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ABSTRACT

Message passing mechanism contributes to the success of GNNs in various appli-
cations, but also brings the oversquashing problem. Recent works combat over-
squashing by improving the graph spectrums with rewiring techniques, disrupting
the original graph connectivity, and having limited improvement on oversquash-
ing in terms of oversquashing measure. Motivated by unitary RNN, we propose
Graph Unitary Message Passing (GUMP) to alleviate oversquashing in GNNs by
applying a unitary adjacency matrix for message passing. To design GUMP, a
transformation is first proposed to equip general graphs with unitary adjacency
matrices and keep their original graph connectivity. Then, the unitary adjacency
matrix is obtained with a unitary projection algorithm, which is implemented by
utilizing the intrinsic structure of the unitary adjacency matrix and allows GUMP
to be permutation-equivariant. In experiments, GUMP is incorporated into various
GNN architectures and the extensive results show the effectiveness of GUMP on
various graph learning tasks.

1 INTRODUCTION

Graph neural networks (GNNs) (Scarselli et al., 2008) have been widely used in various applications,
such as social network (Fan et al., 2019) and knowledge graphs (Schlichtkrull et al., 2018). The
most popular GNNs follow the message passing mechanism (Gilmer et al., 2017) to update the node
representations, where each node aggregates feature vectors of its neighbors to compute its new feature
vector. The message-passing mechanism is designed to be permutation-equivariant, allowing GNNs to
work with graphs that have varying node orders. Currently, GNNs with message passing mechanisms
have demonstrated success in various graph learning tasks, such as node classification (Kipf &
Welling, 2016a), graph classification (Ying et al., 2018), and link prediction (Kipf & Welling, 2016b).

However, the message passing mechanism also inevitably brings the oversquashing problem to
GNNs (Alon & Yahav, 2020; Topping et al., 2022; Banerjee et al., 2022). The oversquashing problem
draws inspiration from a similar phenomenon observed in RNNs when learning long-range sequences,
as noted by Alon & Yahav (2020). It refers to the situation where, as larger neighborhoods are
considered, information from distant interactions funneled through specific bottlenecks minimally
influences GNN training. This phenomenon involves compressing information from potentially an
exponentially large number of nodes (relative to the number of layers) into fixed-sized node vectors.

Various techniques are proposed to alleviate the oversquashing problem. Topping et al. (2022)
propose the Jacobian of GNN to measure oversquashing, which motivates a rewiring method that
increases the curvature of the edges in a graph. Most works combat oversquashing via methods
depending on the graph spectrum (i.e., the eigenvalue of the adjacency matrix). In these works,
rewiring techniques increase the spectral gap by flipping edges (Banerjee et al., 2022), adding
edges (Karhadkar et al., 2023), re-weighting the edges (Arnaiz-Rodríguez et al., 2022), or using
expander for message passing (Deac et al., 2022). Except for increasing spectral gap, recent works
bound the measure in Topping et al. (2022) with effective resistance (Black et al., 2023) and commute
time (Di Giovanni et al., 2023), and propose rewiring techniques to improve these bounds. Except for
improving graph spectrum, Barbero et al. (2023) propose rewiring methods to greedily add edges to
increase the number of walks in a graph.

The rewiring techniques above, even motivated from different perspectives, can be justified by the
Jacobian measure of oversquashing in Topping et al. (2022). For instance, increasing the spectral
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gap or effective resistance can be viewed as an indirect method of improving the entries of powers
of the adjacency matrix in the Jacobian measure. As a result, these rewiring methods have limited
or uncertain improvements on the Jacobian measure because some of them do not directly improve
it (Karhadkar et al., 2023; Black et al., 2023) or improve it in a greedy way (Barbero et al., 2023).
Moreover, the rewiring techniques disrupt the original graph connectivity, resulting in the loss of
crucial structural inductive biases in graph learning tasks (Battaglia et al., 2018). This makes the
rewiring techniques inadequate for oversquashing. Detailed related works on oversquashing are
summarized in Appendix B.

In this paper, we propose a new one-hop message passing mechanism, called Graph Unitary Message
Passing (GUMP), to alleviate oversquashing. Motivated by existing analysis on oversquashing
of RNNs (Pascanu et al., 2013; Jing et al., 2017), the measures of oversquashing in RNNs and
GNNs share similar forms (Fig. 1(a)), i.e., the powers of feature transformation matrix in RNN and
the powers of adjacency matrix in GNN (Section 2.1). Since the unitary parameterization of the
transformation matrix has proved to be effective in capturing long-range interactions (Arjovsky et al.,
2016) in RNN, we consider imposing unitarity on the adjacency matrix in GNN for message passing.
With a unitary adjacency matrix for message passing, the Jacobian measure of oversquashing will not
change exponentially, thereby alleviating oversquashing. Compared to existing rewiring methods
(Table 1), GUMP is a general message-passing mechanism that can be applied to various GNN
architectures and paves a new way for alleviating oversquashing, which achieves optimal Jacobian
measure and preserves the original graph connectivity.

To design GUMP, we first propose a graph transformation algorithm in Section 2.2 to equip a general
graph with unitary adjacency matrices and preserve its original graph connectivity at the same time.
The transformation algorithm is based on the theory showing that unitary adjacency matrices exist for
the line graph of an Eulerian graph. Then, we propose an algorithm to calculate the unitary adjacency
matrix in Section 2.3. The algorithm is designed to allow GUMP to be permutation-equivariant
and is implemented by utilizing the intrinsic structure of unitary adjacency matrices. Then, we
propose the framework that applies GUMP to different GNN architectures in Section 3. Finally, we
evaluate GUMP on several graph learning tasks in Section 4. In summary, our paper has the following
contributions:

• GUMP is a new one-hop message passing mechanism that alleviates oversquashing by applying a
unitary adjacency matrix for message passing. Compared with previous works, GUMP achieves
the optimal Jacobian measure of oversquashing.

• GUMP maintains the original graph connectivity with a graph transformation algorithm and
preserves the permutation equivariance of message passing with unitary projection.

• Extensive results show the effectiveness of GUMP. Further analysis of the Jacobian measure also
validates GUMP’s ability to alleviate oversquashing.

Notations In this paper, we use bold uppercase letters X to denote matrices, bold lowercase letters
x to denote vectors, and lowercase letters x to denote scalars. Given a matrix X, the i-th row of
matrix X is denoted as xi and the entry of the i-th row and j-th column of matrix X is denoted as Xij .
The transpose and conjugate transpose of matrix X is denoted as X⊤ and X†, respectively. A graph
with n nodes and e edges is denoted as G = (V,E,X) where V = {1, 2, · · · , n} is the node set,
E ⊆ V ×V is the edge set, and X ∈ Rn×d is the d-dimensional node feature matrix. For convenience,
the operator V[G] and E[G] are used to denote the node set and edge set of graph G respectively,
i.e., V[G] = V and E[G] = E. The adjacency matrix of graph G is denoted as Ã[G] ∈ {0, 1}n×n

where Ãij = 1 if (i, j) ∈ E and Ãij = 0 otherwise. The normalized adjacency matrix of graph G is
denoted as Â[G] ∈ Rn×n where Â[G] = D−1/2Ã[G]D−1/2 and D is the degree matrix of graph G.
We also use matrix A[G] ∈ Rn×n to represent the general adjacency matrix in graph G, i.e., Aij ̸= 0
if (i, j) ∈ E and Aij = 0 otherwise. Therefore, without specifying the type of adjacency matrix,
A[G] can also represent Ã[G] and Â[G]. For convenience, the adjacency matrices above are denoted
as Ã, Â, and A respectively. Some preliminaries used in this paper are provided in Appendix C.
Finally, the GNN representation at layer k is denoted as H(k) ∈ Rn×d with d being the dimension of
node features, and the vector h(k)

i ∈ Rd denotes the GNN representation of node i at layer k.
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Algorithm 1

(a) Motivation (b) Method

Adjacency matrixOriginal graph

Unitary adjacency matrix
for message passing

No unitary adjacency 
matrices for general graphs

Classical message passing

Graph Unitary Message passing

Adjacency matrixPreserve graph connectivity

Bottleneck measure

Model
RNN

hk = σ(Whk−1 + uk)

∂hr

∂u1

= Wr−1

(nearly) unitary

Examples
EUNN, LRU

Bottleneck measure

Model
GNN

H(k) = σ
(
AH(k−1)Wk

)

∂vec(H(r))

∂vec(X)
=

1∏

k=r

W⊤
k ⊗ Ar

unitary
Question

How to impose unitarity
to adjacency matrices?

Algorithm 2

Figure 1: Overview of GUMP. (a) RNN versus GNN. The measures of the bottleneck are derived
with the identity activation function and ⊗ denotes the Kronecker product. (b) GUMP aims to impose
unitarity to A while keeping the original graph connectivity. GUMP achieves this goal with graph
transformation (Section 2.2) and unitary adjacency matrix calculation (Section 2.3).

2 GRAPH UNITARY MESSAGE PASSING

In this section, we propose a new one-hop message passing mechanism called Graph Unitary Message
Passing (GUMP) to alleviate oversquashing in GNNs. For simplicity, we consider the undirected
graph in this paper. The extension to digraph is straightforward in Appendix F.

2.1 OVERVIEW

Motivation Unitarity has been crucial for the success of RNNs in effectively learning long-range
sequences in recent years, ranging from unitary RNNs (Jing et al., 2017; Arjovsky et al., 2016)
to linear RNNs (Orvieto et al., 2023; De et al., 2024). In Fig. 1(a), we simply formulate RNN as
hk = σ(Whk−1 + uk) with hk being the hidden state at layer k, W being the transformation
matrix, uk being the input at time step k, and σ being the activation function. Unitary RNN (e.g.,
EUNN (Jing et al., 2017)) imposes unitarity to W such that the gradient of long-range information
does not vanish or explode, thus helps learn long-range interactions with gradient-based optimization.
Recently, motivated by state space model (Gu et al., 2021), linear RNN (e.g., LRU (Orvieto et al.,
2023)) uses the identity activation function and initializes W close to a unitary matrix to avoid the
vanishing gradient problem. The success of imposing unitarity in RNNs for learning long-range
sequences motivates us to apply unitarity to GNNs to alleviate oversquashing.

For graphs, it is also difficult for GNN to learn long-range interactions. In Fig. 1(a), a one-hop MPNN
layer for GNN is formulated as H(k) = σ(AH(k−1)Wk) for simplicity. Similar to RNN (Pascanu
et al., 2013), the bottleneck of GNN is measured by the Jacobian measure ∂H(r)

/∂X, which is the
Jacobian of the hidden state with respect to the input (Topping et al., 2022). Therefore, we are
motivated to impose unitarity to A in GNN to alleviate oversquashing.

Challenges of imposing unitarity Imposing unitarity to an adjacency matrix is not as straightfor-
ward as that in RNNs. The first challenge comes from the sparsity of the adjacency matrix, as almost
all unitary matrices are dense (Fig. 1(b)). Therefore, the amount of graphs with unitary adjacency
matrices is limited. The second challenge is to obtain an input-dependent unitary adjacency matrix
while preserving permutation-equivariance. This is because the unitary adjacency matrix depends on
the input graph, and the order of nodes in a graph should not impact GNN representations.
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GUMP In GUMP, the first challenge is addressed by transforming the original graph to a special
graph (Algorithm 1) which is guaranteed to have unitary adjacency matrices and preserves the
original graph connectivity at the same time. The second challenge is addressed by calculating the
unitary adjacency matrix with a unitary projection algorithm (Algorithm 2), which is implemented
by utilizing the block diagonal structure of the unitary adjacency matrix and allows GUMP to be
permutation-equivariant (Proposition 2.4). As a general one-hop message-passing mechanism, any
convolution operation can be combined with GUMP by setting the edge weights to be the entries of
the unitary adjacency matrix for message passing. The overview of GUMP is shown in Fig. 1(b).

From the theoretical perspective, GUMP has also proved to alleviate oversquashing in GNNs. Given
the ReLU activation function and convolution operation in Fig. 1(a), we have the following theorem
(proved in Appendix D) guaranteeing that GUMP can alleviate oversquashing.
Theorem 2.1. The expected Jacobian measure for GUMP, i.e., A is unitary in GNN, is approximately
in the order of E

[
∂h

(L)
i /∂xs

]
= O(1).

Theorem 2.1 does not indicate the Jacobian measure of GUMP is independent of L. In fact, the
relation between the Jacobian measure and L is a trigonometric function in GUMP, which can be
bounded by constants. The theorem shows that the Jacobian measure of GNN with unitary adjacency
matrices will not change exponentially with the number of layers, thus avoiding oversquashing. In
the following sections, we will introduce the details of GUMP, including the graph transformation
algorithm in Section 2.2 and the unitary adjacency matrix calculation algorithm in Section 2.3.

2.2 GRAPH TRANSFORMATION: CONVERT GRAPH TO HAVE UNITARY ADJACENCY MATRIX

Since unitary matrices are generally non-symmetric, the graph transformation algorithm should
convert the original graph to a directed graph. We first formally define the unitary adjacency matrix as
in Severini (2003). Given an adjacency matrix A, its support matrix S[A] ∈ Rn×n is a binary matrix
with entries equal to one if the corresponding entry of A is non-zero and equal to zero otherwise,
i.e., S[A]ij = 1, if Aij ̸= 0 and S[A]ij = 0, if Aij = 0. Then, the unitary adjacency matrix UG

of graph G is a unitary matrix whose support is equal to the support of its adjacency matrix A, i.e.,
S[UG] = S[A].

Algorithm 1 Graph transformation
Require: A undirected graph G = (V,E);

Initialize a new digraph G′ = (V,E′);
for (i, j) ∈ E do

Add (i, j) and (j, i) to E′;
end for
Convert G′ to its line graph L(G′);
Return: A digraph L(G′).

We propose the transformation in Algorithm 1 for
undirected graph G to make it have unitary adja-
cency matrices and preserve its original graph con-
nectivity. Algorithm 1 first transforms the undi-
rected graph to be Eulerian graphG′ (Definition C.2)
by splitting each undirected edge into two directed
edges. Then, it converts the Eulerian graph to its
line graph L(G′) (Definition C.1). Finally, L(G′)
has unitary adjacency matrices which is proved in
the following proposition.
Proposition 2.2. The line graph L(G′) returned by Algorithm 1 have unitary adjacency matrices.

Proposition 2.2 is proved in Appendix D. In Algorithm 1, the original graph connectivity is preserved
because the splitting of an undirected edge and the conversion to the line graph do not introduce new
connectivity between nodes that is absent in the original graph. Finally, Algorithm 1 takes as input
graph G with n nodes and e edges, and outputs a line graph L(G′) with 2e nodes.

2.3 UNITARY ADJACENCY MATRIX CALCULATION: COMPUTE THE EDGE WEIGHTS FOR
MESSAGE PASSING

According to Proposition 2.2, the line graph L(G′) has unitary adjacency matrices. In this section,
we propose an algorithm to calculate a unitary adjacency matrix for GUMP, because the unitary
adjacency matrix depends on the input graph and should be calculated for each graph.

2.3.1 PERMUTATION-EQUIVARIANT PROJECTION

Permutation equivariance of message passing is a key property for GNN to apply to graphs with
varying node orders. To achieve this, the calculation of a unitary adjacency matrix has to be
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permutation equivariance. Our method consists of two steps: 1) calculate edge weights to form a
weighted adjacency matrix; 2) impose unitarity to the weighted adjacency matrix.

Firstly, edge weight for (i, j) ∈ E[L(G′)] is calculated with

αij = Tanh
(
w⊤ · LeakyReLU(Wshi +Wthj)

)
, (1)

where hi (hj) is the representations for node i (j) in L(G′), Ws,Wt ∈ Rd′×d are transformation
matrices for source and target nodes of an edge respectively, and w ∈ Rd′

is a learnable parameter.
Then, the weighted adjacency matrix of L(G′), denoted as Ā ∈ R2e×2e, is formed from edge weights,
i.e., Āij = αij .

After calculating Ā, we impose unitarity to Ā by projection. We use the projection algorithm in
Keller (1975), which takes advantage of the fact that the polar transformation yields the closest
unitary matrix to a given matrix in terms of the Frobenius norm. The following lemma describes the
unitary projection in GUMP:

Lemma 2.3. Given a weighted adjacency matrix Ā ∈ R2e×2e of L(G′), the unitary projection of Ā

is given by U[Ā] := argminU is unitary
∥∥Ā−U

∥∥2
F
= Ā

(
Ā†Ā

)− 1
2 .

Lemma 2.3 (proved in Appendix D) indicates that U[Ā] = Ā
(
Ā†Ā

)− 1
2 is the unitary adjacency

matrix for GUMP. Also, the unitary projection U[Ā] is guaranteed to be permutation-equivariant
when Ā is a full-rank matrix with the following proposition.

Proposition 2.4 (Strong permutation equivariance). Given two permutation matrices P1 and P2, if Ā
is a full-rank matrix, the unitary projection U[Ā] is equivariant to both row and column permutations
of Ā, i.e., P1U[Ā]P⊤

2 = U[P1ĀP⊤
2 ].

By Proposition 2.4 (proved in Appendix D), the weighted adjacency matrix Ā should be full-rank to
guarantee permutation equivariance of GUMP. Empirically, inspired by GATv2 (Brody et al., 2021),
Ā induced by (1) is full-rank in experiments and thus can guarantee the permutation equivariance of
GUMP. However, the unitary projection (Lemma 2.3) is computationally expensive due to the inverse
square root of Ā†Ā ∈ R2e×2e.

2.3.2 FEASIBLE IMPLEMENTATION

Algorithm 2 Calculation of unitary adjacency matrix
Require: L(G′) outputted by Algorithm 1;

1: Calculate Ā of L(G′) with (1);
2: Find the permutation matrices P1,P2 such that D :=

diag(D1, · · · ,Db) = P1ĀP⊤
2 is block diagonal;

3: Calculate U[D] = diag(U[D1],U[D2], · · · ,U[Db]);
4: Calculate U[Ā] = P⊤

1 U[D]P2;
5: Return: Unitary adjacency matrix U[Ā].

By utilizing the intrinsic structure in
the unitary adjacency matrix, the feasi-
ble unitary projection is implemented
in Algorithm 2. In Algorithm 2,
weighted adjacency matrix Ā is first
calculated with (1) in step 1. Then,
the intrinsic structure of Ā allows it
to be permuted to be block diagonal
with permutation matrices P1 and P2

in line 2. The permuted diagonal ma-
trix is denoted as D:=diag(D1,D2,· · ·,Db)=P1ĀP⊤

2 . By Proposition 2.4, the unitary projection of
D is equal to the matrix after applying row permutation P1 and column permutation P2 to U[Ā], i.e.,
U[P1ĀP⊤

2 ] = P1U[Ā]P⊤
2 , indicating U[Ā] = P⊤

1 U[P1ĀP⊤
2 ]P2. Thus, U[Ā] can be efficiently

calculated by first applying unitary projection to each block Di of D in line 3 and then applying
the inverse row and column permutation P⊤

1 and P⊤
2 to the unitary projection of D in line 4. The

correctness of Algorithm 2 is guaranteed in Proposition 2.5 (proved in Appendix D) and Corollary 2.6
(proved in Appendix D) ensures the projected matrix U[Ā] has the same support as L(G′).

Proposition 2.5. The matrix returned by Algorithm 2 for graph L(G′) is equal to Ā
(
Ā†Ā

)− 1
2 .

Corollary 2.6. With the strong permutation equivariance in Proposition 2.4, assuming each U[Di] is
fully supported, the matrix returned by Algorithm 2 has the same support as the line graph L(G′).

Corollary 2.6 requires the unitary projection of each block Di to be fully supported, which is not
a strong assumption and empirically satisfied in experiments. Algorithm 2 is computationally
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Table 1: Comparison of different methods for oversquashing on important properties of GNN and
Jacobian measure. “Permutation equivariance” denotes the order of nodes in the graph does not
affect the node representations of GNN. “Measure” represents the measure of oversquashing used in
the corresponding method. “Jacobian measure w.r.t L” denotes the order of the expected Jacobian
measure with respect to the number of layers L (Theorems 2.1 and D.6 in Appendix D).

Methods SDRF FoSR LASER GTR GUMP

Permutation equivariance ✓ ✗ ✓ ✓ ✓

Graph connectivity ✗ ✗ ✗ ✗ ✓

Measure curvature spectral gap walks effective resistance Jacobian

Jacobian measure w.r.t L O(cL) O(cL) O(cL) O(cL) O(1)

feasible from two perspectives. Firstly, it applies unitary projection (Lemma 2.3) to block matrices
Di, each with sizes d1, d2, · · · , db (

∑b
i=1 di = 2e). The computational complexity of Algorithm 2

is O(
∑b

i=1 d
3
i ), in contrast to the complexity of O(de3) when applied to the large matrix Ā. This

results in lower computational cost for unitarity projection of block diagonal matrices, particularly
when the sizes of the block matrices are small. Secondly, the algorithm benefits from the existence of
many block matrices Di with identical sizes because matrices of the same size can be grouped and
computed in parallel with PyTorch.

Algorithm 3 GNN with the graph unitary message passing mechanism (GNN-GUMP)
Require: A graph G = (V,E,X);
1: X(0) = GNN(X, G);
2: Transform G to L(G′) with Algorithm 1;
3: Generate initial representation H(0) for L(G′) with h(i,j)=[x

(0)
i ;x

(0)
j ],∀(i, j) ∈ V[L(G′)];

4: Calculate U[Ā] with Algorithm 2;
5: for k = 1 · · ·L do
6: h

(k)
v = γ(h

(k−1)
v ,

∑
u∈Nv

U[Ā]vuϕ
(k)(h

(k−1)
v ,h

(k−1)
u )), v ∈ V

7: end for
8: Scatter H(L) to nodes of G with H

(L)
s =Scatter(H(L), G);

9: Generate node representations of G with X(L)=[X(0);H
(L)
s ].

10: Return: Node representations X(L) of G.

3 APPLY GUMP TO GNN

In this section, we apply GUMP to different GNN architectures for graph learning tasks in Algo-
rithm 3. Given a graph G, a base GNN first computes the initial node representations of G, i.e.,
X(0) = GNN(X, G). Then, Algorithm 1 transforms G to L(G′). The initial node representations
H(0) ∈ R2e×2d of L(G′) are generated with h(i,j) = [x

(0)
i ;x

(0)
j ], ∀(i, j) ∈ V[L(G′)] (i, j ∈ V[G]).

Next, the unitary adjacency matrix U[Ā] of L(G′) is calculated from Algorithm 2 and applied
to propagate messages in graph with h

(k)
v = γ(h

(k−1)
v ,

∑
u∈Nv

U[Ā]vuϕ
(k)(h

(k−1)
v ,h

(k−1)
u )),

v ∈ V with any graph convolution operator. After L layers of unitary message passing, we
obtain the node representations H(L), which is later scattered to nodes of G with H

(L)
s =

Scatter(H(L), G) ∈ Rn×d′
. Then, H(L)

s are concatenated with X(0) to obtain the final node repre-
sentations X(L) = [X(0);H

(L)
s ] ∈ Rn×(d+d′) of G. Finally, various graph learning tasks, e.g., graph

and node classification, link prediction, and graph regression, are performed based on X(L). In this
paper, GUMP is a general one-hop message-passing mechanism for GNN. Therefore, depending
on the specific convolution operator in line 6 of Algorithm 3, GNN with GUMP is named as [GNN
type]-GUMP in Section 4, e.g., GCN-GUMP and GIN-GUMP have graph convolution operator and
graph isomorphism operator in line 6 of Algorithm 3, respectively.

3.1 COMPARISON WITH EXISTING METHODS

GUMP paves a new way to solve the oversquashing problem instead of rewiring. Overall, GUMP
has the following advantages: (1) GUMP is permutation-equivariant, which is a desirable property

6
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for graph learning. (2) Unlike rewiring methods, GUMP does not introduce extra connectivity
to the original graph and thus preserves the original graph connectivity. (3) GUMP achieves the
optimal Jacobian measure of oversquashing since the eigenvalues of unitary adjacency matrices are
complex units and thus will not change exponentially with respect to the number of GNN layers. The
comparison of GUMP and other oversquashing methods are in Table 1.

Previous work on unitary GNN, e.g., Ortho-GConv (Guo et al., 2022), imposes unitarity on the
feature transformation matrix of GNN. Unlike Ortho-GConv, GUMP addresses the issue of ill-posed
gradient caused by oversquashing by imposing unitarity on the adjacency matrix. Moreover, enforcing
unitarity on adjacency matrix is more challenging than that on feature transformation, since adjacency
matrices depend on the input graph and are not parameters of GNN.

3.2 POSITIONS OF GUMP

In this paper, we focus exclusively on one-hop message passing, the fundamental mechanism in
graph learning. To clarify our setting, we talk about the position of GUMP in graph learning from the
following aspects.

Multi-hop message passing We are aware of many multi-hop message passing methods (Feng
et al., 2022), e.g, Drew (Gutteridge et al., 2023) and GRIT (Ma et al., 2023), which can alleviate the
oversquashing problem, capture long-range interactions in graphs, and achieve better performance
than GUMP in most datasets. We want to clarify that GUMP and multi-hop message passing
methods are in orthogonal categories. GUMP focuses on improving the fundamental message passing
mechanism, while multi-hop message passing methods applies multi-hop node information to improve
the performance. GUMP addresses the oversquashing issue caused by fundamental message passing,
and this issue also exists in multi-hop message passing methods. In future work, we will combine
GUMP with multi-hop message passing for further performance improvement.

Stable signal propagation Stable signal propagation (Poole et al., 2016; Schoenholz et al., 2022)
is important for the scalability and robustness of deep neural network. The signal propagation is
difficult to stabilize in GNNs because of the irregular data structure of graphs (Rong et al., 2019;
Alon & Yahav, 2020). There are many works (Xu et al., 2018; Gasteiger et al., 2018) to improve the
signal propagation in GNNs from model architecture perspective. From the data perspective, rewiring
methods (Rong et al., 2019; Alon & Yahav, 2020) disrupt graph connectivity and do not fully address
signal propagation issues. GUMP offers a comprehensive approach for stable signal propagation
in GNNs, addressing instability from irregular graph data without losing graph connectivity. In the
future, GUMP can inspire more data-perspective research on stable signal propagation in GNNs and
help scale up GNNs.

4 EXPERIMENTS

In this section, we perform experiments to evaluate GUMP on graph learning tasks. All experiments
are implemented by PyTorch Geometric (Fey & Lenssen, 2019) and conducted on NVIDIA RTX
4090 GPUs and AMD EPYC 7763 CPUs.

4.1 EXPERIMENTS ON SYNTHETIC DATASET

Setup In this section, we conduct experiments on synthetic datasets, i.e., CrossedRing, Ring, and
CliquePath, in Di Giovanni et al. (2023) to test GUMP. The performance is evaluated on the distances
from source to target in the range of 4 to 28. In the experiments, we compare GCN-GUMP and GCN.
The layer L of GCN-GUMP and GCN is appropriately set up according to the distance d between
source and target in the synthetic datasets (i.e., L = ⌊d/2⌋+ 1), such that the long-range interactions
can be captured by GNN. We set the hidden dimension to be 32 for both GCN-GUMP and GCN. The
hyperparameters of GCN-GUMP for synthetic datasets are in Table 5 of Appendix E.

Results We plot the average results from three random seeds of GCN-GUMP and GCN experiments
in Fig. 2. For two easier datasets, i.e., CrossedRing and Ring, GUMP achieves 100% accuracy when
the distance ranges from 4 to 28. For the challenging CliquePath dataset, GCN-GUMP’s performance
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deteriorates to random guessing at a distance of 28. The results show that GUMP can help capture
the long-range interactions in graph learning tasks. We compare with more baselines in Appendix E.

4.2 EXPERIMENTS ON THE TUDATASET
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Figure 2: The performance of GCN and GCN-GUMP on the
CrossedRing, Ring, and CliquePath with different distances
from source to target.

Datasets We select five graph
datasets, i.e., Mutag, Proteins, En-
zymes, NCI1, and NCI109 from the
TUDataset (Morris et al., 2020). We
chose these datasets because they
consist of chemistry or biological
graphs, where the atoms far apart may
be closer in space, and long-distance
propagation will have significant
advantages. The statistics of these
datasets are in Table 4 of Appendix E.

Baselines Because GUMP is a
one-hop message-passing mechanism,
we also compare one-hop message-
passing baselines for fairness. Base-
lines include various rewiring methods, i.e., DIGL (Gasteiger et al., 2019), SDRF (Topping et al.,
2022), FoSR (Karhadkar et al., 2023), and GTR (Black et al., 2023). We use GCN and GIN as base
GNN for comparison. The baselines follow the settings of Karhadkar et al. (2023). In Appendix E,
we also compare GUMP with other methods for long-range graph learning and orthogonal GNN.

Experimental details To evaluate each method, we initially designate a test set comprising 10% of
the graphs and a development set encompassing the remaining 90% of the graphs. The accuracies
of each configuration are determined through 100 random train/validation splits of the development
set, with 80% for training and 10% for validation. During the training phase, a stopping patience of
100 epochs is employed based on validation loss. Subsequently, for the test results, we report 95%
confidence intervals for the best validation accuracy observed across the 100 runs.

The number of layers for rewiring methods is set to be in the range of one to five. The number
of layers for GUMP is manually tuned because the long-range interactions in a graph can only be
captured by increasing its layers. The detailed hyperparameters of GUMP for different datasets are
presented in Table 5 of Appendix E.

Results The results of GUMP on the TUDataset are shown in Table 2. Firstly, the results show that
GUMP outperforms all baselines on all datasets. In particular, GUMP outperforms baselines by a
large margin on Mutag, Enzymes, NCI1, and NCI109. Also, GIN-GUMP achieves better performance
than GCN-GUMP on all datasets, which indicates that graph convolution operations are crucial for
performance. Moreover, since GUMP usually has more layers than baselines in these datasets, the
experiments show that GCN and GIN with more layers have degraded performance on all datasets,
showing that the improvement of GUMP does not come from increasing expressivity with more GNN
layers.

4.3 EXPERIMENTS ON LRGB

In this section, we conduct experiments on the Long Range Graph Benchmark (LRGB) (Dwivedi
et al., 2022), which is a set of GNN benchmarks involving long-range interactions. Two datasets are
selected from LRGB for comparison, i.e., Peptides-func and Peptides-struct. The statistics of these
datasets are shown in Table 4.

The experiments of LRGB are conducted following the standard settings in Dwivedi et al. (2022).
We set SDRF, FoSR, GTR, LASER (Barbero et al., 2023), GRAND, and ADGN as baselines. The
hyperparameters of GUMP and more results for LRGB are presented in Appendix E. All datasets are
tested without any additional features, e.g., positional encoding. The results of LRGB are shown in
Table 3. The results show that GUMP outperforms all baselines, which indicates that GUMP is more
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Table 2: Graph classification accuracy on the TUDataset. First, second, and
::::
third best results are

bold, underlined, and underwaved, respectively.
Base GNN Methods Mutag Proteins Enzymes NCI1 NCI109 Rank

GCN

None 72.15±2.44 70.98±0.74 27.67±1.16 68.74±0.45 67.90±0.50 4.2
None (+layer) 70.05±1.83 69.80±0.99 23.63±1.07 63.94±1.34 55.92±1.26 6.8

DIGL
::::::::
79.70±2.15 70.76±0.77 35.72±1.12 69.76±0.42 69.37±0.43 3.0

SDRF 71.05±1.87 70.92±0.79
::::::::
28.37±1.17 68.21±0.43 66.78±0.44 4.8

FoSR 80.00±1.57 73.42±0.81 25.07±0.99 57.27±0.54 56.82±0.60 4.6
GTR 79.10±1.86

::::::::
72.59±2.48 27.52±0.99

::::::::
69.37±0.38

::::::::
67.97±0.47 3.6

GCN-GUMP 84.89±1.63 74.88±0.87 36.02±1.43 77.97±0.42 75.85±0.44 1.0

GIN

None 77.70±3.60 70.80±0.83 33.80±1.12
::::::::
75.65±0.49 74.93±0.46 4.0

None (+layer) 69.80±2.75 68.71±0.96 25.92±1.07 73.49±0.46 72.47±0.53 6.6
DIGL 79.80±2.08 70.71±0.67

::::::::
35.74±1.20 79.37±0.43 76.88±0.39 2.8

SDRF
::::::::
78.40±2.80 69.81±0.79 35.82±1.09 74.55±0.54 73.89±0.43 4.2

FoSR 78.00±2.22 75.11±0.82 29.20±1.38 70.15±0.47 69.93±0.45 5.2
GTR 77.60±2.84

::::::::
73.13±0.69 30.57±1.42 75.45±0.44

::::::::
75.28±0.42 4.2

GIN-GUMP 86.72±1.53 75.43±0.70 48.43±1.24 81.25±0.37 78.45±0.44 1.0

suitable for graph learning tasks involving long-range interactions than previous rewiring methods.
The results of some rewiring methods, e.g., GTR, are worse than GCN, indicating that the greedy
algorithm and measure used by it to alleviate oversquashing is not robust and may not help improve
the performance of GNN in real applications.
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Figure 3: Model analysis. GCN, GIN, and GUMP in (c) represent the convolution of GUMP. The base
GNN of GUMP is GCN. “w/o proj” removes unitary projection in GUMP. “w/o weights” removes
weighted adjacency matrix and unitary projection in GUMP. “w/o base GNN” removes base GNN in
GUMP.

4.4 MODEL ANALYSIS

Table 3: Results of Peptides-func and
Peptides-struct. Bold are best results.

Peptides-func Peptides-struct
Test AP ↑ Test MAE ↓

GCN .5930±.0023 .3496±.0013
SDRF .5947±.0035 .3404±.0015
FoSR .5947±.0027 .3078±.0026
GTR .5075±.0029 .3618±.0010

LASER .6440±.0010 .3043±.0019
GRAND .5789±.0062 .3418±.0015
ADGN .5975±.0044 .2874±.0021
GUMP .6843±.0037 .2467±.0021

In this section, we perform more experiments to an-
alyze GUMP from three aspects, i.e., Jacobian mea-
sure, number of layers, and ablation studies.

Jacobian measure We first visualize the Jacobian
measure of oversquashing for GUMP and other base-
lines (more visualization in Appendix E). We choose
a pair of nodes with a distance of ten from NCI1 and
calculate the spectral norm of Jacobian measure for
GUMP and baselines with base GNN as GCN. The
visualization is shown in Fig. 3(a) with the norm of
Jacobian measure in log scale. Firstly, when increas-
ing the number of layers of GNNs, the Jacobian measure of GUMP does not decay, while the Jacobian
measure of other baselines decays exponentially. The results validate the theoretical analysis in
Theorems 2.1 and D.6, indicating that GUMP has the ability to capture long-range interactions in
a graph without oversquashing. Secondly, the norm of the Jacobian measure varies for different
baselines. For example, DIGL has a large norm of Jacobian measure when the number of layers is
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smaller than 50. Therefore, DIGL performs better than other rewiring methods in Table 2. However,
all baselines have a close norm of Jacobian measure when the number of layers is larger than 50.

Deep GNN The number of GNN layers indicates the ability of GNNs to capture long-range
interactions. We increase the number of layers of GUMP and baselines to see how their performances
change. This experiment is conducted in NCI1 with base GNN as GCN and the number of layers
in the range of 2 to 100. The other hyperparameters of GUMP are the same as Table 5. The results
in Fig. 3(b) demonstrate that the performance of GUMP increases from 75.88% to 77.97% when
increasing the number of layers from 2 to 10. However, the performance of baselines decreases a lot
when increasing the number of layers. For example, the performance of FoSR decreases from 66.06%
to 52.86% when the number of layers increases from 2 to 10. The performance of baselines changes
drastically as the layers increase, while the performance of GUMP is more stable. The results show
that GUMP can be deeper than previous methods, thus learning long-range interactions in graphs.

Ablation studies Lastly, we conduct ablation studies to analyze GUMP in Fig. 3(c). We first replace
the convolution of GUMP with GIN and GraphConv (Morris et al., 2019), showing that the choice of
convolution can impact the performance of GUMP. Then, we remove unitary projection (i.e., message
passing with Ā) and weighted adjacency matrix (i.e., message passing with Ã[L(G′)]) in GUMP
and the results show that their performances decrease, indicating the importance of GUMP. Finally,
we remove the base GNN in GUMP and the results show that the performance of GUMP varies
on different datasets, i.e., the performance on NCI1 decreases, while the performance on Proteins
does not decrease. This phenomenon is expected because the quality of the unitary adjacency matrix
depends on the representations of nodes in the line graph (see (1)).

In model analysis, GUMP demonstrates the optimal Jacobian measure of oversquashing, and greater
stability with increased layers compared to prior methods, highlighting the critical role of its design
in achieving superior performance.

5 DISCUSSIONS AND LIMITATIONS

In this paper, we propose a novel method for oversquashing, i.e., Graph Unitary Message Passing
(GUMP). Motivated by unitary RNNs, GUMP propagates messages on a graph with a unitary
adjacency matrix. Compared to previous methods, GUMP achieves an optimal Jacobian measure of
oversquashing, keeps the original graph connectivity, and is permutation-equivariant. We discuss
below the limitations of GUMP and their implications for future work.

Information loss Since GUMP involves graph transformation and adjacency matrix transformation,
it is reasonable to consider what information is lost in GUMP. So we discuss the information loss in
GUMP of different graphs: (1) Undirected and unweighted graph: These are the graphs discussed in
our paper. For this graph, the information is not lost; (2) Weighted graph: For weighted graph, since
GUMP utilizes a unitary adjacency matrix, the edge weights cannot be incorporated into message
passing directly, and a feasible way for it is to convert edge weights to edge features in message
passing, which is similar to R-GNN (Battaglia et al., 2018); (3) Directed graph: For directed graphs,
the original directed edges become indistinguishable after the graph transformation in Appendix F,
which means the original directionality is lost in the line graph. However, step 8 of Algorithm 3
can filter out the non-existing edges in the original graph, which can fix the information loss. For
the unweighted digraph, we can follow the same procedure as the undirected and unweighted graph.
So even though the information can be lost in weighted or directed graphs, there are other ways to
incorporate the information into GNN when using GUMP.

High computational cost The high cost of GUMP is attributed to the construction of the unitary
projection. Although the unitary projection introduces significant computational complexity, it is
essential for GUMP to obtain optimal Jacobian measure (as stated in Theorem 2.1) and exhibit good
performance (as demonstrated in Fig. 3(c)). However, GUMP is a good option for many tasks, e.g.,
biology and chemistry, where accuracy is more important than time cost. Many graphs in these tasks
are not very large, and the data collection and analysis processes often take significantly more time
than model training. In the future, motivated by Orvieto et al. (2023), we will explore performing
message passing in the diagonalized space of the adjacency matrix to reduce the computational cost
of GUMP.
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A THE ILLUSTRATED GUMP

Graph Transformation (Algorithm 1)

Original graph 𝐺 Eulerian graph 𝐺! Line graph L(G′) Adjancency matrix of L(G′)

Calculation of unitary adjacency matrix (Algorithm 2)

Add directional edges Line graph transformation

Graph attention matrix 𝑨% Block diagonal matrix 𝑫 = 𝑷"�̅�𝑷#$ Efficient unitary projection U[𝑫] Unitary adjacency matrix
𝑷"$U 𝑫 𝑷# of GUMP

Permute rows and columns Parallel unitary projection

𝑫% U[𝑫%]

Inverse row and column permutations

𝑫& U[𝑫&]

Same support

Figure 4: The illustrated GUMP.

B RELATED WORK

B.1 GNN AND OVERSQUASHING

Graph neural network (GNN) (Kipf & Welling, 2016a; Gilmer et al., 2017) with L layers is a type of
neural network that uses graph G and initial node features H(0) = X to learn node representations
H(L). The k-th layer of GNN updates node representation via the message-passing formula

h
(k)
i =δ(h

(k−1)
i ,ϕ({{ψ(h(k−1)

j ), j ∈ N (i)}})),

where δ, ϕ, and ψ are combination, aggregation, and message functions respectively, {{· · · }} is a
multiset, and N (i) = {j|(i, j) ∈ E}.

Even though GNN achieves success in various graph learning tasks, it suffers from the oversquashing
problem. The oversquashing problem is first noted by Alon & Yahav (2020). Inspired by Xu et al.
(2018), Topping et al. (2022) proposes to measure oversquashing with the Jacobian between node
features at different levels of a GNN. Based on the measure, Topping et al. (2022) propose a rewiring
method to increase the curvature of the edges in a graph. Many works combat oversquashing by
improving the spectral gap of a graph. Banerjee et al. (2022) measure oversquashing via the spectral
gap of a graph, employing a rewiring algorithm based on expander graph construction and effective
resistance for edge sampling. Karhadkar et al. (2023) introduce FoSR, a rewiring method that
maximizes the first-order change in the spectral gap of the graph. Arnaiz-Rodríguez et al. (2022)
introduced a GNN comprising a parameter-free layer for learning commute time and a rewiring layer
to optimize spectral gap according to network characteristics and task requirements. Except from
improving spectral gap, Black et al. (2023) focus on minimizing total resistance between node pairs
and introduce the Greedy Total Resistance (GTR) rewiring method for oversquashing. Di Giovanni
et al. (2023) analyze oversquashing with commute time. Barbero et al. (2023) propose a rewiring
method to sequentially increase the number of walks between two nodes and preserve the locality in
the original graph. Except for the one-hop message passing neural networks above, Gutteridge et al.
(2023) propose a multi-hop message passing neural network (Drew) to alleviate oversquashing with
layer-dependent graph rewiring and a delay mechanism for skip connections based on layer and node
distance.
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B.2 UNITARY NEURAL NETWORKS

Unitary matrices U are square matrices satisfying U⊤U = I. Unitary matrices contribute to the
stability of neural network training by preserving vector norms and preventing issues like exploding
or vanishing gradients. Imposing unitarity on neural networks enhances their ability to seamlessly
capture and propagate information across layers. This technique has proven successful in various
architectures, such as RNNs, CNNs, and GNNs.

Unitary neural networks (UNNs) are first developed to tackle the problem of vanishing and exploding
gradients in RNNs, enabling more efficient learning of information in extremely long sequences
of data compared to existing methods like LSTM (Hochreiter & Schmidhuber, 1997). To show
how unitary matrices can alleviate the vanishing gradient problem in RNNs, we denote RNN as
hk = σ(Whk−1+uk) with hk as the hidden state at the k-th layer of RNN, W as the weight matrix,
uk as the k-th input of RNN, and σ as the activation function. As shown in Fig. 1(a), the long-range
dependency can be measured by ∂hr/∂u1. To simplify the analysis, we assume the activation function
σ is identity. The Jacobian measure of the long-range dependency becomes ∂hr/∂u1 = Wr−1. When
W is unitary, information in ∂hr/∂u1 will not vanish or explode, which is the key to alleviate the
vanishing/exploding gradient problem in learning long sequences.

Early algorithms on unitary RNN construct a series of parameterized unitary transformations to
impose unitarity. EUNN (Jing et al., 2017) achieves this by composing layers of rotations, Fourier
transforms, and other unitary transformations to parametrize unitary matrices. uRNN (Arjovsky
et al., 2016) and scoRNN (Helfrich et al., 2018), on the other hand, maintain unitarity by perform-
ing a Cayley transformation to parametrize the full unitary space. expRNN (Lezcano-Casado &
Martınez-Rubio, 2019), in contrast, parametrizes unitary matrices within the Lie algebra of the orthog-
onal/unitary group. projUNN (Kiani et al., 2022) first optimizes its parameters using gradient-based
optimization and then maps the updated parameters to a unitary space. Most recently, linear recurrent
unit (LRU) (Orvieto et al., 2023) significantly enhances the long-range learning capability of RNNs
by linear RNN and initializing their weight matrix to be nearly unitary. Other works (Peng et al.,
2023; Gu & Dao, 2023) on recurrent models also share the similar idea of LRU to effectively capture
long-range dependencies in sequences, yielding impressive outcomes in language modeling and other
tasks.

Despite RNN, unitarity has also been applied to CNNs and GNNs. Unitary CNNs (Sedghi et al.,
2018; Li et al., 2019; Singla & Feizi, 2021; Trockman & Kolter, 2021) introduce various methods to
restrict the convolutional filters to be unitary, e.g., via the Lie algebra of the orthogonal group (Singla
& Feizi, 2021) and the Cayley transform (Trockman & Kolter, 2021). Ortho-GConv (Guo et al.,
2022) imposes unitarity on the feature transformation matrix in GNNs.

C PRELIMINARIES

Definition C.1 (Line graph). Given a graph G, its line graph L(G) is a graph such that

• each vertex of L(G) represents an edge of G, i.e., V[L(G)] = E[G];

• two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint
in G, i.e., E[L(G)] = {((i, j), (j, k)) ∈ V[L(G)]× V[L(G)] | (i, j), (j, k) ∈ E[G]}.

Definition C.2 (Eulerian graph). An Eulerian graph G is a graph containing an Eulerian cycle, i.e.,
there is a trail in G that starts and ends on the same vertex and visits every edge exactly once.

Definition C.3 (Permutation matrix). A permutation matrix P ∈ Rn×n is a square binary matrix
that has exactly one entry of 1 in each row and each column with all other entries 0.

Theorem C.4. Every permutation matrix is orthogonal, i.e., if P is a permutation matrix, P⊤P =
PP⊤ = I.
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D PROOF

D.1 PROOF OF PROPOSITION 2.2

Proposition 2.2 is proved based on the following theorem and lemma. Theorem D.1 is a direct result
from Theorem 3 in Severini (2003). Lemma D.2 is a well-known result in graph theory, which can be
found in Theorem 1.7.2 of Bang-Jensen & Gutin (2008).

Theorem D.1 (Existence of unitary adjacency matrix). Let G be a single-connected digraph. Its
line graph L(G) (Definition C.1) is the digraph of a unitary matrix if and only if G is Eulerian
(Definition C.2).

Lemma D.2 (A special Eulerian graph). A digraph graph is Eulerian if and only if it is connected
and the in-degree and out-degree are equal at each vertex.

Proof of Proposition 2.2. In Algorithm 1, the undirected edges in G are split into two directed edges
in G′. Therefore, the in-degree and out-degree of each vertex in G′ are equal, indicating G′ is
Eulerian. Then, Theorem D.1 indicates that there exists unitary adjacency matrix U such that
S[U] = A[L(G′)].

D.2 PROOF OF LEMMA 2.3

Proof. Given any unitary U, let U = M+ U[Ā] for the properly chosen M ∈ C2e×2e. Due to the
unitarity of U and U[Ā], we have

MU[Ā]† +MM† + U[Ā]M† = 0. (2)

Then, we have

∥Ā−U∥2F = ∥Ā−M− U[Ā]∥2F
= ∥Ā− U[Ā]∥2F + Tr[MU[Ā]† +MM† + U[Ā]M†]− Tr[M†Ā+ Ā†M]

= ∥Ā− U[Ā]∥2F − Tr[M†Ā+ Ā†M]

= ∥Ā− U[Ā]∥2F − Tr[M†U[Ā](Ā†Ā)
1
2 + (Ā†Ā)

1
2U[Ā]†M].

Then, from (2), we have MU[Ā]† + U[Ā]M† = −MM†,

∥Ā−U∥2F = ∥Ā− U[Ā]∥2F + Tr[(Ā†Ā)
1
2MM†]. (3)

The second term above is non-negative because Tr[(Ā†Ā)
1
2MM†] = Tr[M†(Ā†Ā)

1
2M] and

(Ā†Ā)
1
2M is positive semi-definite. Therefore, for all unitary U,

∥Ā−U∥2F ≥ ∥Ā− U[Ā]∥2F . (4)

The result is proven.

D.3 PROOF OF PROPOSITION 2.4

Lemma D.3. For any unitary matrix U, given two permutation matrices P1 and P2, P1UP⊤
2 is

also unitary.

Proof. Let Û = P1UP⊤
2 . Then, we have

ÛÛ† = P1UP⊤
2 P2U

†P⊤
1 = P1UU†P⊤

1 = P1P
⊤
1 = I,

Û†Û = P2U
†P⊤

1 P1UP⊤
2 = P2U

†UP⊤
2 = P2P

⊤
2 = I

which proves P1UP⊤
2 is unitary.

Proof of Proposition 2.4. This proposition is proved by the uniqueness of the unitary matrix U[Ā]
when Ā is a full-rank matrix.
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Assume there exists another unitary matrix U = M+ U[Ā] such that

U = arg min
U is unitary

∥∥Ā−U
∥∥2
F
. (5)

According to the proof of Lemma 2.3, we have

∥Ā−U∥2F = ∥Ā− U[Ā]∥2F + Tr[(Ā†Ā)
1
2MM†].

Since A is full-rank matrix, (Ā†Ā)
1
2 is position definite. Therefore, we have

∥Ā−U∥2F > ∥Ā− U[Ā]∥2F . (6)

which contradicts the assumption that U is the minimizer of
∥∥Ā−U

∥∥2
F

. Thus, the unitary projection
of Ā is unique when Ā is full-rank.

Because U[Ā] is unique and is the minimizer of
∥∥Ā−U

∥∥2
F

, from Lemma D.3, we have P1U[Ā]P⊤
2

the minimizer of

arg min
U is unitary

∥∥P1ĀP⊤
2 −U

∥∥2
F

for any permutation matrices P1 and P2. Because P1ĀP⊤
2 is also full-rank, P1U[Ā]P⊤

2 is the
unitary projection of P1ĀP⊤

2 , which proves that U[P1ĀP⊤
2 ] = P1U[Ā]P⊤

2 for any permutation
matrices P1 and P2.

D.4 PROOF OF PROPOSITION 2.5

We need the following lemma to prove Proposition 2.5.

Lemma D.4. Given the adjacency matrix A[L(G′)], its rows and columns can be permuted to
transform A[L(G′)] to be block diagonal.

Proof. According to Theorem 2 in Severini (2003), since L(G′) is line graph, L(G′) is specular.
By Lemma 1 in Severini (2003), since L(G′) is the digraph of a unitary matrix, L(G′) is strongly
quadrangular. Then, by Theorem 1 in Severini (2003), since L(G′) is specular and strongly quadran-
gular, A[L(G′)] is composed of independent matrices, thus its rows and columns can be permuted to
transform A[L(G′)] to be block diagonal.

Proof of Proposition 2.5. This proposition is proved by the following step-by-step analysis.

1. By Lemma D.4, we can permute the rows and columns of A[L(G′)] to transform A[L(G′)] to be
block diagonal, i.e., D := diag(D1, · · · ,Db) = P1A[L(G′)]P⊤

2 is block diagonal, where P1 and
P2 are permutation matrices.

2. Since Ā is full-rank, by Proposition 2.4, the unitary projection of D is equal to the matrix after
applying row permutation P1 and column permutation P2 to U[Ā], i.e., U[P1ĀP⊤

2 ] = P1U[Ā]P⊤
2 .

Using the property of permutation matrix (Theorem C.4), we have U[Ā] = P⊤
1 U[P1ĀP⊤

2 ]P2.

3. Finally, we have

U[Ā] =P⊤
1 U[P1ĀP⊤

2 ]P2

=P⊤
1 U[D]P2

=P⊤
1 diag(U[D1], · · · ,U[Db])P2,

which proves the correctness of Algorithm 2.
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D.5 PROOF OF COROLLARY 2.6

Proof. From Algorithm 2, the support of the line graph L(G′) can be permuted by rows and columns
to be a block diagonal matrix D = diag{D1, · · · ,Db} with each block D′

i a dense support, i.e.,
Di = 1.

Then, for each dense sub-matrix Di from the block diagonal matrix, there are unitary matrices with
support Di. Therefore, there are unitary matrices, i.e., U[P1ĀP⊤

2 ] in our paper, with support D.

Since row and column permutations are invertible, we can permute the support of the unitary matrix
back to the original support of the line graph L(G′), i.e., P⊤

1 U[P1ĀP⊤
2 ]P2 has the same support as

D. Because the permutation matrices P1 and P2 are unitary, the matrix P⊤
1 U[P1ĀP⊤

2 ]P2 is also a
unitary matrix. 4. In Proposition 2.4, we show that U[Ā] = P⊤

1 U[P1ĀP⊤
2 ]P2. Thus, U[Ā] has the

same support as the line graph L(G′).

D.6 PROOF OF THEOREM 2.1

Our proof is based on the GNN model from Fig. 1(a) with the activation function being ReLU.
GUMP is analyzed with A being unitary and classical message passing is analyzed with A being the
normalized adjacency matrix. Motivated by Xu et al. (2018), we analyze with the expected Jacobian
measure.

Motivated by Xu et al. (2018), we first introduce the expected Jacobian measure of oversquashing.

Theorem D.5. Given a L-layer GNN with ReLU as activation function, i.e., H(k) =
ReLU(AH(k−1)Wk),H

(0) = X, k = 1 · · ·L, assume that all paths in the computation graph
of the model are activated with the same probability of success ρ, the expected Jacobian measure of
oversquashing is

E

[
∂h

(L)
i

∂xs

]
= ρ

1∏

l=L

W⊤
l

(
AL
)
is
, (7)

Proof. Denote by f
(l)
i the pre-activated feature of h(l)

i , i.e., f (l)i =
∑

z∈N (i) Aizh
(l−1)
z Wl, for any

l = 1 · · ·L, we have

∂h
(l)
i

∂h
(0)
s

= diag
(
1
f
(l)
i >0

)
·


 ∑

z∈N (i)

Aiz
∂h

(l−1)
z

∂h
(0)
s


 ·W⊤

l .

By the chain rule, we get

∂h
(L)
i

∂h
(0)
s

=

Ψ∑

p=1

[
∂h

(L)
i

∂h
(0)
s

]

p

=

Ψ∑

p=1

1∏

l=L

diag

(
1
f
(l)

vl
p
>0

)
Avl

pv
l−1
p

W⊤
l .

Here, Ψ is the total number of paths vLp v
L−1
p · · · v1pv0p of length L+ 1 from v0p = s to vLp = i. For

l = 1 · · ·L− 1, vl−1
p ∈ N (vlp).

For each path p, the derivative [∂h
(L)
i /∂h

(0)
s ]p represents a directed acyclic computation graph. At a

layer l, we can express an entry of the derivative as
[
∂h

(L)
i

∂h
(0)
s

](m,n)

p

=

1∏

l=L

Avl
pv

l−1
p

Φ∑

q=1

Zq

1∏

l=L

w(l)
q ,

where Φ is the number of paths q from the input neurons to the output neuron (m,n), in the
computation graph of [∂h(L)

i /∂h
(0)
s ]p. For each layer l, w(l)

q is the entry of W⊤
l that is used in the
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q-th path. Finally, Zq ∈ {0, 1} represents whether the q-th path is active (Zq = 1) or not (Zq = 0) as
a result of ReLU activation of the entries of f (l)

vl
p

’s on the q-th path.

Under the assumption that Zq is a Bernoulli random variable with success probability ρ. Because of
P[Zq = 1] = ρ, ∀q, we have

E



[
∂h

(L)
i

∂h
(0)
s

](m,n)

p


 = ρ

1∏

l=L

Avl
pv

l−1
p

Φ∑

q=1

1∏

l=L

w(l)
q .

Then, the expected Jacobian measure of oversquashing is

E

[
∂h

(L)
i

∂xs

]
=

Ψ∑

p=1

E



[
∂h

(L)
i

∂h
(0)
s

]

p


 = ρ

1∏

l=L

W⊤
l

(
AL
)
is
.

Proof of Theorem 2.1. We analyze different components in the expected Jacobian measure (7).

Firstly,
∏1

l=L W⊤
l is the product of weight matrices in GNNs, which will not change exponentially

with respect to L because the weight matrices are appropriately initialized to avoid exploding or
decay.

Then, we focus the analysis on AL. We first diagonalize A in complex space, i.e., A = PΛP−1

with Λ being a diagonal matrix with its diagonal elements being eigenvalues of A. Since A
is unitary, the elements in Λ are complex units, i.e., Λ = diag(eiθ1 , eiθ2 , · · · , eiθ2e). There-
fore, AL is equal to PΛLP−1, where Λ = diag(eiθ1L, eiθ2L, · · · , eiθ2eL) which is also a di-
agonal matrix with its diagonal elements being complex units. Then, we have (AL)is =
Pidiag(e

iθ1L, eiθ2L, · · · , eiθ2eL)(P−1)s, which is a value that does not change exponentially with
respect to L and can be bounded by constants. With Euler’s formula, i.e., eix = cosx+ i sinx, the
relation between (AL)is and L is a trigonometric function.

Since the trigonometric function can be bounded by constants, we have
∏1

l=L W⊤
l

(
AL
)
is

is bounded

by constants, i.e., E
[
∂h

(L)
i /∂xs

]
= O(1).

D.7 THEORY OF CLASSICAL MESSAGE PASSING

The next theorem analyzes the expected Jacobian measure of classical message passing.
Theorem D.6. The expected Jacobian measure for classical message passing, i.e., A = Â in GNN,
is approximately in the order of E

[
∂h

(L)
i /∂xs

]
= O(cL), where c ∈ (0, 1).

Theorem D.6 shows that the Jacobian measure of classical message passing decays exponentially
concerning L, thus leading to oversquashing. Therefore, Theorems 2.1 and D.6 indicate that GUMP
can achieve an optimal Jacobian measure of oversquashing, i.e., O(1), while the classical message
passing cannot. Theorems 2.1 and D.6 are validated by experiments in Section 4.4.

proof of Theorem D.6. We analyze the different components in the expected Jacobian measure (7).

Firstly,
∏1

l=L W⊤
l is the product of weight matrices in GNNs, which will not change exponentially

with respect to L because the weight matrices are appropriately initialized to avoid exploding or
decay.

Then, we focus the analysis on AL. We first diagonalize A in complex space, i.e., A = PΛP−1

with Λ being a diagonal matrix with its diagonal elements being eigenvalues of A. Since A =

Â, the elements in Λ are in the range of 0 and 1, i.e., Λ = diag(θ1, θ2, · · · , θ2e), θi ∈ [0, 1].
Therefore, AL is equal to PΛLP−1, where Λ = diag(θL1 , θ

L
2 , · · · , θL2e). Without any assumption

on the graph structure, there are many eigenvalues smaller than one. Then, we have (AL)is =
Pidiag(θ

L
1 , θ

L
2 , · · · , θL2e)(P−1)s, which is a value that change exponentially with respect to L.

Finally, we have
∏1

l=L W⊤
l

(
AL
)
is

in the order of O(cL), i.e., E
[
∂h

(L)
i /∂xs

]
= O(cL), c ∈

(0, 1).
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E MORE EXPERIMENTAL RESULTS

Statistics of datasets The statistics of datasets used in experiments are shown in Table 4.

Table 4: Statistics of datasets.
#graphs Avg. nodes Avg. edges Task type

Mutag 188 17.9 39.6 Graph Classification
Proteins 1,113 39.1 145.6 Graph Classification
Enzymes 600 32.6 124.3 Graph Classification

NC1 4110 29.87 32.30 Graph Classification
NC109 4127 29.68 32.13 Graph Classification

Peptides-func 15,535 150.94 307.30 Graph Classification
Peptides-struct 15,535 150.94 307.30 Graph Regression

Hyperparameters of GUMP The hyperparameters of GUMP for both synthetic and real datasets
are shown in Table 5.

Table 5: Hyperparameters of GUMP for datasets in experiments. layerGUMP, lrbase, wdbase, lrGUMP,
wdGUMP, drop., d′, d, batch size, layerbase, opt., sched., and epoch denotes the number of layers of
GUMP, the learning rate of base GNN, weight decay of base GNN, the learning rate of GUMP, weight
decay of GUMP, dropout rate, dimension of calculating (1), hidden dimension of GNN, batch size,
number of layers of base GNN, optimizer, scheduler, and number of epochs, respectively.

layerGUMP lrbase wdbase lrGUMP wdGUMP drop. d′ d batch size layerbase opt. sched. epoch

CrossedRing - 10−4 10−6 10−4 0 0 32 32 20 0 adam none 200
Ring - 10−4 10−6 10−4 0 0 32 32 20 0 adam none 200

CliquePath - 10−4 10−6 10−4 0 0 32 32 20 0 adam none 200
Mutag 16 10−2 10−4 10−4 0 0 32 64 16 5 adam none 100

Proteins 20 10−2 10−2 10−4 10−2 0 32 64 64 3 adam none 100
Enzymes 10 10−2 10−4 10−4 0 0 32 64 16 1 adam none 100

NC1 10 10−2 10−4 10−4 0 0 32 64 16 1 adam none 100
NC109 10 10−2 10−4 10−4 0 0 32 64 16 1 adam none 100

Peptides-func 12 0.005 0.1 0.1 0.1 0.2 32 256 200 3 adam cos. 250
Peptides-struct 12 0.005 0.1 0.005 0.1 0.2 32 256 200 3 adam cos. 250

Comparison GUMP with more methods For the synthetic datasets, we compare GUMP with
Drew and ADGN on synthetic datasets in Fig. 5. The results show that the performances of GUMP
and Drew are close, while ADGN performs worse.
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Figure 5: The performance of GCN and GCN-GUMP on the CrossedRing, Ring, and CliquePath
with different distances from source to target.
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We further compare the performances of GUMP, rewiring methods, graph neural diffusion, Graph
Transformer, and orthogonal GNN on the TUDataset in Table 6. The compared methods are
ADGN (Gravina et al., 2022), GRAND (Chamberlain et al., 2021)), Graph Transformer (Yun et al.,
2019), and Ortho-GConv (Guo et al., 2022).

Table 6: Graph classification accuracy on the TUDataset. First, second, and
::::
third best results are

bold, underlined, and underwaved, respectively.
Classes Methods Mutag Proteins Enzymes NCI1 NCI109

– GCN 72.15±2.44 70.98±0.74 27.67±1.16 68.74±0.45 67.90±0.50
GCN (+layer) 70.05±1.83 69.80±0.99 23.63±1.07 63.94±1.34 55.92±1.26

Rewiring
(GCN)

DIGL 79.70±2.15 70.76±0.77 35.72±1.12 69.76±0.42
::::::::
69.37±0.43

SDRF 71.05±1.87 70.92±0.79 28.37±1.17 68.21±0.43 66.78±0.44
FoSR

::::::::
80.00±1.57

::::::::
73.42±0.81 25.07±0.99 57.27±0.54 56.82±0.60

GTR 79.10±1.86 72.59±2.48 27.52±0.99 69.37±0.38 67.97±0.47

Diffusion ADGN 81.39±1.81 73.81±0.80
::::::::
28.78±1.25 76.15±0.42 74.31±0.44

GRAND 77.94±1.73 73.24±0.94 24.13±1.05 68.51±0.48 67.26±0.46

Transformer Transformer 69.15±1.78 66.21±0.96 28.33±1.44 58.41±0.55 58.25±0.52

Ortho-GNN Ortho-GConv 71.78±2.52 63.80±0.98 18.30±1.13
::::::::
69.92±0.60 68.91±0.50

Ours GCN-GUMP 84.89±1.63 74.88±0.87 36.02±1.43 77.97±0.42 75.85±0.44

For the sake of fair comparison and experimental integrity, we also modified the multi-hop message
passing methods (i.e., Drew and GRIT) into the one-hop variants. We replace

∑ℓ+1
k=1

∑
j∈Nk(i)

in
DRew with

∑
j∈N1(i)

and set K of RRWP in GRIT to 2, making Drew and GRIT one-hop message
passing methods. We report their results in Table 7. The results show that GUMP outperforms Drew
and GRIT in one-hop message passing setting.

Table 7: Comparison with Drew and GRIT by setting their message-passing hop to one.
Peptides-func Peptides-struct Mutag Proteins Enzymes NCI1 NCI109

Drew (1-hop) 0.6996±0.0076 0.2881±0.0024 79.91±1.97 74.12±0.90 35.02±1.22 73.58±0.41 72.27±0.49
GRIT (1-hop) 0.6779 ±0.0079 0.2671 ±0.0018 80.76±2.18 73.71±0.89 35.22±1.17 72.21±0.46 71.68±0.44

GCN-GUMP 0.6843±0.0037 0.2467±0.0021 84.89±1.63 74.88±0.87 36.02±1.43 77.97±0.42 75.85±0.44

We also compare the Jacobian of GUMP with Drew and ADGN in Fig. 6. Jacobian of Drew
exponentially increases, suggesting its potential numerical instability when training Drew with more
layers. The Jacobian of ADGN is small when the ADGN layer is small and steadily increases to
10−8 as the ADGN layer reaches 100. Although the Jacobian of ADGN does not exhibit exponential
decay, the correlation between distant nodes is significantly weaker compared to GUMP.
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Figure 6: Jacobian measure versus layers on NCI1
Performance on node classification tasks We also apply GUMP to node classification tasks on
Cora and Citeseer datasets. The results are shown in Table 8.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 8: Accuracy of node classification datasets: Cora and Citeseer
Layers 2 4 8 16 64

Cora
GCN 81.1 80.4 69.5 60.3 28.7

GCNII 82.2 82.6 84.2 84.6 85.5
GCN-GUMP 84.6 86.2 84.8 85.4 87.4

Citeseer
GCN 70.8 67.6 30.2 18.3 20.0

GCNII 68.2 68.9 70.6 72.9 73.4
GCN-GUMP 73.0 73.0 72.8 72.4 75.8

Training time of GUMP The time of training GCN and GCN-GUMP 100 epochs on the TUDataset
is shown in Table 9.

Table 9: Training seconds of GCN and GCN-GUMP on TUDataset for 100 epochs
MUTAG Proteins Enzymes NCI1 NCI109

GCN 4.39 20.57 11.26 71.79 74.56
GCN-GUMP 23.26 228.44 972.64 615.17 637.48

Results following Tönshoff et al. (2023) We compare GCN-GUMP with GCN on Peptides-func
and Peptides-struct datasets following Tönshoff et al. (2023). The results are shown in Table 10.

Table 10: Follow Tönshoff et al. (2023) for comparison on Peptides-func and Peptides-struct.
Peptides-func Peptides-struct

GCN 0.6860±0.0050 0.2460±0.0007

GCN-GUMP 0.6985±0.0032 0.2438±0.0014

Average time of preprocessing The average time of preprocessing for line graph on various
datasets is shown in Table 11.

Table 11: Average times (seconds) of preprocessing line graph for various dtasets
MUTAG Proteins Enzymes NCI1 NCI109 Peptides-func Peptides-struct

Avg. Time 0.001 0.005 0.009 0.002 0.002 0.014 0.013

F APPLY GUMP TO DIRECTED GRAPH

GUMP can also be applied to directed graphs in Algorithm 4. The transformation of directed graphs
is also based on Lemma D.2.

Algorithm 4 Graph transformation for directed graphs
Require: A directed graph G = (V,E);

1: Initialize a new digraph G′ = (V,E′);
2: for (i, j) ∈ E do
3: Add (i, j) and (j, i) to E′;
4: end for
5: Remove duplicated edges in E′;
6: Convert G′ to its line graph L(G′);
7: Return: A digraph L(G′).
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G KEY CODE SNIPPETS

Code for obtaining P1 and P2 in Algorithm 2 P1 and P2 are not explicitly derived in implemen-
tation and are pre-compute in the data preprocessing phase. The code snippet in Listing 1 shows how
to transform the adjacency matrix to be block diagonal.

1 def get_permutation_index(self, edge_index):
2 num_nodes = edge_index.max() + 1
3 permutation_index = []
4 block_size = []
5 node_flag = np.zeros(num_nodes)
6 print(num_nodes)
7 for i in tqdm(range(num_nodes)):
8 if node_flag[i] == 0:
9 edge_index_i = edge_index[1, edge_index[0] == i]

10 edge_index_selected = edge_index[:, np.isin(edge_index[1, :],
edge_index_i)]

11 node_flag[edge_index_selected[0, :]] = 1
12 permutation_index.append(edge_index_selected)
13 block_size.append(edge_index_selected.shape[1])
14 permutation_index = torch.cat(permutation_index, dim=1)
15 return (permutation_index, block_size)

Listing 1: Code for pre-computing P1 and P2 in Algorithm 2

Code for unitary projection in Algorithm 2 The code snippet in Listing 2 shows how to calculate
the unitary projection of the adjacency matrix.

1 def proj(self, data):
2 src_attn_x = data.x[data.edge_index_2[0]]
3 dst_attn_x = data.x[data.edge_index_2[1]]
4 x_src = self.gump_attn_src(src_attn_x)
5 x_dst = self.gump_attn_dst(dst_attn_x)
6 x_attn = (F.leaky_relu(x_src + x_dst, 0.2) * self.gump_attn_ele).sum(

dim=-1)
7 alpha = torch.tanh(x_attn)
8

9 split_data = torch.tensor_split(alpha, data.blocksize[0, :-1].tolist
())

10 A_sizes = np.array([A.shape[0] for A in split_data])
11 sort_index = np.argsort(A_sizes)
12

13 inv_sort_index = np.zeros_like(sort_index)
14 inv_sort_index[sort_index] = np.arange(len(sort_index))
15

16 sort_A_sizes = A_sizes[sort_index]
17 segement_index = np.flatnonzero(np.diff(sort_A_sizes)) + 1
18 segement_index = np.concatenate([[0], segement_index, [len(

sort_A_sizes)]])
19

20 sorted_split_data = [split_data[i] for i in sort_index]
21 unitary_weight = []
22 for i in range(len(segement_index) - 1):
23 start, end = segement_index[i], segement_index[i+1]
24 u_weight = torch.stack(sorted_split_data[start:end], dim=0)
25 result = unitary_proj(u_weight, self.training)
26 unitary_weight = unitary_weight + [ii for ii in result]
27 unitary_alpha = [unitary_weight[i] for i in inv_sort_index]
28 unitary_alpha = torch.cat(unitary_alpha)
29

30 return unitary_alpha

Listing 2: Code for unitary projection in Algorithm 2
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