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Abstract

Prediction of average voltage of a cathode material, which is related to energy
density, is an important task in a battery. However, it is difficult to develop a
practical prediction model because relevant data is small and important information
including structure, regarded as a good modality for predicting properties of mate-
rials, is barely known except composition. Inspired by these points, we propose
a pretraining method utilizing a contrastive learning between compositions and
structures(CLCS), which can improve the performance of voltage prediction task
using only compositions of materials. First, we pretrained an composition encoder
through contrastive learning between composition and structure representations, ex-
tracted by a transformer encoder and a graph neural network respectively, enabling
the composition encoder to learn information associated with structures. Then,
we transferred the composition encoder to a downstream task of predicting the
average voltage with compositions. The performance of transferred model exceeds
one of a model without pretraining by 9.7%. Also, with attention score analysis,
we discovered that the transferred composition encoder focuses on lithium more
than other elements in lithium-transition metal-oxygen systems compared to the
composition encoder without pretraining.

1 Introduction

As Li-ion battery technology has evolved, it has gone from being expected to be the new generation
energy source to being used in a variety of applications such as electric vehicles and energy storage
system.[1; 2; 3] As a result, a volume of work is being conducted on cathode materials to increase
energy density, which is one of the key factors of a battery. However, it is time-consuming to conduct
experiments by synthesizing materials, or to calculate it using computational chemistry. With the
recent increase in computational power and advent of databases such as ZINC[4], OQMD[5] and
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Materials project[6], deep learning is being applied to chemistry, such as predicting properties of
molecules[7; 8], crystals [9; 10; 11] to accelerate development of molecules and materials. However,
the application of deep learning in the battery field is not active due to the lack of relevant data, and
important information including structure is barely known except composition information[12]. In
general, the structures contain more information of materials than the compositions, which is useful
to predict the properties and Bartel et al.[13] demonstrated that structure-based models outperform
composition-based models through a comprehensive comparison. The same phenomenon is found
in previous studies[14; 15; 16; 17] which applied deep learning to predict the voltage of cathode
materials in the Materials Project. Zhang et al.[16] and Louis et al. [17] designed prediction models
employing a crystal graph convolutional neural network(CGCNN)[18] and a global attention-based
graph convolutional neural network(GATGNN)[19]. Since both graph-based models reflect topologies
of materials well, they perform better than a model[15] using only compositions. However, structure
based models are often impractical for experimental data from real-world battery experimenters, as
they frequently lack essential structure information. The acquisition of crystal structure data requires
advanced analytical techniques such as X-ray diffraction(XRD), neutron diffraction, and transmission
electron microscopy. These methods necessitate the use of expensive equipment and specialized
expertise, which may not be available in all research facilities. Moreover, accurately determining
structures is a time-consuming and resource-intensive process.
In this work, in order to address two issues of little voltage data and missing structure information,
we propose a pretraining method utilizing contrastive learning between compositions and structures
(CLCS), enabling the composition encoder to learn information associated with structures. When the
pretrained composition encoder was transferred to a task to predict the voltage from composition, the
prediction performance was improved than the one without pretraining. With attention score analysis,
we discovered that the transferred composition encoder focuses on lithium more than other elements
in lithium-transition metal-oxygen systems compared to the one without the pretraining.

2 Methods

2.1 CLCS Pretraining

We devised a pretraining method utilizing contrastive learning between two modalities, compositions
and structures,(CLCS) which enables compositional encoder to learn information associated with
structures. Overview of CLCS can be seen in Figure1(a). We trained a composition encoder and a
structure encoder jointly to predict correct pairings of (structure, composition) in batches by utilizing
InfoNCE loss[20], similar to Contrastive language-image pretraining(CLIP)[21]. If representations of
structures are similar, representations of compositions will be embedded similarly. Conversely, if they
differ, representations of compositions will be embedded at a distance. Compositionally restricted
attention-based network(CrabNet)[11] and directional message passing network(DimeNet)[8] are em-
ployed to get the representations of compositions and structures, respectively. When we implemented
the CrabNet, cls token is added to the existing CrabNet model and considered as a representation of
a composition. Pretraining was performed on two datasets, one with lithium oxides and the other
with all materials in the Materials Project. The model, when pretrained on lithium oxides, could
potentially acquire specific knowledge essential for lithium-ion batteries, owing to its specialized
pretraining dataset. This targeted approach is especially pertinent considering that a substantial
portion of Li-ion batteries, 2,260 out of every 2,440 pairs, contain oxides. Such specificity could be
beneficial for downstream tasks, such as predicting the average voltage of Li-ion batteries. Conversely,
a model pretrained on a diverse array of materials could develop a more expansive understanding of
material properties. By undergoing pretraining with all materials, the model is equipped to identify
the relationships between structures and compositions within a wide range of crystals, extending
beyond the scope of just battery materials. Details of a pretraining method are described in section
5.3.

2.2 Transfer the pretrained composition encoder to a voltage prediction task

Transfer learning [22] is a technique used in many fields to improve performance by retraining a
model on a specific task with generalized information learned from a large dataset. This showed the
potential to overcome the limited number of material data. [23; 24] Therefore, we transferred the
pretrained composition encoder to a downstream task of predicting average voltage of 2,286 batteries
in the Materials project. According to the method of calculating the average voltage[25], described in
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Figure 1: The overview of (a) CLCS pretraining. (b) A scatter plot was created to show the composi-
tional and structural similarities of materials in the lithium oxides pretraining dataset, compared to a
reference material(mp-757135), using the test set.(We used cosine similarity to measure similarity.)
The overview of (c) the average voltage prediction. (d), (e), (f), and (g) represent S2P, Reduced ER,
C2P and Transferred C2P respectively.(More details can be found in Section 3.2.)

section5.1, average voltage depends on the states of the charge and discharge. The compositions of
both states were embedded through the pretrained encoder, and these were concatenated and passed
through multi-layer perceptron(MLP) to predict the voltage.

3 Experimental setup and Results

3.1 CLCS pretraining

To verify CLCS was trained as intended, a scatter plot was created to show the compositional and
structural similarities of materials in the lithium oxides pretraining dataset, compared to a reference
material(mp-757135), using the test set.(Figure1(b)). It showed that composition representations of
materials which are structurally similar are similar, and vice versa. This confirms that the composition
encoder and the structure encoder learned the association between compositions and structures.

3.2 Evaluation of voltage prediction models

To demonstrate our CLCS pretraining method, we compared prediction performances of four repre-
sentation extraction methods shown in Figure1(c)-(g):structure encoder in DimeNet(S2P), engineered
composition representations using matminer and reduced by PCA (Reduced ER), composition en-
coder in CrabNet(C2P) and composition encoder transferred from CLCS pretraining(transferred
C2P). In the case of transferred C2P, two models pretrained with lithium oxides and all materials are
transferred to the downstream task. And for the engineered representation, we tried to reproduce the
model of the previous study[15]. The details of implementation can be seen in the 5.3. In Table 1,
the prediction performances of all models are recorded. The models can be divided into two parts
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Table 1: The evaluation of the five models for predicting the average voltage is recorded in terms
of mean absolute error with the test set. Error bars correspond to the standard deviation of the five
trained models with different random seeds. "-" in the "Pretraining data" column indicates that the
model was trained using random initialization instead of transferring from the pretraining step.

Models Input type Pretraining data MAE R2 Score

S2P Structure - 0.323± 0.015 0.740± 0.028

Reduced ER [15] Composition - 0.505± 0.015 0.502± 0.030
C2P Composition - 0.402± 0.008 0.615± 0.024

Transferred C2P Composition Li Oxides 0.371 ± 0.012 0.670 ± 0.023
Transferred C2P Composition All materials 0.363 ± 0.018 0.704 ± 0.032

Figure 2: Given the Li-TM-O ternary system as input, the scores referring to each token were plotted
as bars to create context vectors from the transformer encoders of the three models (C2P, transferred
C2P pretrained with lithium oxides and transferred C2P pretrained with all materials).

according to the type of input, and S2P showed the lowest mean absolute error(MAE), as shown in
the previous study[17]. However, as mentioned earlier, composition-based prediction models can be
used practically in various cases, the performance of structure-based model is used as a reference
which shows structure information is important. When focusing on cases where the input type is a
composition, prediction performance of C2P using CrabNet is better than the previous study[15],
Reduced ER. CLCS pretraining enhances the performance of the predictive model. Especially, MAE
of transferred C2P pretrained with all materials, was decreased by 9.7% compared to C2P. Therefore,
it has been numerically demonstrated that CLCS is a viable method when data is small and structural
information is not available. Some example results of voltage prediction using the trained models(C2P
and Transferred C2P) are illustrated in Table 4.

3.3 Attention score analysis

To investigate the impact of CLCS pretraining, we examined the attention scores of the transformer
encoders from C2P, transferred C2P pretrained with lithium oxides and all materials and denoted
them as C2P, pretrained with LiO and pretrained with all, respectively. The analysis is conducted with
lithium-transition metal(TM)-oxygen ternary systems, commonly used in practice, and the used TMs
are Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. Attention scores, where the cls token focuses on itself, Li, TM,
and O tokens, indicate what the models are focusing on and are plotted in Figure2. The methodology
for extracting the attention scores is described in 5.5. In the case of C2P, attention scores on Li,
TM, and O tokens are similar, whereas in the case of transferred C2P, the scores of Li and O tokens
increased and the scores of others decreased. Higher attention scores for the Li token would lead to
better predictions of the average voltage. Because the average voltage is closely related to the energy
difference resulting from the intercalation and deintercalation of lithium within the structure.
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4 Conclusion

We proposed utilizing the composition information that includes the association with the structures
from contrastive learning between compositions and structures(CLCS) by transfer learning to the other
task. In the voltage prediction task with compositions, the MAE of the transferred model decreased
by 9.7% than the one without pretraining. In the Li-TM-O systems, Li token in the composition
encoder have higher attention scores than the others, as the structural information is incorporated in
the CLCS pretraining. To our knowledge, this is the first approach to train the composition encoder
to learn information associated with structures, which improves the prediction performance in the
task where compositions are only available. While a downstream task was limited to the voltage
prediction of batteries in this study, it would be interesting to see if this methodology holds up in other
tasks; if it does, it is more practical than structure-based prediction models for researchers conducting
experiments in the real world. During the pretraining, duplicates with the same composition were
removed by using only the most stable structures based on Ehull. To improve the model, it would
be beneficial to either use structures similar to cathode materials or develop a method for learning a
distribution that reflects the variability of structures within the same composition. Furthermore, there
are more ways to incorporate structure information. For example, instead of training the structure
encoder and composition encoder together in the pretraining, we could distill the knowledge from the
pretrained structure encoder to the composition encoder. However, we leave this as a future work
because it takes time to test which labels to pretrain the structure encoder with. In this work, we
focused on the fact that we improved the performance with simple contrastive learning despite not
carrying structure information from the pretrained structure encoder.
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5 Supplementary Material

5.1 Calculation method of average voltage

The average voltage of intercalation electrode is derived from the previous study[25].

Vav = − ∆G

∆xF
(1)

∆G, ∆x, and F denote the change of the Gibbs free energy, number of Li-ions between the charge
state and the discharge state, and Faraday constant. Since Vav depends on the charge state and the
discharge state, both states are used as inputs to increase prediction performance.

5.2 Dataset preparation

Two datasets were used in this study: the first is a dataset for the pretraining CLCS, and the second
is a dataset for average voltage prediction. The Python Materials Genomics(pymatgen) library[26],
open-source and widely used library, was used to download data from the Materials project and to
curate the data. The data preparation process is as follows:
Pretraining dataset Dataset including lithium oxides only and including all materials from the
Material Project database are used for pretraining. Each dataset was cleaned by removing unstable
structures in each compositions based on the energy above hull, Ehull. The number of lithium oxides
and all materials used for pretraining were 6,530 and 105,583, and the train set, validation set, and
test set were divided in the ratio of 8:1:1.
Average voltage prediction dataset 2,440 Li-ion battery data was downloaded from the materials
Project. In most cases, battery data consists of a single step, but some consist of multiple steps.
In all cases, we considered the states with the least and the most lithium content as the charge
and discharge states, respectively, and used the corresponding average voltage values. We used
interquartile range(IQR) method to remove outliers. The IQR represents the range between the first
quartile(Q1) and the third quartile(Q3) of a dataset and values that do not fall between (Q1 - 1.5 *
IQR) and (Q3 + 1.5 * IQR) are considered outliers and are removed. The remaining dataset consisted
of 2,286 data points. These were then divided into train, validation, test sets at an 8:1:1 ratio.

5.3 Implementation of average voltage prediction models

In the experimental setup and results, there are CLCS pretraining architecture and four average
voltage prediction models(S2P, C2P, Transferred C2P and Reduced ER). All models are trained with
the same machine, which has an AMD EPYC 7413@2.65 GHz, 1TB of RAM, and NVIDIA A40
GPU.
CLCS pretraining A contrastive learning between compositions and structures was performed
to the make the composition encoder learn information associated with structures. In this process,
CrabNet and DimeNet were used to encode the composition information and the structure information,
respectively. The hyperparameters of the models are described in Table 2 and InfoNCE[20] was used
for training.
Average voltage prediction models All predictive models used both charge and discharge states
as inputs. The difference between models is how to encode the inputs. The prediction model using
structure information encoded the charge and discharge states with the DimeNet[8]. DimeNet is
a model based on the graph neural network which uses a directional information by transforming
messages based on the angle between them. By concatenating representations of two atoms and
distance between them, a message embedding is generated, which then undergoes updates and
aggregations through several interaction blocks. Afterwards, messages directed towards each atom
are combined to produce an atom-wise output. An embedding of structure can be represented by
summing up the atom embeddings obtained from each interaction layer. By leveraging the distances
and angles which are invariant to translation and rotation, this model can encode structures in a
principled and effective manner. For C2P and Transferred C2P, the composition information was
encoded with the CrabNet[11]. CrabNet is a model based on transformer encoders[27], which
tokenize each element of a composition and encode fractions with sinusoidal functions. Embeddings
of each element are combined with their fractional encodings and then processed using transformer
encoders. This approach demonstrated superior performance in predicting properties of materials
based on their compositions, which indicates compositions are effectively encoded by this model. For
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Table 2: Hyperparameters of CLCS pretraining

model hyperparameters value

CrabNet the number of transformer encoder layer 3
the number of heads in the multiheadattention models 4
the number of expected features in the input 64
dimension of feedforward 2048
dropout 0.1
dimension of output embedding 64

DimeNet the number of blocks 4
the number of spherical 7
the number of spherical 6
the number of radial 6
cutoff radius 7
the max number of neighbors 20
envelope of exponents 5
dimension of output embedding 64

common batch size 256
learning rate 1e-4

Table 3: Hyperparameters of training the voltage prediction models

model hyperparameters value

CrabNet the number of transformer encoder layer 3
the number of heads in the multiheadattention models 4
the number of expected features in the input 64
dimension of feedforward 2048
dropout 0.1
dimension of output embedding 64

DimeNet the number of blocks 4
the number of spherical 7
the number of spherical 6
the number of radial 6
cutoff radius 7
the max number of neighbors 20
envelope of exponents 5
dimension of output embedding 64

common batch size 64
learning rate 1e-4

all models, the representations of the charge and discharge states were concatenated and fed into MLP
layers for predictions. Reduced ER model was reproduced from the previous study.[15] Since the
code was not open to the public, so we tried to reproduce it as written in the paper. Matminer[28] was
used to create a composition representation. Feature normalization and dimension reduction with PCA
were conducted using scikit learn library[29]. However, this method has limitation that if composition
includes uranium(U), representaion can not be made with Matminer. Therefore, we remove data("mp-
759350_Li") including uranium when we train Reduced ER. The overall hyperparameters of the
models are described in Table 3 and mean absolute error(MAE) was used for training.

5.4 Example results of voltage prediction

Example results of voltage prediction using the trained models, namely C2P and Transferred C2P
pretrained with all materials, are illustrated to showcases the effectiveness of CLCS pretraining.
These examples demonstrate the impact of comprehensive pretraining. Examples are randomly
selected in the test set.
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Table 4: Example results of voltage prediction using the trained models, namely C2P and Transferred
C2P pretrained with all materials, are illustrated to showcases the effectiveness of CLCS pretraining.
These examples demonstrate the impact of comprehensive pretraining.

Battery ID Prediction of C2P(V) Prediction of Transferred C2P(V) Ground truth(V)

mp-18001_Li 4.886 3.949 1.504
mp-26095_Li 5.075 5.043 4.913
mp-26995_Li 4.862 4.806 4.803
mp-35171_Li 1.891 1.765 1.694
mp-755702_Li 1.970 2.004 2.070
mp-758577_Li 5.038 5.031 5.052

5.5 Extracting attention scores

We investigated effects of each elements in the composition to overall context(cls token) by extracting
attention scores in the first transformer encoder layer in the Figure 2. Because each token in the first
multi-headed attention layer of a CrabNet has relatively pure elemental information before interacting
with each other by its own self attention, the interactions of how much they affect each other can be
observed clearly. Inspired by promising cathode materials such as lithium manganese oxide(LMO)
and lithium cobalt oxide(LCO), the attention score analysis was conducted with materials consisting
of lithium and transition metal and oxygen(Li-TM-O) systems. Transition metals from the periodic
table in the same row as Mn and Co were used. The list includes: Ti, V, Cr, Mn, Fe, Co, Ni and
Cu. To examine how much the cls token representing the materials is influenced by other tokens, we
compared the average attention scores obtained across 189 Li-TM-O systems out of 2,286 data points
in each model. The counts of systems for each transition metal are 19, 29, 17, 35, 32, 23, 24 and
10, respectively. Although Li-Sc-O and Li-Zn-O systems are in the same row as Mn and Co on the
periodic table, they do not exist in the dataset and therefore were not used.
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