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Abstract001

In the era of information explosion, the rapid002
growth of multilingual and multi-domain tex-003
tual data poses unprecedented challenges for004
efficient storage and transmission. Traditional005
lossless compression methods such as Huff-006
man coding, LZ77, and zlib perform well007
in certain scenarios but often rely on fixed008
statistical rules. This limits their ability to009
capture deeper linguistic structures, especially010
in complex or domain-specific texts. To ad-011
dress these limitations, we propose two large012
language model-based lossless text compres-013
sion methods: DeepSeekZip and LlamaZip,014
which respectively integrate DeepSeek-8B and015
Llama3-8B as predictive models with conven-016
tional zlib compression. By leveraging the mod-017
els’ capabilities in modeling complex language018
patterns, our approach significantly enhances019
compression performance. Extensive experi-020
ments across various languages and text do-021
mains demonstrate that DeepSeekZip and Lla-022
maZip consistently achieve over 10% higher023
compression rates than zlib alone. Notably,024
DeepSeekZip performs better in Chinese text025
compression, while both models show compa-026
rable results in English. Furthermore, com-027
pression effectiveness varies across domains:028
news and medical texts are compressed more029
efficiently than legal and technical ones. This030
highlights the impact of structure, terminology,031
and contextual dependencies on compression032
outcomes.033

1 Introduction034

With the rapid advancement of the information age,035

the exponential growth of textual data has posed un-036

precedented challenges to storage and transmission037

efficiency. Developing effective text compression038

methods has thus become a pressing need, as it039

not only reduces storage costs but also significantly040

improves data transfer performance. Traditional041

compression algorithms, such as Huffman coding042

(Huffman, 1952) and LZ77 (Ziv and Lempel, 1977),043

have performed well in some settings, but their re- 044

liance on fixed statistical patterns and rules restricts 045

their ability to capture complex semantic structures. 046

This is especially evident in domain-specific or 047

multilingual texts, where conventional techniques 048

often yield lower compression rates. 049

Classical lossless text compression methods 050

are generally classified into three categories. (1) 051

Dictionary-based approaches, such as LZ77 and 052

LZW, replace repetitive substrings to improve com- 053

pression ratio but fail to capture long-range depen- 054

dencies. (2) Statistical coding methods, such as 055

Huffman and arithmetic coding, model character- 056

level frequency but lack the ability to adapt to 057

complex contextual patterns. (3) Grammar-based 058

methods attempt to infer context-free grammar 059

rules for structural compression. However, the 060

grammar-based-methods suffer from high compu- 061

tational complexity and the absence of efficient 062

random access (Shannon, 1948), making them less 063

practical in real-world applications with dynamic 064

or multilingual data. 065

To overcome the representational limitations of 066

traditional methods, recent work has explored the 067

use of deep neural networks to capture complex 068

contextual structures. Goyal et al. (2018) proposed 069

DeepZip, which leverages RNN-based conditional 070

probability modeling combined with arithmetic 071

coding. Transformer-based architectures have fur- 072

ther improved the modeling of long-range depen- 073

dencies. RWKV (Peng et al., 2023) introduces 074

linear attention mechanisms to retain contextual in- 075

formation while reducing inference overhead. Sim- 076

ilarly Perceiver (Jaegle et al., 2021) extends input 077

scalability via iterative attention. 078

Building on this trend, researchers have inte- 079

grated pre-trained language models into compres- 080

sion pipelines. Li et al. (2021) proposed two 081

Transformer-based strategies for enhanced text 082

compression: Explicit Text Compression (ETC) 083

and Implicit Text Compression (ITC). ETC em- 084
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ploys a separate sequence-to-sequence compres-085

sion model with attention mechanisms to extract086

key semantic components, which are concatenated087

with the original input to enrich the encoding pro-088

cess. In contrast, ITC integrates the compression089

module directly into a non-autoregressive decoder,090

enabling end-to-end training and supporting seam-091

less integration with downstream tasks such as ma-092

chine translation. Both approaches effectively re-093

duce input redundancy while maintaining task per-094

formance and demonstrate strong transferability095

across various NLP tasks. However, challenges096

persist. ETC necessitates a considerable amount of097

supervised data to define "key semantics," resulting098

in significant annotation costs. Although ITC offers099

greater flexibility, it may neglect low-frequency yet100

critical information, which could lead to semantic101

loss. Furthermore, ETC-generated compressed se-102

quences often demonstrate low interpretability, and103

ITC’s architecture demands extensive customiza-104

tion to integrate with existing models. While these105

methods show promise for semantic compression,106

they still fall short of achieving robust lossless com-107

pression performance and broad applicability.108

Recent efforts have also explored leveraging109

BERT for lossless compression. Öztürk and Mesut110

(2024) proposed MLMCompress, which utilizes111

BERT’s bidirectional contextual prediction to es-112

timate token distributions and integrates it with113

arithmetic coding. The model achieves up to 38%114

higher compression on English datasets compared115

to NNCP and a 42% improvement in multilingual116

tasks. Furthermore, MLMCompress operates up117

to 35 times faster than GPTZip (Nishi et al., 2023)118

in certain settings, with 20% faster compression119

and up to 180% faster decompression. This demon-120

strates the efficiency and practicality of contextual121

modeling for compression. However, the use of122

masked language modeling inherently imposes lim-123

itations. BERT demonstrates continuity in predic-124

tion and effectively models long-range semantics.125

Furthermore, MLMCompress lacks optimization126

for Chinese and other non-Latin languages.127

As large language models (LLMs) continue to128

evolve, their exceptional language modeling ca-129

pabilities have made them increasingly attractive130

for compression tasks. Pre-trained models such as131

LLaMA and GPT learn high-quality token distribu-132

tions over massive corpora, enabling accurate next-133

token prediction for entropy coding. Valmeekam134

et al. (2023) introduced LLMZip, which combines135

LLaMA with arithmetic coding and achieves state-136

of-the-art performance on English text. However, 137

most LLM-based methods to date primarily focus 138

on English, and their performance on Chinese or 139

domain-specific content remains underexplored. 140

To address these limitations, we propose a novel 141

lossless text compression framework based on two 142

competitive open-source LLMs: LlamaZip (based 143

on LLaMA3-8B (AI, 2024b)) and DeepSeekZip 144

(based on DeepSeek-8B (AI, 2024a)). Our method 145

utilizes the LLM to predict token-level probabilities 146

and subsequently applies standard zlib compres- 147

sion to the residual errors. This hybrid approach 148

balances expressiveness and efficiency. Figure 1 149

illustrates the overall architecture of our compres- 150

sion framework, highlighting the two-stage process 151

from semantic modeling to entropy coding. We 152

evaluate the proposed methods on both Chinese and 153

English corpora, encompassing diverse domains 154

such as news, law, medicine, and technology. Ex- 155

periments results demonstrate that our approach 156

outperforms traditional zlib-based compression by 157

over 10% on average, with DeepSeekZip achieving 158

superior performance on Chinese text, and both 159

models perform comparably on English datasets. 160

Our contributions are threefold: 161

(1) We utilize a lossless text compression frame- 162

work that integrates large language models 163

with traditional entropy coding, thereby en- 164

hancing compression rate and generalizabil- 165

ity. 166

(2) We conduct a comprehensive analysis of 167

model performance across various languages 168

and domains, emphasizing differences in 169

adaptability and robustness. 170

(3) We demonstrate the practical benefits of LLM- 171

based compression through extensive experi- 172

ments, providing new insights into language- 173

aware compression in multilingual contexts. 174

2 Related Work 175

In recent years, text compression has made sig- 176

nificant strides, with researchers exploring diverse 177

strategies to enhance compression efficiency and 178

modeling capability. This section reviews five ma- 179

jor methodological directions in the field. 180

2.1 Dictionary-based Compression. 181

Classic dictionary-based methods, such as LZ77 182

and LZ78 (Ziv and Lempel, 1977), replace repeated 183
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Figure 1: Semantic-to-Entropy Compression Pipeline. The LLM module generates token probability rankings,
which are subsequently compressed using entropy-based methods such as zlib.

substrings with shorter references. More recently,184

L3TC (Zhang et al., 2025) leverages a lightweight185

Transformer variant (RWKV) combined with arith-186

metic coding to achieve lower latency and com-187

plexity. Chen et al. (Chen et al., 2003) further188

proposed parallel dictionary lookup mechanisms189

to enhance matching speed. However, dictionary-190

based approaches face challenges in dynamic dic-191

tionary construction, particularly in large-scale or192

online compression settings where memory and193

lookup overhead can become prohibitive. Multidic-194

tionary systems can boost compression ratios but195

significantly increase decoding complexity, which196

limits their use in resource-constrained or real-time197

devices.198

2.2 Statistical Compression.199

Statistical methods reduce redundancy by encod-200

ing symbol frequencies. Huffman coding (Huff-201

man, 1952) and arithmetic coding (Witten et al.,202

1987) are foundational examples. Recently, k-th203

order context models augmented with neural net-204

works, such as RWKV (Peng et al., 2023), have im-205

proved probabilistic estimation. Additionally, hy-206

brid pipelines such as BWT+MTF+RLE (Adiego207

et al., 2007) perform well in compressing struc-208

tured data. However, high-order models require209

large context buffers, resulting in increased mem-210

ory usage and reduced adaptability to data streams211

with changing distributions.212

2.3 Grammar-based Compression.213

Grammar-based methods aim to infer context-free214

grammar rules that capture the underlying struc-215

ture of text. Techniques based on smallest gram-216

mar approximation and grammar induction un-217

der higher-order entropy constraints have shown 218

promise (Gańczorz, 2018). However, these ap- 219

proaches suffer from computational intractability 220

(NP-hardness) and often relying on heuristics that 221

struggle with long sequences. Moreover, the re- 222

sulting compressed data structures lack efficient 223

random access, and their decoding speed is sub- 224

optimal, which limits their deployment in time- 225

sensitive scenarios. 226

2.4 Neural Arithmetic Coding. 227

Combining neural models with arithmetic coders 228

has recently emerged as a promising direction in 229

the field. L3TC (Zhang et al., 2025) employs 230

adaptive context modeling to dynamically adjust 231

token probabilities, approaching entropy bounds 232

while alleviating the bottlenecks of arithmetic cod- 233

ing through parallel block encoding. Nonetheless, 234

arithmetic coding requires high-precision floating- 235

point operations, rendering it unsuitable for low- 236

end devices or real-time compression tasks due to 237

its computational demands and sensitivity to nu- 238

merical instability. 239

2.5 LLM-based Compression. 240

Large language models (LLMs) such as LLaMA 241

and GPT have garnered significant attention in the 242

field of text compression due to their robust contex- 243

tual modeling capabilities. LLMZip (Valmeekam 244

et al., 2023) demonstrates the feasibility of com- 245

bining LLaMA3-8B with arithmetic coding to 246

achieve superior compression ratios on English cor- 247

pora. However, LLMZip suffers from extreme la- 248

tency—compressing just 10MB of text can take 249

up to 9.5 days—raising serious concerns about 250

its practicality.To address this challenge, Mittu 251
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et al. (2024) introduced FineZip, a novel LLM-252

based compression framework incorporating on-253

line memory and dynamic context windows. By254

leveraging parameter-efficient fine-tuning (PEFT),255

FineZip reduces compression time from 9.5 days256

to 4 hours—a 54-fold improvement—while main-257

taining comparable compression ratios. It also sur-258

passes traditional algorithms by achieving approx-259

imately 50% better compression rates on bench-260

mark datasets. This work demonstrates that while261

LLM-based compression remains computationally262

intensive, its performance bottlenecks can be miti-263

gated through architectural and optimization-level264

innovations.265

2.6 Motivation and Gap.266

Building upon these insights, we propose two267

LLM-based compression systems: LlamaZip and268

DeepSeekZip, which are based on LLaMA3-8B269

and DeepSeek-8B, respectively. Unlike prior works270

that primarily focus on English, we conduct a com-271

prehensive evaluation across both English and Chi-272

nese corpora, covering multiple domains including273

news, medicine, law, and technology.274

3 Method275

We propose a two-stage compression framework276

that integrates the semantic modeling capabilities277

of large language models (LLMs) with traditional278

lossless compression techniques. Our approach279

comprises of a Semantic Compression Module280

and a Secondary Compression Module. This sec-281

tion provides a detailed overview of both modules282

and their mathematical formulations.283

3.1 Semantic Compression Module284

This module leverages LLMs to estimate the condi-285

tional probability distribution of each token based286

on the context, subsequently encoding the rank of287

the true token. The objective is to utilize the LLM’s288

language understanding to convert raw tokens into289

a more compressible rank sequence.290

3.1.1 Context Modeling and Temperature291

Scaling292

Given a token context X = [xt−M , . . . , xt−1], the293

LLM predicts the next token probability distribu-294

tion:295

P (xt | X) = LLM(X) (1)296

To control sampling diversity, a temperature pa-297

rameter T is introduced to rescale the output distri-298

bution: 299

Qi =
P

1/T
i∑

j P
1/T
j

(2) 300

When T → 0, the model becomes deterministic: 301

Qi =

{
1 if Pi = max(P )

0 otherwise
(3) 302

We set T = 0 in all experiments to ensure deter- 303

ministic outputs and enable reproducible, lossless 304

decompression. 305

3.1.2 Rank-Based Encoding 306

Instead of storing tokens directly, we record the 307

rank of each ground-truth token under the LLM’s 308

predicted distribution. The rank is computed as: 309

Rt = rank(P (w | X))− 1 (4) 310

where w is the true token at position t, and the 311

ranking is zero-based—the most probable token 312

has rank 0. 313

The final encoded sequence becomes: 314

{R1, R2, . . . , Rn} (5) 315

Example: Consider the sentence “Artificial in- 316

telligence is rapidly advancing,” tokenized as “Arti- 317

ficial,” “intelligence,” “is,” “rapidly,” “advancing.” 318

Using a context window of size M = 4, the LLM 319

receives the first four tokens and predicts the fifth. 320

Suppose the predicted token probabilities are: 321

Candidate Token Probability

“advancing” 0.50
“evolving” 0.30
“expanding” 0.15
“adapting” 0.05

Table 1: Predicted token distribution.

Here, “advancing” is the correct token, ranked 322

first in terms of probability. Using zero-based 323

indexing, its final rank is 0. Thus, this token is 324

encoded as 0. Repeating this procedure over the 325

entire sequence results in a compact, rank-encoded 326

representation. 327

This design utilizes the LLM’s comprehension 328

of token dependencies to semantically compress 329

text while maintaining reversibility. 330
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3.2 Secondary Compression Module331

Although the rank sequence is more compact than332

the original text, further compression is achievable333

through entropy coding. We utilize the Zlib li-334

brary, which implements the DEFLATE algorithm335

by combining LZ77 and Huffman coding.336

3.2.1 LZ77 Encoding337

LZ77 minimizes redundancy by identifying re-338

peated substrings within a sliding window. It en-339

codes each match as a tuple ⟨length, distance⟩ or340

outputs a literal character when no match is found.341

Let W represent the sliding window size, S de-342

note the search buffer, and p the current position.343

The match length L and distance D satisfy:344

L = max {l | S[p−l : p] = S[p−D−l : p−D]} ,345

D ≤ W
(6)

346

3.2.2 Huffman Coding347

Huffman coding assigns shorter bit sequences to348

more frequent symbols. Let p(s) be the probability349

of symbol s, and l(s) its code length. Then:350

H(S) ≤ E[l(s)] ≤ H(S) + 1 (7)351

where the entropy H(S) is defined as:352

H(S) = −
∑
s

p(s) log2 p(s) (8)353

3.2.3 Bit Cost Estimation354

To estimate the final compressed size, we compute355

the total number of bits in the output bitstream. Af-356

ter the rank sequences are passed through Huffman357

encoding, the bit length of each symbol s is de-358

noted by l(s), as introduced in Equation 7. The359

overall bit cost of the Zlib-compressed stream can360

be expressed as:361

Bzlib = Bmeta +
∑

s∈stream

l(s) (9)362

Here, Bmeta accounts for the overhead intro-363

duced by Zlib, including format headers, Huffman364

tree descriptors, and other control structures. The365

summation term represents the total number of bits366

consumed by symbol-level encoding in the stream.367

Together, the semantic module reduces the en-368

tropy of the input by utilizing high-level language369

structures, while the Zlib module further minimizes370

bit-length through statistical coding. This hybrid371

approach achieves strong compression ratios while372

preserving exact reconstructability.373

4 Experiments 374

4.1 Datasets 375

We use the text8 corpus from http: 376

//mattmahoney.net/dc/text8.zip as our 377

base dataset. The text8 corpus is a cleaned, 378

compressed excerpt of Wikipedia articles, which is 379

widely employed in benchmarking text compres- 380

sion. To evaluate multilingual and domain-specific 381

performance, we categorize text8 into four 382

segments—Medical, Legal, News, and Techni- 383

cal—and use GPT-4o to generate corresponding 384

Chinese translations. Note that we focus on 385

small-scale data, with each text sample limited 386

to around 10 KB, to examine the effectiveness of 387

lightweight compression strategies. 388

The four domain subsets are described as fol- 389

lows: 390

(1) Medical Text: Includes medical literature, 391

case reports, and clinical descriptions, rich 392

in domain-specific terminology and syntactic 393

complexity. 394

(2) Legal Text: Contains excerpts from legal 395

codes and court decisions, featuring highly 396

formal and nested grammatical structures. 397

(3) News Text: Covers journalistic commentary 398

and investigative reports, characterized by 399

journalistic vocabulary and structured phras- 400

ing. 401

(4) Technical Text: Consists of manuals and tech- 402

nical documentation, containing numerous 403

domain-specific and instruction-oriented ex- 404

pressions. 405

All datasets undergo identical preprocessing 406

steps, including text cleaning, tokenization, and 407

normalization, to ensure fairness and consistency 408

across all compression evaluations. 409

4.2 Experimental Setup 410

The experiments proceed in the following stages 411

(see Figure 2): 412

(1) Segmentation and Tokenization: Each doc- 413

ument is split into chunks suitable for LLM 414

input, followed by tokenization using each 415

model’s native tokenizer. 416

(2) Prediction and Compression: DeepSeek 417

or LLaMA models are used to compute 418
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Figure 2: The experimental workflow of our compression framework.

next-token probability distributions and rank-419

ing sequences. These sequences are then420

compressed using zlib to produce final bit-421

streams.422

(3) Evaluation: Compression efficiency is mea-423

sured using the space-saving rate η, computed424

as:425

η =
Original Size − Compressed Size

Original Size
×100%.

(10)426

We conduct ablation experiments by vary-427

ing the memory length parameter M ∈428

{128,256,512,1024} for each LLM to study429

the effect of context window size on compression430

rates. For each domain and language (Chinese and431

English), we select 5 representative 10 KB samples432

from text8, compress them using both DeepSeek433

and LLaMA models, and report the averaged re-434

sults.435

Hardware and Software Environment. All436

experiments are conducted on identical GPU437

servers. The compression pipeline is implemented438

in Python using PyTorch for model loading and439

inference.440

4.3 Experimental Results441

We conducted comparative experiments using both442

LLaMA and DeepSeek models. For each, we se-443

lected 5 Chinese and 5 English samples per do-444

main (medical, legal, news, and technical) from445

the text8 dataset. Each sample was approximately446

10 KB in size. We then compressed these samples447

using each language model and computed the aver-448

age space-saving rate. Additionally, we performed449

ablation studies by varying the memory length pa-450

rameter M ∈ {128,256,512,1024,2048}, to451

evaluate the impact of context length on compres-452

sion performance across different domains.453

4.3.1 Experimental Variables454

(1) Text Domains and Language Types455

Model M = 128 M = 256 M = 512 M = 1024
DeepSeekZip 42.09% 49.19% 56.19% 56.19%
LlamaZip 40.91% 48.72% 55.26% 55.26%
zlib 46.78% 46.78% 46.78% 46.78%

Table 2: Average space-saving rate (%) for different
memory lengths M across all test samples.

We selected samples from four domains in the 456

text8 dataset. For each domain, we extracted 457

both Chinese and English text samples of 458

equal size to enable cross-linguistic compar- 459

ison. Within each domain-language pair, we 460

selected 5 thematically consistent samples and 461

reported the average space-saving rate as the 462

representative result. 463

(2) Comparison Models and Baseline 464

We applied two large language models: 465

DeepSeekZip and LlamaZip. Additionally, 466

we used the traditional zlib compression al- 467

gorithm as a baseline to compare against the 468

LLM-based approaches. 469

(3) Main Variable: Memory Length M 470

We conducted experiments 471

with memory lengths M = 472

{128,256,512,1024,2048}. The ob- 473

jective was to observe how compression 474

performance changes with increasing memory 475

length, under a fixed input size constraint. 476

4.3.2 Effect of Memory Length on 477

space-saving rate 478

We compare the average space-saving rate η 479

achieved by DeepSeekZip, LlamaZip, and the tra- 480

ditional zlib algorithm across all test samples. 481

The results are summarized for memory lengths 482

M = {128,256,512,1024,2048}. Since zlib 483

is independent of model memory length, its space- 484

saving rate remains constant across different set- 485

tings. 486

As shown in Figure 3, the average space-saving 487

rate of DeepSeekZip and LlamaZip increase sig- 488

nificantly with the growth of memory length M , 489
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Figure 3: Average space-saving rate (%) as memory
length M increases for DeepSeekZip, LlamaZip, and
zlib.

while the compression ratio of zlib remains con-490

stant. Detailed observations are as follows:491

(1) From 128 to 256: DeepSeekZip improves492

from 42.09% to 49.19%, and LlamaZip from493

40.91% to 48.72%, while zlib remains at494

46.78%. This demonstrates that longer mem-495

ory significantly enhances LLMs’ contextual496

modeling, improving compression.497

(2) From 256 to 512: DeepSeekZip and Lla-498

maZip continue to improve to 56.19% and499

55.26%, respectively, while zlib stays flat.500

This highlights the value of long-range con-501

text in LLM-based compression.502

(3) From 512 to 1024: Space-saving rates503

plateau for both LLMs, with no further gains.504

This indicates diminishing returns beyond 512505

tokens for fixed-length inputs (e.g., 10 KB).506

Overall Observations: DeepSeekZip and Lla-507

maZip consistently enhance space-saving rates as508

memory length grows, especially within M =509

128 ∼ 512, while zlib maintains constant due to its510

lack of contextual modeling. DeepSeekZip gener-511

ally outperforms LlamaZip, though the gap narrows512

with larger M . Beyond M = 512, both models513

exhibit saturation, reflecting marginal gains.514

Marginal Effect and Potential Causes:515

(1) Emergence of Marginal Returns: A significant516

improvement is observed when M increases517

from 128 or 256 to 512. However, the space-518

saving rate gains diminish beyond M = 512519

and become negligible up to M = 2048. This520

suggests that in moderate-length documents,521

once the model captures most of the redundant522

or structured information, further extending523

the memory yields limited additional benefits.524

Figure 4: Comparison of Chinese vs. English space-
saving performance when memory length M = 1024.

Model Medical (zh) Legal (zh) Technical (zh) News (zh) Avg.

DeepSeekZip 56.03% 48.64% 48.36% 57.83% 52.72%
LlamaZip 51.83% 48.07% 46.88% 56.41% 50.80%
zlib 40.31% 38.76% 38.28% 46.55% 40.98%

Table 3: Space-saving rates of different models on Chi-
nese texts in four domains (M = 1024).

(2) Possible Causes: There are two likely expla- 525

nations. First, if the input document is rela- 526

tively short or lacks recurring patterns, then 527

increasing memory size may yield diminish- 528

ing returns once redundancy is fully addressed. 529

Second, Transformer-based models may expe- 530

rience de- creasing efficiency in utilizing ex- 531

tended con- text, resulting in weaker marginal 532

benefits. 533

4.3.3 Comparison of Chinese vs. English 534

Space-Saving Performance (M = 1024) 535

To evaluate the effectiveness of different models 536

on Chinese and English texts, we compared the 537

space-saving rate of DeepSeekZip, LlamaZip, and 538

zlib under a fixed memory length M = 1024. The 539

following tables present the average space-saving 540

results across four domains (see Tables 3 and 4). 541

(1) Chinese Text Analysis DeepSeekZip 542

achieves the highest average space-saving rate for 543

Chinese texts at 52.72%, outperforming LlamaZip 544

(50.80%) and zlib (40.98%). Across all four 545

Chinese domains, DeepSeekZip consistently 546

outperforms the other methods, demonstrating 547

superior effectiveness in addressing the unique 548

characteristics of the Chinese language. In 549

contrast, zlib yields the lowest space-saving 550

rate and remains unaffected by memory length, 551

highlighting its lack of semantic awareness and 552

context modeling. 553
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Model Medical (en) Legal (en) Technical (en) News (en) Avg.

DeepSeekZip 59.67% 58.08% 60.63% 60.27% 59.66%
LlamaZip 59.85% 58.72% 60.45% 59.90% 59.73%
zlib 52.51% 51.64% 52.80% 53.41% 52.59%

Table 4: Space-saving rates of different models on En-
glish texts in four domains (M = 1024).

Figure 5: Performance differences of each model in
different fields at memory length M = 1024.

(2) English Text Analysis DeepSeekZip and Lla-554

maZip perform nearly identically on English texts,555

with average space-saving rates of 59.66% and556

59.73% respectively. Both models significantly557

outperform zlib (52.59%), confirming the advan-558

tage of LLMs in modeling English semantics and559

capturing long-range dependencies.560

(3) Summary DeepSeekZip shows a clear advan-561

tage over LlamaZip when processing Chinese texts,562

while both methods perform similarly on English563

texts. Both LLM-based approaches significantly564

outperform zlib in all instances, particularly with565

Chinese data. These results underscore the robust-566

ness of DeepSeekZip and LlamaZip across various567

languages and domains, showcasing notable im-568

provements in space-saving efficiency.569

4.3.4 Domain-Specific Space-Saving570

Performance (M = 1024)571

To compare the performance of DeepSeekZip, Lla-572

maZip, and zlib across different domains. The av-573

erage space-saving rate is computed for each model574

within each domain.575

Analysis:576

(1) Medical Texts: DeepSeekZip achieves the577

highest space-saving rate at 57.85%, out-578

performing LlamaZip (55.84%) and zlib579

(46.41%). This indicates DeepSeekZip’s su-580

Model Medical Legal Technical News

DeepSeekZip 57.85% 53.36% 54.50% 59.05%
LlamaZip 55.84% 53.40% 53.67% 58.16%
zlib 46.41% 45.20% 45.54% 49.98%

Table 5: Average space-saving rate (%) across four
domains at memory length M = 1024.

perior capability in capturing medical expres- 581

sions. 582

(2) Legal Texts: DeepSeekZip and LlamaZip per- 583

form nearly equally with rates of 53.36% and 584

53.40%, respectively—both significantly bet- 585

ter than zlib’s 45.20%. This suggests both 586

LLM-based methods handle the formal and 587

complex syntax of legal documents more ef- 588

fectively than traditional compression meth- 589

ods. 590

(3) Technical Texts: DeepSeekZip slightly out- 591

performs LlamaZip (54.50% vs. 53.67%), and 592

both surpass zlib (45.54%), reflecting strong 593

performance in compressing structured and 594

terminology-rich technical content. 595

(4) News Texts: DeepSeekZip shows superior 596

performance with a 59.05% space-saving 597

rate, ahead of LlamaZip (58.16%) and zlib 598

(49.98%), highlighting its strength in model- 599

ing the variability and redundancy present in 600

journalistic writing. 601

Overall, DeepSeekZip demonstrates consistent 602

superiority across all domains, particularly in med- 603

ical and news texts. LlamaZip follows closely and 604

also significantly outperforms the traditional zlib 605

approach, which demonstrates the weakest results 606

across all categories. This reinforces the advan- 607

tages of LLM-based methods in domain-sensitive 608

semantic modeling for compression. 609

5 Conclusion 610

Text compression is evolving toward LLM-based 611

systems that leverage deep semantics. We propose 612

DeepSeekZip and LlamaZip, combining LLM 613

prediction with entropy coding. Results show 614

that longer memory lengths (e.g., M = 512) im- 615

prove compression by capturing semantic redun- 616

dancy. Our methods outperform traditional base- 617

lines while remaining lossless. Future work in- 618

cludes structure-aware modeling and efficient de- 619

coding like FineZip (Mittu et al., 2024). 620
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Limitations621

While our framework demonstrates strong perfor-622

mance across languages and domains, several lim-623

itations remain. First, LLM-based compression624

methods are computationally expensive compared625

to traditional algorithms like zlib, especially during626

inference. This restricts their deployment in real-627

time or resource-constrained environments. Sec-628

ond, although we evaluated multilingual settings,629

our non-English experiments relied on machine-630

translated corpora, which may not fully capture the631

complexities of native-language structures. Third,632

the current approach does not incorporate adap-633

tive memory or dynamic context resizing, which634

could be important for handling variable-length635

documents more efficiently. Lastly, our evalua-636

tion focuses on average space-saving rates, without637

measuring decoding latency or memory overhead,638

which are also critical in practical applications. Fu-639

ture work could address these issues through model640

optimization, native multilingual pretraining, and641

efficiency-aware benchmarks.642

Ethics Statement643

Our work builds upon publicly available large lan-644

guage models (DeepSeek and LLaMA) and stan-645

dard compression libraries (zlib). All datasets used,646

including the text8 corpus and its domain-specific647

subdivisions, are derived from open-access sources.648

To enable multilingual evaluation, we generate cor-649

responding Chinese texts from the English corpus650

using GPT-4o machine translation, followed by651

basic validation to ensure semantic consistency.652

These translations are used for research purposes653

only, and no personally identifiable or sensitive654

user data is involved.655

We recognize that automatically translated data656

may not fully capture the linguistic richness and657

diversity of native Chinese corpora, which could658

limit generalizability and introduce subtle biases.659

Future work should explore more authentic and di-660

verse Chinese datasets to support broader language661

fairness.662

Moreover, while LLM-based compression meth-663

ods offer significant gains in efficiency, they come664

with non-negligible environmental costs due to665

the computational demands of large-scale models.666

Our experiments are conducted using existing pre-667

trained models to minimize additional carbon foot-668

print. No human subjects were involved in this669

study, and no privacy or safety concerns arise from670

our methodology. 671

We advocate for continued efforts toward sus- 672

tainable, inclusive, and responsible NLP research. 673
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A Full Results and Compression Pipeline747

A.1 Experimental Results by Domain and748

Memory Length749

Table 6 presents the full results of our compression750

experiments. We report the average space-saving751

rates (%) across four domains—Medical, Legal,752

Technical, and News—in both Chinese and English,753

using memory lengths M ∈ {128, 256, 512, 1024}.754

Each score is averaged over five samples per con-755

figuration.756

A.2 Visualization757

To visually complement the compression process,758

we include a diagram illustrating the semantic-to-759

entropy pipeline (Figure 1). The figure shows how760

the LLM module predicts token-level probability761

rankings, which are then transformed into rank762

sequences and further compressed using entropy-763

based algorithms such as zlib.764

A.3 Experimental environment765

We used DeepSeek-8B and LLaMA3-8B as frozen766

pre-trained models, each with approximately 8B767

parameters. Experiments were conducted on A100768

(80GB) GPUs. No additional fine-tuning or train-769

ing was performed.770

B Licenses of Used Artifacts 771

We summarize the licenses of all third-party arti- 772

facts used in this work: 773

• DeepSeek-R1-Distill-Llama-8B: Released 774

under the Apache 2.0 License, available at 775

https://huggingface.co/deepseek-ai/ 776

DeepSeek-R1-Distill-Llama-8B. 777

• Meta-Llama-3-8B: Released under Meta’s 778

custom license for research use, available 779

at https://huggingface.co/meta-llama/ 780

Meta-Llama-3-8B. 781

• zlib: A classical entropy coding library re- 782

leased under the Zlib License. 783

All licenses permit the use of these models and 784

tools for non-commercial research purposes. No 785

modifications were made to the original released 786

artifacts. 787
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Model Medical Legal Technical News Avg.
zh en zh en zh en zh en

M = 128

DeepSeek 35.73 47.84 33.79 50.18 35.47 49.50 37.09 47.15 42.09
Llama 34.05 47.66 32.34 50.06 32.42 48.51 35.33 46.92 40.91
zlib 40.31 52.51 38.76 51.64 38.28 52.80 46.55 53.41 46.78

M = 256

DeepSeek 47.56 54.11 41.04 53.86 41.09 54.10 47.12 54.67 49.19
Llama 44.35 54.17 43.18 54.27 39.77 54.42 45.47 54.15 48.72
zlib 40.31 52.51 38.76 51.64 38.28 52.80 46.55 53.41 46.78

M = 512

DeepSeek 56.03 59.67 48.64 58.08 48.36 60.63 57.83 60.27 56.19
Llama 51.83 59.85 48.07 58.72 46.88 60.45 56.41 59.90 55.26
zlib 40.31 52.51 38.76 51.64 38.28 52.80 46.55 53.41 46.78

M = 1024

DeepSeek 56.03 59.67 48.64 58.08 48.36 60.63 57.83 60.27 56.19
Llama 51.83 59.85 48.07 58.72 46.88 60.45 56.41 59.90 55.26
zlib 40.31 52.51 38.76 51.64 38.28 52.80 46.55 53.41 46.78

Table 6: Space-saving rates across domains, languages, and memory lengths.

Figure 6: Semantic-to-Entropy Compression Pipeline. The LLM module outputs token rankings, which are
subsequently encoded into compact sequences and compressed via entropy coding.
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