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ABSTRACT

Debiased collaborative filtering aims to learn an unbiased prediction model by
removing different biases in observational datasets. To solve this problem, one of
the simple and effective methods is based on the propensity score, which adjusts
the observational sample distribution to the target one by reweighting observed
instances. Ideally, propensity scores should be learned with causal balancing con-
straints. However, existing methods usually ignore such constraints or implement
them with unreasonable approximations, which may affect the accuracy of the
learned propensity scores. To bridge this gap, in this paper, we first analyze the gaps
between the causal balancing requirements and existing methods such as learning
the propensity with cross-entropy loss or manually selecting functions to balance.
Inspired by these gaps, we propose to approximate the balancing functions in repro-
ducing kernel Hilbert space and demonstrate that, based on the universal property
and representer theorem of kernel functions, the causal balancing constraints can
be better satisfied. Meanwhile, we propose an algorithm that adaptively balances
the kernel function and theoretically analyze the generalization error bound of our
methods. We conduct extensive experiments to demonstrate the effectiveness of
our methods, and to promote this research direction, we have released our project
at https://github.com/haoxuanli-pku/ICLR24-Kernel-Balancing.

1 INTRODUCTION

Collaborative filtering (CF) is the basis for a large number of real-world applications, such as
recommender system, social network, and drug repositioning. However, the collected data may
contain different types of biases, which poses challenges to effectively learning CF models that can
well represent the target sample populations (Marlin and Zemel, 2009). To solve this problem, people
have proposed many debiased CF methods, among which propensity-based methods are simple
and effective, which adjust the observational sample distribution to the target one by reweighting
observed instances. For example, Schnabel et al. (2016) proposes to use the inverse propensity score
(IPS) to reweight the observed user-item interactions. The doubly robust (DR) method is another
powerful and widely-used propensity-based method for debiasing, which combines an imputation
model to reduce the variance and achieve double robustness property, i.e., unbiased either the learned
propensity scores or the imputed errors are accurate (Wang et al., 2019).

Despite previous propensity-based methods have achieved many promising results, most of them
ignore the causal balancing constraints (Imai and Ratkovic, 2014; Li et al., 2018; 2023d), which has
been demonstrated to be important and necessary for learning accurate propensities. Specifically,
causal balancing requires that the propensity score can effectively pull in the distance between the
observed and unobserved sample for any given function ϕ(·) (Imai and Ratkovic, 2014), that is

E
[
ou,iϕ(xu,i)

pu,i

]
= E

[
(1− ou,i)ϕ(xu,i)

1− pu,i

]
= E[ϕ(xu,i)],

∗Corresponding author.
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where xu,i is the covariate of user u and item i, ou,i indicates whether the outcome of user u to item
i is observed, and pu,i := P(ou,i = 1|xu,i) is the propensity score.

Existing debiased CF methods usually learn the propensity score based on two strategies: (1) adopting
cross-entropy to train pu,i that predicts ou,i using all user-item pairs (Wang et al., 2019), which does
not consider the balancing property; (2) using the above causal balancing constraint to learn pu,i with
finite manually selected balancing functions ϕ(·) (Li et al., 2023e). However, the selected balancing
functions may not be a good proxy of all functions, leading to insufficient balancing.

To bridge the above gaps, we propose a debiased CF method that can adaptively capture functions
that are more in need of being balanced. Specifically, we first analyze the relations between the causal
balancing constraints and previous propensity score learning methods, motivating our research from
a novel perspective. Then, to achieve the balancing property for any ϕ(·), we propose to conduct
causal balancing in the reproducing kernel Hilbert space (RKHS), where any continuous function can
be approximated based on Gaussian or exponential kernels. Moreover, we design a kernel balancing
algorithm to adaptively balance the selected functions and theoretically analyze the generalization
error bounds. Note that the proposed kernel balancing method applies to both pure propensity-based
and DR-based methods. The main contributions of this paper can be concluded as follows

• We theoretically prove the unbiasedness condition of the propensity-based methods from the
function balancing perspective, revealing the shortcomings of previous propensity learning methods
using cross-entropy and manually specified balancing functions.

• We design a novel kernel balancing method that adaptively find the balancing functions that
contribute the most to reducing the estimation bias via convex optimization, named adaptive kernel
balancing, and derive the corresponding generalization error bounds.

• We conduct extensive experiments on three publicly available datasets to demonstrate the effective-
ness of the proposed adaptive kernel balancing approach for IPS and DR estimators.

2 PRELIMINARIES

2.1 DEBIASED COLLABORATIVE FILTERING

Let U and I be the whole user and item sets, respectively. Denote Uo = {u1, . . . , um} ⊆ U and
Io = {i1, . . . , in} ⊆ I be the observed user and item sets randomly sampled from the super-
population, and D = Uo × Io = {(u, i) | u ∈ Uo, i ∈ Io} be the corresponding user-item set. For
each user-item pair (u, i) ∈ D, we denote xu,i ∈ RK , ru,i ∈ R and ou,i ∈ {0, 1} as the user-item
features, the rating of user u to item i and whether ru,i is observed in the dataset, respectively. For
brevity, denote O = {(u, i) | (u, i) ∈ D, ou,i = 1} as the set of user-item pairs with obseverd ru,i.

Let r̂u,i = f(xu,i; θr) be the prediction model parameterized by θr, which predicts ru,i according to
the features xu,i. To achieve the unbiased learning, it should be trained by minimizing the ideal loss:

LIdeal(θr) =
1

|D|
∑

(u,i)∈D

eu,i,

where eu,i = L(r̂u,i, ru,i) is the prediction error with L(·, ·) be an arbitrary loss function, e.g.,
mean square loss or cross-entropy loss. However, observing all ru,i is impractical so that eu,i is
not computable for ou,i = 0. A naive method for solving this problem is approximating LIdeal(θr)
directly based on the observed samples, that is to minimize the naive loss

LNaive(θr) =
1

|O|
∑

(u,i)∈O

eu,i.

However, due to the existence of selection bias, LNaive(θr) is not unbiased in terms of estimating
LIdeal(θr) (Wang et al., 2019). To further build unbiased estimators, previous studies propose to use
propensity score to adjust observed sample weights, and design the IPS loss

LIPS(θr) =
1

|D|
∑

(u,i)∈D

ou,ieu,i
p̂u,i

,
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where p̂u,i = π(xu,i; θp) is the estimation of propensity score pu,i. It can be demonstrated that
LIPS(θr) is unbiased when pu,i = p̂u,i (Schnabel et al., 2016; Wang et al., 2019). To further
improve the robustness and reduce the variance, researchers extend the IPS method to many DR
methods (Wang et al., 2019; 2021; Li et al., 2023b;f) with the DR loss

LDR(θr) =
1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i · (eu,i − êu,i)

pu,i

]
,

where êu,i = m(xu,i; θe) is the imputed error. The DR estimator is unbiased when all the estimated
propensity scores or the imputed errors are accurate. In both the IPS and DR methods, computing the
propensity score is of great importance, which directly determines the final debiasing performance.

2.2 CAUSAL BALANCING

In many causal inference studies (Imai and Ratkovic, 2014; Imbens and Rubin, 2015; Rosenbaum,
2020; Sant’Anna et al., 2022), accurately computing the propensity score is quite challenging, since
it is hard to specify the propensity model structure and estimate the model parameters. To solve this
problem, researchers propose a general strategy to learn the propensity scores without specifying
model structure based on the following causal balancing constraints (Imbens and Rubin, 2015)

E
[
ou,iϕ(xu,i)

pu,i

]
= E

[
(1− ou,i)ϕ(xu,i)

1− pu,i

]
= E[ϕ(xu,i)], (1)

where ϕ : X → R is a balancing function applied to the covariant. Ideally, this equation should hold
for any balancing function. Inspired by such property, a recent work (Li et al., 2023e) proposes to
learn the propensity by minimizing the distance between the first and second terms in Equation (1).
However, in this method, the finite balancing functions ϕ(·) are manually selected (e.g., the first and
second moments), which may not be a good proxy of all functions, leading to insufficient balancing.

3 CONNECTING CAUSAL BALANCING AND EXISTING PROPENSITY LEARNING

In the field of debiased collaborative filtering, there are usually two types of propensity score learning
methods: (1) using cross-entropy to train pu,i that predicts ou,i using all user-item pairs; (2) adopting
the causal balancing method with a finite number of manually selected balancing functions ϕ(·).

3.1 CROSS-ENTROPY BASED STRATEGY

Recall that the propensity model π(xu,i; θp) aims to predict the probability of observing ru,i in the
dataset (i.e., ou,i = 1). The cross-entropy based strategy learns θp based on the following loss

Lp(θp) =
∑

(u,i)∈D

−ou,i log {π(xu,i; θp)} − (1− ou,i) log {1− π(xu,i; θp)} .

By taking the first derivative of this loss function w.r.t θp, the optimal π(xu,i; θp) should satisfy

∂Lp(θp)

∂θp
=

∑
(u,i)∈D

−ou,i∂π(xu,i; θp)/∂θp
π(xu,i; θp)

+
(1− ou,i)∂π(xu,i; θp)/∂θp

1− π(xu,i; θp)
= 0. (2)

By comparing this requirement with the causal balancing constraint in Equation (1), we can see that if
we let ϕ(xu,i) = ∂π(xu,i; θp)/∂θp, then Equation (2) is a special case of Equation (1), which means
that the cross-entropy based strategy is not sufficient to achieve causal balancing.

3.2 CAUSAL BALANCING WITH MANUALLY SPECIFIED BALANCING FUNCTIONS

Li et al. (2023e) is a recent work on using causal balancing for debiased collaborative filtering. In this
work, the authors first manually select and fix J balancing functions {h(1)(·), h(2)(·), . . . , h(J)(·)}.
Denote ŵu,i = g(xu,i; θw) be the balancing weight assigned to sample (u, i), then the objective
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function and constrains of the optimization problem for learning θw is shown below

max
θw

−
∑

(u,i)∈O

ŵu,i log ŵu,i

s.t.
1

|D|
∑

(u,i)∈D

ou,iŵu,ih
(j)(xu,i) =

1

|D|
∑

(u,i)∈D

h(j)(xu,i) j ∈ {1, . . . , J},

1

|D|
∑

(u,i)∈D

ou,iŵu,i = 1, ŵu,i ≥ 0 ∀(u, i) ∈ O,

where the objective aims to effectively avoid extremely small balancing weight via maximizing
the entropy (Guiasu and Shenitzer, 1985). The first constraint is the empirical implementation of
Equation (1) based on balancing functions {h(1)(·), h(2)(·), . . . , h(J)(·)} and the second constraint
imposes normalization regularization on ŵu,i. Remarkably, this objective is convex w.r.t. ŵu,i, which
can be solved by the Lagrange multiplier method. The following Theorem 1 shows the estimation
bias depends on the distance between eu,i and HJ = span{h(1)(xu,i), . . . , h(J)(xu,i)}.

Theorem 1. If eu,i ∈ HJ = span{h(1)(·), . . . , h(J)(·)}, then the above learned propensities lead to
an unbiased ideal loss estimation in term of the IPS method.

The balancing functions {h(1)(·), . . . , h(J)(·)} are manually selected in Li et al. (2023e), which is
equivalent to letting ϕ(xu,i) = h(j)(xu,i), j ∈ {1, . . . , J} in Equation (1). This method improves
the cross-entropy based strategy by using more balancing functions. However, the selected balancing
functions may not well represent eu,i, that is, eu,i /∈ HJ = span{h(1)(·), . . . , h(J)(·)}, which may
lead to inaccurate balancing weights estimation and biased prediction model learning.

4 KERNEL-BASED CAUSAL BALANCING

4.1 KERNEL FUNCTION, UNIVERSAL PROPERTY, AND REPRESENTER THEOREM

To satisfy the causal balancing constraint in Equation (1), we approximate the balancing function
with Gaussian and exponential kernels in the reproducing kernel Hilbert space (RKHS). To begin
with, we first introduce several basic definitions and properties of the kernel function.

Definition 1 (Kernel function). Let X be a non-empty set. A function K : X × X → R is a kernel
function if there exists a Hilbert space H and a feature map ψ : X → H such that ∀x, x′ ∈ X ,
K(x, x′) := ⟨ψ(x), ψ(x′)⟩H .

Gaussian and exponential kernels are two typical kernel functions, which are formulated as follows

KGau(x, x′) = exp

(
−∥x− x′∥2

2σ2

)
and KExp(x, x′) = exp

(
−∥x− x′∥

2σ2

)
.

Definition 2 (Universal kernel). For X compact Hausdorff, a kernel is universal if for any continuous
function e : X → R and ϵ > 0, there exists f ∈ H in the corresponding RKHS such that
supx∈X |f(x)− e(x)| ≤ ϵ.

Lemma 1 (Sriperumbudur et al. (2011)). Both the Gaussian and exponential kernels are universal.

This lemma shows that there is a function in RKHS H = span{K(·, x) | x ∈ X} that can
approach any continuous function when the kernel function K(·, x) is chosen as the Gaussian or
exponential kernel. However, H might be an infinity dimension space with |X | = ∞, which leads to
infinity constraints for the optimization problem. The following representer theorem guarantees the
optimality of kernel methods under penalized empirical risk minimization and provides a form of the
best possible choice of kernel balancing under finite samples.

Lemma 2 (Representer theorem). If Ω = h(∥f∥) for some increasing function h : R+ → R,
then some empirical risk minimizer must admit the form f(·) =

∑n
i=1 αiK(·, xi) for some α =

(α1, . . . , αn) ∈ Rn. If h is strictly increasing, all minimizers admit this form.

4
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4.2 WORST-CASE KERNEL BALANCING

Next, we propose kernel balancing IPS (KBIPS) and kernel balancing DR (KBDR) for debiased CF

LKBIPS(θr) =
1

|D|
∑

(u,i)∈D

ou,iŵu,ieu,i,

LKBDR(θr) =
1

|D|
∑

(u,i)∈D

[
êu,i + ou,iŵu,i(eu,i − êu,i)

]
, (3)

where the balancing weights ŵu,i are learned via either the proposed worst-case kernel balancing in
the rest of this section or the proposed adaptive kernel balancing method in Section 4.3.

For illustration purposes, we use KBIPS as an example, and KBDR can be derived in a similar way1.
Theorem 1 shows that when the prediction error function eu,i ∈ HJ = span{h(1)(·), . . . , h(J)(·)}
and the learned balancing weights can balance those functions {h(1)(·), . . . , h(J)(·)}, then the above
KBIPS estimator leads to the unbiased ideal loss estimation. However, in practice, the prediction
error function eu,i could be any continuous function, lying in a much larger hypothesis space than
HJ . By Lemma 1, when the kernel function K(·, x) is chosen as the Gaussian or exponential kernel,
we can assume eu,i ∈ H = span{K(·, xu,i) | (u, i) ∈ U × I} holds with any approximation error ϵ.

Note that the empirical bias of the KBIPS estimator for estimating the ideal loss is

Bias(LKBIPS(θr)) = {LKBIPS(θr)− LIdeal(θr)}2 =

 1

|D|
∑

(u,i)∈D

(ou,iŵu,i − 1)eu,i


2

,

then the worst-case kernel balancing (WKB) method focuses on controlling the worst-case bias of
KBIPS by playing the following minimax game

min
θw

sup
e∈H̃

 1

|D|
∑

(u,i)∈D

(ou,iŵu,i − 1)eu,i


2
 = min

θw

sup
e∈H

{
1

|D|
∑

(u,i)∈D(ou,iŵu,i − 1)eu,i

}2

1
|D|
∑

(u,i)∈D e
2
u,i

 ,
where H̃ = {e(·) ∈ H : ∥e(·)∥2N = |D|−1

∑
(u,i)∈D e

2
u,i = 1} is the normalized RKHS. By the

representer theorem in Lemma 2, the right-hand side is the same as the following

min
θw

sup
αs,t

{
1

|D|
∑

(u,i)∈D(ou,iŵu,i − 1)
∑

(s,t)∈D αs,tK(xu,i, xs,t)
}2

1
|D|
∑

(u,i)∈D e
2
u,i

 .
4.3 ADAPTIVE KERNEL BALANCING

There are |D| kernel functions in the above objective. Since there are usually a large number of users
and items in the recommender systems, |D| is quite large, which makes it infeasible to balance all
kernel functions. To solve this problem, a straightforward method is to randomly select J functions
from span{K(·, xu,i) | (u, i) ∈ D} to balance, named random kernel balancing (RKB). However,
this method regards all kernel functions as equally important, which harms the debiasing performance.

To overcome the shortcomings of the WKB and RKB methods, we propose a novel adaptive kernel
balancing (AKB) method that can adaptively select which kernel functions to balance. Given current
prediction model f(xu,i; θr), we first fit eu,i using the kernel functions in RKHS

(α1,1, . . . , αm,n) = argmin
α

1

|D|
∑

(u,i)∈D

eu,i − ∑
(s,t)∈D

αs,tK(xu,i, xs,t)


2

, (4)

1For KBDR, it requires that eu,i − êu,i ∈ HJ = span{h(1)(·), . . . , h(J)(·)}. Same as the follows, e.g.,
(α1,1, . . . , αm,n) should minimize the mean squared error between eu,i− êu,i and

∑
(s,t)∈D αs,tK(xu,i, xs,t).
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then balance the J functions with maximal |αs,t|, where J is a hyper-parameter. This method aims to
balance the kernel functions that contribute most to eu,i, which leads to the following optimization

min
θw

∑
(u,i)∈O

ŵu,i log ŵu,i + γ

J∑
j=1

ξj

s.t. ξj ≥ 0 j ∈ {1, . . . , J} and ŵu,i ≥ 0 ∀(u, i) ∈ O,∑
(u,i)∈D

ou,iŵu,i = 1,

∑
(u,i)∈D

ou,iŵu,ih
(j)(xu,i)−

1

|D|
∑

(u,i)∈D

h(j)(xu,i) ≤ C + ξj j ∈ {1, . . . , J},

∑
(u,i)∈D

ou,iŵu,ih
(j)(xu,i)−

1

|D|
∑

(u,i)∈D

h(j)(xu,i) ≥ −C + ξj j ∈ {1, . . . , J}.

The above optimization problem is equivalent to the following

min
θw

Lw(θw) =
∑

(u,i)∈O

ŵu,i log ŵu,i + γ
J∑

j=1

(
[−C − τ̂ (j)]+ + [τ̂ (j) − C]+

)
, (5)

where

τ̂ (j) =
∑

(u,i)∈D

ou,iŵu,ih
(j)(xu,i)−

1

|D|
∑

(u,i)∈D

h(j)(xu,i) j ∈ {1, . . . , J}.

Since achieving strict balancing constraints on all balancing functions is usually infeasible as J
increases, we introduce a slack variable ξj and a pre-specified threshold C, which penalizes the loss
when the deviation |τ̂ j | > C.

4.4 LEARNING ALGORITHM AND GENERALIZATION ERROR BOUNDS

Taking the AKBDR method as an example, because the balancing weights ŵu,i and prediction errors
eu,i are relying on each other, thus we adopt a widely used joint learning framework to train the
prediction model r̂u,i = f(xu,i; θr), balancing weight model ŵu,i = g(xu,i; θw), and imputation
model êu,i = m(xu,i; θe) alternatively. Specifically, we train the prediction model by minimizing the
LKBDR(θr) loss shown in Equation 3, train the balancing weight model by minimizing the Lw(θw)
in Equation 5, and train the imputation model by minimizing the loss function Le(θe) below

Le(θe) =
1

|D|
∑

(u,i)∈D

ou,iŵu,i(êu,i − eu,i)
2, (6)

and the whole procedure of the proposed joint learning process is summarized in Alg. 1.

Next, we analyze the generalization bound of the KBIPS and KBDR methods.

Theorem 2 (Generalization Bounds in RKHS). Let K be a bounded kernel, supx
√
K(x, x) =

B <∞, and BK(M) = {f ∈ F | ∥f∥F ≤M} is the corresponding kernel-based hypotheses space.
Suppose ŵu,i ≤ C, δ(r, ·) is L-Lipschitz continuous for all r, and that E0 := supr δ(r, 0) < ∞.
Then with probability at least 1− η, we have

LIdeal(θr) ≤ LKBIPS(θr) + |Bias(LKBIPS(θr))|+
2CLMB√

|D|
+ 5C(E0 + LMB)

√
log(4/η)

2|D|
,

LIdeal(θr) ≤ LKBDR(θr) + |Bias(LKBDR(θr))|+ (1 + 2C)

(
2LMB√

|D|
+ 5(E0 + LMB)

√
log(4/η)

2|D|

)
.

Remarkably, the above generalization bounds in RKHS can be greatly reduced by adopting the
proposed KBIPS and KBDR learning methods, because the prediction model minimizes the debiased
losses LKBIPS(θr) and LKBDR(θr) during the model training phase, and Bias(LKBIPS(θr)) and
Bias(LKBDR(θr)) can also be controlled via WKB or AKB methods.

6
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Algorithm 1: The Proposed Adaptive KBDR (AKBDR) Learning Algorithm
Input: observed ratings Yo, and number of balancing functions J .

1 while stopping criteria is not satisfied do
2 for number of steps for training the imputation model do
3 Sample a batch of user-item pairs {(ul, il)}Ll=1 from O;
4 Update θe by descending along the gradient ∇θeLe(θe);
5 end
6 for number of steps for training the balancing weight model do
7 Sample a batch of user-item pairs {(um, im)}Mm=1 from D;
8 Solve the Equation 4 and select J functions h(xum,im) with maximum |αum,im |;
9 Update θw by descending along the gradient ∇θwLw(θw);

10 end
11 for number of steps for training the prediction model do
12 Sample a batch of user-item pairs {(un, in)}Nn=1 from D;
13 Update θr by descending along the gradient ∇θrLKBDR(θr);
14 end
15 end

5 RELATED WORK

Debiased Collaborative Filtering. Collaborative filtering (CF) plays an important role in today’s
digital and informative world (Chen et al., 2018; Huang et al., 2023; Lv et al., 2023; 2024). However,
the collected data is observational rather than experimental, leading to various biases in the data, which
seriously affects the quality of the learned model. One of the most important biases is the selection
bias, which causes the distribution of the training data to be different from the distribution of the test
data, thus making it challenging to achieve unbiased estimation and learning (Wang et al., 2022b;
2023b; Zou et al., 2023; Wang et al., 2023a; 2024). If we learn the model directly on the training data
without debiasing, it will harm the prediction performance on the test data (Wang et al., 2023c; Zhang
et al., 2023; Bai et al., 2024; Zhang et al., 2024). Many previous methods are proposed to mitigate the
selection bias problem (Schnabel et al., 2016; Wang et al., 2019; Chen et al., 2021; Li et al., 2023c).
The error-imputation-based (EIB) methods attempt to impute the missing events, and then train a
CF model on both observed and imputed data (Chang et al., 2010; Steck, 2010; Hernández-Lobato
et al., 2014). Another common type of debiasing method is propensity-based, including inverse
propensity scoring (IPS) methods (Imbens and Rubin, 2015; Schnabel et al., 2016; Saito et al., 2020;
Luo et al., 2021; Oosterhuis, 2022), and doubly robust (DR) methods (Morgan and Winship, 2015;
Wang et al., 2019; Saito, 2020). Specifically, IPS adjusts the distribution by reweighting the observed
events, while DR combines the EIB and IPS methods, which takes advantage of both, i.e., has lower
variance and bias. Based on the above advantages, many competing DR-based methods are proposed,
such as MRDR (Guo et al., 2021), DR-BIAS (Dai et al., 2022), ESCM2-DR (Wang et al., 2022a),
TDR (Li et al., 2023b), SDR (Li et al., 2023f), and N-DR (Li et al., 2024). Given the widespread
of the propensity model, Li et al. (2023d) proposed a method to train balancing weights with a few
unbiased ratings for debiasing. More recently, Li et al. (2023e) proposed a propensity balancing
measurement to regularize the IPS and DR estimators. In this paper, we extend the above idea by
proposing novel kernel-based balancing IPS and DR estimators that adaptively find the balancing
functions that contribute the most to reducing the estimation bias.

Covariate Balancing in Causal Inference. Balancing refers to aligning the distribution of covariates
in the treatment and control groups, which is crucial to the estimation of causal effects based on
observational datasets (Stuart, 2010; Imbens and Rubin, 2015). This is because balancing ensures that
units receiving different treatments are comparable directly, and the association becomes causation
under the unconfoundedness assumption (Imai and Ratkovic, 2014; Hernán and Robins, 2020). In
randomized controlled experiments, balancing is naturally maintained due to the complete random
assignment of treatments. However, in observational studies, treatment groups typically exhibit
systematic differences in covariates, which can result in a lack of balance. To obtain accurate estimates
of causal effects in observational studies, a wide variety of methods have emerged for balancing the
finite order moments of covariates, including matching (Rosenbaum and Rubin, 1983; Stuart, 2010;

7
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Table 1: Performance on AUC, NDCG@K, and F1@K on COAT, MUSIC and PRODUCT. The best
two results are bolded and the best baseline result is underlined for IPS-based and DR-based methods.

COAT MUSIC PRODUCT

Method AUC NDCG@5 F1@5 AUC NDCG@5 F1@5 AUC NDCG@20 F1@20

MF 0.703±0.006 0.605±0.012 0.467±0.007 0.673±0.001 0.635±0.002 0.306±0.002 0.753±0.001 0.449±0.002 0.124±0.002

+ IPS 0.717±0.007 0.617±0.009 0.473±0.008 0.678±0.001 0.638±0.002 0.318±0.002 0.755±0.004 0.452±0.010 0.131±0.004

+ SNIPS 0.714±0.012 0.614±0.012 0.474±0.009 0.683±0.002 0.639±0.002 0.316±0.002 0.754±0.003 0.453±0.004 0.126±0.003

+ ASIPS 0.719±0.009 0.618±0.012 0.476±0.009 0.679±0.003 0.640±0.003 0.319±0.003 0.757±0.005 0.474±0.007 0.130±0.005

+ IPS-V2 0.726±0.005 0.627±0.009 0.479±0.008 0.685±0.002 0.646±0.003 0.320±0.002 0.764±0.001 0.476±0.003 0.135±0.003

+ RKBIPS-Exp 0.714±0.003 0.618±0.010 0.474±0.007 0.676±0.002 0.642±0.003 0.318±0.002 0.763±0.001 0.463±0.007 0.134±0.002

+ RKBIPS-Gau 0.715±0.005 0.619±0.010 0.475±0.008 0.678±0.001 0.640±0.004 0.315±0.003 0.760±0.003 0.470±0.008 0.133±0.003

+ WKBIPS-Exp 0.723±0.004 0.624±0.009 0.480±0.007 0.687±0.002 0.654±0.002 0.322±0.002 0.765±0.003 0.475±0.007 0.138±0.003

+ WKBIPS-Gau 0.722±0.004 0.625±0.008 0.479±0.007 0.686±0.002 0.650±0.002 0.321±0.002 0.763±0.003 0.476±0.007 0.137±0.003

+ AKBIPS-Exp 0.732∗
±0.004 0.636∗

±0.006 0.483±0.006 0.689∗
±0.001 0.658∗

±0.002 0.324∗
±0.002 0.766∗

±0.003 0.478±0.009 0.138∗
±0.003

+ AKBIPS-Gau 0.730∗
±0.003 0.633±0.008 0.484±0.007 0.688∗

±0.003 0.655∗
±0.003 0.324∗

±0.002 0.767∗
±0.003 0.480±0.009 0.139∗

±0.003

+ DR 0.718±0.008 0.623±0.009 0.474±0.007 0.684±0.002 0.658±0.003 0.326±0.002 0.755±0.008 0.462±0.010 0.135±0.005

+ DR-JL 0.723±0.005 0.629±0.007 0.479±0.005 0.685±0.002 0.653±0.002 0.324±0.002 0.766±0.002 0.467±0.005 0.136±0.003

+ MRDR-JL 0.727±0.005 0.627±0.008 0.480±0.008 0.684±0.002 0.652±0.003 0.325±0.002 0.768±0.005 0.473±0.007 0.139±0.004

+ DR-BIAS 0.726±0.004 0.629±0.009 0.482±0.007 0.685±0.002 0.653±0.002 0.325±0.003 0.768±0.003 0.477±0.006 0.137±0.004

+ DR-MSE 0.727±0.007 0.631±0.008 0.484±0.007 0.687±0.002 0.657±0.003 0.327±0.003 0.770±0.003 0.480±0.006 0.140±0.003

+ MR 0.724±0.004 0.636±0.006 0.481±0.006 0.691±0.002 0.647±0.002 0.316±0.003 0.776±0.005 0.483±0.006 0.142±0.003

+ TDR 0.714±0.006 0.634±0.011 0.483±0.008 0.688±0.003 0.662±0.002 0.329±0.002 0.772±0.003 0.486±0.005 0.140±0.003

+ TDR-JL 0.731±0.005 0.639±0.007 0.484±0.007 0.689±0.002 0.656±0.004 0.327±0.003 0.772±0.003 0.489±0.005 0.142±0.003

+ SDR 0.735±0.005 0.640±0.007 0.484±0.006 0.688±0.002 0.661±0.003 0.329±0.002 0.773±0.001 0.491±0.003 0.143±0.003

+ DR-V2 0.734±0.007 0.639±0.009 0.487±0.006 0.690±0.002 0.660±0.005 0.328±0.002 0.773±0.003 0.488±0.006 0.142±0.004

+ RKBDR-Exp 0.730±0.003 0.631±0.005 0.482±0.006 0.682±0.002 0.648±0.003 0.323±0.002 0.765±0.004 0.460±0.006 0.138±0.003

+ RKBDR-Gau 0.726±0.005 0.630±0.008 0.480±0.008 0.683±0.002 0.652±0.003 0.325±0.002 0.766±0.003 0.469±0.007 0.134±0.004

+ WKBDR-Exp 0.735±0.005 0.637±0.009 0.483±0.006 0.685±0.003 0.654±0.003 0.325±0.002 0.773±0.003 0.489±0.008 0.142±0.003

+ WKBDR-Gau 0.732±0.003 0.638±0.007 0.483±0.005 0.687±0.001 0.655±0.002 0.327±0.002 0.773±0.002 0.490±0.005 0.142±0.004

+ AKBDR-Exp 0.745∗
±0.004 0.645±0.008 0.493∗

±0.007 0.692±0.002 0.661±0.002 0.328±0.002 0.782∗
±0.003 0.498∗

±0.008 0.147∗
±0.003

+ AKBDR-Gau 0.746∗
±0.004 0.646∗

±0.008 0.492±0.007 0.694∗
±0.002 0.664∗

±0.002 0.332∗
±0.002 0.782∗

±0.005 0.503∗
±0.006 0.148∗

±0.004

Note: * means statistically significant results (p-value ≤ 0.05) using the paired-t-test compared with the best baseline method.

Wu et al., 2020), stratification (Hernán and Robins, 2020), entropy balancing (Hainmueller, 2012;
Zhao and Percival, 2017), covariate balancing (Imai and Ratkovic, 2014), and weighted euclidean
balancing (Chen and Zhou, 2023). In recent years, several approaches are developed balancing
infinite order moments of covariates (Sant’Anna et al., 2022) or the covariates distributions (Wong
and Chan, 2018). However, it is unrealistic to balance infinite order moments with only finite samples,
therefore in this paper we propose a novel balancing method that adaptively finds the balancing
functions in RKHS that are most important for achieving unbiased learning.

6 EXPERIMENTS

Datasets and Experimental Details. Following the previous studies (Wang et al., 2019; Chen et al.,
2021; Wang et al., 2021; Li et al., 2023b), we conduct real-world experiments on three widely used
benchmark datasets: COAT, MUSIC, and a large-scale industrial dataset PRODUCT. The COAT dataset
consists of 6,960 biased ratings and 4,640 unbiased ratings evaluated by 290 users to 300 items. The
MUSIC dataset consists of 311,704 biased ratings and 54,000 unbiased ratings evaluated by 15,400
users to 1,000 items. The PRODUCT dataset consists of 4,676,570 records of video watching ratios
from 1,411 users to 3,327 items and is almost fully exposed. Both COAT and MUSIC are five-scale
datasets, and we binarize the ratings less than three as 0, otherwise as 1. For the PRODUCT dataset,
we binarize the video watching ratios less than two as 0, otherwise as 1. We adopt three widely used
evaluation metrics: AUC, NDCG@K, and F1@K to measure the debiasing performance. We set
K = 5 for COAT and MUSIC and K = 20 for PRODUCT. We use Adam as the optimizer and tune
the learning rate in {0.01, 0.03, 0.05, 0.1}, weight decay in [1e − 6, 5e − 3], margin threshold C
in {1e− 6, 5e− 5, 1e− 5, . . . , 1}, kernel hyper-parameter σ2 in {0.5, 1, 5} for both Gaussian and
exponential kernels, and regularization hyper-parameter γ in {1, 2, 5, 10, 20, 50}. We set the batch
size to 128 on COAT and 2,048 on MUSIC and PRODUCT.

Baselines. We implement our proposed RKB, WKB, and AKB methods with both Gaussian and
exponential kernels by taking MF (Koren et al., 2009) as the base model. We compare our methods
with the following IPS-based baselines: IPS (Schnabel et al., 2016), SNIPS (Schnabel et al., 2016),
ASIPS (Saito, 2020), and IPS-V2 (Li et al., 2023e). Meanwhile, we also compare our methods with
the following DR-based baselines: DR (Saito, 2020), DR-JL (Wang et al., 2019), MRDR (Guo et al.,
2021), DR-BIAS (Dai et al., 2022), DR-MSE (Dai et al., 2022), MR (Li et al., 2023a), TDR (Li
et al., 2023b), TDR-JL (Li et al., 2023b), StableDR (Li et al., 2023f), and DR-V2 (Li et al., 2023e).
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Figure 1: Effects of the value of J on AUC and NDCG@20 on the PRODUCT dataset.
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Figure 2: Effects of hyper-parameter γ on AUC and NDCG@K on MUSIC and PRODUCT datasets.

Performance Comparison. We compare the proposed methods with previous methods, as shown
in Table 1. First, all the debiasing methods outperform MF, and AKBDR achieves the optimal
performance on all three datasets with either Gaussian or exponential kernels. Second, methods
with balancing properties such as IPS-V2 and DR-V2 achieve competitive performance, which
demonstrates the importance of propensity balancing. Third, for our methods, RKB methods perform
the worst due to the insufficient balancing caused by random selected functions, while AKB methods
perform the best due to the most important kernel functions are adaptively found and balanced.

In-Depth Analysis. We further explore the impact of the value of J on the debiasing performance of
kernel balancing methods on the PRODUCT dataset. We also implement the moment balancing (MB)
methods which balance the first J-th order moments for comparison and the results are shown in
Figure 1. We find the performance for all methods except WKB increases monotonically as the value
of J increases because more functions or moments being balanced leads to less bias. Since the WKB
methods focus on controlling the worst-case, the performance does not change for different J and
shows competitive performance with AKB methods when J is small (e.g., J = 1). In addition, kernel
balancing methods stably outperform moment balancing methods with varying values of J even if
the balancing functions are selected randomly, validating the effectiveness of kernel balancing.

Sensitivity Analysis. To explore the effect of balancing regularization hyper-parameter γ on debiasing
performance, we conduct sensitivity analysis on AKB methods with varying γ in {1, 2, 5, 10, 20} on
the MUSIC and PRODUCT datasets, as shown in Figure 2. The AKB methods consistently outperform
the baseline methods under different regularization strengths. Specifically, even when the balancing
constraint strength is small, the AKB method can still get significant performance gains, and the
optimal performance is achieved around the moderate γ (e.g., 5 or 10).

7 CONCLUSION

In the information-driven landscape, collaborative filtering is pivotal for various e-commerce plat-
forms. However, selection bias in the collected data poses a great challenge for collaborative filtering
model training. To mitigate this issue, this paper theoretically reveal that previous debiased collabo-
rative filtering approaches are restricted to balancing finite-dimensional pre-specified functions of
features. To fill the gap, we first develop two new estimators, KBIPS and KBDR, which extend the
widely-used IPS and DR estimators in debiased collaborative filtering. Then we propose a universal
kernel-based balancing method that adaptively achieves balance for the selected functions in an
RKHS. Based on it, we further propose an adaptive kernel balancing method. Theoretical analysis
demonstrates that the proposed balancing method reduces both estimation bias and the generalization
bound. Extensive experiments on real-world datasets validate the effectiveness of our methods.
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A PROOFS

Theorem 1. If eu,i ∈ HJ = span{h(1)(·), . . . , h(J)(·)}, then the above learned propensities lead to
an unbiased ideal loss estimation in term of the IPS method.

Proof. The balancing weight ŵu,i is learned by solving the following optimization problem

max
θw

−
∑

(u,i)∈O

ŵu,i log ŵu,i

s.t.
1

|D|
∑

(u,i)∈D

ou,iŵu,ih
(j)(xu,i) =

1

|D|
∑

(u,i)∈D

h(j)(xu,i) j ∈ {1, . . . , J},

1

|D|
∑

(u,i)∈D

ou,iŵu,i = 1, ŵu,i ≥ 0 ∀(u, i) ∈ O,

thus the learned ŵu,i satisfying the constraints in the optimization problem, which means that

1

|D|
∑

(u,i)∈D

(ou,iŵu,ih
(j)(xu,i)− h(j)(xu,i)) = 0, j ∈ {1, . . . , J}.

If eu,i ∈ HJ = span{h(1)(·), . . . , h(J)(·)}, there exist {αj}Jj=1 satisfying eu,i =∑J
j=1 αjh

(j)(xu,i). the empirical bias of the KBIPS estimator for estimating the ideal loss is

Bias(LKBIPS(θr)) =

 1

|D|
∑

(u,i)∈D

(ou,iŵu,i − 1)eu,i


2

=

 1

|D|
∑

(u,i)∈D

(ou,iŵu,i − 1)

J∑
j=1

αjh
(j)(xu,i)


2

=

 1

|D|

J∑
j=1

αj

∑
(u,i)∈D

(ou,iŵu,ih
(j)(xu,i)− h(j)(xu,i))


2

= 0.

If eu,i /∈ HJ = span{h(1)(·), . . . , h(J)(·)}, then for all {αj}Jj=1, eu,i =
∑J

j=1 αjh
(j)(x) + ϵ(xu,i),

where ϵ(xu,i) is the non-zero residual term. Therefore, we have

Bias(LKBIPS(θr)) =

 1

|D|
∑

(u,i)∈D

(ou,iŵu,i − 1)eu,i


2

=

 1

|D|
∑

(u,i)∈D

(ou,iŵu,i − 1)ϵ(xu,i)


2

̸= 0.

A similar argument also holds for the proposed KBDR estimator.

Lemma 1 (Sriperumbudur et al. (2011)). Both the Gaussian and exponential kernels are universal.

Proof. The proof can be found in Sriperumbudur et al. (2011).

Lemma 2 (Representer theorem). If Ω = h(∥f∥) for some increasing function h : R+ → R,
then some empirical risk minimizer must admit the form f(·) =

∑n
i=1 αiK(·, xi) for some α =

(α1, . . . , αn) ∈ Rn. If h is strictly increasing, all minimizers admit this form.

13
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Proof. The proof can be found in Theorem 6.11 of Mohri et al. (2018).

Definition 2 (Empirical Rademacher Complexity (Shalev-Shwartz and Ben-David, 2014)). Let F
be a family of prediction models mapping from x ∈ X to [a, b], and S = {xu,i | (u, i) ∈ D} a fixed
sample of size |D| with elements in X . Then, the empirical Rademacher complexity of F with respect
to the sample S is defined as

R(F) = Eσ∼{−1,+1}|D| sup
f∈F

 1

|D|
∑

(u,i)∈D

σu,if(xu,i)

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

Lemma 3 (Rademacher Comparison Lemma (Shalev-Shwartz and Ben-David, 2014)). Let F be a
family of real-valued functions on z ∈ Z to [a, b], and S = {xu,i | (u, i) ∈ D} a fixed sample of size
|D| with elements in X . Then

E
S∼P|D|

[
sup
f∈F

 E
z∼P

[f(z)]− 1

|D|
∑

(u,i)∈D

f (zu,i)

] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
f∈F

 1

|D|
∑

(u,i)∈D

σu,if (zu,i)

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

Proof. The proof can be found in Lemma 26.2 of Shalev-Shwartz and Ben-David (2014).

Lemma 4 (McDiarmid’s Inequality (Shalev-Shwartz and Ben-David, 2014)). Let V be some set and
let f : V m → R be a function of m variables such that for some c > 0, for all i ∈ [m] and for all
x1, . . . , xm, x

′
i ∈ V we have

|f (x1, . . . , xm)− f (x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ c.

Let X1, . . . , Xm be m independent random variables taking values in V . Then, with the probability
of at least 1− δ we have

|f (X1, . . . , Xm)− E [f (X1, . . . , Xm)]| ≤ c

√
log

(
2

δ

)
m/2.

Proof. The proof can be found in Lemma 26.4 of Shalev-Shwartz and Ben-David (2014).

Lemma 5 (Rademacher Calculus (Shalev-Shwartz and Ben-David, 2014)). For any A ⊂ Rm, scalar
c ∈ R, and vector a0 ∈ Rm, we have

R ({ca+ a0 : a ∈ A}) ≤ |c|R(A).

Proof. The proof can be found in Lemma 26.6 of Shalev-Shwartz and Ben-David (2014).

Lemma 6 (Talagrand’s Lemma (Mohri et al., 2018)). Let Φ1, . . . ,Φm be L-Lipschitz functions
from R to R and σ1, . . . , σm be Rademacher random variables. Then, for any hypothesis set F of
real-valued functions, the following inequality holds

1

m
E
σ

[
sup
f∈F

m∑
i=1

σi (Φi ◦ f) (xi)

]
≤ L

m
E
σ

[
sup
f∈F

m∑
i=1

σif (xi)

]
= LR(F).

In particular, if Φi = Φ for all i ∈ [m], then the following holds

R(Φ ◦ F) ≤ LR(F).

Proof. The proof can be found in Section 5.4 of Mohri et al. (2018).
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Lemma 7. Suppose K is a bounded kernel with supx
√
K(x, x) = B <∞ and let F be its RKHS.

Let M > 0 be fixed. Then for any S = {xu,i : (u, i) ∈ D},

R (BK(M)) ≤ MB√
|D|

,

where BK(M) = {f ∈ F | ∥f∥F ≤M}.

Proof. Fix S = {xu,i : (u, i) ∈ D}. Then

R (BK(M)) = Eσ

 sup
f∈BK(M)

1

|D|
∑

(u,i)∈D

σu,if (xu,i)


=

1

|D|
Eσ

 sup
f∈BK(M)

∑
(u,i)∈D

σu,i ⟨f,K (·, xu,i)⟩


=

1

|D|
Eσ

 sup
f∈BK(M)

〈
f,

∑
(u,i)∈D

σu,iK (·, xu,i)

〉
=

1

|D|
Eσ

〈M ∑
(u,i)∈D σu,iK (·, xu,i)∥∥∥∑(u,i)∈D σu,iK (·, xu,i)

∥∥∥ ,
∑

(u,i)∈D

σu,iK (·, xu,i)

〉
=

M

|D|
Eσ

∥∥∥∥∥∥
∑

(u,i)∈D

σu,iK (·, xu,i)

∥∥∥∥∥∥


=
M

|D|
Eσ


√√√√√
∥∥∥∥∥∥
∑

(u,i)∈D

σu,iK (·, xu,i)

∥∥∥∥∥∥
2


≤ M

|D|

√√√√√Eσ

∥∥∥∥∥∥
∑

(u,i)∈D

σu,iK (·, xu,i)

∥∥∥∥∥∥
2

=
M

|D|

√ ∑
(u,i)∈D

∥K (·, xu,i)∥2

=
M

|D|

√ ∑
(u,i)∈D

K (xu,i, xu,i)

≤ M

|D|
√
|D|B2

=
MB√
|D|

.

Theorem 2 (Generalization Bounds in RKHS). Let K be a bounded kernel, supx
√
K(x, x) =

B <∞, and BK(M) = {f ∈ F | ∥f∥F ≤M} is the corresponding kernel-based hypotheses space.
Suppose ŵu,i ≤ C, δ(r, ·) is L-Lipschitz continuous for all r, and that E0 := supr δ(r, 0) < ∞.
Then with probability at least 1− η, we have

LIdeal(θr) ≤ LKBIPS(θr) + |Bias(LKBIPS(θr))|+
2CLMB√

|D|
+ 5C(E0 + LMB)

√
log(4/η)

2|D|
,
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and

LIdeal(θr) ≤ LKBDR(θr) + |Bias(LKBDR(θr))|+ (1 + 2C)

(
2LMB√

|D|
+ 5(E0 + LMB)

√
log(4/η)

2|D|

)
.

Proof. We first prove the generalization bound of the KBIPS estimator, noting that the ideal loss can
be decomposed as

LIdeal(θr) = LKBIPS(θr) + (LIdeal(θr)− E(LKBIPS(θr))) + (E(LKBIPS(θr))− LKBIPS(θr))

= LKBIPS(θr) + Bias(LKBIPS(θr)) + (E(LKBIPS(θr))− LKBIPS(θr))

≤ LKBIPS(θr) + |Bias(LKBIPS(θr))|

+ sup
fθ∈BK(M)

E

 1

|D|
∑

(u,i)∈D

ou,iŵu,ieu,i

− 1

|D|
∑

(u,i)∈D

ou,iŵu,ieu,i

 .

For simplicity, we denote the last term in the above formula as

B(F) = sup
fθ∈BK(M)

E

 1

|D|
∑

(u,i)∈D

ou,iŵu,ieu,i

− 1

|D|
∑

(u,i)∈D

ou,iŵu,ieu,i

 ,

we then aim to bound B(F) in the following.

Note that

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
,

where the first term is E
S∼P|D|

[B(F)], and by Lemma 3 we have

E
S∼P|D|

[B(F)] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
fθ∈BK(M)

 1

|D|
∑

(u,i)∈D

σu,iou,iŵu,ieu,i


= 2 E

S∼P|D|
{R(LKBIPS(θr))},

where

R(LKBIPS(θr)) := Eσ∼{−1,+1}|D| sup
fθ∈BK(M)

 1

|D|
∑

(u,i)∈D

σu,iou,iŵu,ieu,i

 .
By applying McDiarmid’s inequality in Lemma 4 and the assumptions that ŵu,i ≤ C, also note that
r̂u,i ≤ supx

√
K(x, x)∥f∥F ≤MB, thus eu,i = L(r̂u,i, ru,i) ≤ E0 + LMB, let

c =
2C(E0 + LMB)

|D|
,

then with probability at least 1− η
2 ,∣∣∣∣R(LKBIPS(θr))− E

S∼P|D|
{R(LKBIPS(θr))}

∣∣∣∣ ≤ 2C(E0 + LMB)

|D|

√
log(4/η)|D|

2

= 2C(E0 + LMB)

√
log(4/η)

2|D|
.

By the assumption that ŵu,i ≤ C and δ(r, ·) is L-Lipschitz continuous for all r, we have

R(LKBIPS(θr)) ≤ CLR(F) ≤ CLMB√
|D|

,
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where the first inequality is from Lemma 5 and Lemma 6 with L as Lipschitz constant, the second
inequality is from Lemma 7, and R(F) is the empirical Rademacher complexity

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈BK(M)

 1

|D|
∑

(u,i)∈D

σu,if(xu,i)

 ,
where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

For the rest term B(F)− E
S∼P|D|

[B(F)], by applying McDiarmid’s inequality in Lemma 4 and the

assumptions that ŵu,i ≤ C and eu,i ≤ E0 + LMB, let

c =
C(E0 + LMB)

|D|
,

then with probability at least 1− η
2 ,

∣∣∣∣B(F)− E
S∼P|D|

[B(F)]

∣∣∣∣ ≤ C(E0 + LMB)

|D|

√
log(4/η)|D|

2
= C(E0 + LMB)

√
log(4/η)

2|D|
.

We now bound B(F) by combining the above results. Formally, with probability at least 1− η,

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
≤ 2 E

S∼P|D|
{R(LKBIPS(θr))}+

{
B(F)− E

S∼P|D|
[B(F)]

}
≤ 2R(LKBIPS(θr)) + 4C(E0 + LMB)

√
log(4/η)

2|D|
+

{
B(F)− E

S∼P|D|
[B(F)]

}

≤ 2R(LKBIPS(θr)) + 5C(E0 + LMB)

√
log(4/η)

2|D|

≤ 2CLMB√
|D|

+ 5C(E0 + LMB)

√
log(4/η)

2|D|
.

We now bound the ideal loss by combining the above results. Formally, with probability at least
1− η, we have

LIdeal(θr) ≤ LKBIPS(θr) + |Bias(LKBIPS(θr))|+ B(F)

≤ LKBIPS(θr) + |Bias(LKBIPS(θr))|+
2CLMB√

|D|
+ 5C(E0 + LMB)

√
log(4/η)

2|D|
.

In Theorem 1, we have already proved that

|Bias(LKBIPS(θr))| =
1

|D|

∣∣∣∣∣∣
∑

(u,i)∈D

(ou,iŵu,i − 1)eu,i

∣∣∣∣∣∣ ,
therefore with probability at least 1− η, we have

LIdeal(θr) ≤ LKBIPS(θr) + |Bias(LKBIPS(θr))|+
2CLMB√

|D|
+ 5C(E0 + LMB)

√
log(4/η)

2|D|
.
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We then prove the generalization bound of the KBDR estimator, similarly, the ideal loss can be
decomposed as follows.

LIdeal(θr) = LKBDR(θr) + (LIdeal(θr)− E(LKBDR(θr))) + (E(LKBDR(θr))− LKBDR(θr))

= LKBDR(θr) + Bias(LKBDR(θr)) + (E(LKBDR(θr))− LKBDR(θr))

≤ LKBDR(θr) + |Bias(LKBDR(θr))|

+ sup
fθ∈BK(M)

E

 1

|D|
∑

(u,i)∈D

[
êu,i + ou,iŵu,i(eu,i − êu,i)

]− 1

|D|
∑

(u,i)∈D

[
êu,i + ou,iŵu,i(eu,i − êu,i)

] .

For simplicity, we denote the last term in the above formula as

B(F) = sup
fθ∈BK(M)

E

 1

|D|
∑

(u,i)∈D

[
êu,i + ou,iŵu,i(eu,i − êu,i)

]− 1

|D|
∑

(u,i)∈D

[
êu,i + ou,iŵu,i(eu,i − êu,i)

] ,

we then aim to bound B(F) in the following.

Note that

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
,

where the first term is E
S∼P|D|

[B(F)], and by Lemma 3 we have

E
S∼P|D|

[B(F)] ≤ 2 E
S∼P|D|

Eσ∼{−1,+1}|D| sup
fθ∈BK(M)

 1

|D|
∑

(u,i)∈D

σu,i

[
êu,i + ou,iŵu,i(eu,i − êu,i)

]
= 2 E

S∼P|D|
{R(LKBDR(θr))},

where

R(LKBDR(θr)) := Eσ∼{−1,+1}|D| sup
fθ∈BK(M)

 1

|D|
∑

(u,i)∈D

σu,i

[
êu,i + ou,iŵu,i(eu,i − êu,i)

] .
By applying McDiarmid’s inequality in Lemma 4 and the assumptions that ŵu,i ≤ C, êu,i ≤
E0 + LMB, and eu,i ≤ E0 + LMB, let

c =
2(E0 + LMB)(1 + 2C)

|D|
,

then with probability at least 1− η
2 ,∣∣∣∣R(LKBDR(θr))− E

S∼P|D|
{R(LKBDR(θr))}

∣∣∣∣ ≤ 2(E0 + LMB)(1 + 2C)

|D|

√
log(4/η)|D|

2

= 2(E0 + LMB)(1 + 2C)

√
log(4/η)

2|D|
.

By the assumption that ŵu,i ≤ C and δ(r, ·) is L-Lipschitz continuous for all r, we have

R(LKBDR(θr)) ≤ L(1 + 2C)R(F) ≤ (1 + 2C)
LMB√

|D|
,

where the first inequality is from Lemma 5 and Lemma 6 with L(1 + 2C) as Lipschitz constant, the
second inequality is from Lemma 7, and R(F) is the empirical Rademacher complexity

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈BK(M)

 1

|D|
∑

(u,i)∈D

σu,if(xu,i)

 ,
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where σ = {σu,i : (u, i) ∈ D}, and σu,i are independent uniform random variables taking values in
{−1,+1}. The random variables σu,i are called Rademacher variables.

For the rest term B(F)− E
S∼P|D|

[B(F)], by applying McDiarmid’s inequality in Lemma 4 and the

assumptions that ŵu,i ≤ C, êu,i ≤ E0 + LMB, and eu,i ≤ E0 + LMB, let

c =
(E0 + LMB)(1 + 2C)

|D|
,

then with probability at least 1− η
2 ,∣∣∣∣B(F)− E

S∼P|D|
[B(F)]

∣∣∣∣ ≤ (E0 + LMB)(1 + 2C)

|D|

√
log(4/η)|D|

2
= (E0+LMB)(1+2C)

√
log(4/η)

2|D|
.

We now bound B(F) by combining the above results. Formally, with probability at least 1− η,

B(F) = E
S∼P|D|

[B(F)] +

{
B(F)− E

S∼P|D|
[B(F)]

}
≤ 2 E

S∼P|D|
{R(LKBDR(θr))}+

{
B(F)− E

S∼P|D|
[B(F)]

}
≤ 2R(LKBDR(θr)) + 4(E0 + LMB)(1 + 2C)

√
log(4/η)

2|D|
+

{
B(F)− E

S∼P|D|
[B(F)]

}

≤ 2R(LKBDR(θr)) + 5(E0 + LMB)(1 + 2C)

√
log(4/η)

2|D|

≤ 2(1 + 2C)
LMB√

|D|
+ 5(E0 + LMB)(1 + 2C)

√
log(4/η)

2|D|

= (1 + 2C)

(
2LMB√

|D|
+ 5(E0 + LMB)

√
log(4/η)

2|D|

)
.

We now bound the ideal loss by combining the above results. Formally, with probability at least
1− η, we have

LIdeal(θr) ≤ LKBDR(θr) + |Bias(LKBDR(θr))|+ B(F)

≤ LKBDR(θr) + |Bias(LKBDR(θr))|+ (1 + 2C)

(
2LMB√

|D|
+ 5(E0 + LMB)

√
log(4/η)

2|D|

)
.

In Theorem 1, we have already proved that

|Bias(LKBDR(θr))| =
1

|D|

∣∣∣∣∣∣
∑

(u,i)∈D

(ou,iŵu,i − 1)(eu,i − êu,i)

∣∣∣∣∣∣ ,
therefore with probability at least 1− η, we have

LIdeal(θr) ≤ LKBDR(θr) + |Bias(LKBDR(θr))|+ (1 + 2C)

(
2LMB√

|D|
+ 5(E0 + LMB)

√
log(4/η)

2|D|

)
,

which yields the stated results.
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