As another possible extension, distribution testing may also
be used to confirm that an environment remains unchanged by
redefining the reference action distribution. This introduces the

Fig. 1. Evolution of floored KS test p-values for baseline (top) and directed
(bottom) algorithms, averaged over 50 seeds, for source presence (red) and
absence (black). In all settings, a log-significance below −6 served as the
cutoff for detection. For both cases, source-absence is correctly identified.
While both variants show steady convergence for the source-presence case,
the directed algorithm demonstrates faster convergence due to its utilization
of some additional information in the radiation sensing model.

concept of template matching, wherein “absence” is reframed
in terms of the absence of deviations, rather than the absence
of absolute sources.

Further advancements may also be made by relaxing the
constraints of no a priori or a posteriori knowledge of the
search environment. While theoretically sound, a random walk
process may still be impractical for time-efficient inspections.
There is a benefit to including limited contextual knowledge
to expedite the inspection process. Here, we offer just one
example of a more “knowledgeable” approach. Particle filter-
ing, commonly used for radioactive source localization [35]–
[38], can be adapted to absence confirmation by extending the
range of admissible source intensities to zero. Sufficient cov-
erage of the accessible environment is necessary to eliminate
weak-source hypotheses with high confidence; unfortunately,
efficient coverage algorithms typically require knowledge of
the environment [39]–[41]. To improve the convergence ef-
ficiency while also minimizing requisite environment knowl-
edge, LiDAR may be used to effectively eliminate nonzero-
intensity particles in free space, under the assumption that a
radioactive source must be bound to a physical feature and
non-compliant objects in the applications of interest would
be sufficiently substantial. This should enable more efficient
exploration than a random walk by moving toward where
potential sources may be located. LiDAR also enables simple
collision avoidance, even without full map generation, provid-
ing a degree of safety which would otherwise be impossible
without alternative proximity sensors or odometry.



V. APPENDIX

A. Minimal Knowledge Exposition

The minimal-knowledge random walk algorithm (without
directional sensing) is presented below in the paradigm of
continuous space. It can be directly modified to the discrete
case by discretizing acceptable orientations (e.g., 4- or 8-
connecting graphs) and step sizes.

Algorithm 1 Random walk absence confirmation.
Input: Background count rate B, outer dimensions Lx, Ly ,
confidence parameter p∗, run time T , test count n, threshold
level z, constants 0 ≤ cL < cU , reference Vr

Initialize p = 1.0, x0, y0, θ0 ∼ U(Lx, Ly, 2π), t = 1,
Ve = {∅}
while t ≤ T do
Nt ∼ h(xt, yt;E) {Measurement}
c← cL + (cU − cL)1[Nt ≤ B + z

√
B]

ds, dθ ∼ U(c, 2π) {Step Length, Rotation}
Rotate by dθ rad. and move forward ds distance
Append ds to memory Ve

if t ≡ 0 (mod T/n) then
p = min{p,KS(Ve, Vr)}

end if
if p ≤ p∗/n then

return 1 {Anomaly detected}
end if

end while
return 0 {Absence confirmed}

B. Additional Random Walk Variant

As an additional point of comparison, Fig. 2 reproduces the
results of Fig. 1 for a random walk scheme inspired by Lévy
flight [42]. After every 100 time steps, the robot “teleports” to
a uniformly random sampled position within the bounding box.
While this does not follow the Lévy distribution, it effectively
emulates the multi-scale step lengths that are characteristic of
Lévy flights.

Fig. 2. Evolution of floored KS test p-values for Lévy-inspired algorithm,
averaged over 50 seeds, for source presence (red) and absence (black). A log-
significance below −6 served as the cutoff for detection. The Lévy-inspired
algorithm demonstrates convergence speed between that of the algorithms
shown in Fig. 1.

C. Preliminary Random Walk Demonstration

Fig. 3. Representative trajectories of the minimal-knowledge robotic radiation
detector in obstacle-filled environments with (below) and without (above) a
source. For each case, three variants of the proposed random walk algorithm
are applied: the robot moves in a uniformly random direction for each
step (left); the robot follows a Lévy-inspired sampling scheme, allowing
it to infrequently “teleport” long distances (middle); the robot moves in
the apparent direction provided by radiation sensor measurements (right).
All algorithms demonstrate qualitatively broad covering behavior in their
respective absence cases, but the directed case more expeditiously finds the
source. Note that the trajectories shown would not be feasible to reconstruct
under the proposed algorithm, since only the step size is stored; without storing
the measured direction or position, it is impossible to construct a meaningful
map representation.

Fig. 4. Cumulative density function over step lengths, averaged over 50
seeds, for source presence (red) and absence (black), corresponding to the
environments tested in Fig. 1 and Fig. 2. Note that the black dashed and
dotted lines are nearly identical to the solid black line, which is indicative of
the equivalency of the random walk methods in a source-absence environment.
The directed algorithm demonstrates faster convergence due to its utilization
of some additional information in the sensing model, which causes a larger
shift in the realized action distribution.

ACKNOWLEDGEMENTS

We thank Alexander Glaser, Robert J. Goldston, and
Anirudha Majumdar for their feedback and support. This
work has been supported by the National Science Foundation
Graduate Research Fellowship under Grant No. DGE-2039656.



REFERENCES

[1] IAEA Safeguards: Serving Non-Proliferation, International Atomic En-
ergy Agency, 2018.

[2] J. Carlson, V. Kuchinov, and T. Shea, The IAEA’s Safeguards System as
the Non-Proliferation Treaty’s Verification Mechanism, May 2020.

[3] J. Fuller, “Verification on the Road to Zero: Issues for Nuclear Warhead
Dismantlement,” Arms Control Today, December 2010.

[4] C. Comley, M. Comley, P. Eggins, G. George, S. Holloway, M.
Ley, P. Thompson, and K. Warburton, Confidence, Security & Ver-
ification, The Challenge of Global Nuclear Weapons Arms Con-
trol, AWE/TR/2000/001, Atomic Weapons Establishment, Aldermaston,
United Kingdom, 2000.

[5] Radiation Detection Equipment: An Arms Control Verification Tool,
Product No. 211P, Defense Threat Reduction Agency, Fort Belvoir, VA,
October 2011.

[6] National Academies of Sciences, Engineering, and Medicine, Nuclear
Proliferation and Arms Control Monitoring, Detection, and Verification:
A National Security Priority: Interim Report, The National Academies
Press, 2021.

[7] F. F. Dean, ROBIN: A Way to Collect In-Plant Safeguards Data with
Minimal Inspector Access, SAND82-1588C, Sandia National Laborato-
ries, 1982.

[8] K. Robertson, R. Stohr, A. Elfes, P. Flick, A. Sokolov, D. Finker, and
C. Everton, “The IAEA Robotics Challenge – Demonstrating Robots for
Safeguards Inspections,” IAEA Symposium on International Safeguards:
Building Future Safeguards Capabilities, IAEA-CN-267/215, 2018.

[9] F. E. Schneider and D. Wildermuth, “Real-World Robotic Competitions
for Radiological and Nuclear Inspection Tasks,” 20th International
Carpathian Control Conference (ICCC), pp. 1-6, 2019.

[10] B. Bird, A. Griffiths, H. Martin, E. Codres, J. Jones, A. Stancu, B.
Lennox, S. Watson, and X. Poteau, “A Robot to Monitor Nuclear Fa-
cilities: Using Autonomous Radiation-Monitoring Assistance to Reduce
Risk and Cost,” IEEE Robotics & Automation Magazine, vol. 26, no. 1,
pp. 35-43, 2019.

[11] M. Fisher, R. C. Cardoso, E. C. Collins, C. Dadswell, L. A. Dennis,
C. Dixon, M. Farrell, A. Ferrando, X. Huang, M. Jump, G. Kourtis, A.
Lisitsa, M. Luckcuck, S. Luo, V. Page, F. Papacchini, and M. Webster,
“An Overview of Verification and Validation Challenges for Inspection
Robots,” Robotics, vol. 10, no. 2, 67, 2021.

[12] R. Smith, E. Cucco, and C. Fairbairn, “Robotic Development for the
Nuclear Environment: Challenges and Strategy,” Robotics, vol. 9 no. 4,
94, 2020.

[13] M. Chiou, G. T. Epsimos, G. Nikolaou, P. Pappas, G. Petousakis,
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Searches,” Physica A: Statistical Mechanics and its Applications, vol.
282, no. 1–2, pp. 1-12, 2000.


	INTRODUCTION
	PROBLEM DEFINITION
	MINIMAL KNOWLEDGE BASELINE
	INCREASING INFORMATION
	APPENDIX
	Minimal Knowledge Exposition
	Additional Random Walk Variant
	Preliminary Random Walk Demonstration

	References

