Under review as a conference paper at ICLR 2025

GUMP: ALLEVIATING OVERSQUASHING WITH UNI-
TARY MESSAGE PASSING

Anonymous authors
Paper under double-blind review

ABSTRACT

Message passing mechanism contributes to the success of GNNSs in various appli-
cations, but also brings the oversquashing problem. Recent works combat over-
squashing by improving the graph spectrums with rewiring techniques, disrupting
the original graph connectivity, and having limited improvement on oversquash-
ing in terms of oversquashing measure. Motivated by unitary RNN, we propose
Graph Unitary Message Passing (GUMP) to alleviate oversquashing in GNNs by
applying a unitary adjacency matrix for message passing. To design GUMP, a
transformation is first proposed to equip general graphs with unitary adjacency
matrices and keep their original graph connectivity. Then, the unitary adjacency
matrix is obtained with a unitary projection algorithm, which is implemented by
utilizing the intrinsic structure of the unitary adjacency matrix and allows GUMP
to be permutation-equivariant. In experiments, GUMP is incorporated into various
GNN architectures and the extensive results show the effectiveness of GUMP on
various graph learning tasks.

1 INTRODUCTION

Graph neural networks (GNNs) (Scarselli et al.| [2008)) have been widely used in various applications,
such as social network (Fan et al., 2019) and knowledge graphs (Schlichtkrull et al.,|[2018)). The
most popular GNNs follow the message passing mechanism (Gilmer et al.,2017) to update the node
representations, where each node aggregates feature vectors of its neighbors to compute its new feature
vector. The message-passing mechanism is designed to be permutation-equivariant, allowing GNNs to
work with graphs that have varying node orders. Currently, GNNs with message passing mechanisms
have demonstrated success in various graph learning tasks, such as node classification (Kipf &
‘Welling| 2016a)), graph classification (Ying et al.,[2018)), and link prediction (Kipf & Welling} 2016b).

However, the message passing mechanism also inevitably brings the oversquashing problem to
GNN s (Alon & Yahavl 2020; Topping et al., 2022} Banerjee et al.,[2022). The oversquashing problem
draws inspiration from a similar phenomenon observed in RNNs when learning long-range sequences,
as noted by |Alon & Yahav| (2020). It refers to the situation where, as larger neighborhoods are
considered, information from distant interactions funneled through specific bottlenecks minimally
influences GNN training. This phenomenon involves compressing information from potentially an
exponentially large number of nodes (relative to the number of layers) into fixed-sized node vectors.

Various techniques are proposed to alleviate the oversquashing problem. |[Topping et al.| (2022)
propose the Jacobian of GNN to measure oversquashing, which motivates a rewiring method that
increases the curvature of the edges in a graph. Most works combat oversquashing via methods
depending on the graph spectrum (i.e., the eigenvalue of the adjacency matrix). In these works,
rewiring techniques increase the spectral gap by flipping edges (Banerjee et al.| 2022), adding
edges (Karhadkar et al.| [2023)), re-weighting the edges (Arnaiz-Rodriguez et al.| |2022), or using
expander for message passing (Deac et al.,2022)). Except for increasing spectral gap, recent works
bound the measure in Topping et al.| (2022) with effective resistance (Black et al.,[2023)) and commute
time (D1 Giovanni et al.,|2023)), and propose rewiring techniques to improve these bounds. Except for
improving graph spectrum, |Barbero et al.|(2023) propose rewiring methods to greedily add edges to
increase the number of walks in a graph.

The rewiring techniques above, even motivated from different perspectives, can be justified by the
Jacobian measure of oversquashing in [Topping et al.| (2022). For instance, increasing the spectral

Under review as a conference paper at ICLR 2025

gap or effective resistance can be viewed as an indirect method of improving the entries of powers
of the adjacency matrix in the Jacobian measure. As a result, these rewiring methods have limited
or uncertain improvements on the Jacobian measure because some of them do not directly improve
it (Karhadkar et al., [2023} Black et al.l 2023) or improve it in a greedy way (Barbero et al.,2023).
Moreover, the rewiring techniques disrupt the original graph connectivity, resulting in the loss of
crucial structural inductive biases in graph learning tasks (Battaglia et al., [2018)). This makes the
rewiring techniques inadequate for oversquashing. Detailed related works on oversquashing are
summarized in Appendix B}

In this paper, we propose a new one-hop message passing mechanism, called Graph Unitary Message
Passing (GUMP), to alleviate oversquashing. Motivated by existing analysis on oversquashing
of RNNs (Pascanu et al., [2013; Jing et al.l 2017), the measures of oversquashing in RNNs and
GNNs share similar forms (Fig. [I(a)), i.e., the powers of feature transformation matrix in RNN and
the powers of adjacency matrix in GNN (Section [2.I). Since the unitary parameterization of the
transformation matrix has proved to be effective in capturing long-range interactions (Arjovsky et al.,
2016) in RNN, we consider imposing unitarity on the adjacency matrix in GNN for message passing.
With a unitary adjacency matrix for message passing, the Jacobian measure of oversquashing will not
change exponentially, thereby alleviating oversquashing. Compared to existing rewiring methods
(Table [T), GUMP is a general message-passing mechanism that can be applied to various GNN
architectures and paves a new way for alleviating oversquashing, which achieves optimal Jacobian
measure and preserves the original graph connectivity.

To design GUMP, we first propose a graph transformation algorithm in Section [2.2]to equip a general
graph with unitary adjacency matrices and preserve its original graph connectivity at the same time.
The transformation algorithm is based on the theory showing that unitary adjacency matrices exist for
the line graph of an Eulerian graph. Then, we propose an algorithm to calculate the unitary adjacency
matrix in Section [2.3] The algorithm is designed to allow GUMP to be permutation-equivariant
and is implemented by utilizing the intrinsic structure of unitary adjacency matrices. Then, we
propose the framework that applies GUMP to different GNN architectures in Section[3] Finally, we
evaluate GUMP on several graph learning tasks in Section[d] In summary, our paper has the following
contributions:

* GUMP is a new one-hop message passing mechanism that alleviates oversquashing by applying a
unitary adjacency matrix for message passing. Compared with previous works, GUMP achieves
the optimal Jacobian measure of oversquashing.

* GUMP maintains the original graph connectivity with a graph transformation algorithm and
preserves the permutation equivariance of message passing with unitary projection.

» Extensive results show the effectiveness of GUMP. Further analysis of the Jacobian measure also
validates GUMP’s ability to alleviate oversquashing.

Notations In this paper, we use bold uppercase letters X to denote matrices, bold lowercase letters
x to denote vectors, and lowercase letters x to denote scalars. Given a matrix X, the i-th row of
matrix X is denoted as x; and the entry of the i-th row and j-th column of matrix X is denoted as X;;.
The transpose and conjugate transpose of matrix X is denoted as X " and X, respectively. A graph
with n nodes and e edges is denoted as G = (V, E,X) where V = {1,2,--- ,n} is the node set,
E C V xVisthe edge set,and X € R™*4 ig the d-dimensional node feature matrix. For convenience,
the operator V|G| and E[G] are used to denote the node set and edge set of graph G respectively,
ie., V[G] = V and E[G] = E. The adjacency matrix of graph G is denoted as A[G] € {0,1}"*"
where Aij = 1if (i,j) € E and Aij = 0 otherwise. The normalized adjacency matrix of graph G is
denoted as A[G] € R™ ™ where A[G] = D~'/2A[G]D~'/2 and D is the degree matrix of graph G.
We also use matrix A[G] € R™*™ to represent the general adjacency matrix in graph G, i.e., A;; # 0
if (¢,j) € E and A;; = 0 otherwise. Therefore, without specifying the type of adjacency matrix,
A[G] can also represent A[G] and A[G]. For convenience, the adjacency matrices above are denoted
as A, A, and A respectively. Some preliminaries used in this paper are provided in Appendix
Finally, the GNN representation at layer k is denoted as H(*) € R"*? with d being the dimension of
node features, and the vector hgk) € R? denotes the GNN representation of node 7 at layer k.

Under review as a conference paper at ICLR 2025

~ RNN —————— 7mm--mmmmm oo e mmm—---- EEEE T Classical message passing -~
Model Original graph Adjacency matrix

hy = o(Why_; +uy)

Bottleneck measure
Oh, ==

]
o, *:Y‘_[_ l" (nearly) unitary

° e No unitary adjacency
matrices for general graphs

Examples
EUNN, LRU

e
[}
”

& 5
Algorithm 1

/~ GNN ————————~ oo ﬂ- e Graph Unitary Message passing -
Model } } [

HY = o (AH*DW,)

Algorithm 2 []

‘H:

Bottleneck measure
Ovec(H") ! T T
Ovec(X) 7HW}‘ GA .
k=r unitary
Question

How to impose unitarity

j ices?] . —
to adjacency matrices? Unitary adjacency matrix
for message passing

- ST ey A e forimessage passing
(a) Motivation (b) Method

Figure 1: Overview of GUMP. (a) RNN versus GNN. The measures of the bottleneck are derived
with the identity activation function and ® denotes the Kronecker product. (b) GUMP aims to impose
unitarity to A while keeping the original graph connectivity. GUMP achieves this goal with graph
transformation (Section [2.2)) and unitary adjacency matrix calculation (Section [2.3).

2 GRAPH UNITARY MESSAGE PASSING

In this section, we propose a new one-hop message passing mechanism called Graph Unitary Message
Passing (GUMP) to alleviate oversquashing in GNNs. For simplicity, we consider the undirected
graph in this paper. The extension to digraph is straightforward in Appendix [F}

2.1 OVERVIEW

Motivation Unitarity has been crucial for the success of RNNs in effectively learning long-range
sequences in recent years, ranging from unitary RNNs (Jing et al.l 2017} |Arjovsky et al., [2016))
to linear RNNs (Orvieto et al.| 2023 De et al., 2024). In Fig. Eka), we simply formulate RNN as
h; = c(Why_; + uy) with hy being the hidden state at layer k, W being the transformation
matrix, uy being the input at time step k, and o being the activation function. Unitary RNN (e.g.,
EUNN (Jing et al.||2017)) imposes unitarity to W such that the gradient of long-range information
does not vanish or explode, thus helps learn long-range interactions with gradient-based optimization.
Recently, motivated by state space model (Gu et al., [2021]), linear RNN (e.g., LRU (Orvieto et al.,
2023))) uses the identity activation function and initializes W close to a unitary matrix to avoid the
vanishing gradient problem. The success of imposing unitarity in RNNs for learning long-range
sequences motivates us to apply unitarity to GNNs to alleviate oversquashing.

For graphs, it is also difficult for GNN to learn long-range interactions. In Fig.[T(a), a one-hop MPNN
layer for GNN is formulated as H*) = ¢(AH*~1DW) for simplicity. Similar to RNN (Pascanu
et al., 2013), the bottleneck of GNN is measured by the Jacobian measure ¥H'" /sx, which is the
Jacobian of the hidden state with respect to the input (Topping et al.| [2022)). Therefore, we are
motivated to impose unitarity to A in GNN to alleviate oversquashing.

Challenges of imposing unitarity Imposing unitarity to an adjacency matrix is not as straightfor-
ward as that in RNNs. The first challenge comes from the sparsity of the adjacency matrix, as almost
all unitary matrices are dense (Fig.[I(b)). Therefore, the amount of graphs with unitary adjacency
matrices is limited. The second challenge is to obtain an input-dependent unitary adjacency matrix
while preserving permutation-equivariance. This is because the unitary adjacency matrix depends on
the input graph, and the order of nodes in a graph should not impact GNN representations.

Under review as a conference paper at ICLR 2025

GUMP In GUMP, the first challenge is addressed by transforming the original graph to a special
graph (Algorithm [T) which is guaranteed to have unitary adjacency matrices and preserves the
original graph connectivity at the same time. The second challenge is addressed by calculating the
unitary adjacency matrix with a unitary projection algorithm (Algorithm [2)), which is implemented
by utilizing the block diagonal structure of the unitary adjacency matrix and allows GUMP to be
permutation-equivariant (Proposition[2.4). As a general one-hop message-passing mechanism, any
convolution operation can be combined with GUMP by setting the edge weights to be the entries of
the unitary adjacency matrix for message passing. The overview of GUMP is shown in Fig. [T[b).

From the theoretical perspective, GUMP has also proved to alleviate oversquashing in GNNs. Given
the ReLU activation function and convolution operation in Fig. [T[a), we have the following theorem
(proved in Appendix D) guaranteeing that GUMP can alleviate oversquashing.

Theorem 2.1. The expected Jacobian measure for GUMP, i.e., A is unitary in GNN, is approximately

in the order of E {Ohgm/axs] = O(1).

Theorem @ does not indicate the Jacobian measure of GUMP is independent of L. In fact, the
relation between the Jacobian measure and L is a trigonometric function in GUMP, which can be
bounded by constants. The theorem shows that the Jacobian measure of GNN with unitary adjacency
matrices will not change exponentially with the number of layers, thus avoiding oversquashing. In
the following sections, we will introduce the details of GUMP, including the graph transformation
algorithm in Section[2.2]and the unitary adjacency matrix calculation algorithm in Section [2.3]

2.2 GRAPH TRANSFORMATION: CONVERT GRAPH TO HAVE UNITARY ADJACENCY MATRIX

Since unitary matrices are generally non-symmetric, the graph transformation algorithm should
convert the original graph to a directed graph. We first formally define the unitary adjacency matrix as
in|Severini| (2003). Given an adjacency matrix A, its support matrix S[A] € R™*™ is a binary matrix
with entries equal to one if the corresponding entry of A is non-zero and equal to zero otherwise,
ie., S[A];; = 1,if A;; # 0 and S[A];; = 0, if A;; = 0. Then, the unitary adjacency matrix Ug
of graph G is a unitary matrix whose support is equal to the support of its adjacency matrix A, i.e.,

S[Ug] = S[A].

We propose the transformation in Algorithm [I] for
undirected graph G to make it have unitary adja-
cency matrices and preserve its original graph con- Require: A undirected graph G = (V, E);
nectivity. Algorithm [] first transforms the undi- Initialize a new digraph G’ = (V, E');
rected graph to be Eulerian graph G’ (Definition|C.2) for (i,j) € E do

Algorithm 1 Graph transformation

by splitting each undirected edge into two directed Add (i,7) and (j,4) to E’;
edges. Then, it converts the Eulerian graph to its end for

line graph L(G’) (Definition [C.1). Finally, L(G’) Convert G’ to its line graph L(G’);
has unitary adjacency matrices which is proved in Return: A digraph L(G").

the following proposition.
Proposition 2.2. The line graph L(G') returned by Algorithm|I|have unitary adjacency matrices.

Proposition 2.2]is proved in Appendix [D] In Algorithm I} the original graph connectivity is preserved
because the splitting of an undirected edge and the conversion to the line graph do not introduce new
connectivity between nodes that is absent in the original graph. Finally, Algorithm I]takes as input
graph G with n nodes and e edges, and outputs a line graph L(G”) with 2e nodes.

2.3 UNITARY ADJACENCY MATRIX CALCULATION: COMPUTE THE EDGE WEIGHTS FOR
MESSAGE PASSING

According to Proposition the line graph L(G’) has unitary adjacency matrices. In this section,

we propose an algorithm to calculate a unitary adjacency matrix for GUMP, because the unitary
adjacency matrix depends on the input graph and should be calculated for each graph.

2.3.1 PERMUTATION-EQUIVARIANT PROJECTION

Permutation equivariance of message passing is a key property for GNN to apply to graphs with
varying node orders. To achieve this, the calculation of a unitary adjacency matrix has to be

Under review as a conference paper at ICLR 2025

permutation equivariance. Our method consists of two steps: 1) calculate edge weights to form a
weighted adjacency matrix; 2) impose unitarity to the weighted adjacency matrix.

Firstly, edge weight for (7, j) € E[L(G")] is calculated with
a;; = Tanh (WT - LeakyReLU(W h; + Wthj)) , (1)

where h; (h;) is the representations for node ¢ (j) in L(G"), W4, W, € R4 %4 gre transformation

matrices for source and target nodes of an edge respectively, and w & R? is a learnable parameter.
Then, the weighted adjacency matrix of L(G’), denoted as A € R?¢*2¢_ is formed from edge weights,
i.e., Aij = Q.

After calculating A, we impose unitarity to A by projection. We use the projection algorithm in
Keller| (1975), which takes advantage of the fact that the polar transformation yields the closest
unitary matrix to a given matrix in terms of the Frobenius norm. The following lemma describes the
unitary projection in GUMP:

Lemma 2.3. Given a weighted adjacency matrix A € R?¢*2¢ of L(G"), the unitary projection of A
- - o1
is given by U[A] := arg minu s uitary HA — U||i_, =A (ATA) 2,

1

Lemma [2.3|(proved in Appendix El) indicates that U[A] = A (ATA) 2 is the unitary adjacency
matrix for GUMP. Also, the unitary projection U [A] is guaranteed to be permutation-equivariant
when A is a full-rank matrix with the following proposition.

Proposition 2.4 (Strong permutation equivariance). Given two permutation matrices Py and P, if A
is a full-rank matrix, the unitary projection U[A] is equivariant to both row and column permutations

of A, i.e, PLUAP] = U[P,AP]].

By Proposition (proved in Appendix EI), the weighted adjacency matrix A should be full-rank to
guarantee permutation equivariance of GUMP. Empirically, inspired by GATv2 (Brody et al.,|2021),
A induced by () is full-rank in experiments and thus can guarantee the permutation equivariance of
GUMP. However, the unitary projection (Lemma [2.3)) is computationally expensive due to the inverse
square root of ATA € R2ex2¢,

2.3.2 FEASIBLE IMPLEMENTATION

By utilizing the intrinsic structure in
the unitary adjacency matrix, the feasi-
ble unitary projection is implemented Require: L(G’) outputted by Algorlthml;

in Algorithm 2] In Algorithm 2} 1: Calculate A of L(G") with (T));

weighted adjacency matrix A is first ~ 2: Find the permutation matrices P, P» such that D :
calculated with (I) in step 1. Then, diag(D1,- -+ ,D;) = P1AP] is block d1agonal
the intrinsic structure of A allows it 3: Calculate U[]_)] = diag(U[Dy] U[Ds],---,U[Dy)]);
to be permuted to be block diagonal ~ 4: Calculate U/A] = P U[D]P5; -

with permutation matrices P; and P, 5: Return: Unitary adjacency matrix U[A].

in line 2. The permuted diagonal ma-
trix is denoted as D:=diag(D1,Ds, - -,D;) =P; AP, . By Proposition the unitary projection of
D is equal to the matrix after applying row permutation P and column permutation P5 to U[A], i.e.,
U[P1AP,]| = P,U[A]P], indicating U[A] = P{ U[P; AP, |P5. Thus, U[A] can be efficiently
calculated by first applying unitary projection to each block D; of D in line 3 and then applying
the inverse row and column permutation P{ and PJ to the unitary projection of D in line 4. The
correctness of Algorithm2]is guaranteed in Proposition 2.3](proved in Appendix[D) and Corollary [2.6]
(proved in Appendix@ ensures the projected matrix U[A] has the same support as L(G").

Algorithm 2 Calculation of unitary adjacency matrix

o1
Proposition 2.5. The matrix returned by Algorithm or graph L(G') is equal to A (ATA) 2.
Corollary 2.6. With the strong permutation equivariance in Proposition assuming each U[D;] is

fully supported, the matrix returned by Alg()rithmhas the same support as the line graph L(G").

Corollary 2.6 requires the unitary projection of each block D; to be fully supported, which is not
a strong assumption and empirically satisfied in experiments. ~ Algorithm [2]is computationally

Under review as a conference paper at ICLR 2025

Table 1: Comparison of different methods for oversquashing on important properties of GNN and
Jacobian measure. “Permutation equivariance” denotes the order of nodes in the graph does not
affect the node representations of GNN. “Measure” represents the measure of oversquashing used in
the corresponding method. “Jacobian measure w.r.t L” denotes the order of the expected Jacobian
measure with respect to the number of layers L (Theorems [2.1]and [D.6]in Appendix D).

Methods | SDRF FoSR LASER GTR GUMP
Permutation equivariance | v X v v v
Graph connectivity | X X X X v
Measure l curvature spectral gap walks effective resistance Jacobian
Jacobian measure w.r.t L l O(c*) O(ch) O(c) O(ch) o(1)

feasible from two perspectives. Firstly, it applies unitary projection (Lemma 2.3)) to block matrices
D, each with sizes dy,ds, - - - , dp (22):1 d; = 2e). The computational complexity of Algorithm
is (Q(Zl L d3), in contrast to the complexity of O(de?) when applied to the large matrix A. This
results in lower computational cost for unitarity projection of block diagonal matrices, particularly
when the sizes of the block matrices are small. Secondly, the algorithm benefits from the existence of
many block matrices D; with identical sizes because matrices of the same size can be grouped and
computed in parallel with PyTorch.

Algorithm 3 GNN with the graph unitary message passing mechanism (GNN-GUMP)
Require: A graph G = (V, E, X);

: X©@ = GNN(X, G);

: Transform G to L(G') with Algorithm

: Generate initial representation H®) for L(G") with h; ;) = [XEO);XEO)},V(i,j) € VIL(&)];
: Calculate U[A] with Algorithm

:fork=1.---Ldo

h) — (h(k 1) e, U U[A]bud® (WD ¢ v e Vv

: end for

- Scatter H®) to nodes of G with H{" = Scatter(HX) G);
H".

: Generate node representations of G with X (“=[X(©);
: Return: Node representations X&) of G.

SOV XTI E W

—_

3 AprpLY GUMP 10 GNN

In this section, we apply GUMP to different GNN architectures for graph learning tasks in Algo-
r1thm Bl Given a graph G, a base GNN first computes the initial node representations of G, i.e.,

= GNN(X, G). Then, Algonthmltransforms Gto L(G’). The initial node representations
H(O) € R2¢%24 of L (G) are generated with h; ;) = x\?: x X; 01, (4, 7) € VIL(G)] (i, j € VIG)).
Next, the unitary adjacency matrix U[A] of L(G') is calculated from Algorithm [2] and applied
to propagate messages in graph with h{"¥ = (™Y, >uen, AL L™ (hFY hq(ffl))),
v € V with any graph convolution operator. After L layers of unitary message passing, we
obtain the node representations HD) | which is later scattered to nodes of G with H,(SL) =
Scatter(HH), G) € R"*?", Then, HgL) are concatenated with X (%) to obtain the final node repre-
sentations X (&) = [X(9); HgL)] e R (d+d) of @, Finally, various graph learning tasks, e.g., graph
and node classification, link prediction, and graph regression, are performed based on X (). In this
paper, GUMP is a general one-hop message-passing mechanism for GNN. Therefore, depending
on the specific convolution operator in line 6 of Algorithm[3] GNN with GUMP is named as [GNN
type]-GUMP in Section[d] e.g., GCN-GUMP and GIN-GUMP have graph convolution operator and
graph isomorphism operator in line 6 of Algorithm [3] respectively.

3.1 COMPARISON WITH EXISTING METHODS

GUMP paves a new way to solve the oversquashing problem instead of rewiring. Overall, GUMP
has the following advantages: (1) GUMP is permutation-equivariant, which is a desirable property

Under review as a conference paper at ICLR 2025

for graph learning. (2) Unlike rewiring methods, GUMP does not introduce extra connectivity
to the original graph and thus preserves the original graph connectivity. (3) GUMP achieves the
optimal Jacobian measure of oversquashing since the eigenvalues of unitary adjacency matrices are
complex units and thus will not change exponentially with respect to the number of GNN layers. The
comparison of GUMP and other oversquashing methods are in Table|T]

Previous work on unitary GNN, e.g., Ortho-GConv (Guo et al.l 2022), imposes unitarity on the
feature transformation matrix of GNN. Unlike Ortho-GConv, GUMP addresses the issue of ill-posed
gradient caused by oversquashing by imposing unitarity on the adjacency matrix. Moreover, enforcing
unitarity on adjacency matrix is more challenging than that on feature transformation, since adjacency
matrices depend on the input graph and are not parameters of GNN.

3.2 PosIiTIONS OF GUMP

In this paper, we focus exclusively on one-hop message passing, the fundamental mechanism in
graph learning. To clarify our setting, we talk about the position of GUMP in graph learning from the
following aspects.

Multi-hop message passing We are aware of many multi-hop message passing methods (Feng
et al.,|2022), e.g, Drew (Gutteridge et al., [2023)) and GRIT (Ma et al., 2023, which can alleviate the
oversquashing problem, capture long-range interactions in graphs, and achieve better performance
than GUMP in most datasets. We want to clarify that GUMP and multi-hop message passing
methods are in orthogonal categories. GUMP focuses on improving the fundamental message passing
mechanism, while multi-hop message passing methods applies multi-hop node information to improve
the performance. GUMP addresses the oversquashing issue caused by fundamental message passing,
and this issue also exists in multi-hop message passing methods. In future work, we will combine
GUMP with multi-hop message passing for further performance improvement.

Stable signal propagation Stable signal propagation (Poole et al.l 2016} |Schoenholz et al.| [2022)
is important for the scalability and robustness of deep neural network. The signal propagation is
difficult to stabilize in GNNs because of the irregular data structure of graphs (Rong et al.l [2019;
Alon & Yahav, |2020). There are many works (Xu et al., 2018} |Gasteiger et al.,|2018)) to improve the
signal propagation in GNNs from model architecture perspective. From the data perspective, rewiring
methods (Rong et al.,[2019; |Alon & Yahav, |[2020) disrupt graph connectivity and do not fully address
signal propagation issues. GUMP offers a comprehensive approach for stable signal propagation
in GNNGs, addressing instability from irregular graph data without losing graph connectivity. In the
future, GUMP can inspire more data-perspective research on stable signal propagation in GNNs and
help scale up GNNs.

4 EXPERIMENTS

In this section, we perform experiments to evaluate GUMP on graph learning tasks. All experiments
are implemented by PyTorch Geometric (Fey & Lenssen, 2019) and conducted on NVIDIA RTX
4090 GPUs and AMD EPYC 7763 CPUs.

4.1 EXPERIMENTS ON SYNTHETIC DATASET

Setup In this section, we conduct experiments on synthetic datasets, i.e., CrossedRing, Ring, and
CliquePath, in|Di Giovanni et al.| (2023) to test GUMP. The performance is evaluated on the distances
from source to target in the range of 4 to 28. In the experiments, we compare GCN-GUMP and GCN.
The layer L of GCN-GUMP and GCN is appropriately set up according to the distance d between
source and target in the synthetic datasets (i.e., L = |d/2] + 1), such that the long-range interactions
can be captured by GNN. We set the hidden dimension to be 32 for both GCN-GUMP and GCN. The
hyperparameters of GCN-GUMP for synthetic datasets are in Table [5]of Appendix [E]

Results We plot the average results from three random seeds of GCN-GUMP and GCN experiments
in Fig. E} For two easier datasets, i.e., CrossedRing and Ring, GUMP achieves 100% accuracy when
the distance ranges from 4 to 28. For the challenging CliquePath dataset, GCN-GUMP’s performance

Under review as a conference paper at ICLR 2025

deteriorates to random guessing at a distance of 28. The results show that GUMP can help capture
the long-range interactions in graph learning tasks. We compare with more baselines in Appendix [E]

4.2 EXPERIMENTS ON THE TUDATASET

Datasets We select five graph
datasets, i.e., Mutag, Proteins, En-
zymes, NCI1, and NCI109 from the
TUDataset (Morris et al., [2020). We
chose these datasets because they
consist of chemistry or biological
graphs, where the atoms far apart may
be closer in space, and long-distance
propagation will have significant
advantages. The statistics of these
datasets are in Table {f| of Appendix [E]

1.0

0.8

z

e
506
3

S
<

0.4

0.2

—e- GCN
—#-: GCN-GUMP
B e e]

\
\

="

0.0

—e-- GCN
=% GCN-GUMP

S S ET AR P

—e-- GCN
—#-: GCN-GUMP
et it |
\
1

4 8 12 16 20 24 28
Distance from source to target

0
4 8 12 16 20 24 28

Distance from source to target

4 8 12 16 20 24 28
Distance from source to target

(a) CrossedRing (b) Ring (c) CliquePath

Figure 2: The performance of GCN and GCN-GUMP on the

CrossedRing, Ring, and CliquePath with different distances
from source to target.

Baselines Because GUMP is a
one-hop message-passing mechanism,
we also compare one-hop message-
passing baselines for fairness. Base-

lines include various rewiring methods, i.e., DIGL (Gasteiger et al., 2019), SDRF (Topping et al.,
2022)), FoSR (Karhadkar et al., |2023)), and GTR (Black et al., 2023). We use GCN and GIN as base
GNN for comparison. The baselines follow the settings of [Karhadkar et al.| (2023). In Appendix [E}
we also compare GUMP with other methods for long-range graph learning and orthogonal GNN.

Experimental details To evaluate each method, we initially designate a test set comprising 10% of
the graphs and a development set encompassing the remaining 90% of the graphs. The accuracies
of each configuration are determined through 100 random train/validation splits of the development
set, with 80% for training and 10% for validation. During the training phase, a stopping patience of
100 epochs is employed based on validation loss. Subsequently, for the test results, we report 95%
confidence intervals for the best validation accuracy observed across the 100 runs.

The number of layers for rewiring methods is set to be in the range of one to five. The number
of layers for GUMP is manually tuned because the long-range interactions in a graph can only be

captured by increasing its layers. The detailed hyperparameters of GUMP for different datasets are
presented in Table [5of Appendix [E]

Results The results of GUMP on the TUDataset are shown in Table E} Firstly, the results show that
GUMP outperforms all baselines on all datasets. In particular, GUMP outperforms baselines by a
large margin on Mutag, Enzymes, NCI1, and NCI109. Also, GIN-GUMP achieves better performance
than GCN-GUMP on all datasets, which indicates that graph convolution operations are crucial for
performance. Moreover, since GUMP usually has more layers than baselines in these datasets, the
experiments show that GCN and GIN with more layers have degraded performance on all datasets,

showing that the improvement of GUMP does not come from increasing expressivity with more GNN
layers.

4.3 EXPERIMENTS ON LRGB

In this section, we conduct experiments on the Long Range Graph Benchmark (LRGB) (Dwivedi
et al.| [2022), which is a set of GNN benchmarks involving long-range interactions. Two datasets are

selected from LRGB for comparison, i.e., Peptides-func and Peptides-struct. The statistics of these
datasets are shown in Table 4]

The experiments of LRGB are conducted following the standard settings in Dwivedi et al.| (2022]).
We set SDRF, FoSR, GTR, LASER (Barbero et al.,|2023), GRAND, and ADGN as baselines. The
hyperparameters of GUMP and more results for LRGB are presented in Appendix [E] All datasets are
tested without any additional features, e.g., positional encoding. The results of LRGB are shown in
Table|3] The results show that GUMP outperforms all baselines, which indicates that GUMP is more

Under review as a conference paper at ICLR 2025

Table 2: Graph classification accuracy on the TUDataset. First, second, and third best results are
bold, underlined, and underwaved, respectively.

Base GNN | Methods | Mutag Proteins Enzymes NCI1 NCI109 | Rank

None | 72.15+2.44 70.98+0.74 27.67+1.16 68.74%0.45 67.90+0.50 | 4.2
None (+layer) | 70.05+1.83 69.80£0.99 23.63+1.07 63.94+1.34 55.92x1.26 | 6.8
DIGL | 79.7042.15 70.76x0.77 35.72x1.12 69.76:0.42 69.37+0.43 | 3.0

GCN SDRE | 71.05+1.87 70.92+0.79 28.37+1.17 68212043 66.78:0.44 | 4.8
FoSR |80.00+1.57 73.42+0.81 25.07%0.99 57.27+0.54 56.82+0.60 | 4.6
GTR 79.10£1.86 72.59+2.48 27.52+0.99 69.37+0.38 67.97+047 | 3.6

GCN-GUMP | 84.89+1.63 74.88+0.87 36.02+1.43 77.97+0.42 75.85+0.44| 1.0

None 77.70£3.60 70.80+0.83 33.80+1.12 75.650.49 74.93+0.46 | 4.0
None (+layer) | 69.80+2.75 68.71£0.96 25.92+1.07 73.49+0.46 72.47+0.53 | 6.6
DIGL | 79.80£2.08 70.71+0.67 35.74%1.20 79.37+0.43 76.88+0.39 | 2.8
GIN SDRF | 7840£2.80 69.81%0.79 35.82+1.09 74.55+0.54 73.89+0.43 | 4.
FoSR [78.00+2.22 75.11£0.82 29.20+1.38 70.15£0.47 69.93+0.45 | 5.2
GTR 77.60+2.84 73.13:0.69 30.57+1.42 75.45+0.44 7528042 | 4.2
GIN-GUMP | 86.72£1.53 75.43+0.70 48.43:1.24 81.25:0.37 78.45x0.44 | 1.0

suitable for graph learning tasks involving long-range interactions than previous rewiring methods.
The results of some rewiring methods, e.g., GTR, are worse than GCN, indicating that the greedy
algorithm and measure used by it to alleviate oversquashing is not robust and may not help improve
the performance of GNN in real applications.

80

D e L T, - . NCIL
T 107 sl 78 = Proteins
5] P 76
& e
8 10 N v 74
= X 70 I
H o ‘a:ﬂx,, rrrrr Gump ¥ —e- GUMP _ 72
2 10 T&‘“\(None > X v- None o
g X DIGL N Y DIGL = 70
< 10 "‘:’iy: b g IR - SoRF 68
= % - FOSR Lol by -%- FOSR
g 5 & Y - GTR 66
8108 ™ % 64
ks FTRY 55 \ "E\?
73
£ o Y X 62
2 e s ~ 60
b & o o Q@\v & o
o o e e
0 10 75 100 24 10 20 100 PR o o

50 50
Number of layers Number of layers W

(a) Jacobian measure versus layers (b) Accuracy versus layers on NCI1 (c) Ablation on different compo-
on NCI1 nents
Figure 3: Model analysis. GCN, GIN, and GUMP in (c) represent the convolution of GUMP. The base
GNN of GUMP is GCN. “w/o proj” removes unitary projection in GUMP. “w/o weights” removes
weighted adjacency matrix and unitary projection in GUMP. “w/o base GNN” removes base GNN in
GUMP.

4.4 MODEL ANALYSIS

Table 3: Results of Peptides-func and

In this section, we perform more experiments to an- p eptides-struct. Bold are best results.

alyze GUMP from three aspects, i.e., Jacobian mea-

sure, number of layers, and ablation studies. P?;?‘Xg‘%nc P%Ezltdf;:glft
Jacobian measure We first visualize the Jacobian SGDCISII: ggigfgggg giggfggg
measure of oversquashing for GUMP and other base- FoSR | 5947+.0027 3078%.0026
lines (more visualization in Appendix [E). We choose GTR | 5075+.0029 .3618+.0010
a pair of nodes with a distance of ten from NCI1 and LASER | .6440+.0010 .3043+.0019
calculate the spectral norm of Jacobian measure for GRAND | .5789+.0062 .3418+.0015
GUMP and baselines with base GNN as GCN. The ADGN | .5975+£.0044 .2874+.0021
visualization is shown in Fig. [3(a)| with the norm of GUMP | .6843+.0037 .2467+.0021

Jacobian measure in log scale. Firstly, when increas-
ing the number of layers of GNNs, the Jacobian measure of GUMP does not decay, while the Jacobian
measure of other baselines decays exponentially. The results validate the theoretical analysis in
Theorems [2.1) and [D.6] indicating that GUMP has the ability to capture long-range interactions in
a graph without oversquashing. Secondly, the norm of the Jacobian measure varies for different
baselines. For example, DIGL has a large norm of Jacobian measure when the number of layers is

Under review as a conference paper at ICLR 2025

smaller than 50. Therefore, DIGL performs better than other rewiring methods in Table@ However,
all baselines have a close norm of Jacobian measure when the number of layers is larger than 50.

Deep GNN The number of GNN layers indicates the ability of GNNs to capture long-range
interactions. We increase the number of layers of GUMP and baselines to see how their performances
change. This experiment is conducted in NCI1 with base GNN as GCN and the number of layers
in the range of 2 to 100. The other hyperparameters of GUMP are the same as Table[5] The results
in Fig. [3(b)| demonstrate that the performance of GUMP increases from 75.88% to 77.97% when
increasing the number of layers from 2 to 10. However, the performance of baselines decreases a lot
when increasing the number of layers. For example, the performance of FoSR decreases from 66.06%
to 52.86% when the number of layers increases from 2 to 10. The performance of baselines changes
drastically as the layers increase, while the performance of GUMP is more stable. The results show
that GUMP can be deeper than previous methods, thus learning long-range interactions in graphs.

Ablation studies Lastly, we conduct ablation studies to analyze GUMP in Fig. We first replace
the convolution of GUMP with GIN and GraphConv (Morris et al.,|2019)), showing that the choice of
convolution can impact the performance of GUMP. Then, we remove unitary projection (i.e., message
passing with A) and weighted adjacency matrix (i.e., message passing with A[L(G")]) in GUMP
and the results show that their performances decrease, indicating the importance of GUMP. Finally,
we remove the base GNN in GUMP and the results show that the performance of GUMP varies
on different datasets, i.e., the performance on NCI1 decreases, while the performance on Proteins
does not decrease. This phenomenon is expected because the quality of the unitary adjacency matrix
depends on the representations of nodes in the line graph (see (I))).

In model analysis, GUMP demonstrates the optimal Jacobian measure of oversquashing, and greater
stability with increased layers compared to prior methods, highlighting the critical role of its design
in achieving superior performance.

5 DISCUSSIONS AND LIMITATIONS

In this paper, we propose a novel method for oversquashing, i.e., Graph Unitary Message Passing
(GUMP). Motivated by unitary RNNs, GUMP propagates messages on a graph with a unitary
adjacency matrix. Compared to previous methods, GUMP achieves an optimal Jacobian measure of
oversquashing, keeps the original graph connectivity, and is permutation-equivariant. We discuss
below the limitations of GUMP and their implications for future work.

Information loss Since GUMP involves graph transformation and adjacency matrix transformation,
it is reasonable to consider what information is lost in GUMP. So we discuss the information loss in
GUMP of different graphs: (1) Undirected and unweighted graph: These are the graphs discussed in
our paper. For this graph, the information is not lost; (2) Weighted graph: For weighted graph, since
GUMP utilizes a unitary adjacency matrix, the edge weights cannot be incorporated into message
passing directly, and a feasible way for it is to convert edge weights to edge features in message
passing, which is similar to R-GNN (Battaglia et al., 2018)); (3) Directed graph: For directed graphs,
the original directed edges become indistinguishable after the graph transformation in Appendix [F}
which means the original directionality is lost in the line graph. However, step 8 of Algorithm [3|
can filter out the non-existing edges in the original graph, which can fix the information loss. For
the unweighted digraph, we can follow the same procedure as the undirected and unweighted graph.
So even though the information can be lost in weighted or directed graphs, there are other ways to
incorporate the information into GNN when using GUMP.

High computational cost The high cost of GUMP is attributed to the construction of the unitary
projection. Although the unitary projection introduces significant computational complexity, it is
essential for GUMP to obtain optimal Jacobian measure (as stated in Theorem [2.1)) and exhibit good
performance (as demonstrated in Fig. [3(c)). However, GUMP is a good option for many tasks, e.g.,
biology and chemistry, where accuracy is more important than time cost. Many graphs in these tasks
are not very large, and the data collection and analysis processes often take significantly more time
than model training. In the future, motivated by |Orvieto et al.|(2023)), we will explore performing
message passing in the diagonalized space of the adjacency matrix to reduce the computational cost
of GUMP.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International conference on machine learning, pp. 1120-1128. PMLR, 2016.

Adridn Arnaiz-Rodriguez, Ahmed Begga, Francisco Escolano, and Nuria M Oliver. Diffwire:
Inductive graph rewiring via the lovasz bound. In The First Learning on Graphs Conference, 2022.
URL https://openreview.net/forum?id=IXvfIexOmX6f.

Pradeep Kr Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montifar. Over-
squashing in gnns through the lens of information contraction and graph expansion. In 2022 58th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1-8. IEEE,
2022.

Jgrgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and applications. Springer
Science & Business Media, 2008.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael Bronstein, and Francesco Di Giovanni.
Locality-aware graph-rewiring in gnns. arXiv preprint arXiv:2310.01668, 2023.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In International Conference on Machine Learning,
pp. 2528-2547. PMLR, 2023.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2021.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In International Conference on Machine
Learning, pp. 1407-1418. PMLR, 2021.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

Andreea Deac, Marc Lackenby, and Petar Velickovié. Expander graph propagation. In Learning on
Graphs Conference, pp. 38—1. PMLR, 2022.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine Learning, pp. 7865-7885. PMLR, 2023.

Vijay Prakash Dwivedi, Ladislav Rampasek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, 35:22326-22340, 2022.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417-426, 2019.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. Advances in Neural Information Processing Systems, 35:
4776-4790, 2022.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

11

https://openreview.net/forum?id=IXvfIex0mX6f

Under review as a conference paper at ICLR 2025

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2018.

Johannes Gasteiger, Stefan Weilenberger, and Stephan Giinnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 32, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263-1272. PMLR, 2017.

Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-symmetric dgn: a stable architecture
for deep graph networks. In The Eleventh International Conference on Learning Representations,
2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021.

Kai Guo, Kaixiong Zhou, Xia Hu, Yu Li, Yi Chang, and Xin Wang. Orthogonal graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 3996-4004, 2022.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew:
Dynamically rewired message passing with delay. In International Conference on Machine
Learning, pp. 12252-12267. PMLR, 2023.

Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks with scaled
cayley transform. In International Conference on Machine Learning, pp. 1969—1978. PMLR,
2018.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735-1780, nov 1997. ISSN 0899-7667. doi: 10.1162/neco0.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735!

Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark, and
Marin Soljaci¢. Tunable efficient unitary neural networks (eunn) and their application to rnns. In
International Conference on Machine Learning, pp. 1733—1741. PMLR, 2017.

Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montufar. FoSR: First-order spectral rewiring
for addressing oversquashing in GNNs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=3YjQfCLdrzzl

Joseph B Keller. Closest unitary, orthogonal and hermitian operators to a given operator. Mathematics
Magazine, 48(4):192—-197, 1975.

Bobak Kiani, Randall Balestriero, Yann LeCun, and Seth Lloyd. projunn: Efficient method for
training deep networks with unitary matrices. Advances in Neural Information Processing Systems,
35:14448-14463, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016b.

Mario Lezcano-Casado and David Martinez-Rubio. Cheap orthogonal constraints in neural networks:
A simple parametrization of the orthogonal and unitary group. In International Conference on
Machine Learning, pp. 3794-3803. PMLR, 2019.

Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger B Grosse, and Jorn-Henrik Jacobsen.
Preventing gradient attenuation in lipschitz constrained convolutional networks. Advances in
neural information processing systems, 32, 2019.

12

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=3YjQfCLdrzz

Under review as a conference paper at ICLR 2025

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip
Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In
International Conference on Machine Learning, pp. 23321-23337. PMLR, 2023.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602-4609, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL
www.graphlearning.iol

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670-26698. PMLR, 2023.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310-1318. Pmlr, 2013.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for the transformer
era. arXiv preprint arXiv:2305.13048, 2023.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential
expressivity in deep neural networks through transient chaos. Advances in neural information
processing systems, 29, 2016.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61-80, 2008.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In The Semantic Web: 15th
International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3—7, 2018, Proceedings 15,
pp- 593-607. Springer, 2018.

Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. In International Conference on Learning Representations, 2022.

Hanie Sedghi, Vineet Gupta, and Philip M Long. The singular values of convolutional layers. arXiv
preprint arXiv:1805.10408, 2018.

Simone Severini. On the digraph of a unitary matrix. SIAM Journal on Matrix Analysis and
Applications, 25(1):295-300, 2003.

Sahil Singla and Soheil Feizi. Skew orthogonal convolutions. In International Conference on Machine
Learning, pp. 9756-9766. PMLR, 2021.

Jan Tonshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing
the long-range graph benchmark. arXiv preprint arXiv:2309.00367, 2023.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022.

Asher Trockman and J Zico Kolter. Orthogonalizing convolutional layers with the cayley transform.
arXiv preprint arXiv:2104.07167, 2021.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453-5462. PMLR, 2018.

13

www.graphlearning.io

Under review as a conference paper at ICLR 2025

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Seongjun Yun, Minbyul Jeong, Rachyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

14

Under review as a conference paper at ICLR 2025

A THE ILLUSTRATED GUMP

— Graph Transformation (Algorithm 1)

Original graph G Line graph L(G') Adjancency matrix of L(G’)
i i

Parallel unitary projection Inverse row and column permutations Same support

—

H L1 [[] []
[[
\ L .

ﬁ;i N P/ 0l e o . mm

o) # A i:

f

[{
m-I* : s : vipsl H‘If

Graph attention matrix 4 Block diagonal matrix D = P;AP] Efficient unitary projection U[D] U‘:?ﬁ;fij’;ﬂ;‘:‘%&’;:‘;‘x

Calculation of unitary adjacency matrix (Algorithm 2) -

Figure 4: The illustrated GUMP.

(N

<H
| »
]
3
£
&
3
H
H
H
g
o
a
S
g
3
3
2

"
§
=

m
|

B RELATED WORK

B.1 GNN AND OVERSQUASHING

Graph neural network (GNN) (Kipf & Welling}, 2016a; |Gilmer et all 2017) with L layers is a type of
neural network that uses graph G' and initial node features H(®) = X to learn node representations
H(L). The k-th layer of GNN updates node representation via the message-passing formula

h{=s(b* " o({{um* V), j € NG},

where 0, ¢, and v are combination, aggregation, and message functions respectively, {{--- }} isa
multiset, and N (i) = {j|(i,7) € E}.

Even though GNN achieves success in various graph learning tasks, it suffers from the oversquashing
problem. The oversquashing problem is first noted by |Alon & Yahav|(2020). Inspired by Xu et al.
(2018)), Topping et al.[(2022) proposes to measure oversquashing with the Jacobian between node
features at different levels of a GNN. Based on the measure, Topping et al.[(2022) propose a rewiring
method to increase the curvature of the edges in a graph. Many works combat oversquashing by
improving the spectral gap of a graph. Banerjee et al.|(2022)) measure oversquashing via the spectral
gap of a graph, employing a rewiring algorithm based on expander graph construction and effective
resistance for edge sampling. [Karhadkar et al.| (2023)) introduce FoSR, a rewiring method that
maximizes the first-order change in the spectral gap of the graph. |Arnaiz-Rodriguez et al.| (2022)
introduced a GNN comprising a parameter-free layer for learning commute time and a rewiring layer
to optimize spectral gap according to network characteristics and task requirements. Except from
improving spectral gap, Black et al.| (2023)) focus on minimizing total resistance between node pairs
and introduce the Greedy Total Resistance (GTR) rewiring method for oversquashing. |Di Giovanni
et al.| (2023)) analyze oversquashing with commute time. [Barbero et al.|(2023) propose a rewiring
method to sequentially increase the number of walks between two nodes and preserve the locality in
the original graph. Except for the one-hop message passing neural networks above, (Gutteridge et al.
(2023) propose a multi-hop message passing neural network (Drew) to alleviate oversquashing with
layer-dependent graph rewiring and a delay mechanism for skip connections based on layer and node
distance.

15

Under review as a conference paper at ICLR 2025

B.2 UNITARY NEURAL NETWORKS

Unitary matrices U are square matrices satisfying UT U = I. Unitary matrices contribute to the
stability of neural network training by preserving vector norms and preventing issues like exploding
or vanishing gradients. Imposing unitarity on neural networks enhances their ability to seamlessly
capture and propagate information across layers. This technique has proven successful in various
architectures, such as RNNs, CNNs, and GNNs.

Unitary neural networks (UNNs) are first developed to tackle the problem of vanishing and exploding
gradients in RNNs, enabling more efficient learning of information in extremely long sequences
of data compared to existing methods like LSTM (Hochreiter & Schmidhuber, [T997). To show
how unitary matrices can alleviate the vanishing gradient problem in RNNs, we denote RNN as
h; = 0(Why_1 +uy) with hy, as the hidden state at the k-th layer of RNN, W as the weight matrix,
uy, as the k-th input of RNN, and o as the activation function. As shown in Fig.[Tfa), the long-range
dependency can be measured by 9hr/au,. To simplify the analysis, we assume the activation function
o is identity. The Jacobian measure of the long-range dependency becomes 9hr/ou, = W" 1. When
W is unitary, information in 9h-/au, will not vanish or explode, which is the key to alleviate the
vanishing/exploding gradient problem in learning long sequences.

Early algorithms on unitary RNN construct a series of parameterized unitary transformations to

impose unitarity. EUNN (Jing et al] achieves this by composing layers of rotations, Fourier
transforms, and other unitary transformations to parametrize unitary matrices. uRNN (Arjovsky

and scoRNN (Helfrich et al} 2018), on the other hand, maintain unitarity by perform-
ing a Cayley transformation to parametrize the full unitary space. expRNN (Lezcano-Casado &
Martinez-Rubio} 2019), in contrast, parametrizes unitary matrices within the Lie algebra of the orthog-
onal/unitary group. projUNN [2022)) first optimizes its parameters using gradient-based
optimization and then maps the updated parameters to a unitary space. Most recently, linear recurrent
unit (LRU) (Orvieto et al| 2023) significantly enhances the long-range learning capability of RNNs
by linear RNN and initializing their weight matrix to be nearly unitary. Other works
[2023; [Gu & Daol [2023) on recurrent models also share the similar idea of LRU to effectively capture
long-range dependencies in sequences, yielding impressive outcomes in language modeling and other
tasks.

Despite RNN, unitarity has also been applied to CNNs and GNNs. Unitary CNNs (Sedghi et al.}
2018}, |Li et al} 2019 [Singla & Feizil 2021} [Trockman & Kolter} 2021)) introduce various methods to
restrict the convolutional filters to be unitary, e.g., via the Lie algebra of the orthogonal group

& Feizil [2021)) and the Cayley transform (Trockman & Kolter] [2021). Ortho-GConv (Guo et al/|

2022)) imposes unitarity on the feature transformation matrix in GNNs.

C PRELIMINARIES

Definition C.1 (Line graph). Given a graph G, its line graph L(G) is a graph such that
* each vertex of L(G) represents an edge of G, i.e., V[L(G)] = E[G];

* two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint
in G, ie., EL(G)] = {((i,4), (4, k) € VIL(G)] x VIL(G)] | (i,7), (5, k) € E[G]}.

Definition C.2 (Eulerian graph). An Eulerian graph G is a graph containing an Eulerian cycle, i.e.,
there is a trail in G that starts and ends on the same vertex and visits every edge exactly once.

Definition C.3 (Permutation matrix). A permutation matrix P € R™*" is a square binary matrix
that has exactly one entry of 1 in each row and each column with all other entries 0.

Theorem C.4. Every permutation matrix is orthogonal, i.e., if P is a permutation matrix, PTP =
PP’ =1

16

Under review as a conference paper at ICLR 2025

D PROOF

D.1 PROOF OF PROPOSITION[2.2]

Proposition [2.2]is proved based on the following theorem and lemma. Theorem [D.T]is a direct result
from Theorem 3 in[Severini| (2003). Lemma[D.2)is a well-known result in graph theory, which can be
found in Theorem 1.7.2 of Bang-Jensen & Gutin| (2008).

Theorem D.1 (Existence of unitary adjacency matrix). Let G be a single-connected digraph. Its
line graph L(Q) (Definition is the digraph of a unitary matrix if and only if G is Eulerian
(Definition|[C.2).

Lemma D.2 (A special Eulerian graph). A digraph graph is Eulerian if and only if it is connected
and the in-degree and out-degree are equal at each vertex.

Proof of Proposition[2.2] In Algorithm [I] the undirected edges in G are split into two directed edges
in G’. Therefore, the in-degree and out-degree of each vertex in G’ are equal, indicating G’ is
Eulerian. Then, Theorem indicates that there exists unitary adjacency matrix U such that
S[U] = A[L(G")]. O

D.2 PROOF OF LEMMA 2.3

Proof. Given any unitary U, let U =M + U [A] for the properly chosen M € C2¢%2¢_ Due to the
unitarity of U and U[A], we have

MU[A]" + MM + U[A]M' = 0. 2)
Then, we have
|A-U|% = [|A -M - UA]|%
=||A = U[A]|% + Tr[MU[A]" + MM + U[A]MT] — TrM' A + ATM]
= |A - U[A]|% — Te[MTA + ATM]
= |A — U[A]||% — Tr[MTU[A](ATA)z + (ATA)zU[A]TM.
Then, from (2)), we have MU[A]" + U[A]M' = —MM,
IA - U|l% = |A - U[A]||: + Tr[(ATA)>MM]. 3)

The second term above is non-negative because Tr[(ATA)zMM'] = Tr[Mf(ATA)zM] and
(ATA)2M is positive semi-definite. Therefore, for all unitary U,

|A—U|% > ||A - U[A]|[% 4
The result is proven. O
D.3 PROOF OF PROPOSITION 2.4

Lemma D.3. For any unitary matrix U, given two permutation matrices Py and Py, P1UP] is
also unitary.

Proof. Let U = P, UPJ . Then, we have
UUf = P,UP, P, U'P] =P, UU'P] =P, P =1,
U'U = P,U'P] P,UP] = P,U'UP] = P,P] =1
which proves P;UP] is unitary. O

Proof of Proposition[2.4] This proposition is proved by the uniqueness of the unitary matrix U[A]
when A is a full-rank matrix.

17

Under review as a conference paper at ICLR 2025

Assume there exists another unitary matrix U = M + U[A] such that

U =arg min HA—UH?. @)

U is unitary

According to the proof of Lemma[2.3] we have
|A - U3 = |A - U[A]|% + Tr[(AA) s MMT).
Since A is full-rank matrix, (ATA)2 is position definite. Therefore, we have
IA = U7 > [|A - UA]|[3. ©)

which contradicts the assumption that U is the minimizer of HA — UH? Thus, the unitary projection
of A is unique when A is full-rank.

Because U[A] is unique and is the minimizer of ||A — UH2F, from Lemma we have P;U[A]P]
the minimizer of

arg_min [P, AP; — U]},

U is unitary

for any permutation matrices Py and P. Because P;AP] is also full-rank, P;U[A]P] is the
unitary projection of P; AP, , which proves that U[P; AP, | = P,U[A]P, for any permutation
matrices P; and Ps. O

D.4 PROOF OF PROPOSITION[2.3]

We need the following lemma to prove Proposition [2.5]

Lemma D.4. Given the adjacency matrix A[L(G")], its rows and columns can be permuted to
transform A[L(G')] to be block diagonal.

Proof. According to Theorem 2 in |Severini| (2003), since L(G”) is line graph, L(G’) is specular.
By Lemma 1 in |Severini| (2003), since L(G") is the digraph of a unitary matrix, L(G’) is strongly
quadrangular. Then, by Theorem 1 in|Severini| (2003), since L(G") is specular and strongly quadran-
gular, A[L(G")] is composed of independent matrices, thus its rows and columns can be permuted to
transform A[L(G’)] to be block diagonal. O

Proof of Proposition[2.5] This proposition is proved by the following step-by-step analysis.

1. By Lemma|D.4] we can permute the rows and columns of A[L(G’)] to transform A[L(G")] to be
block diagonal, i.e., D := diag(Dy,--- ,D;) = P;A[L(G")]P] is block diagonal, where P; and
P, are permutation matrices.

2. Since A is full-rank, by Proposition the unitary projection of D is equal to the matrix after
applying row permutation P and column permutation P to U[A], i.e., UP;APJ]| = P;U[A]P; .
Using the property of permutation matrix (Theorem|C.4), we have U[A] = P U[P;AP] |P>.

3. Finally, we have
U[A] =P, U[P,AP, P,
:PIU[D]Pz
=P/ diag(U[D],--- ,U[Dy])Ps,

which proves the correctness of Algorithm 2]

18

Under review as a conference paper at ICLR 2025

D.5 PROOF OF COROLLARY 2.6

Proof. From Algorithm the support of the line graph L(G") can be permuted by rows and columns
to be a block diagonal matrix D = diag{D1,--- , Dp} with each block D’ a dense support, i.e.,
D;=1.

Then, for each dense sub-matrix D; from the block diagonal matrix, there are unitary matrices with
support D;. Therefore, there are unitary matrices, i.e., U[P; AP, | in our paper, with support D.

Since row and column permutations are invertible, we can permute the support of the unitary matrix
back to the original support of the line graph L(G’), i.e., P{ U[P; AP, |P5 has the same support as
D. Because the permutation matrices P and Py are unitary, the matrix P] U[P;APJ |P5 is also a
unitary matrix. 4. In Proposition[2.4] we show that U[A] = P{ U[P; AP |P,. Thus, U[A] has the
same support as the line graph L(G"). 0

D.6 PROOF OF THEOREM [2.1]

Our proof is based on the GNN model from Fig. [Tfa) with the activation function being ReLU.
GUMP is analyzed with A being unitary and classical message passing is analyzed with A being the
normalized adjacency matrix. Motivated by (2018)), we analyze with the expected Jacobian

measure.

Motivated by (2018), we first introduce the expected Jacobian measure of oversquashing.

Theorem D.5. Given a L-layer GNN with RelLU as activation function, i.e., H® =
ReLU(AH*-UW,), H® = X,k = 1--- L, assume that all paths in the computation graph
of the model are activated with the same probability of success p, the expected Jacobian measure of
oversquashing is

ahgml

E

1
= [T W/ (a%),,. ™
=L

00X,

Proof. Denote by fi(l) the pre-activated feature of hl(-l), i.e., fi(l) = Zze N D) Aizhgfl)Wl, for any
l=1---L, wehave

> o) ow
= diag (1 ®) : AL | W
on® £>0 S on©

By the chain rule, we get

0
onl” = | onl
o1
= Z H diag <1f,(,i)>0> Avl U171Wl
p=11=L P

Here, W is the total number of paths vivl -

L -vivd of length L + 1 from v) = s to v} = i. For
I=1---L—1,0" e N(db).

For each path p, the derivative [8h§L) / ahgo)} p represents a directed acyclic computation graph. At a
layer [, we can express an entry of the derivative as

onH] " 1
—or = Avévifl Z Zq H w((ll)7
=L

» ¢=1 I=L

where ® is the number of paths ¢ from the input neurons to the output neuron (m,n), in the
computation graph of [6hEL) / ahgo)],,. For each layer [, w((,l) is the entry of W' that is used in the

19

Under review as a conference paper at ICLR 2025

g-th path. Finally, Z, € {0, 1} represents whether the ¢-th path is active (Z; = 1) or not (Z; = 0) as
a result of ReL.U activation of the entries of fv(f) ’s on the g¢-th path.

Under the assumption that Z, is a Bernoulli random variable with success probability p. Because of
P[Z, = 1] = p, Vg, we have

o) (m,n) 1 o 1 o
m :PHAv;vﬁ,*IZqu .
s 1p I=L

Then, the expected Jacobian measure of oversquashing is

oh'") ki oh™ !
E[9%, 1 :ZE on® :pHWlT (AL)is'
h p=1 s P =L

Proof of Theorem2.1] We analyze different components in the expected Jacobian measure (7).

Firstly, Hll: I WlT is the product of weight matrices in GNNs, which will not change exponentially
with respect to L because the weight matrices are appropriately initialized to avoid exploding or
decay.

Then, we focus the analysis on A”. We first diagonalize A in complex space, i.e., A = PAP~!
with A being a diagonal matrix with its diagonal elements being eigenvalues of A. Since A
is unitary, the elements in A are complex units, i.e., A = diag(e?, e, ... e¥%¢). There-
fore, A" is equal to PAYP~!, where A = diag(e’1 L, e?02L ... ¢02¢L) which is also a di-
agonal matrix with its diagonal elements being complex units. Then, we have (ALl);, =
P,diag(e1 L eif2l ... eif2¢L)(P~1) which is a value that does not change exponentially with
respect to L and can be bounded by constants. With Euler’s formula, i.e., €™ = cos z + isin z, the
relation between (A%),, and L is a trigonometric function.

Since the trigonometric function can be bounded by constants, we have Hllz I WlT (AL) ;s 1s bounded
by constants, i.e., E [ahEL)/axs] =0(1). O

D.7 THEORY OF CLASSICAL MESSAGE PASSING

The next theorem analyzes the expected Jacobian measure of classical message passing.

Theorem D.6. The expected Jacobian measure for classical message passing, i.e., A = A in GNN,
is approximately in the order of E [ahEL)/axs] = O(cl), where c € (0,1).

Theorem [D.6] shows that the Jacobian measure of classical message passing decays exponentially
concerning L, thus leading to oversquashing. Therefore, Theorems [2.1 and [D.6]indicate that GUMP
can achieve an optimal Jacobian measure of oversquashing, i.e., O(1), while the classical message
passing cannot. Theorems 2.1 and[D.6]are validated by experiments in Section [4.4]

proof of Theorem|D.6] We analyze the different components in the expected Jacobian measure (7).

Firstly, Hll: I WlT is the product of weight matrices in GNNs, which will not change exponentially
with respect to L because the weight matrices are appropriately initialized to avoid exploding or
decay.

Then, we focus the analysis on A”. We first diagonalize A in complex space, i.e., A = PAP~!
with A being a diagonal matrix with its diagonal elements being eigenvalues of A. Since A =
A, the elements in A are in the range of 0 and 1, i.e., A = diag£91,92, -, 0.),0; € [0,1].
Therefore, AL is equal to PAYP~1, where A = diag(#F,0%,--- 0L). Without any assumption
on the graph structure, there are many eigenvalues smaller than one. Then, we have (AL);, =
P,diag(6F,0% ... 0L)(P~!),, which is a value that change exponentially with respect to L.

Finally, we have []_, W/ (AF),, in the order of O(c"), i.e., E[@hEL)/axs] = O(ch),c €
0,1). 0

20

Under review as a conference paper at ICLR 2025

E MORE EXPERIMENTAL RESULTS

Statistics of datasets The statistics of datasets used in experiments are shown in Table

Table 4: Statistics of datasets.

| #graphs Avg. nodes Avg. edges Task type

Mutag 188 17.9 39.6 Graph Classification
Proteins 1,113 39.1 145.6 Graph Classification
Enzymes 600 32.6 124.3 Graph Classification
NCI1 4110 29.87 32.30 Graph Classification
NC109 4127 29.68 32.13 Graph Classification
Peptides-func | 15,535 150.94 307.30 Graph Classification

Peptides-struct | 15,535 150.94 307.30 Graph Regression

Hyperparameters of GUMP The hyperparameters of GUMP for both synthetic and real datasets
are shown in Table[3

Table 5: Hyperparameters of GUMP for datasets in experiments. layergyyps Itbase; Wdbase, Itgump,
wdguwmp, drop., d’, d, batch size, layer,.., opt., sched., and epoch denotes the number of layers of
GUMP, the learning rate of base GNN, weight decay of base GNN, the learning rate of GUMP, weight
decay of GUMP, dropout rate, dimension of calculating ([II), hidden dimension of GNN, batch size,
number of layers of base GNN, optimizer, scheduler, and number of epochs, respectively.

layerguyp Ibase Wdbase Itgump WdGume drop. d’ d - batch size layer,, . opt. sched

. epoch
CrossedRing - 107* 1075 107* 0 0 32 32 20 0 adam none 200
Ring - 107 107% 107* 0 0 3232 20 0 adam none 200
CliquePath - 1071075 107* 0 0 3232 20 0 adam none 200
Mutag 16 1072 107* 107* 0 0 3264 16 5 adam none 100
Proteins 20 10721072 107% 1072 0 3264 64 3 adam none 100
Enzymes 10 1072 107* 107* 0 0 3264 16 1 adam none 100
NC1 10 1072 107* 107* 0 0 3264 16 1 adam none 100
NC109 10 1072107* 100* 0 0 3264 16 1 adam none 100
Peptides-func 12 0.006 0.1 0.1 0.1 0.2 32256 200 3 adam cos. 250
Peptides-struct 12 0.005 0.1 0.006 0.1 0.2 32256 200 3 adam cos. 250

Comparison GUMP with more methods For the synthetic datasets, we compare GUMP with
Drew and ADGN on synthetic datasets in Fig.[5] The results show that the performances of GUMP
and Drew are close, while ADGN performs worse.

CrossedRing Ring

Lillipop
10 { W —W— - —F k= ——k 10{W— =T —F —k——h—k 10{W—W—F = —h—
R r-a--y - goroa g
' \ \ 1 1 h
\ \ 1 1 ['
Vo \ \ (R H
08 \ '\ 08 \ [l 0.8 ‘l \ n
' \ \ H [N
N —e-. GCN \ . |- Gen N —e GCN n
Eoe —*: GCN-GUMP | §06 | =% GCN-GUMP §06 —#-. GCN-GUMP ‘|‘|
g -¥: ADGN \ g | -¥ ADGN i -¥ ADGN n
< —~- Drew \ < \ -+ Drew < -~ Drew *
\ ! 1 v \ \
Voo | [l t \ 1
04 \ \ 0.4 1 0.4 1 \
\ \ \ \
\ ! \ 1
\ \ \ 4
Vo N) \
LY N ! \
PY 7 PE——— > 1T T [FE—— ey 02 e | SEPYEE S
0.0
4 8 12 16 20 24 28 4 8 12 16 20 24 28 4 8 12 16 20 24 28
Distance from source to target Distance from source to target Distance from source to target
(a) CrossedRing (b) Ring (c) CliquePath

Figure 5: The performance of GCN and GCN-GUMP on the CrossedRing, Ring, and CliquePath
with different distances from source to target.

21

Under review as a conference paper at ICLR 2025

We further compare the performances of GUMP, rewiring methods, graph neural diffusion, Graph
Transformer, and orthogonal GNN on the TUDataset in Table [} The compared methods are
ADGN (Gravina et al., 2022), GRAND (Chamberlain et al.,[2021)), Graph Transformer (Yun et al.,
2019), and Ortho-GConv (Guo et al., [2022)).

Table 6: Graph classification accuracy on the TUDataset. First, second, and third best results are
bold, underlined, and underwaved, respectively.

Classes | Methods | Mutag Proteins ~ Enzymes NCI1 NCI109

GCN 72.15%2.44 70.98+0.74 27.67+1.16 68.74+0.45 67.90+0.50
GCN (+layer) | 70.05£1.83 69.80£0.99 23.63+1.07 63.94+1.34 55.92+1.26

DIGL | 79.70£2.15 70.76%0.77 35.72+1.12 69.76+0.42 69.37+0.43

Rewiring SDRF [71.05+1.87 70.92+0.79 28.37+1.17 68.21x0.43 66.78+0.44
(GCN) FoSR | 80.00£1,57 73.42:0.81 25.0740.99 57.27+0.54 56.82+0.60

GTR 79.10£1.86 72.59+2.48 27.52+0.99 69.37+0.38 67.97+0.47

ADGN | 81.39£1.81 73.81£0.80 28.78+1.25 76.15+0.42 74.31x0.44
GRAND | 77.941.73 73.24x0.94 24.13x1.05 68513048 67.2620.46

Transformer | Transformer | 69.15£1.78 66.21£0.96 28.33%1.44 58.41£0.55 58.25+0.52
Ortho-GNN | Ortho-GConv | 71.78£2.52 63.80£0.98 18.30+1.13 69.92:0.60 68.910.50
Ours ‘ GCN-GUMP ‘ 84.89+1.63 74.88+0.87 36.02+1.43 77.97+0.42 75.85+0.44

Diffusion

For the sake of fair comparison and experimental integrity, we also modified the multi-hop message
passing methods (i.e., Drew and GRIT) into the one-hop variants. We replace 2?;11 > FEN () in
DRew with > JENL () and set K of RRWP in GRIT to 2, making Drew and GRIT one-hop message

passing methods. We report their results in Table[/| The results show that GUMP outperforms Drew
and GRIT in one-hop message passing setting.

Table 7: Comparison with Drew and GRIT by setting their message-passing hop to one.

\Peptides—func Peptides-struct ~ Mutag Proteins Enzymes NCI1 NCI109

Drew (1-hop) | 0.6996+0.0076 0.2881+0.0024 79.91£1.97 74.12+0.90 35.02+1.22 73.58+0.41 72.27+0.49
GRIT (1-hop)|0.6779 +0.0079 0.2671 £0.0018 80.76+2.18 73.71+0.89 35.22+1.17 72.21+0.46 71.68+0.44

GCN-GUMP | 0.6843+0.0037 0.2467+0.0021 84.89+1.63 74.88+0.87 36.02+1.43 77.97+0.42 75.85+0.44

We also compare the Jacobian of GUMP with Drew and ADGN in Fig. [6] Jacobian of Drew
exponentially increases, suggesting its potential numerical instability when training Drew with more
layers. The Jacobian of ADGN is small when the ADGN layer is small and steadily increases to
1078 as the ADGN layer reaches 100. Although the Jacobian of ADGN does not exhibit exponential
decay, the correlation between distant nodes is significantly weaker compared to GUMP.

-, [\t pa t 27
B L amivant o
VY Vi

W

Norm of Jacobian measure (log scale)
Norm of Jacobian measure (log scale)
k)
s

o e Drew

50 75
Number of layers Number of layers
(@ (b)
Figure 6: Jacobian measure versus layers on NCI1

Performance on node classification tasks We also apply GUMP to node classification tasks on
Cora and Citeseer datasets. The results are shown in Table

22

Under review as a conference paper at ICLR 2025

Table 8: Accuracy of node classification datasets: Cora and Citeseer
Layers | 2 4 8 16 64

GCN 81.1 804 695 603 28.7

Cora GCNII 822 82.6 842 846 855
GCN-GUMP | 84.6 86.2 848 854 874

GCN 70.8 67.6 302 183 20.0

Citeseer GCNII 682 689 706 729 734
GCN-GUMP | 73.0 73.0 728 724 75.8

Training time of GUMP The time of training GCN and GCN-GUMP 100 epochs on the TUDataset
is shown in Table [0l

Table 9: Training seconds of GCN and GCN-GUMP on TUDataset for 100 epochs
| MUTAG Proteins Enzymes NCI1 NCI109

GCN 4.39 20.57 1126 71.79 74.56
GCN-GUMP | 2326 22844 972.64 615.17 637.48

Results following [Tonshoff et al.|(2023) We compare GCN-GUMP with GCN on Peptides-func
and Peptides-struct datasets following |Tonshott et al.[(2023). The results are shown in Table@

Table 10: Follow [Tonshoff et al.| (2023) for comparison on Peptides-func and Peptides-struct.

\ Peptides-func Peptides-struct
GCN | 0.6860+0.0050 0.2460+0.0007
GCN-GUMP | 0.6985+0.0032 0.2438+0.0014

Average time of preprocessing The average time of preprocessing for line graph on various
datasets is shown in Table [T}

Table 11: Average times (seconds) of preprocessing line graph for various dtasets
| MUTAG Proteins Enzymes NCII NCI109 Peptides-func Peptides-struct
Avg. Time | 0.001 0.005 0.009 0.002 0.002 0.014 0.013

F AprPLY GUMP TO DIRECTED GRAPH

GUMP can also be applied to directed graphs in Algorithm[4] The transformation of directed graphs
is also based on Lemma[D.2]

Algorithm 4 Graph transformation for directed graphs

Requlre A directed graph G = (V, E);
: Initialize a new digraph G’ = (V, E');
for (i,7) € E do

Add (4,) and (j,4) to E';
end for
Remove duplicated edges in E';
Convert G to its line graph L(G");
Return: A digraph L(G").

AR A o ey

23

Under review as a conference paper at ICLR 2025

G KEY CODE SNIPPETS

Code for obtaining P; and P in Algorithm[2] P; and P are not explicitly derived in implemen-
tation and are pre-compute in the data preprocessing phase. The code snippet in Listing [T] shows how
to transform the adjacency matrix to be block diagonal.

I def get_permutation_index(self, edge_index) :

2 num_nodes = edge_index.max () + 1
3 permutation_index = []

4 block_size = []

5 node_flag = np.zeros (num_nodes)

6 print (num_nodes)
7 for 1 in tgdm(range (num_nodes)) :
8 if node_flag[i] == O0:
9 edge_index_i = edge_index[1l, edge_index[0] == 1i]
10 edge_index_selected = edge_index[:, np.isin(edge_index[1l, :1],
edge_index_1i)]
node_flag[edge_index_selected[0, :]] =1
permutation_index.append (edge_index_selected)
block_size.append (edge_index_selected.shape[l])
permutation_index = torch.cat (permutation_index, dim=1)
return (permutation_index, block_size)

Listing 1: Code for pre-computing Py and P in Algorithm 2]

TR vl e

9

Code for unitary projection in Algorithm[2] The code snippet in Listing 2] shows how to calculate
the unitary projection of the adjacency matrix.

I def proj(self, data):

2 src_attn_x = data.x[data.edge_index_2[0]]

3 dst_attn_x = data.x[data.edge_index_2[1]]

4 X_src = self.gump_attn_src(src_attn_x)

5 x_dst = self.gump_attn_dst (dst_attn_x)

6 x_attn = (F.leaky_relu(x_src + x_dst, 0.2) % self.gump_attn_ele) .sum(
dim=-1)

7 alpha = torch.tanh(x_attn)

9 split_data = torch.tensor_split (alpha, data.blocksize[0, :-1].tolist
())

10 A_sizes = np.array([A.shape[0] for A in split_datal])

11 sort_index = np.argsort (A_sizes)

13 inv_sort_index = np.zeros_like (sort_index)
14 inv_sort_index[sort_index] = np.arange (len(sort_index))

16 sort_A_sizes = A_sizes[sort_index]

17 segement_index = np.flatnonzero(np.diff (sort_A_sizes)) + 1

18 segement_index = np.concatenate([[0], segement_index, [len(
sort_A_sizes)]])

20 sorted_split_data = [split_data[i] for 1 in sort_index]

21 unitary _weight = []

22 for 1 in range(len(segement_index) - 1):

23 start, end = segement_index[i], segement_index[i+1]

24 u_weight = torch.stack(sorted_split_datal[start:end], dim=0)
25 result = unitary_proj(u_weight, self.training)

26 unitary_weight = unitary_weight + [ii for 1i in result]

27 unitary_alpha = [unitary_weight[i] for i in inv_sort_index]

28 unitary_alpha = torch.cat (unitary_alpha)

30 return unitary_alpha
Listing 2: Code for unitary projection in Algorithm 2]

24

	Introduction
	Graph Unitary Message Passing
	Overview
	Graph Transformation: convert graph to have unitary adjacency matrix
	Unitary adjacency matrix calculation: compute the edge weights for message passing
	Permutation-equivariant projection
	Feasible implementation

	Apply GUMP to GNN
	Comparison with existing methods
	Positions of GUMP

	Experiments
	Experiments on synthetic dataset
	Experiments on the TUDataset
	Experiments on LRGB
	Model analysis

	Discussions and limitations
	The Illustrated GUMP
	Related work
	GNN and oversquashing
	Unitary neural networks

	Preliminaries
	Proof
	Proof of prop:existence-alg
	Proof of lemma:unitary-projection
	Proof of prop:permutation-equivariance
	Proof of prop:feasible-imp
	Proof of cor:same-support
	Proof of thm:gump
	Theory of classical message passing

	More experimental results
	Apply GUMP to directed graph
	Key code snippets

