
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GUMP: ALLEVIATING OVERSQUASHING WITH UNI-
TARY MESSAGE PASSING

Anonymous authors
Paper under double-blind review

ABSTRACT

Message passing mechanism contributes to the success of GNNs in various appli-
cations, but also brings the oversquashing problem. Recent works combat over-
squashing by improving the graph spectrums with rewiring techniques, disrupting
the original graph connectivity, and having limited improvement on oversquash-
ing in terms of oversquashing measure. Motivated by unitary RNN, we propose
Graph Unitary Message Passing (GUMP) to alleviate oversquashing in GNNs by
applying a unitary adjacency matrix for message passing. To design GUMP, a
transformation is first proposed to equip general graphs with unitary adjacency
matrices and keep their original graph connectivity. Then, the unitary adjacency
matrix is obtained with a unitary projection algorithm, which is implemented by
utilizing the intrinsic structure of the unitary adjacency matrix and allows GUMP
to be permutation-equivariant. In experiments, GUMP is incorporated into various
GNN architectures and the extensive results show the effectiveness of GUMP on
various graph learning tasks.

1 INTRODUCTION

Graph neural networks (GNNs) (Scarselli et al., 2008) have been widely used in various applications,
such as social network (Fan et al., 2019) and knowledge graphs (Schlichtkrull et al., 2018). The
most popular GNNs follow the message passing mechanism (Gilmer et al., 2017) to update the node
representations, where each node aggregates feature vectors of its neighbors to compute its new feature
vector. The message-passing mechanism is designed to be permutation-equivariant, allowing GNNs to
work with graphs that have varying node orders. Currently, GNNs with message passing mechanisms
have demonstrated success in various graph learning tasks, such as node classification (Kipf &
Welling, 2016a), graph classification (Ying et al., 2018), and link prediction (Kipf & Welling, 2016b).

However, the message passing mechanism also inevitably brings the oversquashing problem to
GNNs (Alon & Yahav, 2020; Topping et al., 2022; Banerjee et al., 2022). The oversquashing problem
draws inspiration from a similar phenomenon observed in RNNs when learning long-range sequences,
as noted by Alon & Yahav (2020). It refers to the situation where, as larger neighborhoods are
considered, information from distant interactions funneled through specific bottlenecks minimally
influences GNN training. This phenomenon involves compressing information from potentially an
exponentially large number of nodes (relative to the number of layers) into fixed-sized node vectors.

Various techniques are proposed to alleviate the oversquashing problem. Topping et al. (2022)
propose the Jacobian of GNN to measure oversquashing, which motivates a rewiring method that
increases the curvature of the edges in a graph. Most works combat oversquashing via methods
depending on the graph spectrum (i.e., the eigenvalue of the adjacency matrix). In these works,
rewiring techniques increase the spectral gap by flipping edges (Banerjee et al., 2022), adding
edges (Karhadkar et al., 2023), re-weighting the edges (Arnaiz-Rodríguez et al., 2022), or using
expander for message passing (Deac et al., 2022). Except for increasing spectral gap, recent works
bound the measure in Topping et al. (2022) with effective resistance (Black et al., 2023) and commute
time (Di Giovanni et al., 2023), and propose rewiring techniques to improve these bounds. Except for
improving graph spectrum, Barbero et al. (2023) propose rewiring methods to greedily add edges to
increase the number of walks in a graph.

The rewiring techniques above, even motivated from different perspectives, can be justified by the
Jacobian measure of oversquashing in Topping et al. (2022). For instance, increasing the spectral

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

gap or effective resistance can be viewed as an indirect method of improving the entries of powers
of the adjacency matrix in the Jacobian measure. As a result, these rewiring methods have limited
or uncertain improvements on the Jacobian measure because some of them do not directly improve
it (Karhadkar et al., 2023; Black et al., 2023) or improve it in a greedy way (Barbero et al., 2023).
Moreover, the rewiring techniques disrupt the original graph connectivity, resulting in the loss of
crucial structural inductive biases in graph learning tasks (Battaglia et al., 2018). This makes the
rewiring techniques inadequate for oversquashing. Detailed related works on oversquashing are
summarized in Appendix B.

In this paper, we propose a new one-hop message passing mechanism, called Graph Unitary Message
Passing (GUMP), to alleviate oversquashing. Motivated by existing analysis on oversquashing
of RNNs (Pascanu et al., 2013; Jing et al., 2017), the measures of oversquashing in RNNs and
GNNs share similar forms (Fig. 1(a)), i.e., the powers of feature transformation matrix in RNN and
the powers of adjacency matrix in GNN (Section 2.1). Since the unitary parameterization of the
transformation matrix has proved to be effective in capturing long-range interactions (Arjovsky et al.,
2016) in RNN, we consider imposing unitarity on the adjacency matrix in GNN for message passing.
With a unitary adjacency matrix for message passing, the Jacobian measure of oversquashing will not
change exponentially, thereby alleviating oversquashing. Compared to existing rewiring methods
(Table 1), GUMP is a general message-passing mechanism that can be applied to various GNN
architectures and paves a new way for alleviating oversquashing, which achieves optimal Jacobian
measure and preserves the original graph connectivity.

To design GUMP, we first propose a graph transformation algorithm in Section 2.2 to equip a general
graph with unitary adjacency matrices and preserve its original graph connectivity at the same time.
The transformation algorithm is based on the theory showing that unitary adjacency matrices exist for
the line graph of an Eulerian graph. Then, we propose an algorithm to calculate the unitary adjacency
matrix in Section 2.3. The algorithm is designed to allow GUMP to be permutation-equivariant
and is implemented by utilizing the intrinsic structure of unitary adjacency matrices. Then, we
propose the framework that applies GUMP to different GNN architectures in Section 3. Finally, we
evaluate GUMP on several graph learning tasks in Section 4. In summary, our paper has the following
contributions:

• GUMP is a new one-hop message passing mechanism that alleviates oversquashing by applying a
unitary adjacency matrix for message passing. Compared with previous works, GUMP achieves
the optimal Jacobian measure of oversquashing.

• GUMP maintains the original graph connectivity with a graph transformation algorithm and
preserves the permutation equivariance of message passing with unitary projection.

• Extensive results show the effectiveness of GUMP. Further analysis of the Jacobian measure also
validates GUMP’s ability to alleviate oversquashing.

Notations In this paper, we use bold uppercase letters X to denote matrices, bold lowercase letters
x to denote vectors, and lowercase letters x to denote scalars. Given a matrix X, the i-th row of
matrix X is denoted as xi and the entry of the i-th row and j-th column of matrix X is denoted as Xij .
The transpose and conjugate transpose of matrix X is denoted as X⊤ and X†, respectively. A graph
with n nodes and e edges is denoted as G = (V,E,X) where V = {1, 2, · · · , n} is the node set,
E ⊆ V ×V is the edge set, and X ∈ Rn×d is the d-dimensional node feature matrix. For convenience,
the operator V[G] and E[G] are used to denote the node set and edge set of graph G respectively,
i.e., V[G] = V and E[G] = E. The adjacency matrix of graph G is denoted as Ã[G] ∈ {0, 1}n×n

where Ãij = 1 if (i, j) ∈ E and Ãij = 0 otherwise. The normalized adjacency matrix of graph G is
denoted as Â[G] ∈ Rn×n where Â[G] = D−1/2Ã[G]D−1/2 and D is the degree matrix of graph G.
We also use matrix A[G] ∈ Rn×n to represent the general adjacency matrix in graph G, i.e., Aij ̸= 0
if (i, j) ∈ E and Aij = 0 otherwise. Therefore, without specifying the type of adjacency matrix,
A[G] can also represent Ã[G] and Â[G]. For convenience, the adjacency matrices above are denoted
as Ã, Â, and A respectively. Some preliminaries used in this paper are provided in Appendix C.
Finally, the GNN representation at layer k is denoted as H(k) ∈ Rn×d with d being the dimension of
node features, and the vector h(k)

i ∈ Rd denotes the GNN representation of node i at layer k.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Algorithm 1

(a) Motivation (b) Method

Adjacency matrixOriginal graph

Unitary adjacency matrix
for message passing

No unitary adjacency
matrices for general graphs

Classical message passing

Graph Unitary Message passing

Adjacency matrixPreserve graph connectivity

Bottleneck measure

Model
RNN

hk = σ(Whk−1 + uk)

∂hr

∂u1

= Wr−1

(nearly) unitary

Examples
EUNN, LRU

Bottleneck measure

Model
GNN

H(k) = σ
(
AH(k−1)Wk

)

∂vec(H(r))

∂vec(X)
=

1∏

k=r

W⊤
k ⊗ Ar

unitary
Question

How to impose unitarity
to adjacency matrices?

Algorithm 2

Figure 1: Overview of GUMP. (a) RNN versus GNN. The measures of the bottleneck are derived
with the identity activation function and ⊗ denotes the Kronecker product. (b) GUMP aims to impose
unitarity to A while keeping the original graph connectivity. GUMP achieves this goal with graph
transformation (Section 2.2) and unitary adjacency matrix calculation (Section 2.3).

2 GRAPH UNITARY MESSAGE PASSING

In this section, we propose a new one-hop message passing mechanism called Graph Unitary Message
Passing (GUMP) to alleviate oversquashing in GNNs. For simplicity, we consider the undirected
graph in this paper. The extension to digraph is straightforward in Appendix F.

2.1 OVERVIEW

Motivation Unitarity has been crucial for the success of RNNs in effectively learning long-range
sequences in recent years, ranging from unitary RNNs (Jing et al., 2017; Arjovsky et al., 2016)
to linear RNNs (Orvieto et al., 2023; De et al., 2024). In Fig. 1(a), we simply formulate RNN as
hk = σ(Whk−1 + uk) with hk being the hidden state at layer k, W being the transformation
matrix, uk being the input at time step k, and σ being the activation function. Unitary RNN (e.g.,
EUNN (Jing et al., 2017)) imposes unitarity to W such that the gradient of long-range information
does not vanish or explode, thus helps learn long-range interactions with gradient-based optimization.
Recently, motivated by state space model (Gu et al., 2021), linear RNN (e.g., LRU (Orvieto et al.,
2023)) uses the identity activation function and initializes W close to a unitary matrix to avoid the
vanishing gradient problem. The success of imposing unitarity in RNNs for learning long-range
sequences motivates us to apply unitarity to GNNs to alleviate oversquashing.

For graphs, it is also difficult for GNN to learn long-range interactions. In Fig. 1(a), a one-hop MPNN
layer for GNN is formulated as H(k) = σ(AH(k−1)Wk) for simplicity. Similar to RNN (Pascanu
et al., 2013), the bottleneck of GNN is measured by the Jacobian measure ∂H(r)

/∂X, which is the
Jacobian of the hidden state with respect to the input (Topping et al., 2022). Therefore, we are
motivated to impose unitarity to A in GNN to alleviate oversquashing.

Challenges of imposing unitarity Imposing unitarity to an adjacency matrix is not as straightfor-
ward as that in RNNs. The first challenge comes from the sparsity of the adjacency matrix, as almost
all unitary matrices are dense (Fig. 1(b)). Therefore, the amount of graphs with unitary adjacency
matrices is limited. The second challenge is to obtain an input-dependent unitary adjacency matrix
while preserving permutation-equivariance. This is because the unitary adjacency matrix depends on
the input graph, and the order of nodes in a graph should not impact GNN representations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

GUMP In GUMP, the first challenge is addressed by transforming the original graph to a special
graph (Algorithm 1) which is guaranteed to have unitary adjacency matrices and preserves the
original graph connectivity at the same time. The second challenge is addressed by calculating the
unitary adjacency matrix with a unitary projection algorithm (Algorithm 2), which is implemented
by utilizing the block diagonal structure of the unitary adjacency matrix and allows GUMP to be
permutation-equivariant (Proposition 2.4). As a general one-hop message-passing mechanism, any
convolution operation can be combined with GUMP by setting the edge weights to be the entries of
the unitary adjacency matrix for message passing. The overview of GUMP is shown in Fig. 1(b).

From the theoretical perspective, GUMP has also proved to alleviate oversquashing in GNNs. Given
the ReLU activation function and convolution operation in Fig. 1(a), we have the following theorem
(proved in Appendix D) guaranteeing that GUMP can alleviate oversquashing.
Theorem 2.1. The expected Jacobian measure for GUMP, i.e., A is unitary in GNN, is approximately
in the order of E

[
∂h

(L)
i /∂xs

]
= O(1).

Theorem 2.1 does not indicate the Jacobian measure of GUMP is independent of L. In fact, the
relation between the Jacobian measure and L is a trigonometric function in GUMP, which can be
bounded by constants. The theorem shows that the Jacobian measure of GNN with unitary adjacency
matrices will not change exponentially with the number of layers, thus avoiding oversquashing. In
the following sections, we will introduce the details of GUMP, including the graph transformation
algorithm in Section 2.2 and the unitary adjacency matrix calculation algorithm in Section 2.3.

2.2 GRAPH TRANSFORMATION: CONVERT GRAPH TO HAVE UNITARY ADJACENCY MATRIX

Since unitary matrices are generally non-symmetric, the graph transformation algorithm should
convert the original graph to a directed graph. We first formally define the unitary adjacency matrix as
in Severini (2003). Given an adjacency matrix A, its support matrix S[A] ∈ Rn×n is a binary matrix
with entries equal to one if the corresponding entry of A is non-zero and equal to zero otherwise,
i.e., S[A]ij = 1, if Aij ̸= 0 and S[A]ij = 0, if Aij = 0. Then, the unitary adjacency matrix UG

of graph G is a unitary matrix whose support is equal to the support of its adjacency matrix A, i.e.,
S[UG] = S[A].

Algorithm 1 Graph transformation
Require: A undirected graph G = (V,E);

Initialize a new digraph G′ = (V,E′);
for (i, j) ∈ E do

Add (i, j) and (j, i) to E′;
end for
Convert G′ to its line graph L(G′);
Return: A digraph L(G′).

We propose the transformation in Algorithm 1 for
undirected graph G to make it have unitary adja-
cency matrices and preserve its original graph con-
nectivity. Algorithm 1 first transforms the undi-
rected graph to be Eulerian graphG′ (Definition C.2)
by splitting each undirected edge into two directed
edges. Then, it converts the Eulerian graph to its
line graph L(G′) (Definition C.1). Finally, L(G′)
has unitary adjacency matrices which is proved in
the following proposition.
Proposition 2.2. The line graph L(G′) returned by Algorithm 1 have unitary adjacency matrices.

Proposition 2.2 is proved in Appendix D. In Algorithm 1, the original graph connectivity is preserved
because the splitting of an undirected edge and the conversion to the line graph do not introduce new
connectivity between nodes that is absent in the original graph. Finally, Algorithm 1 takes as input
graph G with n nodes and e edges, and outputs a line graph L(G′) with 2e nodes.

2.3 UNITARY ADJACENCY MATRIX CALCULATION: COMPUTE THE EDGE WEIGHTS FOR
MESSAGE PASSING

According to Proposition 2.2, the line graph L(G′) has unitary adjacency matrices. In this section,
we propose an algorithm to calculate a unitary adjacency matrix for GUMP, because the unitary
adjacency matrix depends on the input graph and should be calculated for each graph.

2.3.1 PERMUTATION-EQUIVARIANT PROJECTION

Permutation equivariance of message passing is a key property for GNN to apply to graphs with
varying node orders. To achieve this, the calculation of a unitary adjacency matrix has to be

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

permutation equivariance. Our method consists of two steps: 1) calculate edge weights to form a
weighted adjacency matrix; 2) impose unitarity to the weighted adjacency matrix.

Firstly, edge weight for (i, j) ∈ E[L(G′)] is calculated with

αij = Tanh
(
w⊤ · LeakyReLU(Wshi +Wthj)

)
, (1)

where hi (hj) is the representations for node i (j) in L(G′), Ws,Wt ∈ Rd′×d are transformation
matrices for source and target nodes of an edge respectively, and w ∈ Rd′

is a learnable parameter.
Then, the weighted adjacency matrix of L(G′), denoted as Ā ∈ R2e×2e, is formed from edge weights,
i.e., Āij = αij .

After calculating Ā, we impose unitarity to Ā by projection. We use the projection algorithm in
Keller (1975), which takes advantage of the fact that the polar transformation yields the closest
unitary matrix to a given matrix in terms of the Frobenius norm. The following lemma describes the
unitary projection in GUMP:

Lemma 2.3. Given a weighted adjacency matrix Ā ∈ R2e×2e of L(G′), the unitary projection of Ā

is given by U[Ā] := argminU is unitary
∥∥Ā−U

∥∥2
F
= Ā

(
Ā†Ā

)− 1
2 .

Lemma 2.3 (proved in Appendix D) indicates that U[Ā] = Ā
(
Ā†Ā

)− 1
2 is the unitary adjacency

matrix for GUMP. Also, the unitary projection U[Ā] is guaranteed to be permutation-equivariant
when Ā is a full-rank matrix with the following proposition.

Proposition 2.4 (Strong permutation equivariance). Given two permutation matrices P1 and P2, if Ā
is a full-rank matrix, the unitary projection U[Ā] is equivariant to both row and column permutations
of Ā, i.e., P1U[Ā]P⊤

2 = U[P1ĀP⊤
2].

By Proposition 2.4 (proved in Appendix D), the weighted adjacency matrix Ā should be full-rank to
guarantee permutation equivariance of GUMP. Empirically, inspired by GATv2 (Brody et al., 2021),
Ā induced by (1) is full-rank in experiments and thus can guarantee the permutation equivariance of
GUMP. However, the unitary projection (Lemma 2.3) is computationally expensive due to the inverse
square root of Ā†Ā ∈ R2e×2e.

2.3.2 FEASIBLE IMPLEMENTATION

Algorithm 2 Calculation of unitary adjacency matrix
Require: L(G′) outputted by Algorithm 1;

1: Calculate Ā of L(G′) with (1);
2: Find the permutation matrices P1,P2 such that D :=

diag(D1, · · · ,Db) = P1ĀP⊤
2 is block diagonal;

3: Calculate U[D] = diag(U[D1],U[D2], · · · ,U[Db]);
4: Calculate U[Ā] = P⊤

1 U[D]P2;
5: Return: Unitary adjacency matrix U[Ā].

By utilizing the intrinsic structure in
the unitary adjacency matrix, the feasi-
ble unitary projection is implemented
in Algorithm 2. In Algorithm 2,
weighted adjacency matrix Ā is first
calculated with (1) in step 1. Then,
the intrinsic structure of Ā allows it
to be permuted to be block diagonal
with permutation matrices P1 and P2

in line 2. The permuted diagonal ma-
trix is denoted as D:=diag(D1,D2,· · ·,Db)=P1ĀP⊤

2 . By Proposition 2.4, the unitary projection of
D is equal to the matrix after applying row permutation P1 and column permutation P2 to U[Ā], i.e.,
U[P1ĀP⊤

2] = P1U[Ā]P⊤
2 , indicating U[Ā] = P⊤

1 U[P1ĀP⊤
2]P2. Thus, U[Ā] can be efficiently

calculated by first applying unitary projection to each block Di of D in line 3 and then applying
the inverse row and column permutation P⊤

1 and P⊤
2 to the unitary projection of D in line 4. The

correctness of Algorithm 2 is guaranteed in Proposition 2.5 (proved in Appendix D) and Corollary 2.6
(proved in Appendix D) ensures the projected matrix U[Ā] has the same support as L(G′).

Proposition 2.5. The matrix returned by Algorithm 2 for graph L(G′) is equal to Ā
(
Ā†Ā

)− 1
2 .

Corollary 2.6. With the strong permutation equivariance in Proposition 2.4, assuming each U[Di] is
fully supported, the matrix returned by Algorithm 2 has the same support as the line graph L(G′).

Corollary 2.6 requires the unitary projection of each block Di to be fully supported, which is not
a strong assumption and empirically satisfied in experiments. Algorithm 2 is computationally

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison of different methods for oversquashing on important properties of GNN and
Jacobian measure. “Permutation equivariance” denotes the order of nodes in the graph does not
affect the node representations of GNN. “Measure” represents the measure of oversquashing used in
the corresponding method. “Jacobian measure w.r.t L” denotes the order of the expected Jacobian
measure with respect to the number of layers L (Theorems 2.1 and D.6 in Appendix D).

Methods SDRF FoSR LASER GTR GUMP

Permutation equivariance ✓ ✗ ✓ ✓ ✓

Graph connectivity ✗ ✗ ✗ ✗ ✓

Measure curvature spectral gap walks effective resistance Jacobian

Jacobian measure w.r.t L O(cL) O(cL) O(cL) O(cL) O(1)

feasible from two perspectives. Firstly, it applies unitary projection (Lemma 2.3) to block matrices
Di, each with sizes d1, d2, · · · , db (

∑b
i=1 di = 2e). The computational complexity of Algorithm 2

is O(
∑b

i=1 d
3
i), in contrast to the complexity of O(de3) when applied to the large matrix Ā. This

results in lower computational cost for unitarity projection of block diagonal matrices, particularly
when the sizes of the block matrices are small. Secondly, the algorithm benefits from the existence of
many block matrices Di with identical sizes because matrices of the same size can be grouped and
computed in parallel with PyTorch.

Algorithm 3 GNN with the graph unitary message passing mechanism (GNN-GUMP)
Require: A graph G = (V,E,X);
1: X(0) = GNN(X, G);
2: Transform G to L(G′) with Algorithm 1;
3: Generate initial representation H(0) for L(G′) with h(i,j)=[x

(0)
i ;x

(0)
j],∀(i, j) ∈ V[L(G′)];

4: Calculate U[Ā] with Algorithm 2;
5: for k = 1 · · ·L do
6: h

(k)
v = γ(h

(k−1)
v ,

∑
u∈Nv

U[Ā]vuϕ
(k)(h

(k−1)
v ,h

(k−1)
u)), v ∈ V

7: end for
8: Scatter H(L) to nodes of G with H

(L)
s =Scatter(H(L), G);

9: Generate node representations of G with X(L)=[X(0);H
(L)
s].

10: Return: Node representations X(L) of G.

3 APPLY GUMP TO GNN

In this section, we apply GUMP to different GNN architectures for graph learning tasks in Algo-
rithm 3. Given a graph G, a base GNN first computes the initial node representations of G, i.e.,
X(0) = GNN(X, G). Then, Algorithm 1 transforms G to L(G′). The initial node representations
H(0) ∈ R2e×2d of L(G′) are generated with h(i,j) = [x

(0)
i ;x

(0)
j], ∀(i, j) ∈ V[L(G′)] (i, j ∈ V[G]).

Next, the unitary adjacency matrix U[Ā] of L(G′) is calculated from Algorithm 2 and applied
to propagate messages in graph with h

(k)
v = γ(h

(k−1)
v ,

∑
u∈Nv

U[Ā]vuϕ
(k)(h

(k−1)
v ,h

(k−1)
u)),

v ∈ V with any graph convolution operator. After L layers of unitary message passing, we
obtain the node representations H(L), which is later scattered to nodes of G with H

(L)
s =

Scatter(H(L), G) ∈ Rn×d′
. Then, H(L)

s are concatenated with X(0) to obtain the final node repre-
sentations X(L) = [X(0);H

(L)
s] ∈ Rn×(d+d′) of G. Finally, various graph learning tasks, e.g., graph

and node classification, link prediction, and graph regression, are performed based on X(L). In this
paper, GUMP is a general one-hop message-passing mechanism for GNN. Therefore, depending
on the specific convolution operator in line 6 of Algorithm 3, GNN with GUMP is named as [GNN
type]-GUMP in Section 4, e.g., GCN-GUMP and GIN-GUMP have graph convolution operator and
graph isomorphism operator in line 6 of Algorithm 3, respectively.

3.1 COMPARISON WITH EXISTING METHODS

GUMP paves a new way to solve the oversquashing problem instead of rewiring. Overall, GUMP
has the following advantages: (1) GUMP is permutation-equivariant, which is a desirable property

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

for graph learning. (2) Unlike rewiring methods, GUMP does not introduce extra connectivity
to the original graph and thus preserves the original graph connectivity. (3) GUMP achieves the
optimal Jacobian measure of oversquashing since the eigenvalues of unitary adjacency matrices are
complex units and thus will not change exponentially with respect to the number of GNN layers. The
comparison of GUMP and other oversquashing methods are in Table 1.

Previous work on unitary GNN, e.g., Ortho-GConv (Guo et al., 2022), imposes unitarity on the
feature transformation matrix of GNN. Unlike Ortho-GConv, GUMP addresses the issue of ill-posed
gradient caused by oversquashing by imposing unitarity on the adjacency matrix. Moreover, enforcing
unitarity on adjacency matrix is more challenging than that on feature transformation, since adjacency
matrices depend on the input graph and are not parameters of GNN.

3.2 POSITIONS OF GUMP

In this paper, we focus exclusively on one-hop message passing, the fundamental mechanism in
graph learning. To clarify our setting, we talk about the position of GUMP in graph learning from the
following aspects.

Multi-hop message passing We are aware of many multi-hop message passing methods (Feng
et al., 2022), e.g, Drew (Gutteridge et al., 2023) and GRIT (Ma et al., 2023), which can alleviate the
oversquashing problem, capture long-range interactions in graphs, and achieve better performance
than GUMP in most datasets. We want to clarify that GUMP and multi-hop message passing
methods are in orthogonal categories. GUMP focuses on improving the fundamental message passing
mechanism, while multi-hop message passing methods applies multi-hop node information to improve
the performance. GUMP addresses the oversquashing issue caused by fundamental message passing,
and this issue also exists in multi-hop message passing methods. In future work, we will combine
GUMP with multi-hop message passing for further performance improvement.

Stable signal propagation Stable signal propagation (Poole et al., 2016; Schoenholz et al., 2022)
is important for the scalability and robustness of deep neural network. The signal propagation is
difficult to stabilize in GNNs because of the irregular data structure of graphs (Rong et al., 2019;
Alon & Yahav, 2020). There are many works (Xu et al., 2018; Gasteiger et al., 2018) to improve the
signal propagation in GNNs from model architecture perspective. From the data perspective, rewiring
methods (Rong et al., 2019; Alon & Yahav, 2020) disrupt graph connectivity and do not fully address
signal propagation issues. GUMP offers a comprehensive approach for stable signal propagation
in GNNs, addressing instability from irregular graph data without losing graph connectivity. In the
future, GUMP can inspire more data-perspective research on stable signal propagation in GNNs and
help scale up GNNs.

4 EXPERIMENTS

In this section, we perform experiments to evaluate GUMP on graph learning tasks. All experiments
are implemented by PyTorch Geometric (Fey & Lenssen, 2019) and conducted on NVIDIA RTX
4090 GPUs and AMD EPYC 7763 CPUs.

4.1 EXPERIMENTS ON SYNTHETIC DATASET

Setup In this section, we conduct experiments on synthetic datasets, i.e., CrossedRing, Ring, and
CliquePath, in Di Giovanni et al. (2023) to test GUMP. The performance is evaluated on the distances
from source to target in the range of 4 to 28. In the experiments, we compare GCN-GUMP and GCN.
The layer L of GCN-GUMP and GCN is appropriately set up according to the distance d between
source and target in the synthetic datasets (i.e., L = ⌊d/2⌋+ 1), such that the long-range interactions
can be captured by GNN. We set the hidden dimension to be 32 for both GCN-GUMP and GCN. The
hyperparameters of GCN-GUMP for synthetic datasets are in Table 5 of Appendix E.

Results We plot the average results from three random seeds of GCN-GUMP and GCN experiments
in Fig. 2. For two easier datasets, i.e., CrossedRing and Ring, GUMP achieves 100% accuracy when
the distance ranges from 4 to 28. For the challenging CliquePath dataset, GCN-GUMP’s performance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

deteriorates to random guessing at a distance of 28. The results show that GUMP can help capture
the long-range interactions in graph learning tasks. We compare with more baselines in Appendix E.

4.2 EXPERIMENTS ON THE TUDATASET

4 8 12 16 20 24 28
Distance from source to target

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

GCN
GCN-GUMP

(a) CrossedRing

4 8 12 16 20 24 28
Distance from source to target

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

GCN
GCN-GUMP

(b) Ring

4 8 12 16 20 24 28
Distance from source to target

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

GCN
GCN-GUMP

(c) CliquePath

Figure 2: The performance of GCN and GCN-GUMP on the
CrossedRing, Ring, and CliquePath with different distances
from source to target.

Datasets We select five graph
datasets, i.e., Mutag, Proteins, En-
zymes, NCI1, and NCI109 from the
TUDataset (Morris et al., 2020). We
chose these datasets because they
consist of chemistry or biological
graphs, where the atoms far apart may
be closer in space, and long-distance
propagation will have significant
advantages. The statistics of these
datasets are in Table 4 of Appendix E.

Baselines Because GUMP is a
one-hop message-passing mechanism,
we also compare one-hop message-
passing baselines for fairness. Base-
lines include various rewiring methods, i.e., DIGL (Gasteiger et al., 2019), SDRF (Topping et al.,
2022), FoSR (Karhadkar et al., 2023), and GTR (Black et al., 2023). We use GCN and GIN as base
GNN for comparison. The baselines follow the settings of Karhadkar et al. (2023). In Appendix E,
we also compare GUMP with other methods for long-range graph learning and orthogonal GNN.

Experimental details To evaluate each method, we initially designate a test set comprising 10% of
the graphs and a development set encompassing the remaining 90% of the graphs. The accuracies
of each configuration are determined through 100 random train/validation splits of the development
set, with 80% for training and 10% for validation. During the training phase, a stopping patience of
100 epochs is employed based on validation loss. Subsequently, for the test results, we report 95%
confidence intervals for the best validation accuracy observed across the 100 runs.

The number of layers for rewiring methods is set to be in the range of one to five. The number
of layers for GUMP is manually tuned because the long-range interactions in a graph can only be
captured by increasing its layers. The detailed hyperparameters of GUMP for different datasets are
presented in Table 5 of Appendix E.

Results The results of GUMP on the TUDataset are shown in Table 2. Firstly, the results show that
GUMP outperforms all baselines on all datasets. In particular, GUMP outperforms baselines by a
large margin on Mutag, Enzymes, NCI1, and NCI109. Also, GIN-GUMP achieves better performance
than GCN-GUMP on all datasets, which indicates that graph convolution operations are crucial for
performance. Moreover, since GUMP usually has more layers than baselines in these datasets, the
experiments show that GCN and GIN with more layers have degraded performance on all datasets,
showing that the improvement of GUMP does not come from increasing expressivity with more GNN
layers.

4.3 EXPERIMENTS ON LRGB

In this section, we conduct experiments on the Long Range Graph Benchmark (LRGB) (Dwivedi
et al., 2022), which is a set of GNN benchmarks involving long-range interactions. Two datasets are
selected from LRGB for comparison, i.e., Peptides-func and Peptides-struct. The statistics of these
datasets are shown in Table 4.

The experiments of LRGB are conducted following the standard settings in Dwivedi et al. (2022).
We set SDRF, FoSR, GTR, LASER (Barbero et al., 2023), GRAND, and ADGN as baselines. The
hyperparameters of GUMP and more results for LRGB are presented in Appendix E. All datasets are
tested without any additional features, e.g., positional encoding. The results of LRGB are shown in
Table 3. The results show that GUMP outperforms all baselines, which indicates that GUMP is more

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Graph classification accuracy on the TUDataset. First, second, and
::::
third best results are

bold, underlined, and underwaved, respectively.
Base GNN Methods Mutag Proteins Enzymes NCI1 NCI109 Rank

GCN

None 72.15±2.44 70.98±0.74 27.67±1.16 68.74±0.45 67.90±0.50 4.2
None (+layer) 70.05±1.83 69.80±0.99 23.63±1.07 63.94±1.34 55.92±1.26 6.8

DIGL
::::::::
79.70±2.15 70.76±0.77 35.72±1.12 69.76±0.42 69.37±0.43 3.0

SDRF 71.05±1.87 70.92±0.79
::::::::
28.37±1.17 68.21±0.43 66.78±0.44 4.8

FoSR 80.00±1.57 73.42±0.81 25.07±0.99 57.27±0.54 56.82±0.60 4.6
GTR 79.10±1.86

::::::::
72.59±2.48 27.52±0.99

::::::::
69.37±0.38

::::::::
67.97±0.47 3.6

GCN-GUMP 84.89±1.63 74.88±0.87 36.02±1.43 77.97±0.42 75.85±0.44 1.0

GIN

None 77.70±3.60 70.80±0.83 33.80±1.12
::::::::
75.65±0.49 74.93±0.46 4.0

None (+layer) 69.80±2.75 68.71±0.96 25.92±1.07 73.49±0.46 72.47±0.53 6.6
DIGL 79.80±2.08 70.71±0.67

::::::::
35.74±1.20 79.37±0.43 76.88±0.39 2.8

SDRF
::::::::
78.40±2.80 69.81±0.79 35.82±1.09 74.55±0.54 73.89±0.43 4.2

FoSR 78.00±2.22 75.11±0.82 29.20±1.38 70.15±0.47 69.93±0.45 5.2
GTR 77.60±2.84

::::::::
73.13±0.69 30.57±1.42 75.45±0.44

::::::::
75.28±0.42 4.2

GIN-GUMP 86.72±1.53 75.43±0.70 48.43±1.24 81.25±0.37 78.45±0.44 1.0

suitable for graph learning tasks involving long-range interactions than previous rewiring methods.
The results of some rewiring methods, e.g., GTR, are worse than GCN, indicating that the greedy
algorithm and measure used by it to alleviate oversquashing is not robust and may not help improve
the performance of GNN in real applications.

0 10 25 50 75 100
Number of layers

10 16

10 13

10 10

10 7

10 4

10 1

No
rm

 o
f J

ac
ob

ia
n

m
ea

su
re

 (l
og

 sc
al

e)

GUMP
None
DIGL
SDRF
FOSR
GTR

(a) Jacobian measure versus layers
on NCI1

24 10 20 50 100
Number of layers

50

55

60

65

70

75

Ac
cu

ra
cy

GUMP
None
DIGL
SDRF
FOSR
GTR

(b) Accuracy versus layers on NCI1

GCN GIN

GraphConv
w/o proj.

w/o weights

w/o base GNN
60
62
64
66
68
70
72
74
76
78
80

Er
ro

r

NCI1
Proteins

(c) Ablation on different compo-
nents

Figure 3: Model analysis. GCN, GIN, and GUMP in (c) represent the convolution of GUMP. The base
GNN of GUMP is GCN. “w/o proj” removes unitary projection in GUMP. “w/o weights” removes
weighted adjacency matrix and unitary projection in GUMP. “w/o base GNN” removes base GNN in
GUMP.

4.4 MODEL ANALYSIS

Table 3: Results of Peptides-func and
Peptides-struct. Bold are best results.

Peptides-func Peptides-struct
Test AP ↑ Test MAE ↓

GCN .5930±.0023 .3496±.0013
SDRF .5947±.0035 .3404±.0015
FoSR .5947±.0027 .3078±.0026
GTR .5075±.0029 .3618±.0010

LASER .6440±.0010 .3043±.0019
GRAND .5789±.0062 .3418±.0015
ADGN .5975±.0044 .2874±.0021
GUMP .6843±.0037 .2467±.0021

In this section, we perform more experiments to an-
alyze GUMP from three aspects, i.e., Jacobian mea-
sure, number of layers, and ablation studies.

Jacobian measure We first visualize the Jacobian
measure of oversquashing for GUMP and other base-
lines (more visualization in Appendix E). We choose
a pair of nodes with a distance of ten from NCI1 and
calculate the spectral norm of Jacobian measure for
GUMP and baselines with base GNN as GCN. The
visualization is shown in Fig. 3(a) with the norm of
Jacobian measure in log scale. Firstly, when increas-
ing the number of layers of GNNs, the Jacobian measure of GUMP does not decay, while the Jacobian
measure of other baselines decays exponentially. The results validate the theoretical analysis in
Theorems 2.1 and D.6, indicating that GUMP has the ability to capture long-range interactions in
a graph without oversquashing. Secondly, the norm of the Jacobian measure varies for different
baselines. For example, DIGL has a large norm of Jacobian measure when the number of layers is

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

smaller than 50. Therefore, DIGL performs better than other rewiring methods in Table 2. However,
all baselines have a close norm of Jacobian measure when the number of layers is larger than 50.

Deep GNN The number of GNN layers indicates the ability of GNNs to capture long-range
interactions. We increase the number of layers of GUMP and baselines to see how their performances
change. This experiment is conducted in NCI1 with base GNN as GCN and the number of layers
in the range of 2 to 100. The other hyperparameters of GUMP are the same as Table 5. The results
in Fig. 3(b) demonstrate that the performance of GUMP increases from 75.88% to 77.97% when
increasing the number of layers from 2 to 10. However, the performance of baselines decreases a lot
when increasing the number of layers. For example, the performance of FoSR decreases from 66.06%
to 52.86% when the number of layers increases from 2 to 10. The performance of baselines changes
drastically as the layers increase, while the performance of GUMP is more stable. The results show
that GUMP can be deeper than previous methods, thus learning long-range interactions in graphs.

Ablation studies Lastly, we conduct ablation studies to analyze GUMP in Fig. 3(c). We first replace
the convolution of GUMP with GIN and GraphConv (Morris et al., 2019), showing that the choice of
convolution can impact the performance of GUMP. Then, we remove unitary projection (i.e., message
passing with Ā) and weighted adjacency matrix (i.e., message passing with Ã[L(G′)]) in GUMP
and the results show that their performances decrease, indicating the importance of GUMP. Finally,
we remove the base GNN in GUMP and the results show that the performance of GUMP varies
on different datasets, i.e., the performance on NCI1 decreases, while the performance on Proteins
does not decrease. This phenomenon is expected because the quality of the unitary adjacency matrix
depends on the representations of nodes in the line graph (see (1)).

In model analysis, GUMP demonstrates the optimal Jacobian measure of oversquashing, and greater
stability with increased layers compared to prior methods, highlighting the critical role of its design
in achieving superior performance.

5 DISCUSSIONS AND LIMITATIONS

In this paper, we propose a novel method for oversquashing, i.e., Graph Unitary Message Passing
(GUMP). Motivated by unitary RNNs, GUMP propagates messages on a graph with a unitary
adjacency matrix. Compared to previous methods, GUMP achieves an optimal Jacobian measure of
oversquashing, keeps the original graph connectivity, and is permutation-equivariant. We discuss
below the limitations of GUMP and their implications for future work.

Information loss Since GUMP involves graph transformation and adjacency matrix transformation,
it is reasonable to consider what information is lost in GUMP. So we discuss the information loss in
GUMP of different graphs: (1) Undirected and unweighted graph: These are the graphs discussed in
our paper. For this graph, the information is not lost; (2) Weighted graph: For weighted graph, since
GUMP utilizes a unitary adjacency matrix, the edge weights cannot be incorporated into message
passing directly, and a feasible way for it is to convert edge weights to edge features in message
passing, which is similar to R-GNN (Battaglia et al., 2018); (3) Directed graph: For directed graphs,
the original directed edges become indistinguishable after the graph transformation in Appendix F,
which means the original directionality is lost in the line graph. However, step 8 of Algorithm 3
can filter out the non-existing edges in the original graph, which can fix the information loss. For
the unweighted digraph, we can follow the same procedure as the undirected and unweighted graph.
So even though the information can be lost in weighted or directed graphs, there are other ways to
incorporate the information into GNN when using GUMP.

High computational cost The high cost of GUMP is attributed to the construction of the unitary
projection. Although the unitary projection introduces significant computational complexity, it is
essential for GUMP to obtain optimal Jacobian measure (as stated in Theorem 2.1) and exhibit good
performance (as demonstrated in Fig. 3(c)). However, GUMP is a good option for many tasks, e.g.,
biology and chemistry, where accuracy is more important than time cost. Many graphs in these tasks
are not very large, and the data collection and analysis processes often take significantly more time
than model training. In the future, motivated by Orvieto et al. (2023), we will explore performing
message passing in the diagonalized space of the adjacency matrix to reduce the computational cost
of GUMP.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International conference on machine learning, pp. 1120–1128. PMLR, 2016.

Adrián Arnaiz-Rodríguez, Ahmed Begga, Francisco Escolano, and Nuria M Oliver. Diffwire:
Inductive graph rewiring via the lovász bound. In The First Learning on Graphs Conference, 2022.
URL https://openreview.net/forum?id=IXvfIex0mX6f.

Pradeep Kr Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar. Over-
squashing in gnns through the lens of information contraction and graph expansion. In 2022 58th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1–8. IEEE,
2022.

Jørgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and applications. Springer
Science & Business Media, 2008.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael Bronstein, and Francesco Di Giovanni.
Locality-aware graph-rewiring in gnns. arXiv preprint arXiv:2310.01668, 2023.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In International Conference on Machine Learning,
pp. 2528–2547. PMLR, 2023.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2021.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In International Conference on Machine
Learning, pp. 1407–1418. PMLR, 2021.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

Andreea Deac, Marc Lackenby, and Petar Veličković. Expander graph propagation. In Learning on
Graphs Conference, pp. 38–1. PMLR, 2022.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine Learning, pp. 7865–7885. PMLR, 2023.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, 35:22326–22340, 2022.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. Advances in Neural Information Processing Systems, 35:
4776–4790, 2022.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

11

https://openreview.net/forum?id=IXvfIex0mX6f

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2018.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 32, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-symmetric dgn: a stable architecture
for deep graph networks. In The Eleventh International Conference on Learning Representations,
2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021.

Kai Guo, Kaixiong Zhou, Xia Hu, Yu Li, Yi Chang, and Xin Wang. Orthogonal graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 3996–4004, 2022.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew:
Dynamically rewired message passing with delay. In International Conference on Machine
Learning, pp. 12252–12267. PMLR, 2023.

Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks with scaled
cayley transform. In International Conference on Machine Learning, pp. 1969–1978. PMLR,
2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, nov 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735.

Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark, and
Marin Soljačić. Tunable efficient unitary neural networks (eunn) and their application to rnns. In
International Conference on Machine Learning, pp. 1733–1741. PMLR, 2017.

Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montufar. FoSR: First-order spectral rewiring
for addressing oversquashing in GNNs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=3YjQfCLdrzz.

Joseph B Keller. Closest unitary, orthogonal and hermitian operators to a given operator. Mathematics
Magazine, 48(4):192–197, 1975.

Bobak Kiani, Randall Balestriero, Yann LeCun, and Seth Lloyd. projunn: Efficient method for
training deep networks with unitary matrices. Advances in Neural Information Processing Systems,
35:14448–14463, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016b.

Mario Lezcano-Casado and David Martınez-Rubio. Cheap orthogonal constraints in neural networks:
A simple parametrization of the orthogonal and unitary group. In International Conference on
Machine Learning, pp. 3794–3803. PMLR, 2019.

Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger B Grosse, and Jörn-Henrik Jacobsen.
Preventing gradient attenuation in lipschitz constrained convolutional networks. Advances in
neural information processing systems, 32, 2019.

12

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=3YjQfCLdrzz

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip
Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In
International Conference on Machine Learning, pp. 23321–23337. PMLR, 2023.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL
www.graphlearning.io.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318. Pmlr, 2013.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for the transformer
era. arXiv preprint arXiv:2305.13048, 2023.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential
expressivity in deep neural networks through transient chaos. Advances in neural information
processing systems, 29, 2016.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In The Semantic Web: 15th
International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings 15,
pp. 593–607. Springer, 2018.

Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. In International Conference on Learning Representations, 2022.

Hanie Sedghi, Vineet Gupta, and Philip M Long. The singular values of convolutional layers. arXiv
preprint arXiv:1805.10408, 2018.

Simone Severini. On the digraph of a unitary matrix. SIAM Journal on Matrix Analysis and
Applications, 25(1):295–300, 2003.

Sahil Singla and Soheil Feizi. Skew orthogonal convolutions. In International Conference on Machine
Learning, pp. 9756–9766. PMLR, 2021.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing
the long-range graph benchmark. arXiv preprint arXiv:2309.00367, 2023.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022.

Asher Trockman and J Zico Kolter. Orthogonalizing convolutional layers with the cayley transform.
arXiv preprint arXiv:2104.07167, 2021.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453–5462. PMLR, 2018.

13

www.graphlearning.io

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A THE ILLUSTRATED GUMP

Graph Transformation (Algorithm 1)

Original graph 𝐺 Eulerian graph 𝐺! Line graph L(G′) Adjancency matrix of L(G′)

Calculation of unitary adjacency matrix (Algorithm 2)

Add directional edges Line graph transformation

Graph attention matrix 𝑨% Block diagonal matrix 𝑫 = 𝑷"�̅�𝑷#$ Efficient unitary projection U[𝑫] Unitary adjacency matrix
𝑷"$U 𝑫 𝑷# of GUMP

Permute rows and columns Parallel unitary projection

𝑫% U[𝑫%]

Inverse row and column permutations

𝑫& U[𝑫&]

Same support

Figure 4: The illustrated GUMP.

B RELATED WORK

B.1 GNN AND OVERSQUASHING

Graph neural network (GNN) (Kipf & Welling, 2016a; Gilmer et al., 2017) with L layers is a type of
neural network that uses graph G and initial node features H(0) = X to learn node representations
H(L). The k-th layer of GNN updates node representation via the message-passing formula

h
(k)
i =δ(h

(k−1)
i ,ϕ({{ψ(h(k−1)

j), j ∈ N (i)}})),

where δ, ϕ, and ψ are combination, aggregation, and message functions respectively, {{· · · }} is a
multiset, and N (i) = {j|(i, j) ∈ E}.

Even though GNN achieves success in various graph learning tasks, it suffers from the oversquashing
problem. The oversquashing problem is first noted by Alon & Yahav (2020). Inspired by Xu et al.
(2018), Topping et al. (2022) proposes to measure oversquashing with the Jacobian between node
features at different levels of a GNN. Based on the measure, Topping et al. (2022) propose a rewiring
method to increase the curvature of the edges in a graph. Many works combat oversquashing by
improving the spectral gap of a graph. Banerjee et al. (2022) measure oversquashing via the spectral
gap of a graph, employing a rewiring algorithm based on expander graph construction and effective
resistance for edge sampling. Karhadkar et al. (2023) introduce FoSR, a rewiring method that
maximizes the first-order change in the spectral gap of the graph. Arnaiz-Rodríguez et al. (2022)
introduced a GNN comprising a parameter-free layer for learning commute time and a rewiring layer
to optimize spectral gap according to network characteristics and task requirements. Except from
improving spectral gap, Black et al. (2023) focus on minimizing total resistance between node pairs
and introduce the Greedy Total Resistance (GTR) rewiring method for oversquashing. Di Giovanni
et al. (2023) analyze oversquashing with commute time. Barbero et al. (2023) propose a rewiring
method to sequentially increase the number of walks between two nodes and preserve the locality in
the original graph. Except for the one-hop message passing neural networks above, Gutteridge et al.
(2023) propose a multi-hop message passing neural network (Drew) to alleviate oversquashing with
layer-dependent graph rewiring and a delay mechanism for skip connections based on layer and node
distance.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.2 UNITARY NEURAL NETWORKS

Unitary matrices U are square matrices satisfying U⊤U = I. Unitary matrices contribute to the
stability of neural network training by preserving vector norms and preventing issues like exploding
or vanishing gradients. Imposing unitarity on neural networks enhances their ability to seamlessly
capture and propagate information across layers. This technique has proven successful in various
architectures, such as RNNs, CNNs, and GNNs.

Unitary neural networks (UNNs) are first developed to tackle the problem of vanishing and exploding
gradients in RNNs, enabling more efficient learning of information in extremely long sequences
of data compared to existing methods like LSTM (Hochreiter & Schmidhuber, 1997). To show
how unitary matrices can alleviate the vanishing gradient problem in RNNs, we denote RNN as
hk = σ(Whk−1+uk) with hk as the hidden state at the k-th layer of RNN, W as the weight matrix,
uk as the k-th input of RNN, and σ as the activation function. As shown in Fig. 1(a), the long-range
dependency can be measured by ∂hr/∂u1. To simplify the analysis, we assume the activation function
σ is identity. The Jacobian measure of the long-range dependency becomes ∂hr/∂u1 = Wr−1. When
W is unitary, information in ∂hr/∂u1 will not vanish or explode, which is the key to alleviate the
vanishing/exploding gradient problem in learning long sequences.

Early algorithms on unitary RNN construct a series of parameterized unitary transformations to
impose unitarity. EUNN (Jing et al., 2017) achieves this by composing layers of rotations, Fourier
transforms, and other unitary transformations to parametrize unitary matrices. uRNN (Arjovsky
et al., 2016) and scoRNN (Helfrich et al., 2018), on the other hand, maintain unitarity by perform-
ing a Cayley transformation to parametrize the full unitary space. expRNN (Lezcano-Casado &
Martınez-Rubio, 2019), in contrast, parametrizes unitary matrices within the Lie algebra of the orthog-
onal/unitary group. projUNN (Kiani et al., 2022) first optimizes its parameters using gradient-based
optimization and then maps the updated parameters to a unitary space. Most recently, linear recurrent
unit (LRU) (Orvieto et al., 2023) significantly enhances the long-range learning capability of RNNs
by linear RNN and initializing their weight matrix to be nearly unitary. Other works (Peng et al.,
2023; Gu & Dao, 2023) on recurrent models also share the similar idea of LRU to effectively capture
long-range dependencies in sequences, yielding impressive outcomes in language modeling and other
tasks.

Despite RNN, unitarity has also been applied to CNNs and GNNs. Unitary CNNs (Sedghi et al.,
2018; Li et al., 2019; Singla & Feizi, 2021; Trockman & Kolter, 2021) introduce various methods to
restrict the convolutional filters to be unitary, e.g., via the Lie algebra of the orthogonal group (Singla
& Feizi, 2021) and the Cayley transform (Trockman & Kolter, 2021). Ortho-GConv (Guo et al.,
2022) imposes unitarity on the feature transformation matrix in GNNs.

C PRELIMINARIES

Definition C.1 (Line graph). Given a graph G, its line graph L(G) is a graph such that

• each vertex of L(G) represents an edge of G, i.e., V[L(G)] = E[G];

• two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint
in G, i.e., E[L(G)] = {((i, j), (j, k)) ∈ V[L(G)]× V[L(G)] | (i, j), (j, k) ∈ E[G]}.

Definition C.2 (Eulerian graph). An Eulerian graph G is a graph containing an Eulerian cycle, i.e.,
there is a trail in G that starts and ends on the same vertex and visits every edge exactly once.

Definition C.3 (Permutation matrix). A permutation matrix P ∈ Rn×n is a square binary matrix
that has exactly one entry of 1 in each row and each column with all other entries 0.

Theorem C.4. Every permutation matrix is orthogonal, i.e., if P is a permutation matrix, P⊤P =
PP⊤ = I.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D PROOF

D.1 PROOF OF PROPOSITION 2.2

Proposition 2.2 is proved based on the following theorem and lemma. Theorem D.1 is a direct result
from Theorem 3 in Severini (2003). Lemma D.2 is a well-known result in graph theory, which can be
found in Theorem 1.7.2 of Bang-Jensen & Gutin (2008).

Theorem D.1 (Existence of unitary adjacency matrix). Let G be a single-connected digraph. Its
line graph L(G) (Definition C.1) is the digraph of a unitary matrix if and only if G is Eulerian
(Definition C.2).

Lemma D.2 (A special Eulerian graph). A digraph graph is Eulerian if and only if it is connected
and the in-degree and out-degree are equal at each vertex.

Proof of Proposition 2.2. In Algorithm 1, the undirected edges in G are split into two directed edges
in G′. Therefore, the in-degree and out-degree of each vertex in G′ are equal, indicating G′ is
Eulerian. Then, Theorem D.1 indicates that there exists unitary adjacency matrix U such that
S[U] = A[L(G′)].

D.2 PROOF OF LEMMA 2.3

Proof. Given any unitary U, let U = M+ U[Ā] for the properly chosen M ∈ C2e×2e. Due to the
unitarity of U and U[Ā], we have

MU[Ā]† +MM† + U[Ā]M† = 0. (2)

Then, we have

∥Ā−U∥2F = ∥Ā−M− U[Ā]∥2F
= ∥Ā− U[Ā]∥2F + Tr[MU[Ā]† +MM† + U[Ā]M†]− Tr[M†Ā+ Ā†M]

= ∥Ā− U[Ā]∥2F − Tr[M†Ā+ Ā†M]

= ∥Ā− U[Ā]∥2F − Tr[M†U[Ā](Ā†Ā)
1
2 + (Ā†Ā)

1
2U[Ā]†M].

Then, from (2), we have MU[Ā]† + U[Ā]M† = −MM†,

∥Ā−U∥2F = ∥Ā− U[Ā]∥2F + Tr[(Ā†Ā)
1
2MM†]. (3)

The second term above is non-negative because Tr[(Ā†Ā)
1
2MM†] = Tr[M†(Ā†Ā)

1
2M] and

(Ā†Ā)
1
2M is positive semi-definite. Therefore, for all unitary U,

∥Ā−U∥2F ≥ ∥Ā− U[Ā]∥2F . (4)

The result is proven.

D.3 PROOF OF PROPOSITION 2.4

Lemma D.3. For any unitary matrix U, given two permutation matrices P1 and P2, P1UP⊤
2 is

also unitary.

Proof. Let Û = P1UP⊤
2 . Then, we have

ÛÛ† = P1UP⊤
2 P2U

†P⊤
1 = P1UU†P⊤

1 = P1P
⊤
1 = I,

Û†Û = P2U
†P⊤

1 P1UP⊤
2 = P2U

†UP⊤
2 = P2P

⊤
2 = I

which proves P1UP⊤
2 is unitary.

Proof of Proposition 2.4. This proposition is proved by the uniqueness of the unitary matrix U[Ā]
when Ā is a full-rank matrix.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Assume there exists another unitary matrix U = M+ U[Ā] such that

U = arg min
U is unitary

∥∥Ā−U
∥∥2
F
. (5)

According to the proof of Lemma 2.3, we have

∥Ā−U∥2F = ∥Ā− U[Ā]∥2F + Tr[(Ā†Ā)
1
2MM†].

Since A is full-rank matrix, (Ā†Ā)
1
2 is position definite. Therefore, we have

∥Ā−U∥2F > ∥Ā− U[Ā]∥2F . (6)

which contradicts the assumption that U is the minimizer of
∥∥Ā−U

∥∥2
F

. Thus, the unitary projection
of Ā is unique when Ā is full-rank.

Because U[Ā] is unique and is the minimizer of
∥∥Ā−U

∥∥2
F

, from Lemma D.3, we have P1U[Ā]P⊤
2

the minimizer of

arg min
U is unitary

∥∥P1ĀP⊤
2 −U

∥∥2
F

for any permutation matrices P1 and P2. Because P1ĀP⊤
2 is also full-rank, P1U[Ā]P⊤

2 is the
unitary projection of P1ĀP⊤

2 , which proves that U[P1ĀP⊤
2] = P1U[Ā]P⊤

2 for any permutation
matrices P1 and P2.

D.4 PROOF OF PROPOSITION 2.5

We need the following lemma to prove Proposition 2.5.

Lemma D.4. Given the adjacency matrix A[L(G′)], its rows and columns can be permuted to
transform A[L(G′)] to be block diagonal.

Proof. According to Theorem 2 in Severini (2003), since L(G′) is line graph, L(G′) is specular.
By Lemma 1 in Severini (2003), since L(G′) is the digraph of a unitary matrix, L(G′) is strongly
quadrangular. Then, by Theorem 1 in Severini (2003), since L(G′) is specular and strongly quadran-
gular, A[L(G′)] is composed of independent matrices, thus its rows and columns can be permuted to
transform A[L(G′)] to be block diagonal.

Proof of Proposition 2.5. This proposition is proved by the following step-by-step analysis.

1. By Lemma D.4, we can permute the rows and columns of A[L(G′)] to transform A[L(G′)] to be
block diagonal, i.e., D := diag(D1, · · · ,Db) = P1A[L(G′)]P⊤

2 is block diagonal, where P1 and
P2 are permutation matrices.

2. Since Ā is full-rank, by Proposition 2.4, the unitary projection of D is equal to the matrix after
applying row permutation P1 and column permutation P2 to U[Ā], i.e., U[P1ĀP⊤

2] = P1U[Ā]P⊤
2 .

Using the property of permutation matrix (Theorem C.4), we have U[Ā] = P⊤
1 U[P1ĀP⊤

2]P2.

3. Finally, we have

U[Ā] =P⊤
1 U[P1ĀP⊤

2]P2

=P⊤
1 U[D]P2

=P⊤
1 diag(U[D1], · · · ,U[Db])P2,

which proves the correctness of Algorithm 2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D.5 PROOF OF COROLLARY 2.6

Proof. From Algorithm 2, the support of the line graph L(G′) can be permuted by rows and columns
to be a block diagonal matrix D = diag{D1, · · · ,Db} with each block D′

i a dense support, i.e.,
Di = 1.

Then, for each dense sub-matrix Di from the block diagonal matrix, there are unitary matrices with
support Di. Therefore, there are unitary matrices, i.e., U[P1ĀP⊤

2] in our paper, with support D.

Since row and column permutations are invertible, we can permute the support of the unitary matrix
back to the original support of the line graph L(G′), i.e., P⊤

1 U[P1ĀP⊤
2]P2 has the same support as

D. Because the permutation matrices P1 and P2 are unitary, the matrix P⊤
1 U[P1ĀP⊤

2]P2 is also a
unitary matrix. 4. In Proposition 2.4, we show that U[Ā] = P⊤

1 U[P1ĀP⊤
2]P2. Thus, U[Ā] has the

same support as the line graph L(G′).

D.6 PROOF OF THEOREM 2.1

Our proof is based on the GNN model from Fig. 1(a) with the activation function being ReLU.
GUMP is analyzed with A being unitary and classical message passing is analyzed with A being the
normalized adjacency matrix. Motivated by Xu et al. (2018), we analyze with the expected Jacobian
measure.

Motivated by Xu et al. (2018), we first introduce the expected Jacobian measure of oversquashing.

Theorem D.5. Given a L-layer GNN with ReLU as activation function, i.e., H(k) =
ReLU(AH(k−1)Wk),H

(0) = X, k = 1 · · ·L, assume that all paths in the computation graph
of the model are activated with the same probability of success ρ, the expected Jacobian measure of
oversquashing is

E

[
∂h

(L)
i

∂xs

]
= ρ

1∏

l=L

W⊤
l

(
AL
)
is
, (7)

Proof. Denote by f
(l)
i the pre-activated feature of h(l)

i , i.e., f (l)i =
∑

z∈N (i) Aizh
(l−1)
z Wl, for any

l = 1 · · ·L, we have

∂h
(l)
i

∂h
(0)
s

= diag
(
1
f
(l)
i >0

)
·


 ∑

z∈N (i)

Aiz
∂h

(l−1)
z

∂h
(0)
s


 ·W⊤

l .

By the chain rule, we get

∂h
(L)
i

∂h
(0)
s

=

Ψ∑

p=1

[
∂h

(L)
i

∂h
(0)
s

]

p

=

Ψ∑

p=1

1∏

l=L

diag

(
1
f
(l)

vl
p
>0

)
Avl

pv
l−1
p

W⊤
l .

Here, Ψ is the total number of paths vLp v
L−1
p · · · v1pv0p of length L+ 1 from v0p = s to vLp = i. For

l = 1 · · ·L− 1, vl−1
p ∈ N (vlp).

For each path p, the derivative [∂h
(L)
i /∂h

(0)
s]p represents a directed acyclic computation graph. At a

layer l, we can express an entry of the derivative as
[
∂h

(L)
i

∂h
(0)
s

](m,n)

p

=

1∏

l=L

Avl
pv

l−1
p

Φ∑

q=1

Zq

1∏

l=L

w(l)
q ,

where Φ is the number of paths q from the input neurons to the output neuron (m,n), in the
computation graph of [∂h(L)

i /∂h
(0)
s]p. For each layer l, w(l)

q is the entry of W⊤
l that is used in the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

q-th path. Finally, Zq ∈ {0, 1} represents whether the q-th path is active (Zq = 1) or not (Zq = 0) as
a result of ReLU activation of the entries of f (l)

vl
p

’s on the q-th path.

Under the assumption that Zq is a Bernoulli random variable with success probability ρ. Because of
P[Zq = 1] = ρ, ∀q, we have

E



[
∂h

(L)
i

∂h
(0)
s

](m,n)

p


 = ρ

1∏

l=L

Avl
pv

l−1
p

Φ∑

q=1

1∏

l=L

w(l)
q .

Then, the expected Jacobian measure of oversquashing is

E

[
∂h

(L)
i

∂xs

]
=

Ψ∑

p=1

E



[
∂h

(L)
i

∂h
(0)
s

]

p


 = ρ

1∏

l=L

W⊤
l

(
AL
)
is
.

Proof of Theorem 2.1. We analyze different components in the expected Jacobian measure (7).

Firstly,
∏1

l=L W⊤
l is the product of weight matrices in GNNs, which will not change exponentially

with respect to L because the weight matrices are appropriately initialized to avoid exploding or
decay.

Then, we focus the analysis on AL. We first diagonalize A in complex space, i.e., A = PΛP−1

with Λ being a diagonal matrix with its diagonal elements being eigenvalues of A. Since A
is unitary, the elements in Λ are complex units, i.e., Λ = diag(eiθ1 , eiθ2 , · · · , eiθ2e). There-
fore, AL is equal to PΛLP−1, where Λ = diag(eiθ1L, eiθ2L, · · · , eiθ2eL) which is also a di-
agonal matrix with its diagonal elements being complex units. Then, we have (AL)is =
Pidiag(e

iθ1L, eiθ2L, · · · , eiθ2eL)(P−1)s, which is a value that does not change exponentially with
respect to L and can be bounded by constants. With Euler’s formula, i.e., eix = cosx+ i sinx, the
relation between (AL)is and L is a trigonometric function.

Since the trigonometric function can be bounded by constants, we have
∏1

l=L W⊤
l

(
AL
)
is

is bounded

by constants, i.e., E
[
∂h

(L)
i /∂xs

]
= O(1).

D.7 THEORY OF CLASSICAL MESSAGE PASSING

The next theorem analyzes the expected Jacobian measure of classical message passing.
Theorem D.6. The expected Jacobian measure for classical message passing, i.e., A = Â in GNN,
is approximately in the order of E

[
∂h

(L)
i /∂xs

]
= O(cL), where c ∈ (0, 1).

Theorem D.6 shows that the Jacobian measure of classical message passing decays exponentially
concerning L, thus leading to oversquashing. Therefore, Theorems 2.1 and D.6 indicate that GUMP
can achieve an optimal Jacobian measure of oversquashing, i.e., O(1), while the classical message
passing cannot. Theorems 2.1 and D.6 are validated by experiments in Section 4.4.

proof of Theorem D.6. We analyze the different components in the expected Jacobian measure (7).

Firstly,
∏1

l=L W⊤
l is the product of weight matrices in GNNs, which will not change exponentially

with respect to L because the weight matrices are appropriately initialized to avoid exploding or
decay.

Then, we focus the analysis on AL. We first diagonalize A in complex space, i.e., A = PΛP−1

with Λ being a diagonal matrix with its diagonal elements being eigenvalues of A. Since A =

Â, the elements in Λ are in the range of 0 and 1, i.e., Λ = diag(θ1, θ2, · · · , θ2e), θi ∈ [0, 1].
Therefore, AL is equal to PΛLP−1, where Λ = diag(θL1 , θ

L
2 , · · · , θL2e). Without any assumption

on the graph structure, there are many eigenvalues smaller than one. Then, we have (AL)is =
Pidiag(θ

L
1 , θ

L
2 , · · · , θL2e)(P−1)s, which is a value that change exponentially with respect to L.

Finally, we have
∏1

l=L W⊤
l

(
AL
)
is

in the order of O(cL), i.e., E
[
∂h

(L)
i /∂xs

]
= O(cL), c ∈

(0, 1).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E MORE EXPERIMENTAL RESULTS

Statistics of datasets The statistics of datasets used in experiments are shown in Table 4.

Table 4: Statistics of datasets.
#graphs Avg. nodes Avg. edges Task type

Mutag 188 17.9 39.6 Graph Classification
Proteins 1,113 39.1 145.6 Graph Classification
Enzymes 600 32.6 124.3 Graph Classification

NC1 4110 29.87 32.30 Graph Classification
NC109 4127 29.68 32.13 Graph Classification

Peptides-func 15,535 150.94 307.30 Graph Classification
Peptides-struct 15,535 150.94 307.30 Graph Regression

Hyperparameters of GUMP The hyperparameters of GUMP for both synthetic and real datasets
are shown in Table 5.

Table 5: Hyperparameters of GUMP for datasets in experiments. layerGUMP, lrbase, wdbase, lrGUMP,
wdGUMP, drop., d′, d, batch size, layerbase, opt., sched., and epoch denotes the number of layers of
GUMP, the learning rate of base GNN, weight decay of base GNN, the learning rate of GUMP, weight
decay of GUMP, dropout rate, dimension of calculating (1), hidden dimension of GNN, batch size,
number of layers of base GNN, optimizer, scheduler, and number of epochs, respectively.

layerGUMP lrbase wdbase lrGUMP wdGUMP drop. d′ d batch size layerbase opt. sched. epoch

CrossedRing - 10−4 10−6 10−4 0 0 32 32 20 0 adam none 200
Ring - 10−4 10−6 10−4 0 0 32 32 20 0 adam none 200

CliquePath - 10−4 10−6 10−4 0 0 32 32 20 0 adam none 200
Mutag 16 10−2 10−4 10−4 0 0 32 64 16 5 adam none 100

Proteins 20 10−2 10−2 10−4 10−2 0 32 64 64 3 adam none 100
Enzymes 10 10−2 10−4 10−4 0 0 32 64 16 1 adam none 100

NC1 10 10−2 10−4 10−4 0 0 32 64 16 1 adam none 100
NC109 10 10−2 10−4 10−4 0 0 32 64 16 1 adam none 100

Peptides-func 12 0.005 0.1 0.1 0.1 0.2 32 256 200 3 adam cos. 250
Peptides-struct 12 0.005 0.1 0.005 0.1 0.2 32 256 200 3 adam cos. 250

Comparison GUMP with more methods For the synthetic datasets, we compare GUMP with
Drew and ADGN on synthetic datasets in Fig. 5. The results show that the performances of GUMP
and Drew are close, while ADGN performs worse.

4 8 12 16 20 24 28
Distance from source to target

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CrossedRing

GCN
GCN-GUMP
ADGN
Drew

(a) CrossedRing

4 8 12 16 20 24 28
Distance from source to target

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Ring

GCN
GCN-GUMP
ADGN
Drew

(b) Ring

4 8 12 16 20 24 28
Distance from source to target

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Lillipop

GCN
GCN-GUMP
ADGN
Drew

(c) CliquePath

Figure 5: The performance of GCN and GCN-GUMP on the CrossedRing, Ring, and CliquePath
with different distances from source to target.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

We further compare the performances of GUMP, rewiring methods, graph neural diffusion, Graph
Transformer, and orthogonal GNN on the TUDataset in Table 6. The compared methods are
ADGN (Gravina et al., 2022), GRAND (Chamberlain et al., 2021)), Graph Transformer (Yun et al.,
2019), and Ortho-GConv (Guo et al., 2022).

Table 6: Graph classification accuracy on the TUDataset. First, second, and
::::
third best results are

bold, underlined, and underwaved, respectively.
Classes Methods Mutag Proteins Enzymes NCI1 NCI109

– GCN 72.15±2.44 70.98±0.74 27.67±1.16 68.74±0.45 67.90±0.50
GCN (+layer) 70.05±1.83 69.80±0.99 23.63±1.07 63.94±1.34 55.92±1.26

Rewiring
(GCN)

DIGL 79.70±2.15 70.76±0.77 35.72±1.12 69.76±0.42
::::::::
69.37±0.43

SDRF 71.05±1.87 70.92±0.79 28.37±1.17 68.21±0.43 66.78±0.44
FoSR

::::::::
80.00±1.57

::::::::
73.42±0.81 25.07±0.99 57.27±0.54 56.82±0.60

GTR 79.10±1.86 72.59±2.48 27.52±0.99 69.37±0.38 67.97±0.47

Diffusion ADGN 81.39±1.81 73.81±0.80
::::::::
28.78±1.25 76.15±0.42 74.31±0.44

GRAND 77.94±1.73 73.24±0.94 24.13±1.05 68.51±0.48 67.26±0.46

Transformer Transformer 69.15±1.78 66.21±0.96 28.33±1.44 58.41±0.55 58.25±0.52

Ortho-GNN Ortho-GConv 71.78±2.52 63.80±0.98 18.30±1.13
::::::::
69.92±0.60 68.91±0.50

Ours GCN-GUMP 84.89±1.63 74.88±0.87 36.02±1.43 77.97±0.42 75.85±0.44

For the sake of fair comparison and experimental integrity, we also modified the multi-hop message
passing methods (i.e., Drew and GRIT) into the one-hop variants. We replace

∑ℓ+1
k=1

∑
j∈Nk(i)

in
DRew with

∑
j∈N1(i)

and set K of RRWP in GRIT to 2, making Drew and GRIT one-hop message
passing methods. We report their results in Table 7. The results show that GUMP outperforms Drew
and GRIT in one-hop message passing setting.

Table 7: Comparison with Drew and GRIT by setting their message-passing hop to one.
Peptides-func Peptides-struct Mutag Proteins Enzymes NCI1 NCI109

Drew (1-hop) 0.6996±0.0076 0.2881±0.0024 79.91±1.97 74.12±0.90 35.02±1.22 73.58±0.41 72.27±0.49
GRIT (1-hop) 0.6779 ±0.0079 0.2671 ±0.0018 80.76±2.18 73.71±0.89 35.22±1.17 72.21±0.46 71.68±0.44

GCN-GUMP 0.6843±0.0037 0.2467±0.0021 84.89±1.63 74.88±0.87 36.02±1.43 77.97±0.42 75.85±0.44

We also compare the Jacobian of GUMP with Drew and ADGN in Fig. 6. Jacobian of Drew
exponentially increases, suggesting its potential numerical instability when training Drew with more
layers. The Jacobian of ADGN is small when the ADGN layer is small and steadily increases to
10−8 as the ADGN layer reaches 100. Although the Jacobian of ADGN does not exhibit exponential
decay, the correlation between distant nodes is significantly weaker compared to GUMP.

0 10 25 50 75 100
Number of layers

10 16

10 13

10 10

10 7

10 4

10 1

No
rm

 o
f J

ac
ob

ia
n

m
ea

su
re

 (l
og

 sc
al

e)

GUMP
None
DIGL
SDRF
FOSR
GTR
ADGN

(a)

0 10 25 50 75 100
Number of layers

106

109

1012

1015

1018

1021

1024

1027

No
rm

 o
f J

ac
ob

ia
n

m
ea

su
re

 (l
og

 sc
al

e)

Drew

(b)

Figure 6: Jacobian measure versus layers on NCI1
Performance on node classification tasks We also apply GUMP to node classification tasks on
Cora and Citeseer datasets. The results are shown in Table 8.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 8: Accuracy of node classification datasets: Cora and Citeseer
Layers 2 4 8 16 64

Cora
GCN 81.1 80.4 69.5 60.3 28.7

GCNII 82.2 82.6 84.2 84.6 85.5
GCN-GUMP 84.6 86.2 84.8 85.4 87.4

Citeseer
GCN 70.8 67.6 30.2 18.3 20.0

GCNII 68.2 68.9 70.6 72.9 73.4
GCN-GUMP 73.0 73.0 72.8 72.4 75.8

Training time of GUMP The time of training GCN and GCN-GUMP 100 epochs on the TUDataset
is shown in Table 9.

Table 9: Training seconds of GCN and GCN-GUMP on TUDataset for 100 epochs
MUTAG Proteins Enzymes NCI1 NCI109

GCN 4.39 20.57 11.26 71.79 74.56
GCN-GUMP 23.26 228.44 972.64 615.17 637.48

Results following Tönshoff et al. (2023) We compare GCN-GUMP with GCN on Peptides-func
and Peptides-struct datasets following Tönshoff et al. (2023). The results are shown in Table 10.

Table 10: Follow Tönshoff et al. (2023) for comparison on Peptides-func and Peptides-struct.
Peptides-func Peptides-struct

GCN 0.6860±0.0050 0.2460±0.0007

GCN-GUMP 0.6985±0.0032 0.2438±0.0014

Average time of preprocessing The average time of preprocessing for line graph on various
datasets is shown in Table 11.

Table 11: Average times (seconds) of preprocessing line graph for various dtasets
MUTAG Proteins Enzymes NCI1 NCI109 Peptides-func Peptides-struct

Avg. Time 0.001 0.005 0.009 0.002 0.002 0.014 0.013

F APPLY GUMP TO DIRECTED GRAPH

GUMP can also be applied to directed graphs in Algorithm 4. The transformation of directed graphs
is also based on Lemma D.2.

Algorithm 4 Graph transformation for directed graphs
Require: A directed graph G = (V,E);

1: Initialize a new digraph G′ = (V,E′);
2: for (i, j) ∈ E do
3: Add (i, j) and (j, i) to E′;
4: end for
5: Remove duplicated edges in E′;
6: Convert G′ to its line graph L(G′);
7: Return: A digraph L(G′).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

G KEY CODE SNIPPETS

Code for obtaining P1 and P2 in Algorithm 2 P1 and P2 are not explicitly derived in implemen-
tation and are pre-compute in the data preprocessing phase. The code snippet in Listing 1 shows how
to transform the adjacency matrix to be block diagonal.

1 def get_permutation_index(self, edge_index):
2 num_nodes = edge_index.max() + 1
3 permutation_index = []
4 block_size = []
5 node_flag = np.zeros(num_nodes)
6 print(num_nodes)
7 for i in tqdm(range(num_nodes)):
8 if node_flag[i] == 0:
9 edge_index_i = edge_index[1, edge_index[0] == i]

10 edge_index_selected = edge_index[:, np.isin(edge_index[1, :],
edge_index_i)]

11 node_flag[edge_index_selected[0, :]] = 1
12 permutation_index.append(edge_index_selected)
13 block_size.append(edge_index_selected.shape[1])
14 permutation_index = torch.cat(permutation_index, dim=1)
15 return (permutation_index, block_size)

Listing 1: Code for pre-computing P1 and P2 in Algorithm 2

Code for unitary projection in Algorithm 2 The code snippet in Listing 2 shows how to calculate
the unitary projection of the adjacency matrix.

1 def proj(self, data):
2 src_attn_x = data.x[data.edge_index_2[0]]
3 dst_attn_x = data.x[data.edge_index_2[1]]
4 x_src = self.gump_attn_src(src_attn_x)
5 x_dst = self.gump_attn_dst(dst_attn_x)
6 x_attn = (F.leaky_relu(x_src + x_dst, 0.2) * self.gump_attn_ele).sum(

dim=-1)
7 alpha = torch.tanh(x_attn)
8

9 split_data = torch.tensor_split(alpha, data.blocksize[0, :-1].tolist
())

10 A_sizes = np.array([A.shape[0] for A in split_data])
11 sort_index = np.argsort(A_sizes)
12

13 inv_sort_index = np.zeros_like(sort_index)
14 inv_sort_index[sort_index] = np.arange(len(sort_index))
15

16 sort_A_sizes = A_sizes[sort_index]
17 segement_index = np.flatnonzero(np.diff(sort_A_sizes)) + 1
18 segement_index = np.concatenate([[0], segement_index, [len(

sort_A_sizes)]])
19

20 sorted_split_data = [split_data[i] for i in sort_index]
21 unitary_weight = []
22 for i in range(len(segement_index) - 1):
23 start, end = segement_index[i], segement_index[i+1]
24 u_weight = torch.stack(sorted_split_data[start:end], dim=0)
25 result = unitary_proj(u_weight, self.training)
26 unitary_weight = unitary_weight + [ii for ii in result]
27 unitary_alpha = [unitary_weight[i] for i in inv_sort_index]
28 unitary_alpha = torch.cat(unitary_alpha)
29

30 return unitary_alpha

Listing 2: Code for unitary projection in Algorithm 2

24

	Introduction
	Graph Unitary Message Passing
	Overview
	Graph Transformation: convert graph to have unitary adjacency matrix
	Unitary adjacency matrix calculation: compute the edge weights for message passing
	Permutation-equivariant projection
	Feasible implementation

	Apply GUMP to GNN
	Comparison with existing methods
	Positions of GUMP

	Experiments
	Experiments on synthetic dataset
	Experiments on the TUDataset
	Experiments on LRGB
	Model analysis

	Discussions and limitations
	The Illustrated GUMP
	Related work
	GNN and oversquashing
	Unitary neural networks

	Preliminaries
	Proof
	Proof of prop:existence-alg
	Proof of lemma:unitary-projection
	Proof of prop:permutation-equivariance
	Proof of prop:feasible-imp
	Proof of cor:same-support
	Proof of thm:gump
	Theory of classical message passing

	More experimental results
	Apply GUMP to directed graph
	Key code snippets

