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ABSTRACT

Personalized federated learning (PFL) aims to collaboratively train personalized
models for multiple clients with heterogeneous and scarce local samples. How-
ever, the substantial heterogeneity in sample distributions across clients under-
mines the effectiveness of vanilla federated learning where a consensus model is
trained and shared among clients. More specifically, vanilla federated learning
aggregates local models via heuristic or data-volume-based weighted averaging
without considering the actual contribution per client’s update, which often in-
duces suboptimal personalization performance on heterogeneous client data. To
improve the personalization performance, we propose a contribution-oriented PFL
(CO-PFL) algorithm that jointly assesses gradient direction discrepancies and pre-
diction deviations across client updates. In the proposed CO-PFL algorithm, we
leverage information from both the gradient and data subspaces to estimate the
contribution per client (i.e., the aggregation weight) for global aggregation. To
further enhance personalization adaptability and optimization stability, our pro-
posed CO-PFL algorithm cohesively integrates the parameter-wise personaliza-
tion mechanism with the mask-aware momentum optimization. The proposed
CO-PFL algorithm mitigates aggregation bias, enhances global coordination and
local personalization performance, and facilitates tailored submodels construction
alongside stable model updates. Extensive experiments on four practical datasets
(e.g., CIFAR10, CIFAR10C, CINIC10, and M-ImageNet) demonstrate that the
proposed CO-PFL consistently outperforms state-of-the-art benchmarks.

1 INTRODUCTION

Federated learning (FL) has emerged as a promising paradigm for training models across decentral-
ized data sources without exposing raw data and can provide strong privacy guarantees in various
applications, such as mobile personalization Lee (2007); Hardt & Nath (2012); Xing et al. (2025),
healthcareBeyan et al. (2020); Haripriya et al. (2025); Shangguan et al. (2025), and edge intelli-
gence Wu et al. (2020); Singh & Thakur (2025); Zhang et al. (2025).

However, vanilla FL algorithms typically aim to optimize a single consensus model, assuming data
distributions are consistent across clients. In real-world scenarios, clients often hold scarce and
highly heterogeneous local datasets due to variations in feature and label acquisition processes. Such
heterogeneity undermines the effectiveness of a unified model, leading to degraded performance and
poor generalization Ye et al. (2023); Pei et al. (2024).

Most PFL algorithms address data heterogeneity by decoupling the global model into shared and per-
sonalized components Tan et al. (2022); Zhang et al. (2022); Sun et al. (2021); Chen et al. (2023).
Early approaches typically adopt fixed architectural partitioning, where certain layers are globally
shared and others are locally adapted Arivazhagan et al. (2019); Collins et al. (2021); Ma et al.
(2022); OH et al. (2022). While this paradigm enables a degree of personalization, its rigid decom-
position often fails to capture diverse and evolving client requirements.

To improve flexibility, recent studies explore dynamic submodel selection or personalized masking
mechanisms, allowing clients to adaptively determine which parts of the model to share Tamirisa
et al. (2024); Xu et al. (2023); Tang et al. (2023); Mclaughlin & Su (2024). Although these methods
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alleviate the constraints of fixed decomposition, their aggregation step still largely follows conven-
tional rules such as uniform or data-based averaging, which implicitly assume that all client updates
are equally useful. However, when local datasets vary significantly in quality and informativeness,
such naı̈ve aggregation may dilute valuable knowledge and even hinder global collaboration.

To alleviate the so-termed equal-contribution assumption, we investigate the design of contribution-
oriented PFL (CO-PFL) algorithm. Instead of treating all client updates equally, our proposed
CO-PFL introduces a contribution-oriented weighted aggregation (COWA) module to evaluate each
update’s contribution based on gradient discrepancy and prediction deviation. By incorporating
gradient discrepancy and prediction deviation-based metrics, our proposed CO-PFL enables more
informed aggregation while enhancing model robustness and supporting personalized adaptation.
To further ensure stable convergence with partial sharing, CO-PFL integrates two additional compo-
nents, PWPM and MAMO. PWPM performs parameter-wise, client-adaptive personalization guided
by local gradient sensitivity and an explicit capacity budget, avoiding the rigidity of fixed layer
or block splits and allowing the personalized scope to match each client’s data. MAMO applies
mask-aware momentum with separate buffers for the personalized and shared subsets, preventing
momentum leakage when masks evolve over rounds.

Our key contributions are summarized as follows. (1). We propose the CO-PFL algorithm, which
comprises three key modules: the COWA module assigns client-specific aggregation weights based
on gradient and prediction discrepancies; the PWPM module dynamically identifies client-specific
important parameters; and the MAMO module accelerates and stabilizes convergence by applying
independent momentum to personalized and shared submodels. (2). We demonstrate through ex-
tensive experiments that the proposed CO-PFL algorithm outperforms existing methods in terms of
personalization quality under heterogeneous data distributions.

2 RELATED WORKS

The FL is a decentralized machine learning paradigm where clients perform local training on their
private datasets and periodically transmit model updates to a central server for aggregation McMa-
han et al. (2017). However, client datasets are heterogeneous in real-world scenarios, and such sta-
tistical heterogeneity can significantly undermine the performance of the shared model Hsieh et al.
(2020); Zhang et al. (2021b). To mitigate these challenges, recent research attention has shifted
towards PFL algorithms that aim to tailor models to each client’s local data distribution while still
leveraging the advantages of global knowledge sharing.

Seminal PFL algorithms (e.g., FedPer Arivazhagan et al. (2019) and FedRep Collins et al. (2021))
adopt static parameter decompositions by globally sharing part of the model (e.g., feature extractor)
while personalizing the remaining part (e.g., classification head) Vepakomma et al. (2018); Aono
et al. (2017). In addition, LG-FedAvg Liang et al. (2020) divides the model into personalized and
shared submodels, with each client learning the local representation of its data, which reduces data
variance and communication costs. FedBABU OH et al. (2022) adopts an alternative approach,
training only the shared backbone network during the federated training period, freezing the client
classification heads, and fine-tuning the classification heads during the evaluation phase, but still has
limitations in adaptability and generalization across different client data. KT-pFL emphasizes the
importance of server aggregation in PFL and introduces a customized knowledge transfer aggrega-
tion algorithm. However, KT-pFL lacks personalized decoupling of parameters Zhang et al. (2021a).
Although effective in several specific settings, the static partition strategies may not generalize well
across diverse tasks or heterogeneous distributions.

In response to the limitations of static model partitioning, recent studies have explored parameter-
wise personalization through dynamic submodel selection. For example, FedSelect Tamirisa et al.
(2024) enables each client to dynamically select a personalized submodel by evaluating gradient-
based parameter importance. Similarly, FedPAC Xu et al. (2023) aligns intermediate representations
across clients while personalizing the classification heads. Reads Fu et al. (2025) proposes a layer
aggregation mechanism, however, it relies heavily on clustering outcomes and lacks granularity in its
design. Although these algorithms enhance personalization Tamirisa et al. (2024); Xu et al. (2023);
Fu et al. (2025), they continue to aggregate global parameters either uniformly or solely based on
data volume, which may fail to capture the varying quality and utility of individual client updates.
Another line of research focuses on optimization-based personalization. For instance, Ditto Li et al.
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(2021b) introduces a regularization-based approach that balances local adaptation with global con-
sistency. While helping mitigate conflicts between local objectives and global convergence, Ditto
still overlooks the client contributions during aggregation. Zhang et al. (2023) noticed the impor-
tance of aggregation weights in PFL and proposed an adaptive weight aggregation based on network
structure, but failed to notice the contribution information embedded in the local data of the client.

Although various approaches have been proposed to personalize federated models, most existing
methods fall short in effectively quantifying and incorporating the value of each client’s contribution
during aggregation. Such observations underscore the need for more effective aggregation rules in
highly heterogeneous federated settings, which serves as the motivation for our COWA module.
Therefore, we are motivated to propose the CO-PFL algorithm that is complemented by the PWPM
and MAMO modules to address the challenges posed by heterogeneous and scarce local data.

3 PROBLEM DESCRIPTION

Vanilla FL aims at learning a consensus model w ∈ Rd by minimizing the population loss over all
N clients under the coordination of a central server. Denoting the local dataset per client n asMn,
the objective of vanilla FL is

min
w

1

N

N∑
n=1

fn(w) (1)

where local loss function fn(w) is defined as fn(w) := E[ℓ(w; ζn)] with ℓ(w; ζn) as the loss in-
curred by model parameter w on a sample ζn ∼Mn.

Remark 1 As shown in equation 1, vanilla FL produces a single consensus model based on the local
data of participating clients. However, the data distributions across clients are typically heteroge-
neous due to discrepancies in the acquisition processes of feature and label subspaces. Statistical
heterogeneity undermines the effectiveness of the consensus model, which may fail to generalize well
to the local data of individual clients. The adverse impact becomes particularly pronounced when
local datasets contain only a limited number of samples.

In order to handle the data heterogeneity, the local model per client n is divided into two submodels,
namely, personalized submodel pn ∈ Rd and shared submodel gn ∈ Rd. Based on the partitioned
models of clients, the objective of PFL is

[w∗
n]

N
n=1 = argmin

[wn]Nn=1

1

N

N∑
n=1

fn(wn)

s.t. g1 = . . . = gn = . . . = gN

(2)

where the local model per client n can be denoted as wn = gn + pn, n = 1, . . . , N .

Current PFL algorithms commonly adopt heuristic static partition strategies to obtain the personal-
ized and shared submodels Pillutla et al. (2022); Collins et al. (2021); OH et al. (2022). For instance,
the classification head is trained locally on each client while the feature extractor is jointly trained
across all clients Collins et al. (2021); OH et al. (2022). Although such static partition strategies
are simple to implement and may occasionally deliver satisfactory performance, they fail to account
for the dynamic and client-specific importance of model parameters throughout the training process.
Consequently, their adaptability is limited when highly heterogeneous data distributions present.
To improve the adaptability of PFL algorithms, we propose CO-PFL, a data-driven PFL algorithm
that can intelligently identify client-specific key parameters during local training. Specifically, the
CO-PFL periodically determines the personalized and shared submodels by leveraging parameter
contributions from both the gradient and data subspaces.

4 ALGORITHMIC DEVELOPMENT OF CO-PFL

Inspired by submodel discovery (e.g., the Lottery Ticket Hypothesis Li et al. (2021a)) and recent
advances in dynamic personalization Tamirisa et al. (2024), CO-PFL moves beyond static pruning
strategies to enable more effective and efficient learning in heterogeneous and data-scarce settings.
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Figure 1: Illustration of CO-PFL algorithm. δkn denotes the update direction of client n, δ̄k−n denotes
the average update direction of all other clients, wk

−n represents the average model parameters ag-
gregated from all clients excluding n, ζn denotes data samples drawn from the local distribution of
client n.

4.1 OVERALL DESCRIPTION OF CO-PFL

The CO-PFL algorithm consists of three key modules: MAMO, PWPM, and COWA. Specifically,
the MAMO module accelerates and stabilizes convergence; the PWPM module dynamically identi-
fies client-specific important parameters; and the COWA module adjusts aggregation weights based
on each client’s contribution.

Algorithm 1 CO-PFL Algorithm
Require: Server model w0, server mask m0, client masks [m0

n]
N
n=1, training rounds K

1: for k = 0, 1, . . . ,K − 1 do
2: Server broadcasts server model wk

0 and server mask mk
0 to all clients

3: Each client n obtains the shared submodel, client mask, and contribution score as

wk+1
n ,mk+1

n ,Γk+1
n ← Client(wk

0 ,m
k
0 ,Mn)

4: Server respectively updates its mask and normalized score per client n as

Server Mask: mk+1
0 =

N∨
n=1

mk+1
n

Normalized Score: αk+1
n =

Γk+1
n∑N

i=1 Γ
k+1
i

5: Server aggregates the shared submodel as gk+1 =
∑N

n=1 α
k+1
n wk+1

n ◦ (1−mk+1
n )

6: Server updates its model as wk+1 = (gk+1 ◦ (1−mk+1
0 ), wk ◦mk+1

0 )
7: end for
8: return Personalized models {wK

n = (gKn , pKn )}Nn=1

Figure 1 illustrates the overall workflow of the proposed CO-PFL algorithm, with detailed proce-
dures summarized in Algorithm 1. The client executes the algorithm 2 as reflected in Appendix B.
CO-PFL alternates between client-side local training and server-side aggregation to enable adaptive
personalization and contribution-oriented collaboration.

Client-side operations. At Step 2 of Algorithm 1, the server broadcasts the current model wk
0

and its associated binary mask mk
0 to all clients. Each mask element mk

0 [i] is set to 1 if the corre-
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sponding parameter is personalized. At Step 3, each client n receives (wk
0 ,m

k
0) and initiates local

training using its private data Mn. During local updates, MAMO is applied to selectively propa-
gate momentum to personalized submodels, mitigating optimization interference across decoupled
subspaces. After local training, PWPM is employed to identify the top-p most important parameters
based on the magnitude of local parameters changes. PWPM produces a client-specific personaliza-
tion mask mk

n, which decouples the updated model wk
n into a personalized submodel pkn = wk

n ◦mk
n

and a shared submodel gkn = wk
n ◦ (1 − mk

n). The client then evaluates the quality of its update
using two local metrics: gradient score Γgrad

n and prediction score Γdata
n . These are combined to form

an overall contribution score Γk+1
n , which is sent back to the server along with the updated model

wk+1
n and the mask mk+1

n .

Server-side operations. At Step 4 of Algorithm 1, the server collects {wk+1
n ,mk+1

n ,Γk+1
n }Nn=1 and

computes normalized aggregation weights αk+1
n . Moreover, the server updates the shared mask via

the logical OR. At Step 5, the server performs COWA across the shared submodels. At Step 6, the
shared submodel at server is updated by combining the newly aggregated shared submodels with
aggregated personalized submodel.

By jointly leveraging COWA, PWPM, and MAMO, the proposed CO-PFL achieves fine-grained
personalization and effective collaboration across heterogeneous clients.

4.2 MASK-AWARE MOMENTUM MODULE

The optimization landscape of the PFL becomes increasingly irregular due to the existence of per-
sonalized and shared submodels. Applying standard optimizers uniformly over all submodels may
disrupt the integrity of the parameter space when personalized and shared submodels exhibit distinct
update dynamics.

At each local training step, the personalized and shared submodels are alternatively updated to han-
dle their optimization landscape separately. More specifically, we define an auxiliary binary mask
sequence hk

n ∈ Rd as

hk
n =

{
mk

n, when updating pkn
1−mk

n, when updating gkn.
(3)

Our proposed MAMO module separately records the first- and second-order moment estimates for
the personalized and shared submodels as

uk,t+1
n =β1u

k,t
n +(1−β1)h

k,t
n ◦ qk,tn (4a)

vk,t+1
n =β1v

k,t
n +(1−β1)h

k,t
n ◦ qk,tn ◦ qk,tn (4b)

where uk,t
n , vk,tn ∈ Rd, qk,tn = ∇ℓ(wk,t

n ; ζk,tn ), and β1, β2 ∈ (0, 1) are the momentum factors.

Based on the momentum updates equation 4, we can compute the bias-corrected momentums and
apply the corrected momentums to the masked submodel (e.g., shared or personalized submodels)
as

ûk,t
n =

uk,t
n

1− βkT+t
1

, v̂kn =
vk,tn

1− βkT+t
2

(5a)

wk,t+1
n = wk,t

n − ηhk,t
n ◦

ûk,t
n√

v̂k,tn + ϵ
(5b)

where ϵ is a small positive constant.

Based on equation 3–equation 5, the binary mask sequence hk
n can decouple the update of shared

submodel from that of the personalized submodel. Therefore, the personalized and shared sub-
models follow independent optimization trajectories without mutual interference. Moreover, the
recursions in equation 3–equation 5 also enable an alternating update between the personalized and
shared submodels that can stabilize convergence under the heterogeneous and scarce local data.

4.3 PARAMETER-WISE PERSONALIZATION MODULE

As shown in the algorithm 2 in Appendix B, a crucial step toward effective personalization is iden-
tifying submodel parameters that are sensitive to the local distribution. Different from the heuristic

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

static partition of personalized and shared submodels, we develop a PWPM module that adaptively
selects submodels based on local training behavior. More specifically, the personalized mask mk

n
evolves over training rounds based on the magnitude of each parameter update in order to enable
fine-grained adaptation to client-specific needs.

The personalized mask is initialized as zero, i.e., m0
n = m0

0 = 0 to secure that all model parameters
can be globally updated at the beginning of training. Per each round k, each client n alternatively
performs the updates of personalized and shared submodels as shown in lines 2–13 of Algorithm 2.
In order to determine the personalized submodel, we compute the absolute difference between two
consecutive model parameters as ∆wk

n =
∣∣δkn∣∣ where δkn := wk

n − wk+1
n ∈ Rd.

Note that the values of ∆wk
n reflect the sensitivity of individual model parameters to local data.

Model parameters exhibiting larger differences are more strongly influenced by the unique data
distribution of the client and therefore are better suited for personalization. Accordingly, we select
the top-p parameters in ∆wk

n with the highest magnitudes and designate them as personalized by
updating the mask as

mk+1
n [i] =

{
1, if ∆wk

n[i] in top-p
mk

n[i], otherwise.
(6)

To prevent over-personalization, we impose a constraint on the size of personalized submodel by
introducing a personalization budget γ ∈ [0, 1], such that ∥mk

n∥ ≤ γd is enforced throughout
training with d denoting the dimension of model parameters. After applying the mask in equation 6,
we obtain the updated personalized and shared submodels as

pk+1
n = wk+1

n ◦mk+1
n and gk+1

n = wk+1
n ◦ (1−mk+1

n ). (7)

Based on equation 7, each client n uploads the shared submodel gk+1
n to the server for aggregation,

while retaining the personalized submodel pk+1
n locally to preserve client-specific information. The

client-specific selection process of PWPM module enables each client n to progressively specialize
a submodel that aligns with its local data distribution, while still contributing to global knowledge
sharing through the remaining shared submodel.

4.4 CONTRIBUTION-ORIENTED WEIGHTED AGGREGATION

While the PWPM and MAMO modules enable clients to locally personalize their models and op-
timize personalized and shared submodels via different optimization trajectories, the merits of FL
ultimately rely on aggregating knowledge across clients. However, in heterogeneous networks, the
aggregation rule requires accurate weights for all clients when data distributions and training dy-
namics vary significantly. Vanilla FL aggregates local models via heuristic or data-volume-based
weighted averaging without considering the actual contribution per client’s update. However, such
aggregation rules implicitly assume all updates are equally informative, which are rarely satisfied in
PFL, where the clients may capture different statistical distribution of local datasets. To incorporate
each client’s contribution to global aggregation, we propose the COWA module that assesses both
the informativeness and uniqueness of each client’s update. More specifically, we quantify contribu-
tion of each client from the two complementary subspaces, i.e., gradient discrepancy subspace and
prediction contribution subspace.

Gradient Score. In the PFL setting, a client’s model update that deviates from the average di-
rection may capture rare or underrepresented data patterns specific to that client. To quantify the
directional novelty of each update, we compute the angular deviation between a client’s local model
update and the average update of the remaining clients. The gradient contribution score is defined
as

Γgrad
n = 1− cos(δkn, δ̄

k
−n) (8)

where leave-one-out average direction δ̄k−n is defined as δ̄k−n := (δk−αk
nδ

k
n)/(1−αk

n) with δk :=

wk−1 − wk.

Note that a higher gradient contribution score Γgrad
n indicates that the client n follows a distinct up-

date direction, which indicates that the client has the potential to contribute complementary knowl-
edge to the shared model.

6
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Prediction Score. The value of a client’s update lies not only in enhancing its own performance,
but also in its potential to assist other clients in adapting to their local data distributions. To capture
cross-client information contribution in the data space, we evaluate the performance of the aggre-
gated model wk

−n that is obtained by excluding local training data of client n as

Γdata
n = Eζn∼Mn

[
ℓ(wk

−n; ζn)
]

(9)

where the leave-one-out average model wk
−n is obtained as wk

−n = (wk−αk
nw

k
n)/(1−αk

n).

When the induced model exhibits poor performance on the data of client n (e.g., higher value of
equation 9), the client n provides complementary rather than redundant information to the global
aggregation. In other words, a lower prediction error equation 9 indicates that the model from client
n generalizes well to other clients’ data distributions and is beneficial for the other clients.

Aggregation Weight. To quantify the overall contribution of each client’s update, we integrate the
contribution scores derived from the gradient discrepancy and the prediction contribution subspaces.
More specifically, the overall contribution is defined as Γk

n = Γgrad
n + Γpred

n , where Γgrad
n and Γpred

n

are, respectively, based on equation 8 and equation 9. Based on the overall contribution [Γk
n]

N
n=1,

the aggregation weight is then obtained by normalizing Γk
n as

αk
n =

Γk
n∑N

i=1 Γ
k
i

, n = 1, . . . , N. (10)

Note that the aggregation weights [αk
n]

N
n=1 are applied exclusively to the aggregation of the shared

submodel components gkn.

5 NUMERICAL EXPERIMENTS
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Figure 2: Convergence of test accuracy for CO-PFL and benchmarks over communication rounds.

5.1 EXPERIMENTAL SETUP

We use four practical datasets, e.g., CIFAR10 Krizhevsky et al. (2009), CIFAR10C Hendrycks &
Dietterich (2019), CINIC10 He et al. (2020), and M-ImageNet Vinyals et al. (2016) (abbreviated
as M-ImageNet), to verify the effectiveness of our proposed CO-PFL by training a ResNet-18 with
random initialization. We follow the setup in Li et al. (2021a); Tamirisa et al. (2024) to assign the
local training samples per client for federated optimization. In all experiments, data is distributed to
clients in a heterogeneous manner using a label-partitioning scheme. For experiments over CIFAR10
and CIFAR10C, we set the number of clients to N = 10. For CINIC10 and M-ImageNet, we set the
number of clients to N = 20. The detailed data partitioning strategy and hyperparameter settings
are provided in the Appendix C due to space limitation.

We benchmark the proposed CO-PFL against the following representative baseline algorithms: (i).
Local-only, where each client independently trains a model on its local data without collaboration;
(ii). Federated average methods, e.g., FedAvg and the personalized variant FedAvg+FT; (iii).
Parameter decoupling methods, e.g., LG-FedAvg Liang et al. (2020), FedPer Arivazhagan et al.
(2019), FedPAC Xu et al. (2023), and FedSelect Tamirisa et al. (2024), which partition the model
into shared and personalized submodels.
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5.2 NUMERICAL RESULTS

Table 1: Personalized accuracy (%) of different methods on four datasets. CO-PFL achieves the best
performance across all benchmarks.

Methods CIFAR10 CIFAR10C CINIC10 M-ImageNet

Local Only 74.60 66.75 65.40 33.31
FedAvg 62.45 68.40 66.90 31.99
FedAvg+FT 69.90 70.05 69.25 33.44

LG-FedAvg 78.30 75.70 71.40 33.38
FedPer 79.80 70.10 70.98 34.53
FedPAC 79.25 76.40 69.05 34.29
FedSelect 80.09 76.34 72.67 37.24

CO-PFL 82.86 79.42 73.82 38.76

Personalization Comparison. Table 1 demonstrates the superiority of CO-PFL across all evalu-
ated datasets. CO-PFL yields a 3.29% relative improvement in accuracy compared to the bench-
marks. Compared to methods such as FedAvg and FedAvg+FT, CO-PFL consistently delivers
higher personalized accuracy and more stable convergence. On CIFAR10 and CIFAR10C, CO-
PFL achieves a significant performance improvement with a 3.75% relative improvement in accu-
racy compared to the benchmarks. On more challenging datasets with greater domain shift, such
as CINIC-10 and M-ImageNet, CO-PFL is still better than the optimal benchmark with a 2.83%
relative improvement.

Figure 4 shows that the proposed CO-PFL not only achieves the highest accuracy but also exhibits
significantly faster convergence and enhanced stability compared to baseline algorithms. In con-
trast, other benchmark algorithms tend to suffer from convergence oscillations or experience early
performance saturation. However, our proposed CO-PFL consistently improves in a smooth and
monotonic fashion, reaching convergence within approximately 75 communication rounds. Further-
more, Fig. 4 highlights the complementary roles of MAMO, PWPM, and COWA in promoting local
model stability, enhancing personalized adaptation, and facilitating effective collaboration under
data heterogeneity, thus collectively contributing to the robustness and generalization of the learning
process.

Table 2: Performance (%) of CO-PFL on CIFAR10 under different personalization rates p and
budgets γ.

γ = 0.05 γ = 0.30 γ = 0.50 γ = 0.80

p = 0.01 78.08 78.39 78.66 77.90
p = 0.05 79.51 80.49 81.79 81.12
p = 0.15 – 80.71 82.14 81.12
p = 0.25 – 81.70 82.86 82.14
p = 0.40 – – 82.19 81.43
p = 0.50 – – 67.32 81.79

Effect of personalization rate and budget. Table 2 highlights the impacts of person-
alization rate p and personalization budget γ on the convergence accuracy, where p ∈
{0.01, 0.05, 0.15, 0.25, 0.40, 0.50} and γ ∈ {0.05, 0.30, 0.50, 0.80} to examine the sensitivity of
the model to different personalization configurations. The personalized parameter exploration ex-
periments on other datasets are reflected in Appendix D.

In one extreme case, with p = 0.01 and γ = 0.05, the model behaves similarly to vanilla FedAvg,
offering minimal personalization and yielding limited accuracy. In another extreme case, p = 0.50
and γ = 0.50 lead to predominantly local training, resulting in severe performance degradation
(67.32%) due to overfitting and instability. In contrast, setting p = 0.25 and γ = 0.50 results in the
highest accuracy of 82.86%, which shows that moderate personalization maintains a favorable bal-
ance between global coordination and local adaptation. Across datasets, the optimal personalization
hyperparameters require modest per-dataset tuning, but the qualitative trend mirrors that observed
on CIFAR-10. Detailed results for the remaining datasets are provided in the Appendix D.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175 200
Communication Rounds

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

CIFAR10 - With MAMO
CIFAR10-C - With MAMO
CINIC10 - With MAMO
CIFAR10 - Without MAMO
CIFAR10-C - Without MAMO
CINIC10 - Without MAMO

Figure 3: The convergence behaviors for CO-PFL
with and without MAMO module.

Impact of MAMO module. As shown in
Fig. 3, under a consistent training configuration
with learning rate set to 1× 10−5, personaliza-
tion rate p = 0.25, and personalization bound
γ = 0.5, MAMO consistently reduces training
loss across all datasets. Figure 3 underscores
the significance of tailoring the optimization
trajectory to structurally decoupled submodels
for PFL. By restricting momentum updates to
the selected submodel, the proposed MAMO
module effectively alleviates gradient interfer-
ence between shared and personalized submod-
els. As a result, MAMO typically achieves sta-
ble convergence within the initial 75 commu-
nication rounds. The consistent performance
gains observed across diverse experimental settings validate MAMO’s capability to facilitate ef-
fective learning of personalized submodels under conditions of pronounced data heterogeneity and
limited local data. Such observations collectively demonstrate that MAMO enhances both the ro-
bustness and communication efficiency of the overall federated learning process.

Table 3: Ablation studies of the COWA module.

Datasets Components Acc (% )Grad Pred

CIFAR10
✗ ✗ 80.62
✗ ✓ 82.23
✓ ✗ 81.43
✓ ✓ 82.86

CIFAR10C
✗ ✗ 78.71
✗ ✓ 78.97
✓ ✗ 79.20
✓ ✓ 79.42

Ablation studies of the COWA. We evalu-
ate the impact of two key components in our
contribution score calculation. Table 8 presents
the results across two datasets: CIFAR10, CI-
FAR10C. For hyperparameters, we use a learn-
ing rate of 1× 10−4, with personalized param-
eter settings of p = 0.25 and γ = 0.5, which
are found to be the optimal combination on CI-
FAR10. The supplementary materials present
the results on additional datasets. In the exper-
iment, the numerical distributions of the score
are at the same level. Even if one dominates,
the other still plays a complementary role in some datasets/scenarios. Table 8 indicates that both
components are essential to improve model performance. Specifically, on CIFAR10, the highest
accuracy of 82.86% is achieved when both gradient-based and prediction-based scores are incor-
porated. Omitting either component leads to a performance drop: using only the gradient-based
score yields 81.43%, while using only the prediction-based score yields 82.23%. These ablation
results highlight the complementary roles of the two components in enhancing model performance
and validate the effectiveness of the core aggregation mechanism in the CO-PFL algorithm.

Effect of data size and heterogeneity. Appendix D explores the changes in algorithm perfor-
mance with the degree of data heterogeneity.The results show that the CO-PFL can achieve excellent
personalized performance when the number of training samples held by the client for each category
is {10, 50, 100, 200}.

6 CONCLUSIONS

Our proposed CO-PFL can adaptively select model parameters for client-specific personalization
while simultaneously performing dynamic, information-complementary global aggregation over the
remaining shared parameters. CO-PFL provides a unified and practical solution to advance the local
personalization and global collaboration in federated learning under heterogeneous and resource-
constrained environments. By jointly evaluating gradient and prediction scores across client up-
dates, CO-PFL effectively quantifies the cross-client utility of each update, thereby enabling more
informed and balanced global aggregation. To further support personalized adaptation and training
stability, CO-PFL incorporates a PWPM module to dynamically select locally relevant parameters
and a MAMO module to decompose the optimization dynamics of shared and personalized sub-
models. These two modules can collectively mitigate aggregation bias, enhance coordination among
heterogeneous clients, and improve the personalization performance of our proposed CO-PFL.

9
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REPRODUCIBILITY STATEMENT

The source codes are available in To be filled in https://anonymous.4open.science/r/
CO-PFL/README.md.
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A LARGE LANGUAGE MODELS

We used Large Language Models only to aid or polish the writing of this manuscript.

B ALGORITHM

We provide the pseudocode for the algorithms executed on the client side as algorithm 2.

C DETAILS OF EXPERIMENTAL SETUP

C.1 DATASET AND MODELS

We consider image classification tasks and evaluate CO-PFL on four real-world benchmark datasets,
i.e., CIFAR10 Krizhevsky et al. (2009), CIFAR10C Hendrycks & Dietterich (2019), CINIC10 He
et al. (2020), and M-ImageNet Vinyals et al. (2016). CIFAR10 consists of 60,000 RGB images of
size 32 × 32 across 10 classes, with 50,000 training samples and 10,000 test samples. CIFAR10C
introduces 15 types of corruptions to the CIFAR10 test set (each at severity level 5), generating 15
corrupted variants per image. CIFAR10C is widely used to evaluate model robustness under distri-
bution shifts. CINIC10 is a hybrid dataset composed of samples from CIFAR-10 and downsampled
ImageNet with the same 10 categories. CINIC10 contains 270,000 images, evenly split into training,
validation, and test subsets. M-ImageNet consists of 100 classes sampled from ImageNet, resulting
in 50,000 training and 10,000 test samples. Images in M-ImageNet are resized to 84 × 84 resolu-
tion, whereas images in the other datasets retain their original resolution of 32 × 32. To validate
our CO-PFL, we adopt a randomly initialized ResNet-18 as the backbone model throughout our
experiments.
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Algorithm 2 Client(wk
0 ,m

k
0 ,Mn)

Require: Learning rate η, momentum factors β1 and β2, number of local iterations T , personaliza-
tion budget γ, and personalized rate p

1: /* MAMO-Personalized Submodel Update */
2: Set wk,0

n = wk
n

3: for t = 0, . . . , T − 1 do
4: Each client n selects the personalized mask hk

n via equation 3 and updates the personalized
submodel via equation 4 and equation 5

5: end for
6: Each client n sets pk,Tn = wk,T

n ◦mk
n

7: /* MAMO-Shared Submodel Update */
8: Set wk,0

n = wk
n

9: for t = 0, . . . , T − 1 do
10: Each client n selects the shared mask hk

n via equation 3 and updates the shared submodel via
equation 4 and equation 5

11: end for
12: Each client n sets gk,Tn = wk,T

n ◦ (1−mk
n)

13: Each client n calculates wk+1
n = gk,Tn + pk,Tn

14: /* PWPM */
15: Each client n computes the difference as ∆wk

n =
∣∣δkn∣∣

16: Each client n selects top-p elements of ∆wk
n and update mk+1

n subject to the constraint
∥mk+1

n ∥ ≤ γd
17: Each client n updates the personalized and shared submodels as

pk+1
n = wk+1

n ◦mk+1
n and gk+1

n = wk+1
n ◦ (1−mk+1

n )

18: /* COWA */
19: Each client n updates gradient score Γgrad

n via equation 8
20: Each client n updates prediction score Γpred

n via equation 9
21: Each client n updates the contribution score as Γk+1

n = Γgrad
n + Γpred

n

22: return wk+1
n ,mk+1

n ,Γk+1
n

Table 4: Summary of real-world datasets used in our personalized federated learning experiments.
Dataset Samples Feature Dim Classes Notes
CIFAR10 60,000 32× 32 {0, 1, · · · , 9} A standard benchmark dataset with

10 classes; we induce label distri-
bution shift by assigning different
class subsets to each client.

CIFAR10C 750,000 32× 32 {0, 1, · · · , 9} Derived from CIFAR10 with added
synthetic corruptions (e.g., blur,
noise, weather), introducing both
label shift and feature shift.

CINIC10 270,000 32× 32 {0, 1, · · · , 9} Constructed by combining CI-
FAR10 and ImageNet-derived
images across the same 10 cate-
gories; introduces both label and
feature distribution shift due to
heterogeneous data sources.

M-ImageNet 60,000 84× 84 {0, 1, · · · , 99} A 100-class dataset sampled from
ImageNet; we impose label distri-
bution shift by randomly assigning
class subsets to each client.
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C.2 DATA PARTITIONING

We follow the protocol introduced in Li et al. (2021a); Tamirisa et al. (2024), where the number of
local training samples per client is constrained to ensure that collaborative federated optimization is
essential to achieve strong performance, rather than relying solely on local training. In all experi-
ments, training data are distributed to clients in a heterogeneous manner. Specifically, we adopt a
label-partitioning strategy in which each client receives data from only s classes, with the number of
training samples per class limited by a fixed boundMbound. For the main experiments, we set s = 2
andMbound = 50 on CIFAR10, CIFAR10C, and CINIC10, which means that each client is assigned
50 training samples from each of two classes. For M-ImageNet, we employ a more diverse setting
with s = 10 andMbound = 50, allowing each client to access 50 training samples from 10 randomly
selected classes. For evaluation, test data are partitioned in the same class-restricted manner as the
training set. Each client is assigned 100 test samples per class, i.e.,Mbound = 100 for all test sets.

C.3 TYPES OF DISTRIBUTIONAL SHIFT

We investigate three representative types of distributional shift in federated learning, i.e., label shift,
feature shift, and a compound shift that combines both. For both CIFAR10 and M-ImageNet, we
adopt a label-based partitioning strategy in which each client is assigned data from a distinct subset
of class labels, resulting in a non-overlapping sample distribution across clients. As a result, the
label distribution becomes skewed across clients, since different clients are exposed to disjoint sets
of classes. Such heterogeneous setting reflects real-world scenarios where users or edge devices
typically generate data concentrated in specific semantic categories. In the CIFAR10C experiment,
feature distribution shift is explicitly introduced by assigning each client a distinct corruption type
(e.g., blur, noise, or compression) at severity level 5, applied uniformly to all local samples. The
resulting configuration exhibits compound distributional heterogeneity, with clients differing in both
label and feature distributions. In the CINIC10 setup, training samples for each class are sourced
from multiple origins (e.g., CIFAR10 and downsampled ImageNet), leading to inherent feature-
level heterogeneity. When label-based sampling is applied on top of this source-level diversity, the
resulting client datasets exhibit both label and feature distribution shifts. The use of heterogeneous
datasets with different types and levels of distributional shift enables a comprehensive evaluation
of the robustness and personalization capabilities of personalized federated learning methods under
varying degrees of statistical heterogeneity Li et al. (2021a).

C.4 IMPLEMENTATION DETAILS

To promote fairness and reproducibility in the evaluation of the CO-PFL under diverse personalized
federated learning scenarios, we provide a comprehensive overview of hyperparameter configura-
tions used throughout our experiments. This includes details on benchmarks and hyperparameters.

Compared Methods. We compare the proposed CO-PFL with a comprehensive set of baseline
approaches that span multiple personalization paradigms in federated learning. Local Only serves
as the lower bound, where each client trains its model independently using local data, without any
communication or collaboration across clients. FedAvg McMahan et al. (2017) is the standard
algorithm that learns a consensus model by averaging client updates; its personalized variant, Fe-
dAvg+FT, performs local fine-tuning on each client after global training. Moreover, We include
parameter decoupling methods that partition the model into shared and personalized submodels.
FedPer Arivazhagan et al. (2019) keep a shared feature extractor and learn a personalized classifier
head on each client. LG-FedAvg Liang et al. (2020) adopts the opposite strategy, allowing each
client to maintain its own feature extractor while sharing the classifier layer globally. We further
evaluate against recent adaptive personalization approaches. FedPAC Xu et al. (2023) aligns local
and global features by coordinating client classifiers via a collaborative prediction mechanism. Fed-
Select Tamirisa et al. (2024) dynamically determines which parameters to personalize for each client
based on local gradient statistics, but aggregates client updates using uniform averaging regardless of
their quality or informativeness. These benchmarks provide a strong comparative foundation across
local, global, and hybrid personalization strategies. Although recent methods support fine-grained
personalization, the relative importance of client contributions is often neglected during aggregation.
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Table 5: Personalized accuracy (%) of different methods on four datasets. CO-PFL achieves the best
performance across all benchmarks.

CIFAR10 CIFAR10C CINIC10 M-ImageNet

Local Only 74.60 66.75 65.40 33.31

FedAvg 62.45 68.40 66.90 31.99
FedAvg+FT 69.90 70.05 69.25 33.44

LG-FedAvg 78.30 75.70 71.40 33.38
FedPer 79.80 70.10 70.975 34.53
FedPAC 79.25 76.40 69.05 34.29
FedSelect 80.09 76.34 72.67 37.24

Ours 82.86 79.42 73.82 38.76
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Figure 4: Convergence of test accuracy for CO-PFL and benchmarks over communication rounds.

Hyperparameters. We conduct experiments on CIFAR10, CIFAR10C, CINIC10, and M-
ImageNet. For CIFAR10 and CIFAR10C, the number of clients is set to N = |C| = 10, with
each client assigned s = 2 classes. For M-ImageNet and CINIC10, we configure the number of
clients as N = 20. Each client is assigned data from s = 10 classes in M-ImageNet and s = 2
classes in CINIC10. In the main experiments, the local batch size is set to 32 and the number of
local training iterations is fixed to 3. To evaluate model adaptability under different personalization
levels, the personalization ratio p is set as p ∈ [0.01, 0.05, 0.20, 0.50], and the personalization bud-
get γ is adjusted as γ ∈ [0.05, 0.30, 0.50, 0.80]. For CO-PFL, the learning rate η is selected from
{1× 10−4, 1× 10−5} across all experiments. To ensure fair comparison, we tune the learning rate
for all baseline methods from {1×10−2, 1×10−3, 1×10−4} and report their best performance. To
investigate the impact of dataset size on the performance of personalized federated learning meth-
ods, we vary the training sample boundMbound ∈ {10, 50, 100, 200} and compare the performance
of the proposed method against benchmark approaches under heterogeneous datasets of varying
complexity. Unless otherwise specified, we adopt the hyperparameter configurations in FedPAC Xu
et al. (2023) for all baseline methods to ensure consistency and fairness.

D EXPERIMENTAL RESULTS

Personalization Comparison. We evaluate CO-PFL on four datasets under varying client and
data configurations. Specifically, 10 clients are used for CIFAR10 and CIFAR10C, resulting in a
total of 1,000 training samples and 2,000 test samples. For CINIC10 and M-ImageNet, we adopt 20
clients, yielding 2,000 training samples and 4,000 test samples in total.

The proposed CO-PFL consistently outperforms all baseline methods in terms of test accuracy across
all datasets and demonstrates its effectiveness under both standard and personalized federated learn-
ing scenarios. In particular, CO-PFL achieves superior performance by integrating dynamic parame-
ter personalization with contribution-aware aggregation, thereby enabling both effective local adap-
tation and collaborative knowledge transfer in heterogeneous environments. It is also worth noting
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Figure 5: Performance of CO-PFL on CIFAR10 with varying personalization rates p and budgets γ.

that FedAvg with local fine-tuning (FedAvg+FT) already serves as a strong baseline for personalized
federated learning, achieving performance comparable to several recent approaches . Nonetheless,
CO-PFL surpasses it by a clear margin, underscoring the benefits of adaptive personalization and
informed aggregation strategies.

Table 6: Performance (%) of CO-PFL on CIFAR10 under different personalization rates p and
budgets γ.

γ = 0.05 γ = 0.30 γ = 0.50 γ = 0.80

p = 0.01 78.08 78.39 78.66 77.90
p = 0.05 79.51 80.49 81.79 81.12
p = 0.15 —- 80.71 82.14 81.12
p = 0.25 —- 81.7 82.86 82.14
p = 0.40 —- —- 82.19 81.43
p = 0.50 —- —- 67.32 81.79

Table 7: Performance (%) of CO-PFL on CIFAR10C under different personalization rates p and
budgets γ.

γ = 0.05 γ = 0.30 γ = 0.50 γ = 0.80

p = 0.01 75.18 78.62 78.08 78.97
p = 0.05 77.86 77.37 78.39 78.75
p = 0.15 —- 77.81 79.42 78.44
p = 0.25 —- 77.37 78.35 78.21
p = 0.40 —- —- 78.62 78.57
p = 0.50 —- —- 78.66 78.26

COPFL yields a 3.29% relative improvement in accuracy compared to the benchmarks. Compared
to methods such as FedAvg and FedAvg+FT, CO-PFL consistently delivers higher personalized ac-
curacy and more stable convergence. On CIFAR10 and CIFAR10C, CO-PFL achieves a significant
performance improvement with a 3.75% relative improvement in accuracy compared to the bench-
marks. On more challenging datasets with greater domain shift, such as CINIC10 and M-ImageNet,
CO-PFL is still better than the optimal benchmark with a 2.83% relative improvement.
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Figure 4 shows that the proposed CO-PFL not only achieves the highest accuracy but also exhibits
significantly faster convergence and enhanced stability compared to baseline algorithms. In contrast,
other benchmark algorithms tend to suffer from convergence oscillations or experience early perfor-
mance saturation. However, our proposed COPFL consistently improves in a smooth and monotonic
fashion, reaching convergence within approximately 75 communication rounds. Furthermore, Fig.
4 highlights the complementary roles of mask-aware momentum (MAMO), parameter-wise person-
alization mechanism (PWPM), and contribution-oriented weight aggregation (COWA) in promoting
local model stability, enhancing personalized adaptation, and facilitating effective collaboration un-
der data heterogeneity, thus collectively contributing to the robustness and generalization of the
learning process.

Effect of Personalization Ratio and Budget. In this section, we examine the impact of the per-
sonalization rate p and the personalization budget γ on model performance. We adopt the same
data partitioning strategy as in the main CIFAR10 experiments: each client is assigned 100 training
samples and 200 test samples, with 10 clients participating in fully federated training. Each client
holds data from 2 distinct image classes. Table 6 reports the experimental results under different
values of p and γ, illustrating how these personalization configurations influence the final accuracy.

To evaluate the effectiveness of CO-PFL under different degrees of personalization, we conduct
experiments on CIFAR10 by varying the personalization ratio p and the personalization budget γ.
The results are reported in Table 6 and visualized in Fig. 5.

As shown in the results, we observe that both excessively low and excessively high personalization
levels degrade performance. At one extreme, when p = 0.01 and γ = 0.05, the model is close
to pure FedAvg with minimal local adaptation, resulting in limited accuracy. At the other extreme,
when p = 0.50 and γ = 0.50, the model effectively degenerates into purely local training, resulting
in performance collapse (67.32%) due to overfitting or unstable updates. Between these extremes,
a clear performance improvement is observed with moderate personalization. Specifically, setting
p = 0.25 and γ = 0.50 achieves the best performance of 82.86%, indicating that appropriate
flexibility in both the number of personalized parameters and the extent of local updates leads to
effective model adaptation. Increasing γ allows more parameters to be personalized, while control-
ling p prevents overfitting under personalized budget. This balance demonstrates the potential of
our framework to unify shared and personalized submodels fine-tuning. Moreover, the performance
remains consistently high when increasing p under a fixed γ = 0.50, until an inflection point at
p = 0.50, beyond which performance collapses. This trend further validates that overly aggressive
personalization introduces instability, and careful control of parameter selection is crucial.

Table 7 reports the sensitivity of CO-PFL to (p, γ) on CIFAR-10C. The overall trend also presents a
clear moderate personalized optimal rule. On CIFAR-10C, the same setting reaches 79.42%. Both
extreme personalized values at both ends will lead to performance degradation; when p = 0.01, γ =
0.05, CIFAR-10C only has an accuracy of 75.18%; when p = 0.50, γ = 0.50, CIFAR-10C is also
below the optimal point.

When γ is increased from 0.05 to 0.50, there is a significant improvement in the moderate p interval
(such as p = 0.25); continuing to increase to γ = 0.80 results in a slight decline overall, indicat-
ing that overly broad personalized submodels will weaken cross-client sharing and generalization.
Conversely, under very small p (such as p = 0.01), increasing γ yields limited benefits, suggesting
that simply expanding capacity without ”enabling” the personalized ratio is difficult to bring about
improvements.

Empirically, it is recommended to start with p = 0.25, γ = 0.50 as the default: this point is in
the peak or near-peak interval on both datasets, achieving a better balance between ”global coor-
dination” and ”local adaptation”; if data heterogeneity is stronger, γ can be slightly increased on
this basis; if early oscillation or overfitting signs are observed, p should be moderately decreased.
This strategy maintains stable convergence while avoiding performance collapse caused by extreme
values at both ends.

Effect of Mask-Aware Momentum Optimization. As shown in Fig. 6, under a consistent training
configuration with learning rate set to 1× 10−5, personalization rate p = 0.15, and personalization
budget γ = 0.50, our proposed MAMO Optimization consistently reduces the training loss across
all datasets, including CIFAR10, CIFAR10C, CINIC10 and M-ImageNet.
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Figure 6: The convergence behaviors for CO-PFL with and without MAMO module

These results highlight the importance of tailoring the optimization trajectory for the structurally
decoupled parameters in personalized federated learning. By confining momentum updates to the
selected parameter subset, MAMO mitigates gradient interference between shared and personalized
parameters, leading to more stable convergence. The clear improvement observed in all cases con-
firms that MAMO effectively supports the learning of personalized subnetworks, especially under
heterogeneous and data-scarce conditions, thereby enhancing the robustness and efficiency of the
overall framework.

Table 8: Ablation experiment on the contribution score calculation module.

Dataset Components Accuracy(%)
Gradient Prediction

CIFAR10

✗ ✗ 80.62
✗ ✓ 82.23
✓ ✗ 81.43
✓ ✓ 82.86

CIFAR10C

✗ ✗ 78.71
✗ ✓ 78.97
✓ ✗ 79.20
✓ ✓ 79.42

M-ImageNet

✗ ✗ 36.77
✗ ✓ 37.88
✓ ✗ 37.01
✓ ✓ 38.76

CINIC

✗ ✗ 46.63
✗ ✓ 72.84
✓ ✗ 72.66
✓ ✓ 73.82

Ablation studies of the COWA. In this ablation study, we evaluates the impact of two key compo-
nents in our contribution score calculation—gradient-based contribution and prediction-based con-
tribution. Table 8 presents the results across four datasets: CIFAR10, CIFAR10C, M-ImageNet, and
CINIC. For the experiments, we used a learning rate of 1 × 10−4, with the personalized parameter
settings of p = 0.25 and γ = 0.50, which were found to be the optimal combination.

The results indicate that both components are essential for enhancing model performance. Specifi-
cally, for CIFAR10, the model achieves the highest accuracy (82.86%) when both gradient-based and
prediction-based contributions are incorporated. Omitting either component leads to reduced perfor-
mance: using only the gradient-based contribution yields 81.43%, while using only the prediction-
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based contribution yields 82.23%. These findings highlight the complementary roles of the two
components in improving model effectiveness.

A similar trend is observed on CIFAR10C, where the best accuracy (79.42%) is achieved when
both components are applied together. Excluding either component slightly reduces perfor-
mance—79.20% when using only the gradient-based contribution and 78.97% when using only
the prediction-based contribution. These findings further emphasize the importance of combining
both components, particularly in scenarios involving heterogeneous data distributions. Notably, the
prediction-based contribution proves more effective than the gradient-based contribution when used
in isolation.

Table 9: Comparison of performance (%) on CIFAR10 when varying the training data sizeMbound

per client. Each client was assigned with 2 classes.
Methods Mbound = 10 Mbound = 50 Mbound = 100 Mbound = 200

Local Only 50.96 74.60 75.15 81.70
FedAvg 24.30 62.45 76.85 82.30
FedAvg+FT 53.70 69.90 79.20 83.05
LG-FedAvg 64.90 78.30 82.70 85.20
FedPer 61.35 79.80 79.90 84.65
FedPAC 65.10 79.25 80.45 84.30
FedSelect 70.31 80.09 82.77 85.13
CO-PFL 72.28 82.86 83.44 86.07

For M-ImageNet and CINIC10, the significance of the two components becomes even more pro-
nounced. On M-ImageNet, the accuracy increases from 36.77% to 38.76% when both contributions
are included. On CINIC10, the accuracy improves dramatically from 46.63% to 73.82%. When
neither component is used, the training process becomes unstable and collapses midway, resulting
in a sharp decline in accuracy. Incorporating the contribution score components stabilizes training
and consistently enhances accuracy.

In summary, the ablation study clearly demonstrates that both gradient-based and prediction-based
contributions are critical for personalized federated learning. Leveraging both components enables
CO-PFL to achieve superior performance across diverse datasets, validating its robustness and ef-
fectiveness under heterogeneous and data-limited federated learning conditions.

Table 10: Comparison of performance (%) on CIFAR10C when varying the training data size
Mbound per client. Each client was assigned with 2 classes.

Methods Mbound = 10 Mbound = 50 Mbound = 100 Mbound = 200

Local Only 64.05 66.75 79.30 80.30
FedAvg 52.55 68.40 73.45 76.70
FedAvg+FT 55.70 70.05 75.15 79.95
LG-FedAvg 63.05 75.70 79.15 84.85
FedPer 67.00 70.10 80.50 85.20
FedPAC 64.45 76.40 77.26 83.00
FedSelect 70.49 76.34 78.30 84.15
CO-PFL 70.27 79.42 83.04 85.76

Effect of data size and heterogeneity. We evaluate the performance of CO-PFL and benchmarks
on CIFAR10 and CIFAR10C under varying amounts of training data per client, with each client
assigned 2 classes to maintain consistent label space heterogeneity. The range of sample sizes in the
training set isMbound ∈ {20, 100, 200, 400}, while the size of the test set remains 200 and there is
no overlap with the training set.
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As shown in Tables 9 and 10, the performance of all benchmarks improves with increased local data.
However, CO-PFL consistently achieves the best results across all regimes, particularly under scarce
and highly heterogeneous conditions. In the scarce regime (Mbound = 10), CO-PFL outperforms
all benchmarks by a notable margin. On CIFAR10, it achieves 72.28%, exceeding the second-
best method (FedSelect, 70.31%) by 1.97%; on CIFAR10C, it reaches 70.27%, nearly matching
the best baseline (FedSelect, 70.49%) despite the added feature distribution shifts. Experimental
results demonstrate the advantage of contribution-oriented aggregation and selective personalization
in mitigating optimization bias caused by scarce and heterogeneous data.

At Mbound = 100, CO-PFL achieves 83.44% and 83.04% on CIFAR10 and CIFAR10C respec-
tively, outperforming the FedSelect by 0.67% and 4.74%. Notably, CO-PFL continues to scale well
with larger datasets, reaching 86.07% on CIFAR10 and 85.76% on CIFAR10C atMbound = 200,
reflecting strong generalization even under less constrained local training conditions. The results in
CIFAR10C further highlight CO-PFL’s robustness under distributional shift, where both label and
feature shifts coexist. Although most benchmarks exhibit reduced or unstable performance in this
setting, CO-PFL maintains consistent improvements across all data scales, showcasing its ability to
unify personalization and collaboration across heterogeneous clients.

Experimental results confirm that the integration of COWA, PWPM, and MAMO optimization en-
ables CO-PFL to adapt effectively across a wide range of heterogeneous federated settings.
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