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Abstract

In the era of information explosion, the rapid
growth of multilingual and multi-domain tex-
tual data poses unprecedented challenges for
efficient storage and transmission. Traditional
lossless compression methods such as Huft-
man coding, LZ77, and zlib perform well
in certain scenarios but often rely on fixed
statistical rules. This limits their ability to
capture deeper linguistic structures, especially
in complex or domain-specific texts. To ad-
dress these limitations, we propose two large
language model-based lossless text compres-
sion methods: DeepSeekZip and LlamaZip,
which respectively integrate DeepSeek-8B and
Llama3-8B as predictive models with conven-
tional zlib compression. By leveraging the mod-
els’ capabilities in modeling complex language
patterns, our approach significantly enhances
compression performance. Extensive experi-
ments across various languages and text do-
mains demonstrate that DeepSeekZip and Lla-
maZip consistently achieve over 10% higher
compression rates than zlib alone. Notably,
DeepSeekZip performs better in Chinese text
compression, while both models show compa-
rable results in English. Furthermore, com-
pression effectiveness varies across domains:
news and medical texts are compressed more
efficiently than legal and technical ones. This
highlights the impact of structure, terminology,
and contextual dependencies on compression
outcomes.

1 Introduction

With the rapid advancement of the information age,
the exponential growth of textual data has posed un-
precedented challenges to storage and transmission
efficiency. Developing effective text compression
methods has thus become a pressing need, as it
not only reduces storage costs but also significantly
improves data transfer performance. Traditional
compression algorithms, such as Huffman coding
(Huffman, 1952) and LZ77 (Ziv and Lempel, 1977),

have performed well in some settings, but their re-
liance on fixed statistical patterns and rules restricts
their ability to capture complex semantic structures.
This is especially evident in domain-specific or
multilingual texts, where conventional techniques
often yield lower compression rates.

Classical lossless text compression methods
are generally classified into three categories. (1)
Dictionary-based approaches, such as LZ77 and
LZW, replace repetitive substrings to improve com-
pression ratio but fail to capture long-range depen-
dencies. (2) Statistical coding methods, such as
Huffman and arithmetic coding, model character-
level frequency but lack the ability to adapt to
complex contextual patterns. (3) Grammar-based
methods attempt to infer context-free grammar
rules for structural compression. However, the
grammar-based-methods suffer from high compu-
tational complexity and the absence of efficient
random access (Shannon, 1948), making them less
practical in real-world applications with dynamic
or multilingual data.

To overcome the representational limitations of
traditional methods, recent work has explored the
use of deep neural networks to capture complex
contextual structures. Goyal et al. (2018) proposed
DeepZip, which leverages RNN-based conditional
probability modeling combined with arithmetic
coding. Transformer-based architectures have fur-
ther improved the modeling of long-range depen-
dencies. RWKYV (Peng et al., 2023) introduces
linear attention mechanisms to retain contextual in-
formation while reducing inference overhead. Sim-
ilarly Perceiver (Jaegle et al., 2021) extends input
scalability via iterative attention.

Building on this trend, researchers have inte-
grated pre-trained language models into compres-
sion pipelines. Li et al. (2021) proposed two
Transformer-based strategies for enhanced text
compression: Explicit Text Compression (ETC)
and Implicit Text Compression (ITC). ETC em-



ploys a separate sequence-to-sequence compres-
sion model with attention mechanisms to extract
key semantic components, which are concatenated
with the original input to enrich the encoding pro-
cess. In contrast, ITC integrates the compression
module directly into a non-autoregressive decoder,
enabling end-to-end training and supporting seam-
less integration with downstream tasks such as ma-
chine translation. Both approaches effectively re-
duce input redundancy while maintaining task per-
formance and demonstrate strong transferability
across various NLP tasks. However, challenges
persist. ETC necessitates a considerable amount of
supervised data to define "key semantics," resulting
in significant annotation costs. Although ITC offers
greater flexibility, it may neglect low-frequency yet
critical information, which could lead to semantic
loss. Furthermore, ETC-generated compressed se-
quences often demonstrate low interpretability, and
ITC’s architecture demands extensive customiza-
tion to integrate with existing models. While these
methods show promise for semantic compression,
they still fall short of achieving robust lossless com-
pression performance and broad applicability.

Recent efforts have also explored leveraging
BERT for lossless compression. Oztiirk and Mesut
(2024) proposed MLMCompress, which utilizes
BERT’s bidirectional contextual prediction to es-
timate token distributions and integrates it with
arithmetic coding. The model achieves up to 38%
higher compression on English datasets compared
to NNCP and a 42% improvement in multilingual
tasks. Furthermore, MLMCompress operates up
to 35 times faster than GPTZip (Nishi et al., 2023)
in certain settings, with 20% faster compression
and up to 180% faster decompression. This demon-
strates the efficiency and practicality of contextual
modeling for compression. However, the use of
masked language modeling inherently imposes lim-
itations. BERT demonstrates continuity in predic-
tion and effectively models long-range semantics.
Furthermore, MLMCompress lacks optimization
for Chinese and other non-Latin languages.

As large language models (LLMs) continue to
evolve, their exceptional language modeling ca-
pabilities have made them increasingly attractive
for compression tasks. Pre-trained models such as
LLaMA and GPT learn high-quality token distribu-
tions over massive corpora, enabling accurate next-
token prediction for entropy coding. Valmeekam
et al. (2023) introduced LLMZip, which combines
LLaMA with arithmetic coding and achieves state-

of-the-art performance on English text. However,
most LLM-based methods to date primarily focus
on English, and their performance on Chinese or
domain-specific content remains underexplored.
To address these limitations, we propose a novel
lossless text compression framework based on two
competitive open-source LLMs: LlamaZip (based
on LLaMA3-8B (Al 2024b)) and DeepSeekZip
(based on DeepSeek-8B (Al 2024a)). Our method
utilizes the LLM to predict token-level probabilities
and subsequently applies standard z1ib compres-
sion to the residual errors. This hybrid approach
balances expressiveness and efficiency. Figure 1
illustrates the overall architecture of our compres-
sion framework, highlighting the two-stage process
from semantic modeling to entropy coding. We
evaluate the proposed methods on both Chinese and
English corpora, encompassing diverse domains
such as news, law, medicine, and technology. Ex-
periments results demonstrate that our approach
outperforms traditional zlib-based compression by
over 10% on average, with DeepSeekZip achieving
superior performance on Chinese text, and both
models perform comparably on English datasets.

Our contributions are threefold:

(1) We utilize a lossless text compression frame-
work that integrates large language models
with traditional entropy coding, thereby en-
hancing compression rate and generalizabil-

1ty.

(2) We conduct a comprehensive analysis of
model performance across various languages
and domains, emphasizing differences in
adaptability and robustness.

(3) We demonstrate the practical benefits of LLM-
based compression through extensive experi-
ments, providing new insights into language-
aware compression in multilingual contexts.

2 Related Work

In recent years, text compression has made sig-
nificant strides, with researchers exploring diverse
strategies to enhance compression efficiency and
modeling capability. This section reviews five ma-
jor methodological directions in the field.

2.1 Dictionary-based Compression.

Classic dictionary-based methods, such as LZ77
and LZ78 (Ziv and Lempel, 1977), replace repeated
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Figure 1: Semantic-to-Entropy Compression Pipeline. The LLM module generates token probability rankings,
which are subsequently compressed using entropy-based methods such as zlib.

substrings with shorter references. More recently,
L3TC (Zhang et al., 2025) leverages a lightweight
Transformer variant (RWKYV) combined with arith-
metic coding to achieve lower latency and com-
plexity. Chen et al. (Chen et al., 2003) further
proposed parallel dictionary lookup mechanisms
to enhance matching speed. However, dictionary-
based approaches face challenges in dynamic dic-
tionary construction, particularly in large-scale or
online compression settings where memory and
lookup overhead can become prohibitive. Multidic-
tionary systems can boost compression ratios but
significantly increase decoding complexity, which
limits their use in resource-constrained or real-time
devices.

2.2 Statistical Compression.

Statistical methods reduce redundancy by encod-
ing symbol frequencies. Huffman coding (Huff-
man, 1952) and arithmetic coding (Witten et al.,
1987) are foundational examples. Recently, k-th
order context models augmented with neural net-
works, such as RWKYV (Peng et al., 2023), have im-
proved probabilistic estimation. Additionally, hy-
brid pipelines such as BWT+MTF+RLE (Adiego
et al., 2007) perform well in compressing struc-
tured data. However, high-order models require
large context buffers, resulting in increased mem-
ory usage and reduced adaptability to data streams
with changing distributions.

2.3 Grammar-based Compression.

Grammar-based methods aim to infer context-free
grammar rules that capture the underlying struc-
ture of text. Techniques based on smallest gram-
mar approximation and grammar induction un-

der higher-order entropy constraints have shown
promise (Ganczorz, 2018). However, these ap-
proaches suffer from computational intractability
(NP-hardness) and often relying on heuristics that
struggle with long sequences. Moreover, the re-
sulting compressed data structures lack efficient
random access, and their decoding speed is sub-
optimal, which limits their deployment in time-
sensitive scenarios.

2.4 Neural Arithmetic Coding.

Combining neural models with arithmetic coders
has recently emerged as a promising direction in
the field. L3TC (Zhang et al., 2025) employs
adaptive context modeling to dynamically adjust
token probabilities, approaching entropy bounds
while alleviating the bottlenecks of arithmetic cod-
ing through parallel block encoding. Nonetheless,
arithmetic coding requires high-precision floating-
point operations, rendering it unsuitable for low-
end devices or real-time compression tasks due to
its computational demands and sensitivity to nu-
merical instability.

2.5 LLM-based Compression.

Large language models (LLMs) such as LLaMA
and GPT have garnered significant attention in the
field of text compression due to their robust contex-
tual modeling capabilities. LLMZip (Valmeekam
et al., 2023) demonstrates the feasibility of com-
bining LLaMA3-8B with arithmetic coding to
achieve superior compression ratios on English cor-
pora. However, LLMZip suffers from extreme la-
tency—compressing just 10MB of text can take
up to 9.5 days—raising serious concerns about
its practicality. To address this challenge, Mittu



et al. (2024) introduced FineZip, a novel LLM-
based compression framework incorporating on-
line memory and dynamic context windows. By
leveraging parameter-efficient fine-tuning (PEFT),
FineZip reduces compression time from 9.5 days
to 4 hours—a 54-fold improvement—while main-
taining comparable compression ratios. It also sur-
passes traditional algorithms by achieving approx-
imately 50% better compression rates on bench-
mark datasets. This work demonstrates that while
LLM-based compression remains computationally
intensive, its performance bottlenecks can be miti-
gated through architectural and optimization-level
innovations.

2.6 Motivation and Gap.

Building upon these insights, we propose two
LLM-based compression systems: LlamaZip and
DeepSeekZip, which are based on LLaMA3-8B
and DeepSeek-8B, respectively. Unlike prior works
that primarily focus on English, we conduct a com-
prehensive evaluation across both English and Chi-
nese corpora, covering multiple domains including
news, medicine, law, and technology.

3 Method

We propose a two-stage compression framework
that integrates the semantic modeling capabilities
of large language models (LLMs) with traditional
lossless compression techniques. Our approach
comprises of a Semantic Compression Module
and a Secondary Compression Module. This sec-
tion provides a detailed overview of both modules
and their mathematical formulations.

3.1 Semantic Compression Module

This module leverages LLMs to estimate the condi-
tional probability distribution of each token based
on the context, subsequently encoding the rank of
the true token. The objective is to utilize the LLM’s
language understanding to convert raw tokens into
a more compressible rank sequence.

3.1.1 Context Modeling and Temperature
Scaling
Given a token context X = [z;_pr, ..., 2¢—1], the
LLM predicts the next token probability distribu-
tion:
P(a, | X) = LLM(X) (1)

To control sampling diversity, a temperature pa-
rameter 7' is introduced to rescale the output distri-

bution:
pUT

J-J

When T — 0, the model becomes deterministic:

Qi = 3)

1 if P, = max(P)
0 otherwise
We set T' = 0 in all experiments to ensure deter-
ministic outputs and enable reproducible, lossless
decompression.

3.1.2 Rank-Based Encoding

Instead of storing tokens directly, we record the
rank of each ground-truth token under the LLM’s
predicted distribution. The rank is computed as:

Ry =rank(P(w | X)) —1 4)

where w is the true token at position ¢, and the
ranking is zero-based—the most probable token
has rank 0.

The final encoded sequence becomes:

{R1,Rg,..., Ry} 5)

Example: Consider the sentence “Artificial in-
telligence is rapidly advancing,” tokenized as “Arti-
ficial,” “intelligence,” “is,” “rapidly,” “advancing.”
Using a context window of size M = 4, the LLM
receives the first four tokens and predicts the fifth.
Suppose the predicted token probabilities are:

Candidate Token Probability

“advancing” 0.50
“evolving” 0.30
“expanding” 0.15
“adapting” 0.05

Table 1: Predicted token distribution.

Here, “advancing” is the correct token, ranked
first in terms of probability. Using zero-based
indexing, its final rank is 0. Thus, this token is
encoded as 0. Repeating this procedure over the
entire sequence results in a compact, rank-encoded
representation.

This design utilizes the LLM’s comprehension
of token dependencies to semantically compress
text while maintaining reversibility.



3.2 Secondary Compression Module

Although the rank sequence is more compact than
the original text, further compression is achievable
through entropy coding. We utilize the Zlib li-
brary, which implements the DEFLATE algorithm
by combining L.Z77 and Huffman coding.

3.2.1 LZ77 Encoding

LZ77 minimizes redundancy by identifying re-
peated substrings within a sliding window. It en-
codes each match as a tuple (length, distance) or
outputs a literal character when no match is found.

Let W represent the sliding window size, .S de-
note the search buffer, and p the current position.
The match length L and distance D satisfy:

L =max{l| S[p—1:p] = Sp—D—-1:p-D]|},
D<W
(6)

3.2.2 Huffman Coding

Huffman coding assigns shorter bit sequences to
more frequent symbols. Let p(s) be the probability
of symbol s, and [(s) its code length. Then:

H(S) <E[l(s)] < H(S) +1 (7
where the entropy H (S) is defined as:

H(S) == p(s)logs p(s) ®)

3.2.3 Bit Cost Estimation

To estimate the final compressed size, we compute
the total number of bits in the output bitstream. Af-
ter the rank sequences are passed through Huffman
encoding, the bit length of each symbol s is de-
noted by [(s), as introduced in Equation 7. The
overall bit cost of the Zlib-compressed stream can
be expressed as:

leib — Bmeta + Z Z(S) (9)

sestream
Here, Bpeta accounts for the overhead intro-
duced by Zlib, including format headers, Huffman
tree descriptors, and other control structures. The
summation term represents the total number of bits
consumed by symbol-level encoding in the stream.
Together, the semantic module reduces the en-
tropy of the input by utilizing high-level language
structures, while the Zlib module further minimizes
bit-length through statistical coding. This hybrid
approach achieves strong compression ratios while

preserving exact reconstructability.

4 Experiments

4.1 Datasets

We wuse the text8 corpus from http:
//mattmahoney.net/dc/text8.zip as our
base dataset. The text8 corpus is a cleaned,
compressed excerpt of Wikipedia articles, which is
widely employed in benchmarking text compres-
sion. To evaluate multilingual and domain-specific
performance, we categorize text8 into four
segments—Medical, Legal, News, and Techni-
cal—and use GPT-40 to generate corresponding
Chinese translations. Note that we focus on
small-scale data, with each text sample limited
to around 10 KB, to examine the effectiveness of
lightweight compression strategies.

The four domain subsets are described as fol-
lows:

(1) Medical Text: Includes medical literature,
case reports, and clinical descriptions, rich
in domain-specific terminology and syntactic
complexity.

(2) Legal Text: Contains excerpts from legal
codes and court decisions, featuring highly
formal and nested grammatical structures.

(3) News Text: Covers journalistic commentary
and investigative reports, characterized by
journalistic vocabulary and structured phras-
ing.

(4) Technical Text: Consists of manuals and tech-
nical documentation, containing numerous
domain-specific and instruction-oriented ex-
pressions.

All datasets undergo identical preprocessing
steps, including text cleaning, tokenization, and
normalization, to ensure fairness and consistency
across all compression evaluations.

4.2 Experimental Setup

The experiments proceed in the following stages
(see Figure 2):

(1) Segmentation and Tokenization: Each doc-
ument is split into chunks suitable for LLM
input, followed by tokenization using each
model’s native tokenizer.

(2) Prediction and Compression: DeepSeek
or LLaMA models are used to compute
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Figure 2: The experimental workflow of our compression framework.

next-token probability distributions and rank-
ing sequences. These sequences are then
compressed using z1ib to produce final bit-
streams.

(3) Evaluation: Compression efficiency is mea-
sured using the space-saving rate n, computed
as:

_ Original Size — Compressed Size

Original Size
(10)

We conduct ablation experiments by vary-
ing the memory length parameter M €
{128,256,512,1024} for each LLM to study
the effect of context window size on compression
rates. For each domain and language (Chinese and
English), we select 5 representative 10 KB samples
from text8, compress them using both DeepSeek
and LLaMA models, and report the averaged re-
sults.

Hardware and Software Environment. All
experiments are conducted on identical GPU
servers. The compression pipeline is implemented
in Python using PyTorch for model loading and
inference.

4.3 Experimental Results

We conducted comparative experiments using both
LLaMA and DeepSeek models. For each, we se-
lected 5 Chinese and 5 English samples per do-
main (medical, legal, news, and technical) from
the text8 dataset. Each sample was approximately
10 KB in size. We then compressed these samples
using each language model and computed the aver-
age space-saving rate. Additionally, we performed
ablation studies by varying the memory length pa-
rameter M € {128,256,512,1024,2048}, to
evaluate the impact of context length on compres-
sion performance across different domains.

4.3.1 Experimental Variables
(1) Text Domains and Language Types

x100%.

Model M=128 M=256 M=512 M=1024
DeepSeekZip 42.09%  49.19%  56.19% 56.19%
LlamaZip 4091%  48.72%  55.26% 55.26%
z1ib 46.78%  46.78%  46.78%  46.78%

Table 2: Average space-saving rate (%) for different
memory lengths M across all test samples.

We selected samples from four domains in the
text8 dataset. For each domain, we extracted
both Chinese and English text samples of
equal size to enable cross-linguistic compar-
ison. Within each domain-language pair, we
selected 5 thematically consistent samples and
reported the average space-saving rate as the
representative result.

(2) Comparison Models and Baseline

We applied two large language models:
DeepSeekZip and LlamaZip. Additionally,
we used the traditional zlib compression al-
gorithm as a baseline to compare against the
LLM-based approaches.

(3) Main Variable: Memory Length M

We conducted experiments
with memory lengths M =
{128,256,512,1024,2048}. The ob-

jective was to observe how compression
performance changes with increasing memory
length, under a fixed input size constraint.

4.3.2 Effect of Memory Length on
space-saving rate

We compare the average space-saving rate 7
achieved by DeepSeekZip, LlamaZip, and the tra-
ditional z1ib algorithm across all test samples.
The results are summarized for memory lengths
M = {128,256,512,1024,2048}. Since z1ib
is independent of model memory length, its space-
saving rate remains constant across different set-
tings.

As shown in Figure 3, the average space-saving
rate of DeepSeekZip and LlamaZip increase sig-
nificantly with the growth of memory length M,



Average space saving rate changes with M
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Figure 3: Average space-saving rate (%) as memory
length M increases for DeepSeekZip, LlamaZip, and
zlib.

while the compression ratio of z1ib remains con-
stant. Detailed observations are as follows:

(1) From 128 to 256: DeepSeckZip improves
from 42.09% to 49.19%, and LlamaZip from
40.91% to 48.72%, while zlib remains at
46.78%. This demonstrates that longer mem-
ory significantly enhances LLMs’ contextual
modeling, improving compression.

(2) From 256 to 512: DeepSeekZip and Lla-
maZip continue to improve to 56.19% and
55.26%, respectively, while zlib stays flat.
This highlights the value of long-range con-
text in LLM-based compression.

(3) From 512 to 1024: Space-saving rates
plateau for both LLMs, with no further gains.
This indicates diminishing returns beyond 512
tokens for fixed-length inputs (e.g., 10 KB).

Overall Observations: DeepSeekZip and Lla-
maZip consistently enhance space-saving rates as
memory length grows, especially within M =
128 ~ 512, while zIib maintains constant due to its
lack of contextual modeling. DeepSeekZip gener-
ally outperforms LlamaZip, though the gap narrows
with larger M. Beyond M = 512, both models
exhibit saturation, reflecting marginal gains.

Marginal Effect and Potential Causes:

(1) Emergence of Marginal Returns: A significant
improvement is observed when M increases
from 128 or 256 to 512. However, the space-
saving rate gains diminish beyond M = 512
and become negligible up to M = 2048. This
suggests that in moderate-length documents,
once the model captures most of the redundant
or structured information, further extending
the memory yields limited additional benefits.

Comparison of Chinese vs. English space-saving
performance when M =1024

59.66% 59.73%
60.00% 52.59%
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50.00%
40.98%
40.00%
30.00%
20.00%
10.00%
0.00%

DeepSeek Llama zlib
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Figure 4: Comparison of Chinese vs. English space-
saving performance when memory length M = 1024.

Model Medical (zh) Legal (zh) Technical (zh) News (zh)‘ Avg.

DeepSeekZip 56.03% 48.64% 48.36% 57.83% | 52.72%
LlamaZip 51.83% 48.07% 46.88% 56.41% | 50.80%
zlib 40.31% 38.76% 38.28% 46.55% | 40.98%

Table 3: Space-saving rates of different models on Chi-
nese texts in four domains (M = 1024).

(2) Possible Causes: There are two likely expla-
nations. First, if the input document is rela-
tively short or lacks recurring patterns, then
increasing memory size may yield diminish-
ing returns once redundancy is fully addressed.
Second, Transformer-based models may expe-
rience de- creasing efficiency in utilizing ex-
tended con- text, resulting in weaker marginal
benefits.

4.3.3 Comparison of Chinese vs. English
Space-Saving Performance (M = 1024)

To evaluate the effectiveness of different models
on Chinese and English texts, we compared the
space-saving rate of DeepSeekZip, LlamaZip, and
zlib under a fixed memory length M = 1024. The
following tables present the average space-saving
results across four domains (see Tables 3 and 4).

(1) Chinese Text Analysis DeepSeekZip
achieves the highest average space-saving rate for
Chinese texts at 52.72%, outperforming LlamaZip
(50.80%) and zlib (40.98%). Across all four
Chinese domains, DeepSeekZip consistently
outperforms the other methods, demonstrating
superior effectiveness in addressing the unique
characteristics of the Chinese language. In
contrast, zlib yields the lowest space-saving
rate and remains unaffected by memory length,
highlighting its lack of semantic awareness and
context modeling.



Model Medical (en) Legal (en) Technical (en) News (en)‘ Avg.

DeepSeekZip 59.67% 58.08% 60.63% 60.27% | 59.66%
LlamaZip 59.85% 58.72% 60.45% 59.90% | 59.73%
zlib 52.51% 51.64% 52.80% 5341% | 52.59%

Table 4: Space-saving rates of different models on En-
glish texts in four domains (M = 1024).

Average space-saving rate across four domains at
memory length M = 1024

60.00%

50.00%
40.00%
30.00%
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10.00%
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Medical Texts Legal Texts Technical Texts News Texts

mDeepSeek mllama mzlib

Figure 5: Performance differences of each model in
different fields at memory length M = 1024.

(2) English Text Analysis DeepSeekZip and Lla-
maZip perform nearly identically on English texts,
with average space-saving rates of 59.66% and
59.73% respectively. Both models significantly
outperform zlib (52.59%), confirming the advan-
tage of LLMs in modeling English semantics and
capturing long-range dependencies.

(3) Summary DeepSeekZip shows a clear advan-
tage over LlamaZip when processing Chinese texts,
while both methods perform similarly on English
texts. Both LLM-based approaches significantly
outperform zlib in all instances, particularly with
Chinese data. These results underscore the robust-
ness of DeepSeekZip and LlamaZip across various
languages and domains, showcasing notable im-
provements in space-saving efficiency.

4.3.4 Domain-Specific Space-Saving
Performance (M = 1024)

To compare the performance of DeepSeekZip, Lla-
maZip, and zlib across different domains. The av-
erage space-saving rate is computed for each model
within each domain.

Analysis:

(1) Medical Texts: DeepSeekZip achieves the
highest space-saving rate at 57.85%, out-
performing LlamaZip (55.84%) and zlib
(46.41%). This indicates DeepSeekZip’s su-

Model Medical Legal Technical News

DeepSeekZip 57.85% 53.36%  54.50%  59.05%
LlamaZip 55.84% 53.40%  53.67%  58.16%
zlib 46.41% 4520%  45.54%  49.98%

Table 5: Average space-saving rate (%) across four
domains at memory length M = 1024.

perior capability in capturing medical expres-
sions.

(2) Legal Texts: DeepSeekZip and LlamaZip per-
form nearly equally with rates of 53.36% and
53.40%, respectively—both significantly bet-
ter than zlib’s 45.20%. This suggests both
LLM-based methods handle the formal and
complex syntax of legal documents more ef-
fectively than traditional compression meth-
ods.

(3) Technical Texts: DeepSeekZip slightly out-
performs LlamaZip (54.50% vs. 53.67%), and
both surpass zlib (45.54%), reflecting strong
performance in compressing structured and
terminology-rich technical content.

(4) News Texts: DeepSeekZip shows superior
performance with a 59.05% space-saving
rate, ahead of LlamaZip (58.16%) and zlib
(49.98%), highlighting its strength in model-
ing the variability and redundancy present in
journalistic writing.

Overall, DeepSeekZip demonstrates consistent
superiority across all domains, particularly in med-
ical and news texts. LlamaZip follows closely and
also significantly outperforms the traditional zlib
approach, which demonstrates the weakest results
across all categories. This reinforces the advan-
tages of LLM-based methods in domain-sensitive
semantic modeling for compression.

5 Conclusion

Text compression is evolving toward LLM-based
systems that leverage deep semantics. We propose
DeepSeekZip and LlamaZip, combining LLM
prediction with entropy coding. Results show
that longer memory lengths (e.g., M = 512) im-
prove compression by capturing semantic redun-
dancy. Our methods outperform traditional base-
lines while remaining lossless. Future work in-
cludes structure-aware modeling and efficient de-
coding like FineZip (Mittu et al., 2024).



Limitations

While our framework demonstrates strong perfor-
mance across languages and domains, several lim-
itations remain. First, LLM-based compression
methods are computationally expensive compared
to traditional algorithms like zlib, especially during
inference. This restricts their deployment in real-
time or resource-constrained environments. Sec-
ond, although we evaluated multilingual settings,
our non-English experiments relied on machine-
translated corpora, which may not fully capture the
complexities of native-language structures. Third,
the current approach does not incorporate adap-
tive memory or dynamic context resizing, which
could be important for handling variable-length
documents more efficiently. Lastly, our evalua-
tion focuses on average space-saving rates, without
measuring decoding latency or memory overhead,
which are also critical in practical applications. Fu-
ture work could address these issues through model
optimization, native multilingual pretraining, and
efficiency-aware benchmarks.

Ethics Statement

Our work builds upon publicly available large lan-
guage models (DeepSeek and LLaMA) and stan-
dard compression libraries (zlib). All datasets used,
including the text8 corpus and its domain-specific
subdivisions, are derived from open-access sources.
To enable multilingual evaluation, we generate cor-
responding Chinese texts from the English corpus
using GPT-40 machine translation, followed by
basic validation to ensure semantic consistency.
These translations are used for research purposes
only, and no personally identifiable or sensitive
user data is involved.

We recognize that automatically translated data
may not fully capture the linguistic richness and
diversity of native Chinese corpora, which could
limit generalizability and introduce subtle biases.
Future work should explore more authentic and di-
verse Chinese datasets to support broader language
fairness.

Moreover, while LLM-based compression meth-
ods offer significant gains in efficiency, they come
with non-negligible environmental costs due to
the computational demands of large-scale models.
Our experiments are conducted using existing pre-
trained models to minimize additional carbon foot-
print. No human subjects were involved in this
study, and no privacy or safety concerns arise from

our methodology.
‘We advocate for continued efforts toward sus-
tainable, inclusive, and responsible NLP research.
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A Full Results and Compression Pipeline

A.1 Experimental Results by Domain and
Memory Length

Table 6 presents the full results of our compression
experiments. We report the average space-saving
rates (%) across four domains—Medical, Legal,
Technical, and News—in both Chinese and English,
using memory lengths M € {128,256,512,1024}.
Each score is averaged over five samples per con-
figuration.

A.2 Visualization

To visually complement the compression process,
we include a diagram illustrating the semantic-to-
entropy pipeline (Figure 1). The figure shows how
the LLM module predicts token-level probability
rankings, which are then transformed into rank
sequences and further compressed using entropy-
based algorithms such as z1ib.

A.3 Experimental environment

We used DeepSeek-8B and LLaMA3-8B as frozen
pre-trained models, each with approximately 8B
parameters. Experiments were conducted on A100
(80GB) GPUs. No additional fine-tuning or train-
ing was performed.
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B Licenses of Used Artifacts

We summarize the licenses of all third-party arti-
facts used in this work:

* DeepSeek-R1-Distill-Llama-8B: Released
under the Apache 2.0 License, available at
https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Llama-8B.

Meta-Llama-3-8B: Released under Meta’s
custom license for research use, available
at https://huggingface.co/meta-1lama/
Meta-Llama-3-8B.

* zlib: A classical entropy coding library re-
leased under the Zlib License.

All licenses permit the use of these models and
tools for non-commercial research purposes. No
modifications were made to the original released
artifacts.
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Model Medical Legal Technical News Avg.

zh en zh en zh en zh en
M=128
DeepSeek  35.73 47.84 3379 50.18 3547 49.50 37.09 47.15 42.09
Llama 3405 47.66 3234 50.06 3242 4851 3533 46.92 4091
zlib 40.31 52,51 38776 51.64 3828 52.80 46.55 5341 46.78
M =256
DeepSeek 47.56 54.11 41.04 53.86 41.09 54.10 47.12 54.67 49.19
Llama 4435 54.17 43.18 5427 3977 5442 4547 54.15 48.72
zlib 40.31 52,51 3876 51.64 3828 52.80 46.55 5341 46.78
M =512
DeepSeek  56.03 59.67 48.64 58.08 4836 60.63 57.83 60.27 56.19
Llama 51.83 59.85 48.07 58.72 46.88 6045 5641 5990 55.26
zlib 40.31 52,51 3876 51.64 3828 52.80 46.55 5341 46.78
M =1024
DeepSeek  56.03 59.67 48.64 58.08 4836 60.63 57.83 60.27 56.19
Llama 51.83 59.85 48.07 5872 46.88 6045 5641 59.90 55.26
zlib 40.31 52,51 38776 51.64 3828 52.80 46.55 5341 46.78

Table 6: Space-saving rates across domains, languages, and memory lengths.

Sementic \ Secondar'y
Compression Module Compression
Module (zlib)

Contex R
e
okens M=4
¢ ) LLM LZ77 Matching

(e.g., DeepSeek / LLaMA)

Encoder Huffman Coding

Rank Sequence Output:
[0,2,1,0,...]

Compressed
— .
Bitstream

Figure 6: Semantic-to-Entropy Compression Pipeline. The LLM module outputs token rankings, which are
subsequently encoded into compact sequences and compressed via entropy coding.
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