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Abstract

Hierarchical optimization refers to problems with interdependent decision variables
and objectives, such as minimax and bilevel formulations. While various algorithms
have been proposed, existing methods and analyses lack adaptivity in stochastic
optimization settings: they cannot achieve optimal convergence rates across a wide
spectrum of gradient noise levels without prior knowledge of the noise magnitude.
In this paper, we propose novel adaptive algorithms for two important classes
of stochastic hierarchical optimization problems: nonconvex-strongly-concave
minimax optimization and nonconvex-strongly-convex bilevel optimization. Our
algorithms achieve sharp convergence rates of Õ(1/

√
T +

√
σ̄/T 1/4) in T itera-

tions for the gradient norm, where σ̄ is an upper bound on the stochastic gradient
noise. Notably, these rates are obtained without prior knowledge of the noise level,
thereby enabling automatic adaptivity in both low and high-noise regimes. To our
knowledge, this work provides the first adaptive and sharp convergence guarantees
for stochastic hierarchical optimization. Our algorithm design combines the mo-
mentum normalization technique with novel adaptive parameter choices. Extensive
experiments on synthetic and deep learning tasks demonstrate the effectiveness of
our proposed algorithms.

1 Introduction

Hierarchical optimization refers to a class of optimization problems characterized by nested structures
in their objectives or constraints, such as minimax optimization [61, 64, 50] and bilevel optimiza-
tion [5, 13]. These problems have wide applications in machine learning. For example, minimax
optimization is the foundation for adversarial learning [27] and AUC maximization [75, 53], while
bilevel optimization is central to meta-learning [19] and hyperparameter optimization [20, 18]. In
this paper, we are interested in solving two classes of stochastic hierarchical optimization problems.
The first class is the nonconvex-strongly-concave minimax problem in (1):

min
x∈Rdx

max
y∈Rdy

f(x, y) := Eξ∼D [F (x, y; ξ)] , (1)

where D is an unknown distribution where one can sample from, and f(x, y) is nonconvex in x and
strongly concave in y. The second class is the nonconvex-strongly-convex bilevel problem in (2):

min
x∈Rdx

Φ(x) := f(x, y∗(x)), s.t., y∗(x) = arg min
y∈Rdy

g(x, y), (2)

where Dx and Dy are unknown distributions where one can sample from, f(x, y) :=
Eξ∼Dx

[F (x, y; ξ)] is nonconvex in x and g(x, y) := Eξ∼Dy
[G(x, y; ζ)] is strongly convex in y.

We call x the upper-level variable and y the lower-level variable. Note that the bilevel problem in (2)
degenerates to the minimax problem in (1) when g = −f and then Φ(x) = maxy∈Rdy f(x, y).
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There are various algorithms designed for the minimax problem (1) and the bilevel problem (2) in
the stochastic setting [64, 50, 47, 22, 34, 40, 8, 33, 45, 29, 28]. However, existing algorithms and
analyses lack adaptivity to various levels of stochastic gradient noise: their convergence rates remain
suboptimal in various noise regimes unless the noise level is known a priori (see Appendix H for
discussion and details). In contrast, such an adaptivity guarantee is achieved in single-level stochastic
optimization [48, 67, 42, 17, 56, 2] by AdaGrad-type algorithms [60, 14]. This naturally motivates
us to study the following question:

How can we design adaptive gradient algorithms for stochastic hierarchical optimization
problems (1) and (2) that achieve convergence rates automatically adapting to the level of
stochastic gradient noise, without requiring prior knowledge of this noise?

Designing such algorithms in stochastic hierarchical optimization presents significant challenges.
In particular, applying AdaGrad-type algorithms (e.g., AdaGrad-Norm [67]) simultaneously to the
upper- and lower-level variables will introduce complicated randomness dependency issues due to
AdaGrad stepsizes. These dependencies are difficult to handle analytically without imposing strong
assumptions such as bounded stochastic gradients or bounded function values [47]. However, such
assumptions undermine the algorithm’s ability to adapt effectively in various noise regimes.

In this paper, we address these challenges by developing novel adaptive algorithms for solving (1) and
(2), respectively. Unlike standard AdaGrad-type algorithms [67], the key innovation of our approach
lies in combining the momentum normalization technique [11] with novel adaptive parameter choices.
A distinctive feature of our method is the dynamic adjustment of the momentum parameter based on
online estimates of the stochastic gradient variance. This adaptive momentum directly informs our
stepsize scheme, enabling improved convergence across both high- and low-noise regimes without
requiring prior knowledge of the noise level. The primary challenge in analyzing the convergence of
our proposed algorithms is simultaneously controlling the upper-level and lower-level errors under
time-varying parameters, including adaptive momentum and stepsizes, while maintaining adaptivity
in the presence of unknown stochastic noise. Our main contributions are summarized as follows.

• We propose two new adaptive algorithms, namely Ada-Minimax and Ada-BiO, for solv-
ing the nonconvex-strong-concave minimax optimization problem (1) and the nonconvex-
strongly-convex bilevel optimization problem (2) respectively. Both algorithms leverage
the momentum normalization technique and adaptively set the momentum parameter, along
with carefully designed adaptive stepsizes for both upper- and lower-level variables. To our
knowledge, adaptive algorithms of this type that distincts from standard AdaGrad approaches
are novel within both stochastic single-level and hierarchical optimization problems.

• We obtain a high probability convergence rate of Õ(1/
√
T +

√
σ̄/T 1/4) in T iterations

for the gradient norm (here Õ(·) compresses poly-logarithmic factors of T and the failure
probability δ ∈ (0, 1)), where σ̄ denotes an upper-bound on the stochastic gradient noise.
Notably, our algorithms automatically adapt to both high- and low-noise regimes without
requiring prior knowledge of the noise levels.

• We empirically validate our theoretical results through a synthetic experiment and various
deep learning tasks, including deep AUC maximization and hyperparameter optimization.
Our results demonstrate that our proposed algorithms consistently outperform existing
adaptive gradient methods as well as well-tuned non-adaptive baselines.

2 Related Work

Minimax Optimization. Early works on minimax optimization focused on convex-concave set-
tings and developed first-order algorithms with convergence guarantees [61, 63, 41, 62]. The
study of first-order algorithms for nonconvex-concave minimax optimization was pioneered by [64].
Subsequent works improved convergence rates under various assumptions [53, 68, 59], proposed
single-loop algorithms [50, 29, 71], and relaxed the concavity requirement on the maximization vari-
able [69, 51, 52, 4]. Some recent efforts have incorporated adaptive gradient methods into minimax
optimization [51, 47, 38, 70]. However, none of these approaches provide convergence guarantees
that adapt across different levels of stochastic gradient noise in nonconvex-strongly-concave settings.

Bilevel Optimization. Bilevel optimization [5, 13] is a type of hierarchical optimization problem
where one optimization task (i.e., upper-level problem) is constrained by another optimization task
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(i.e., lower-level problem). The first nonasymptotic convergence guarantees for bilevel optimization
problems were established by [22], followed by a growing body of work that established improved
complexity bounds under various assumptions [34, 40, 8, 43, 9, 12, 28, 72, 33, 25, 24, 12, 36,
45, 65, 57, 58]. More recently, a few studies have explored bilevel optimization algorithms with
adaptive step sizes [15, 1, 73, 37]. However, these methods are either restricted to the deterministic
setting [1, 73] or fail to adapt to a broad range of stochastic gradient noise levels [15, 37, 26] in
nonconvex-strongly-convex bilevel optimization problems.

Adaptive Gradient Algorithms. Adaptive gradient algorithms [60, 14, 66, 44] refer to a class of
first-order algorithms where the stepsizes are computed based on the historical stochastic gradients,
and they are empirically effective for training deep neural networks. The theoretical guarantees
of adaptive gradient algorithms for single-level optimization problems are extensively studied and
well-understood in the literature [48, 67, 42, 17, 56, 2, 46, 16]. Extensions of adaptive methods
to minimax [51, 47, 38, 70] and bilevel optimization [37, 26, 1, 73] have also been proposed.
However, none of these works establish theoretical guarantees for adaptivity to unknown stochastic
gradient noise levels in nonconvex-strongly-concave minimax or nonconvex-strongly-convex bilevel
optimization problems, as achieved by our proposed algorithms in this work.

3 Preliminaries

Notations. Denote ∥ · ∥ as the Euclidean norm. We use the standard O(·),Θ(·),Ω(·) notations,
with Õ(·), Θ̃(·), Ω̃(·) hiding logarithmic factors. Throughout, with slight abuse of notation, we
use Ft to denote the filtration (i.e., σ-algebra) generated by stochastic queries up to iteration t,
and Et[·] = E[· | Ft] to denote the conditional expectation with respect to Ft, for all algorithms.
A function h is said to be L-smooth if ∥∇h(x) − ∇h(y)∥ ≤ L∥x − y∥ for all x, y ∈ Rd. We
additionally assume that all objective functions are bounded from below, i.e., f∗ := infx f(x) > −∞
(Section 5.1) and Φ∗ := infx Φ(x) > −∞ (Sections 3.1 and 3.2).

Settings. Let y∗(x) = argmaxy∈Rdy f(x, y) for (1) and y∗(x) = argminy∈Rdy g(x, y) for (2).
Define the objective function Φ(x) = f(x, y∗(x)) for both minimax and bilevel optimization. Recall
from Section 1 that the bilevel problem (2) reduces to the minimax problem (1) when g = −f . The
goal of this paper is to minimize Φ.

3.1 Assumptions for Nonconvex-Strongly-Concave Minimax Optimization

Assumption 3.1. The objective function f is L-smooth in (x, y) and f(x, ·) is µ-strongly concave.
Assumption 3.2. (i) The gradient oracle is unbiased, i.e., E[∇F (x, y; ξ) | x, y] = ∇f(x, y). (ii)
With probability one, the following holds:

¯
σx ≤ ∥∇xF (x, y; ξ) −∇xf(x, y)∥ ≤ σ̄x with

¯
σx ≥ 0

and ∥∇yF (x, y; ξ)−∇yf(x, y)∥ ≤ σy .

Remark: Assumptions 3.1 and 3.2(i) are standard in the minimax optimization literature [50, 74, 29].
The main extra assumption we make is Assumption 3.2(ii): the stochastic gradient noise is lower
bounded and upper-bounded (with probability one), which may appear somewhat unusual. However,
this assumption holds naturally in the additive noise setting used in certain nonconvex optimization
scenarios, such as escaping saddle points with isotropic noise [21], where the stochastic gradient noise
is sampled uniformly from the unit sphere and therefore has a nonzero magnitude with probability
one. We also empirically validate this assumption, as shown in Appendix L. In the noiseless case, we
have σ̄x =

¯
σx = 0, and σy = 0.

3.2 Assumptions for Nonconvex-Strongly-Convex Bilevel Optimization

Assumption 3.3. The objective functions f and g satisfy: (i) f is L-smooth in (x, y); for every x, ξ,
∥∇yf(x, y)∥ ≤ lf,0 and ∥∇yF (x, y; ξ)∥ ≤ lf,0. (ii) For every x, g(x, ·) is µg-strongly convex for
µg > 0 and g is lg,1-smooth in (x, y). (iii) g is twice continuously differentiable, and ∇2

xyg,∇2
yyg

are lg,2-Lipschitz in (x, y).

Remark: Assumption 3.3 is standard in the bilevel optimization literature [40, 45, 22, 33, 7]. Notably,
the condition ∥∇yF (x, y; ξ)∥ ≤ lf,0 is essential for deriving ∥∇̄f(x, y; ξ̄)− E[∇̄f(x, y; ξ̄)]∥ ≤ σ̄ϕ

in Lemma E.3 (see Appendix E.1 for the definition of ∇̄f(x, y; ξ̄)), where σ̄ϕ plays a similar role to
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σ̄x in Assumption 3.2 for minimax optimization. Under these assumptions, the objective function Φ
is LF -smooth; please refer to Lemma E.1 in Appendix E for the definition of LF and further details.

Assumption 3.4. All stochastic estimators are unbiased, and almost surely satisfy (i) ∥∇xF (x, y; ξ)−
∇xf(x, y)∥ ≤ σf ; (ii) ∥∇yF (x, y; ξ) − ∇yf(x, y)∥ ≤ σf ; (iii) ∥∇yG(x, y; ζ) − ∇yg(x, y)∥ ≤
σg,1; (iv) ∥∇2

xyG(x, y; ζ) − ∇2
xyg(x, y)∥ ≤ σg,2; (v) ∥∇2

yyG(x, y; ζ) − ∇2
yyg(x, y)∥ ≤ σg,2; (vi)

∥∇̄f(x, y; ξ̄)− E[∇̄f(x, y; ξ̄)]∥ ≥
¯
σϕ, where ∇̄f(x, y; ξ̄) is defined in Equation (39).

Remark: Assumption 3.4(i)-(v) assumes the noise in the stochastic gradient and Hessian/Jacobian
is bounded with probability one. This is a commonly used assumption to establish high probability
guarantees or handle generalized-smooth objective functions in the single-level optimization literature
[46, 2, 39, 78, 77], as well as for stochastic bilevel optimization under the unbounded smoothness
setting [33, 25]. Assumption 3.4(vi) is a stochastic gradient noise lower bound for the bilevel optimiza-
tion problem, sharing a similar spirit to Assumption 3.2(ii). Note that Assumption 3.2 is empirically
verified in Appendix L. Under Assumption 3.4, we also have ∥∇̄f(x, y; ξ̄)− E[∇̄f(x, y; ξ̄)]∥ ≤ σ̄ϕ,
where the definition of σ̄ϕ can be found in Equation (44). See the detailed proof in Lemma E.3.

Additional Notations. In the subsequent analysis, we denote κσ := σ̄/
¯
σ in Section 5.1 (single-level

optimization), κσ := σ̄x/
¯
σx in Section 4.2 (minimax optimization), and κσ := σ̄ϕ/

¯
σϕ in Section 4.3

(bilevel optimization). We also adopt the convention 0/0 := 1.

4 Algorithms and Main Results

4.1 Main Challenges and Algorithm Design

Main Challenges. While numerous adaptive gradient algorithms with adaptivity to stochastic
gradient noise are developed in single-level optimization [48, 67, 42, 17, 56, 2], designing algorithms
with such an adaptive guarantee in hierarchical optimization is nontrivial. The main challenges
lies in the following two aspects. First, designing such an algorithm in hierarchical optimization
requires a careful balance between the upper- and lower-level update [29, 34, 10], which is difficult
to achieve without the knowledge of the noise magnitude of stochastic gradient. Second, applying
AdaGrad-type algorithms (e.g., AdaGrad-Norm [67]) simultaneously to the upper- and lower-level
variables will introduce complicated randomness dependency issues due to AdaGrad stepsizes [2],
which are difficult to handle unless strong assumptions (e.g., bounded stochastic gradient, bounded
function value) are imposed as in [47].

Algorithm Design. To address these main challenges, our proposed algorithms leverage the nor-
malized stochastic gradient descent (SGD) with momentum for the upper-level variable [11] with a
noise-aware adaptive momentum parameter and carefully crafted adaptive stepsize schemes for both
levels. The momentum parameter automatically estimates the level of noise in the stochastic gradients
on the fly, and this estimate is used to construct the stepsizes to maintain a balanced progress across
both levels. These adaptive mechanisms, together with the momentum normalization technique, not
only improve optimization stability but also make the theoretical convergence analysis more tractable.
In particular, our proposed adaptive algorithms, namely Ada-Minimax and Ada-BiO, are designed
for the minimax problem (1) and the bilevel problem (2) respectively. Both algorithms achieve sharp
and adaptive convergence rates of Õ(1/

√
T +

√
σ̄/T 1/4) for the gradient norm, where σ̄ denotes an

upper bound on the stochastic gradient noise. We describe our methods in Algorithms 1 and 2 with
novel parameter choices in Equations (3) and (4). Their respective convergence guarantees are stated
in Theorems 4.1 and 4.2.

Adaptive Parameter Choices. For simplicity, let αt = 1− βt. In particular, for both Algorithms 1
and 2, we set αt, α

′
t, ηx,t, ηy,t as follows:

αt =
α√

α2 +
∑t

k=1 ∥gx,k − g̃x,k∥2
, α′

t =
α√

α2 +
∑t

k=1 ∥gx,k − g̃x,k∥2 + ∥gy,k∥2
, (3)

ηx,t =
η
√
α′
t√

t
, and ηy,t =

η√
γ2 +

∑t
k=1 ∥gy,k∥2

. (4)
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Algorithm 1 Adaptive Algorithm for Minimax
Optimization (Ada-Minimax)

1: Input: x1, y1,m1 = ∇xF (x1, y1; ξ1)
2: for t = 1, . . . , T do
3: mt = βtmt−1 + (1− βt)gx,t
4: xt+1 = xt − ηx,t

mt

∥mt∥
5: yt+1 = yt + ηy,tgy,t
6: end for

Algorithm 2 Adaptive Algorithm for Bilevel Op-
timization (Ada-BiO)

1: Input: x1, y1,m1 = ∇̄f(x1, y1; ξ̄1)
2: for t = 1, . . . , T do
3: mt = βtmt−1 + (1− βt)gx,t
4: xt+1 = xt − ηx,t

mt

∥mt∥
5: yt+1 = yt − ηy,tgy,t
6: end for

In the above formulas, the terms gx,t, g̃x,t, and gy,t carry different meanings; see the subsequent
sections (Sections 4.2 and 4.3) for their precise definitions. For simplicity, we set ηx = ηy = η in
analysis of Algorithms 1 and 2 (see Theorems 4.1 and 4.2). It is worth noting that this condition is
not necessary for establishing convergence, as it only affects the universal constants in the rate.

4.2 Adaptive Algorithm for Minimax Optimization

Our proposed algorithm Ada-Minimax is presented in Algorithm 1. The algorithm updates the
upper-level variable using normalized SGD with momentum [11] with adaptive and parameter-free
choices for the momentum parameter and learning rates. The lower-level variable is updated by
AdaGrad-Norm. In Equations (3) and (4), gx,t = ∇xF (xt, yt; ξt), g̃x,t = ∇xF (xt, yt; ξ

′
t), and

gy,t = ∇yF (xt, yt; ξt), with ξt, ξ
′
t being independent samples.

Intuitively, the term
∑t

k=1 ∥gx,k − g̃x,k∥2 in the denominator of αt is designed to approximate
the variance term σ2T as in [11], and this choice is partly inspired by AdaGrad-Norm [14, 2].
Additionally, using α′

t instead of αt in the design of ηx,t effectively controls the ratio ηx,t/ηy,t and
facilitates establishing Lemma 5.7. It is worth noting that Assumption 3.2 plays a crucial role in
deriving tight, high-probability upper and lower bounds for both

∑t
k=1 ∥gx,k − g̃x,k∥2 and αt, see

Lemma 5.5 for details.
Theorem 4.1. Under Assumptions 3.1 and 3.2 and the parameter choices in Equations (3) and (4),
let σ̄x = σy , then for any δ ∈ (0, 1/7), it holds with probability at least 1− 7δ that

1

T

T∑
t=1

∥∇Φ(xt)∥ ≤ Cm

η
√
α

(
1√
T

(
α2 +

L2

µ2η2
(
4D2L2 + 2Dγ

))1/4

+
1

T 3/8

(
2
√
2L2Dσ̄x

µ2η2

)1/4

+
1

T 1/4

(
5σ̄2

x

)1/4 ,

where Cm = Õ(κ4
σ) and D are defined in Equations (24) and (38), respectively.

Remark: Theorem 4.1 demonstrates that Ada-Minimax achieves a rate of Õ(
√
σ̄x/T

1/4) in the
stochastic setting (

¯
σx > 0) and Õ(1/

√
T ) rate in the deterministic setting (σ̄x = 0). More importantly,

our bound achieves the same bound of normalized SGD with momentum under known stochastic
gradient variance [11]: it automatically interpolates between sharp rates in both high-noise and low-
noise regimes without the knowledge of noise level. Specifically, the convergence rate improves from
Õ(1/T 1/4) to a faster Õ(1/

√
T ) when σ̄x is sufficiently small, namely σ̄x = O(1/

√
T ). Notably, this

automatic rate interpolation does not require prior knowledge of any problem-dependent parameters,
and our proposed Ada-Minimax algorithm is fully parameter-free. In contrast, TiAda [47] does not
exhibit such a bound in the low-noise regime (e.g., σ̄x = O(1/

√
T )), and its convergence rate is

not optimal with respect to σ̄x in the stochastic setting since their convergence rate (e.g., Theorem
3.2 in [47]) does not explicitly depend on σ̄x. See detailed proof of Theorem 4.1 in Appendix D. A
comparison of adaptive methods for minimax optimization is also presented in Table 1.

4.3 Adaptive Algorithm for Bilevel Optimization

Our proposed algorithm Ada-Bio is presented in Algorithm 2. The overall framework closely
resembles that of Algorithm 1. The upper-level variable is updated using normalized SGD with
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Table 1: Comparison of Adaptive Methods for Minimax Optimization

Method Setting Assumptions High Probability Complexity

TiAda [47] Deterministic [47, Theorem 3.1] Assumptions 3.1 to 3.3 in [47] O(1/
√
T )

TiAda [47] Stochastic [47, Theorem 3.2] Assumptions 3.1 to 3.6 in [47] ✗ O(poly(G) · (T α−1
2 + T−α

2 + T
β−1
2 + T− β

2 )) 1

Ada-Minimax Deterministic & Stochastic (Theorem 4.1 in this work) Assumptions 3.1 and 3.2 in this work ✓ Õ(1/
√
T + σ̄

1/4
x /T 3/8 +

√
σ̄x/T

1/4)

Table 2: Comparison of Adaptive Methods for Bilevel Optimization

Method Setting Assumptions High Probability Complexity

S-TFBO [73] Deterministic [73, Theorem 2] Assumptions 1 to 3 in [73] Õ(1/
√
T )

Ada-Bio Deterministic & Stochastic (Theorem 4.2 in this work) Assumptions 3.3 and 3.4 in this work ✓ Õ(1/
√
T + σ

1/4
g,1 /T

3/8 + (
√
σ̄ϕ +

√
σg,1)/T

1/4)

momentum [11], employing adaptive choices for the momentum parameter and learning rate. This
approach differs from those of [33, 25], where fixed, non-adaptive momentum parameters and
learning rates are used. The lower-level variable is updated via AdaGrad-Norm. Here in Equations (3)
and (4), gx,t = ∇̄f(xt, yt; ξ̄t), g̃x,t = ∇̄f(xt, yt; ξ̄

′
t), and gy,t = ∇yG(xt, yt; ζt), where ∇̄f(x, y; ξ̄)

denotes the Neumann series approximation (see Appendix E.1 for further details), with ξ̄t, ξ̄
′
t being

independent samples.
Theorem 4.2. Under Assumptions 3.3 and 3.4 and the parameter choices in Equations (3) and (4),
for any δ ∈ (0, 1/7), choose N ≥ 3 log T

2 log(1/(1−µg/lg,1))
, it holds with probability at least 1− 7δ that

1

T

T∑
t=1

∥∇Φ(xt)∥ ≤ Cb

η
√
α

 1√
T

(
α2 +

l2g,1
µ2η2

(
4D2l2g,1 + 2Dγ

))1/4

+
1

T 3/8

(
2
√
2l2g,1Dσg,1

µ2η2

)1/4

+
1

T 1/4

(
4σ̄2

ϕ + σ2
g,1

)1/4 ,

where Cb = Õ(κ4
σ), D, and σ̄ϕ are defined in Equations (24), (44) and (46), respectively.

Remark: Theorem 4.2 shows that Ada-Bio achieves a sharp rate of Õ((σ̄2
ϕ + σ2

g,1)
1/4/T 1/4) in the

stochastic setting, where all noise terms introduced in Assumption 3.4 are positive. Moreover, it
is obvious that Ada-Bio implicitly adapts to the noise level; in the noiseless case (where all noise
parameters in Assumption 3.4 vanish), Ada-Bio automatically recovers the near-optimal Õ(1/

√
T )

rate. To the best of our knowledge, Theorem 4.2 provides the first sharp and adaptive convergence
guarantee for stochastic bilevel optimization without any prior knowledge of the noise parameters
specified in Assumption 3.4. In fact, we only require the knowledge of µg, lg,1 and T due to the
construction of Neumann series. See detailed proof of Theorem 4.2 in Appendix E. A comparison of
adaptive methods for bilevel optimization is also presented in Table 2.

5 Theoretical Analysis

In this section, we provide the convergence analysis for Algorithms 1 and 2 with the adaptive
parameter choices in Equations (3) and (4). We begin in Section 5.1 by analyzing an adaptive
version of normalized SGD with momentum (Algorithm 3) in the nonconvex stochastic (single-level)
optimization setting, where we establish a convergence rate of Õ(1/

√
T +

√
σ̄/T 1/4), where σ̄ is an

upper bound on the stochastic gradient noise. We then extend this novel framework for the upper-level
analysis in both minimax and bilevel optimization, combining it with a generalized AdaGrad-Norm
analysis in the (strongly) convex case [2] under time shift for the lower-level variables, presented in
Section 5.2. Due to space limitations, we defer the full proofs to Appendices C to E.

5.1 Adaptive Normalized SGD with Momentum

With a slight abuse of notation, we consider minimizing an objective function f(x) = E[F (x; ξ)].
We start with analyzing adaptive normalized SGD with momentum presented in Algorithm 3, where

1G denotes the upper bound on the stochastic gradient norm, and α, β satisfy 0 < β < α < 1.
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Algorithm 3 Adaptive Normalized SGD with Momentum (Ada-NSGDM)
1: Input: x1,m1 = ∇F (x1; ξ1)
2: for t = 1, . . . , T do
3: mt = βtmt−1 + (1− βt)gt
4: xt+1 = xt − ηt

mt

∥mt∥
5: end for

gt = ∇F (xt; ξt). This algorithm builds on the method introduced by [11], with the key difference
being that we incorporate both an adaptive momentum parameter βt and an adaptive stepsize ηt, each
of which varies across iterations. In particular, let αt = 1− βt and we set αt and ηt as

αt =
α√

α2 +
∑t

k=1 ∥gk − g̃k∥2
and ηt =

η
√
αt√
t

, (5)

where g̃t = ∇F (xt; ξ
′
t) and ξt, ξ

′
t are independent samples. We will make the following assumptions.

Assumption 5.1. The objective function f is L-smooth.
Assumption 5.2. The gradient oracle is unbiased, i.e., E[∇F (x; ξ) | x] = ∇f(x), and with
probability one, satisfies

¯
σ ≤ ∥∇F (x; ξ)−∇f(x)∥ ≤ σ̄.

Before proceeding, we introduce the definition of κσ and t0, which will be frequently used throughout
the subsequent analysis. Specifically, we define (with the convention 0/0 := 1)

κσ =

{
σ̄/

¯
σ

¯
σ > 0

1 σ̄ = 0
, c0 = ¯

σ2

4σ̄2 − 2
¯
σ2

, and t0 = max

{
2,

AT (δ) + c0
√

BT (δ)

c20

}
, (6)

where AT (·) and BT (·) are logarithmic factors (double-log in T ) defined in Lemma A.1.

We now present the main lemmas necessary to establish Theorem 5.6. All of these lemmas rely
on Assumptions 5.1 and 5.2, unless explicitly stated otherwise. The full proof of these lemmas are
deferred to Appendix B. The following lemma is a standard recursion for the momentum deviation.
Lemma 5.3. Define ϵ̂t = mt−∇f(xt) and ϵt = gt−∇f(xt). Further, let St = ∇f(xt−1)−∇f(xt).
For all t ≥ 1, it holds that

ϵ̂t = β2:tϵ̂1 +
∑t

k=2 β(k+1):tαkϵk +
∑t

k=2 βk:tSk.

In order to obtain a high probability bound for ∥ϵ̂t∥, we need the following technical lemma, which
leverages the concentration bound introduced in [55, Lemma 2.4] and tools from linear programming
(see Lemma F.5 in Appendix F) to resolve the difficulties arising from statistical dependency among
αt, βt, and ϵt.
Lemma 5.4. Let 0 ≤

¯
αt ≤ αt ≤ ᾱt and 0 ≤

¯
βt ≤ βt ≤ β̄t, where

¯
αt, ᾱt,

¯
βt, and β̄t are independent

of Ft. Then with probability at least 1− 2δ, it holds for all t ≤ T that∥∥∥∑t
k=2 β(k+1):tαkϵk

∥∥∥ ≤ σ̄
√(

1 + 32 log 2T
δ

)∑t
k=2 β̄

2
(k+1):tᾱ

2
k. (7)

Next, we provide high-probability lower and upper bounds for αt and βt, which help us to derive tight
upper bound for the right-hand side of Equation (7) (see Lemma G.2 in Appendix G). Our analysis
relies on the martingale technique developed by [6], which uses an empirical Bernstein concentration
bound introduced by [35]. Recall the definition of t0 as in Equation (6). Lemma 5.5 indicates that αt

and βt reliably approximate the optimal momentum parameter settings after t0 iterations: they are
both upper- and lower-bounded by quantities of the same order, even without prior knowledge of the
noise level σ.
Lemma 5.5. With probability at least 1− δ, for all t ≤ T ,

α√
α2 + 4σ̄2t

=:
¯
αt ≤ αt ≤ ᾱt := I(t < t0) +

α√
α2 +

¯
σ2t

I(t ≥ t0),(
1− α√

α2 +
¯
σ2t

)
I(t ≥ t0) =:

¯
βt ≤ βt ≤ β̄t := 1− α√

α2 + 4σ̄2t
.
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Now we are ready the present our main theorem regarding Algorithm 3.
Theorem 5.6. Under Assumptions 5.1 and 5.2 and the parameter choices in Equation (5), for any
δ ∈ (0, 1/3), it holds with probability at least 1− 3δ that

1

T

T∑
t=1

∥∇f(xt)∥ ≤ C

η

(
1√
T

+
2
√
σ̄√

αT 1/4

)
,

where C = Õ(κ4
σ) is defined in Equation (19).

Remark: To our knowledge, this is the first adaptive convergence guarantee for normalized SGD
with momentum. Algorithm 3 achieves a rate of Õ(1/T 1/4) in the stochastic setting and Õ(1/

√
T )

in the deterministic setting. This rate-interpolation occurs automatically without requiring any prior
knowledge of problem-dependent parameters. We emphasize that Theorem 5.6 builds a general
analytical framework for proving Theorems 4.1 and 4.2. See Appendix B for detailed proofs.

5.2 Proof Sketch of Theorems 4.1 and 4.2

In this section, we present a unified lower-level analysis applicable to both minimax and bilevel
optimization. Recall from Sections 1 and 3 that the bilevel optimization problem (2) reduces to the
minimax optimization problem (1) when g = −f . Therefore, we analyze line 5 of Algorithm 1
using the function g and stochastic gradient descent (instead of the original f and stochastic gradient
ascent): yt+1 = yt − ηy,tgy,t, where gy,t = ∇yG(xt, yt; ξt) = −∇yF (xt, yt; ξt). Note that the
following lemma (Lemma 5.7) as well as Lemmas C.1 and C.2 in Appendix C are applicable to the
proofs of both Theorems 4.1 and 4.2.

The following lemma provides high-probability guarantees for the lower-level estimation error, which
are crucial for controlling and bounding the (hyper)gradient bias. The core of our result generalizes
the AdaGrad-Norm analysis developed for convex settings by [2], accommodating iteration-dependent
shifts induced by the upper-level variable and incorporating our novel adaptive parameter choices as
detailed in Equations (3) and (4) and Sections 4.2 and 4.3.
Lemma 5.7. With probability at least 1− 4δ, for all t ≤ T + 1, d̄t := maxk≤t ∥yk − y∗k∥ ≤ D, and

t∑
k=1

∥yk − y∗k∥2 ≤ 1

µ2η2

(
4D2L2 + 2Dγ + 2

√
2Dσ

√
t
)
, (8)

t∑
k=1

∥yk − y∗k∥ ≤ 1

µη

((√
2DL+

√
Dγ
)√

t+
√
2Dσt3/4

)
, (9)

where D is defined in Equation (24), and σ = σy for Algorithm 1 and σ = σg,1 for Algorithm 2.

Combining the upper-level analysis framework introduced in Section 5.1 with the lower-level es-
timation error bounds (i.e., bounds on the gradient/hypergradient estimation bias) established in
Lemma 5.7, we can prove Theorems 4.1 and 4.2 similarly to how we derived Theorem 5.6. The
complete proofs are deferred to Appendices C to E.

6 Experiments

In this section, we empirically evaluate our proposed algorithms on three tasks, including syn-
thetic test functions (Section 6.1), deep AUC maximization (Section 6.2), and hyperparameter
optimization (Appendix K). In addition, we further test the robustness of our algorithms by vary-
ing several key parameters (e.g., initial learning rates, initial momentum parameter), which is
included in Section 6.3. The code is available at https://github.com/MingruiLiu-ML-Lab/
adaptive-hierarchical-optimization.

6.1 Synthetic Experiments

We conduct synthetic experiments on a simple one-dimensional function f(x, y) = cosx+xy− 1
2y

2,
which satisfies the nonconvex-strongly-concave minimax optimization setting. It is straightforward to
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Figure 1: Synthetic experiments on a 1-dimensional function for minimax optimization.
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Figure 2: 2-layer Transformer for deep AUC maximization on imbalanced Sentiment140 dataset.

verify that y∗(x) = x, Φ(x) = f(x, y∗(x)) = cosx + 1
2x

2, and ∇Φ(x) = x − sinx. To simulate
stochastic gradients, we add Gaussian noise sampled from N (0, σ2) to the ground-truth gradients. As
demonstrated in Figure 1, our proposed method, Ada-Minimax , consistently outperforms TiAda [47]
across various noise magnitudes. These results clearly illustrate our algorithm’s adaptivity to noise
levels: specifically, as the noise magnitude decreases, our algorithm automatically achieves faster
convergence. Notably, under high-noise regimes (e.g., σ = 100), TiAda fails to converge even after
extensive parameter tuning, whereas our algorithm successfully converges. The hyperparameter
settings are included in Appendix I.

6.2 Deep AUC Maximization

The Area Under the ROC Curve (AUC) is a performance measure of classifiers [31, 32], which is
widely used in the imbalanced data classification setting. Deep AUC Maximization (DAM) [79, 76]
is a new paradigm for learning a deep neural network by maximizing the AUC score of the model
on a dataset. Recent studies [75, 76, 53] have shown great success of deep AUC maximization in
various domains (e.g., medical image classification and drug discovery). Following [75, 54, 53], AUC
maximization can be formulated as a minimax problem,

min
w∈Rd,(a,b)∈R2

max
α∈R

f(w, a, b, α) = Eξ∼D[F (w, a, b, α; ξ)], (10)

where F (w, a, b, α; z) = (1 − p)(h(w;x) − a)2I[y=1] + p(h(w;x) − b)2I[y=−1] + 2(1 +

α)(ph(w;x)I[y=−1] − (1 − p)h(w;x)I[y=1]) − p(1 − p)α2, w is the parameter of a deep neu-
ral network (e.g., a two-layer transformer as the predictive model), h(w;x) is the score function
parameterized by w with the input data x, ξ = (x, y) is a random sample from training set D with
input x and a binary label y ∈ {−1, 1}. The imbalanced ratio p is the proportion of the positive
samples in the training set. Therefore, (w, a, b) and α are primal and dual variables respectively.

To verify the effectiveness of our proposed Algorithm 1, we run a practical variant (refer to Ap-
pendix J) of our algorithm in deep AUC maximization experiments on imbalanced text classification,
and compare with other minimax baselines, including SGDA [50], PDSM [30]), and an adaptive
minimax algorithm TiAda [47]. We first construct the imbalanced binary classification dataset
Sentiment140 [23] (under Creative Commons Attribution 4.0 License). The practical variant of
our algorithm replaces the term

∑t
k=1 ∥gx,k − g̃x,k∥2 in Equation (3) with

∑t
k=1 ∥gx,k − gx,k−1∥2,

where gx,k−1 denotes the gradient of x computed at the previous iteration (i.e., (k − 1)-th iteration).
Additionally, we modify the step size from ηx,t = ηx

√
α′
t/
√
t to ηx,t = ηx

√
α′
t/
√
T (note that

this change does not affect the convergence of Algorithm 1). In this subsection, with a slight abuse
of notation, we use ηx to denote ηx/

√
T . Following the data setting in [76], we randomly remove
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Figure 3: Robustness of hyperparameters.

positive samples (labeled as 1) from the training set until the proportion of positive samples is exactly
0.9 (i.e., p = 0.9). In the experiment, we adopt a two-layer transformer as the classifier with the
hidden size of 4096 and the output dimension of 2. The hyperparameter settings of each baseline and
experimental details are described in Appendix J. The comparison results of training and test curve
over 50 epochs are shown in Figure 2. From subfigures (a) and (b), our algorithm Ada-Minimax
shows 20% higher training AUC and 2% higher test AUC than the best compared algorithm PDSM.
From running time curve (c) and (d), our algorithm demonstrates the fastest convergence rate than
other baselines.

6.3 Hyperparameter Robustness Analysis

We investigate the robustness of our method to the hyperparameters α, ηy , ηx, and γ by varying each
parameter independently while keeping others fixed, as shown in Figure 3. Specifically, Figure 3(a)
indicates that changing α within the range [0.1, 2.0] has minimal impact on convergence speed and
final AUC performance. In Figure 3(b), varying ηy between 0.001 and 0.05 yield nearly overlapping
curves after the initial training stage. Similarly, Figure 3(c) shows that varying ηx from 0.001 to 0.01
affects only early-stage training dynamics without compromising the final performance; however,
increasing ηx to 0.05 results in a noticeable decline in the final training AUC. Lastly, Figure 3(d)
illustrates that the algorithm maintains consistent performance across a wide range of γ values
[0.01, 2.0]. Therefore, these results demonstrate that our algorithm exhibits strong robustness across
broad ranges of these hyperparameters, significantly reducing the time required for hyperparameter
tuning in practice.

7 Conclusion

We introduced two novel adaptive algorithms for nonconvex-strongly-concave minimax optimization
and nonconvex-strongly-convex bilevel optimization. Both algorithms achieve sharp and adaptive
convergence rates: they automatically adapt to unknown variance in stochastic gradient estimates.
Our approach leverages the momentum normalization framework along with novel adaptive schemes
for jointly setting the momentum parameter and the learning rate. Experimental results validate and
support our theoretical analyses. One limitation of our work is the assumption that the stochastic
gradient noise is lower-bounded. In future work, we aim to remove this assumption while maintaining
the sharp convergence guarantees.
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A Martingale Concentration Bounds and Basic Inequalities

Lemma A.1 ([6, Corollary 1]). Let Xt be adapted to Ft such that |Xt| ≤ 1 with probability 1 for all
t. Then, for every δ ∈ (0, 1) and any X̂t ∈ Ft−1 such that |X̂t| ≤ 1 with probability 1,

Pr

∃t < ∞ :

∣∣∣∣∣∣
∑
s≤t

(Xs − E[Xs | Fs−1])

∣∣∣∣∣∣ ≥
√
At(δ)

∑
s≤t

(Xs − X̂s)2 +Bt(δ)

 ≤ δ,

where At(δ) = 16 log
(

60 log(6t)
δ

)
and Bt(δ) = 16 log2

(
60 log(6t)

δ

)
.

Lemma A.2 ([55, Lemma 2.4]). Suppose X1, . . . , XT is a martingale difference sequence adapted
to a filtration F1, . . . ,FT in a Hilbert space such that ∥Xt∥ ≤ Rt almost surely for some Rt ∈ Ft−1.
Then for any δ ∈ (0, 1), with probability at least 1− δ, for any fixed t we have∥∥∥∥∥

t∑
s=1

Xs

∥∥∥∥∥ ≤ 4

√√√√log
2

δ

T∑
s=1

R2
s.

Proof of Lemma A.2. The proof concludes by setting Rt ∈ Ft−1 in [55, Lemma 2.4].

Lemma A.3 ([2, Lemma 4]). Let g1, . . . , gT ∈ Rd be an arbitrary sequence of vectors, and let
G0 > 0. For all t ≥ 1, define

Gt =

√√√√G2
0 +

t∑
s=1

∥gs∥2.

Then
T∑

t=1

∥gt∥2

Gt
≤ 2

√√√√ T∑
t=1

∥gt∥2, and
T∑

t=1

∥gt∥2

G2
t

≤ 2 log
GT

G0
.

Lemma A.4 ([2, Lemma 6]). For Ada-NSGDM (Algorithm 3) we have
T∑

t=1

∥gt∥2

G2
t

≤ C1 := log

(
1 +

2σ̄2T + 4η2L2T 3 + 8L∆1T

γ2

)
, (11)

where ∆1 = f(x1)− f∗.

B Proofs of Section 5.1

B.1 Technical Lemmas

Lemma 5.3. Define ϵ̂t = mt−∇f(xt) and ϵt = gt−∇f(xt). Further, let St = ∇f(xt−1)−∇f(xt).
For all t ≥ 1, it holds that

ϵ̂t = β2:tϵ̂1 +
∑t

k=2 β(k+1):tαkϵk +
∑t

k=2 βk:tSk.
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Proof of Lemma 5.3. The proof follows from a straightforward calculation:

ϵ̂t = mt −∇f(xt)

= βtmt−1 + (1− βt)gt −∇f(xt)

= βt(ϵ̂t−1 +∇f(xt−1)) + (1− βt)(ϵt +∇f(xt))−∇f(xt)

= βtϵ̂t−1 + (1− βt)ϵt + βtSt.

Unrolling the recursion and using αt = 1− βt yields the result.

Lemma 5.4. Let 0 ≤
¯
αt ≤ αt ≤ ᾱt and 0 ≤

¯
βt ≤ βt ≤ β̄t, where

¯
αt, ᾱt,

¯
βt, and β̄t are independent

of Ft. Then with probability at least 1− 2δ, it holds for all t ≤ T that∥∥∥∑t
k=2 β(k+1):tαkϵk

∥∥∥ ≤ σ̄
√(

1 + 32 log 2T
δ

)∑t
k=2 β̄

2
(k+1):tᾱ

2
k. (7)

Proof of Lemma 5.4. Define γk,t := β(k+1):tαk and It = {(i, j) | 3 ≤ i ≤ t, 2 ≤ j < i}. Then for
all k ≤ t,

¯
β(k+1):t¯

αk =:
¯
γk,t ≤ γk,t ≤ γ̄k,t := β̄(k+1):tᾱk. (12)

By Lemma F.5, there exists a set {b∗ij,t}(i,j)∈It
with each b∗ij,t satisfying either b∗ij,t =

¯
γi,t

¯
γj,t or

b∗ij,t = γ̄i,tγ̄j,t for every pair (i, j), such that

t∑
i=3

i−1∑
j=2

γi,tγj,t⟨ϵi, ϵj⟩ ≤
t∑

i=3

i−1∑
j=2

b∗ij,t⟨ϵi, ϵj⟩.

Applying Lemma A.2 with Xi =
〈
ϵi,
∑i−1

j=2 b
∗
ij,tϵj

〉
and Ri = σ̄

∥∥∥∑i−1
j=2 b

∗
ij,tϵj

∥∥∥ ∈ Fi−1, and using
a union bound over t, with probability at least 1− δ, for all t ≤ T ,

t∑
i=3

i−1∑
j=2

b∗ij,t⟨ϵi, ϵj⟩ =
t∑

i=3

〈
ϵi,

i−1∑
j=2

b∗ij,tϵj

〉
≤ 4

√√√√√log
2T

δ

t∑
i=3

σ̄2

∥∥∥∥∥∥
i−1∑
j=2

b∗ij,tϵj

∥∥∥∥∥∥
2

. (13)

Applying Lemma A.2 again with Xj = b∗ij,tϵj and Rj = b∗ij,tσ̄ ∈ R, and using a union bound over i,
with probability at least 1− δ, for all i ≤ T ,∥∥∥∥∥∥

i−1∑
j=2

b∗ij,tϵj

∥∥∥∥∥∥
2

≤ 16 log
2T

δ

i−1∑
j=2

(b∗ij,tσ̄)
2. (14)

Combing Equations (13) and (14), with probability at least 1− 2δ (via a union bound), for all t ≤ T ,

t∑
i=3

i−1∑
j=2

b∗ij,t⟨ϵi, ϵj⟩ ≤ 16σ̄2 log
2T

δ

√√√√ t∑
i=3

i−1∑
j=2

(b∗ij,t)
2

≤ 16σ̄2 log
2T

δ

√√√√ t∑
i=3

i−1∑
j=2

(γ̄i,tγ̄j,t)2 ≤ 16 log
2T

δ

t∑
i=2

γ̄2
i,tσ̄

2,

where the second inequality uses b∗ij,t ≤ γ̄i,tγ̄j,t. Hence, with probability at least 1− 2δ,∥∥∥∥∥
t∑

k=2

β(k+1):tαkϵk

∥∥∥∥∥
2

=

t∑
k=2

γ2
k,t∥ϵk∥2 + 2

t∑
i=3

i−1∑
j=2

γi,tγj,t⟨ϵi, ϵj⟩

≤
t∑

k=2

γ2
k,tσ̄

2 + 32 log
2T

δ

t∑
i=2

γ̄2
i,tσ̄

2

≤
(
1 + 32 log

2T

δ

) t∑
k=2

γ̄2
k,tσ̄

2.

Plugging in the definition of γ̄k,t as in Equation (12) yields the result.
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Lemma 5.5. With probability at least 1− δ, for all t ≤ T ,

α√
α2 + 4σ̄2t

=:
¯
αt ≤ αt ≤ ᾱt := I(t < t0) +

α√
α2 +

¯
σ2t

I(t ≥ t0),(
1− α√

α2 +
¯
σ2t

)
I(t ≥ t0) =:

¯
βt ≤ βt ≤ β̄t := 1− α√

α2 + 4σ̄2t
.

Proof of Lemma 5.5. Consider the case 0 <
¯
σ ≤ σ̄. By Assumption 5.2 and Young’s inequality,

t∑
k=1

∥gk − g̃k∥2 ≤ 2

t∑
k=1

∥gk −∇f(xk)∥2 + ∥g̃k −∇f(xk)∥2 ≤ 4σ̄2t. (15)

We proceed to derive high probability lower bound for
∑t

k=1 ∥gk − g̃k∥2. Denote σ2
t = Et−1[∥gt −

∇f(xt)∥2]. Let Zt = ∥gt − g̃t∥2 − 2σ2
t , then {Zt}t≥1 is a martingale difference sequence since

Et−1[Zt] = Et−1[∥gt − g̃t∥2 − 2σ2
t ]

= Et−1[∥gt −∇f(xt)∥2 + ∥g̃t −∇f(xt)∥2 − 2⟨gt −∇f(xt), g̃t −∇f(xt)⟩]− 2σ2
t

= 0.

Using Assumption 5.2 and Young’s inequality again, we have

Zt ≥ −2σ2
t and Zt ≤ 2∥gt −∇f(xt)∥2 + 2∥g̃t −∇f(xt)∥2 − 2σ2

t ≤ 4σ̄2 − 2σ2
t .

This implies that

|Zt| ≤ max
{
2σ2

t , 4σ̄
2 − 2σ2

t

}
= 4σ̄2 − 2σ2

t ,

where the last equality is due to σt ≤ σ̄ almost surely. Define Xt = Zt/(4σ̄
2 − 2σ2

t ), then |Xt| ≤ 1

with probability 1. Applying Lemma A.1 with the Xs we defined and X̂s = 0, for any δ ∈ (0, 1),
with probability at least 1− δ, for all t ≤ T ,∣∣∣∣∣

t∑
k=1

Xk

∣∣∣∣∣ ≤
√√√√At(δ)

t∑
k=1

X2
k +Bt(δ) ≤

√
At(δ) · t+Bt(δ), (16)

where the last inequality uses
∑t

k=1 X
2
k ≤ t since |Xk| ≤ 1. Recall the definition of t0 and c0 as in

Equation (6) (t0 is the solution to the equation AT (δ) · t+BT (δ) = c20t
2), for all t ≥ t0,√

At(δ) · t+Bt(δ) ≤
√

AT (δ) · t+BT (δ) ≤ c0t = ¯
σ2t

4σ̄2 − 2
¯
σ2

.

Then, expanding Equation (16) and using the above condition yields that, with probability at least
1− δ, for all t0 ≤ t ≤ T ,

t∑
k=1

∥gk − g̃k∥2 − 2σ2
k

4σ̄2 − 2σ2
k

≥ − ¯
σ2t

4σ̄2 − 2
¯
σ2

=⇒
t∑

k=1

∥gk − g̃k∥2 ≥
¯
σ2t. (17)

We conclude the proof by combining Equations (15) and (17) and noting that the results also hold for
the case

¯
σ = σ̄ = 0.

Lemma B.1 (Descent Lemma). Under Assumptions 5.1 and 5.2, define ϵ̂t := mt −∇f(xt), then

f(xt+1) ≤ f(xt)− ηt∥∇f(xt)∥+ 2ηt∥ϵ̂t∥+
Lη2t
2

.

Further, define ∆1 := f(x1)− f∗, taking summation and rearranging we have

T∑
t=1

ηt∥∇f(xt)∥ ≤ ∆1 + 2

T∑
t=1

ηt∥ϵ̂t∥+
L

2

T∑
t=1

η2t .
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B.2 Proof of Theorem 5.6

Before proving Theorem 5.6, let us define (recall the definition of κσ and t0 in Equation (6), here
κσ = σ̄/

¯
σ in single-level optimization)

∆1 = f(x1)− f∗, t0 = max

{
2, 8

(
32κ4

σ − 30κ2
σ + 7

)
log

(
60 log(6T )

δ

)}
, (18)

C = ∆1 + 4ησ̄
(√

t0 − 1− 1 + e
√
κσ

(
1 + 2

√
σ̄/α

))
+

Lη2

2
(1 + log T ) (19)

+ 2η
√
1 + 32 log(2T/δ)

((
t0 − 1 + 2e

√
t0 − 2

√
κσ

(
1 + 2

√
σ̄/α

))
σ̄ + 3

√
eκ2

σα log T
)

+ 4Lη2
(
(t0 − 1)

(
1 + e

√
κσ

(
1 + 2

√
σ̄/α

))
+ e(

√
κσ + 2κσ) log T

)
.

Theorem 5.6. Under Assumptions 5.1 and 5.2 and the parameter choices in Equation (5), for any
δ ∈ (0, 1/3), it holds with probability at least 1− 3δ that

1

T

T∑
t=1

∥∇f(xt)∥ ≤ C

η

(
1√
T

+
2
√
σ̄√

αT 1/4

)
,

where C = Õ(κ4
σ) is defined in Equation (19).

Proof of Theorem 5.6. Without loss of generality, we assume t0 is an integer (see definition in
Equation (6)). By Lemmas 5.3 to 5.5, B.1 and G.2, with probability at least 1− 3δ,

T∑
t=1

ηt∥∇f(xt)∥ ≤ ∆1 + 2

T∑
t=1

ηt∥ϵ̂t∥+
L

2

T∑
t=1

η2t

≤ ∆1 + 2

T∑
t=1

ηt

(
β2:t∥ϵ̂1∥+

∥∥∥∥∥
t∑

k=2

β(k+1):tαkϵk

∥∥∥∥∥+
t∑

k=2

βk:t∥Sk∥

)
+

L

2

T∑
t=1

η2t

≤ ∆1 + 2

T∑
t=1

ηt

β2:tσ̄ + σ̄

√√√√(1 + 32 log
2T

δ

) t∑
k=2

β̄2
(k+1):tᾱ

2
k + L

t∑
k=2

βk:tηk−1

+
L

2

T∑
t=1

η2t

≤ ∆1 + 4ησ̄
(√

t0 − 1− 1 + e
√
κσ

(
1 + 2

√
σ̄/α

))
+

Lη2

2
(1 + log T )

+ 2η
√
1 + 32 log(2T/δ)

((
t0 − 1 + 2e

√
t0 − 2

√
κσ

(
1 + 2

√
σ̄/α

))
σ̄ + 3

√
eκ2

σα log T
)

+ 4Lη2
(
(t0 − 1)

(
1 + e

√
κσ

(
1 + 2

√
σ̄/α

))
+ e(

√
κσ + 2κσ) log T

)
= C,

where the third inequality uses ∥ϵ̂1∥ = ∥ϵ1∥ ≤ σ̄ and ∥Sk∥ = ∥∇f(xk−1) − ∇f(xk)∥ ≤ Lηk−1,
and the last inequality is due to the definition of C. Then, using ηt ≥ ηT for t ≤ T ,

T∑
t=1

ηT ∥∇f(xt)∥ ≤
T∑

t=1

ηt∥∇f(xt)∥ ≤ C.

Therefore, with probability at least 1− 3δ,

1

T

T∑
t=1

∥∇f(xt)∥ ≤ C

TηT
≤ C(α2 + 4σ̄2T )1/4

√
T

η
√
αT

≤ C

η

(
1√
T

+
2
√
σ̄√

αT 1/4

)
.

C Proof of Section 5.2

The core of our result in this section generalizes the AdaGrad-Norm analysis developed for convex
settings by [2], accommodating iteration-dependent shifts induced by the upper-level variable xt and
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incorporating our novel adaptive parameter choices as detailed in Equations (3) and (4) and Sec-
tions 4.2 and 4.3. In particular, Lemmas C.1 and C.2 are direct applications of [2, Lemmas 15 and
16], whereas Lemma 5.7 extends [2, Lemma 13] to account for time shifts.

Recall from Sections 1 and 3 that the bilevel optimization problem (2) reduces to the minimax
optimization problem (1) when g = −f . Therefore, we analyze line 5 of Algorithm 1 using the
function g and stochastic gradient descent (instead of the original f and stochastic gradient ascent):
yt+1 = yt − ηy,tgy,t, where gy,t = ∇yG(xt, yt; ξt) = −∇yF (xt, yt; ξt). Note that the following
lemmas (Lemmas 5.7, C.1 and C.2) are applicable to the proofs of both Theorems 4.1 and 4.2.

Additional Notations. Let y∗t = y∗(xt) and dt = ∥yt − y∗t ∥. Define d̄t := maxk≤t dt. In the proof
below, we use a “decorrelated step size” given by

η̂y,t :=
η√

G2
y,t−1 + ∥∇yg(xt, yt)∥2

, where Gy,t =

√√√√γ2 +

t∑
k=1

∥gy,k∥2.

Lemma C.1. Let d̄′t = max{d̄t, η}. Then with probability at least 1− 2δ, it holds that for all t ≤ T ,
t∑

k=1

η̂y,k⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩

≤ 2d̄′t

√
At(δ/ log(4T ))

∑
k≤t

η2y,k−1∥∇yg(xk, yk)− gy,k∥2 + η2y,0σ
2Bt(δ/ log(4T ))

and
t∑

k=1

η̂2y,k⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩

≤ 2d̄′tηy,0

√
At(δ/ log(4T ))

∑
k≤t

η2y,k−1∥∇yg(xk, yk)− gy,k∥2 + η2y,0σ
2Bt(δ/ log(4T )),

where At(·) and Bt(·) are defined in Lemma A.1, and σ = σy for Algorithm 1 and σ = σg,1 for
Algorithm 2.

Proof of Lemma C.1. In order to invoke Lemma A.1 we will replace yk − y∗k with a version which
is scaled and projected to the unit ball. We denote as = 2s−1d̄′1 and st = ⌈log(d̄′t/d̄′1)⌉+ 1. Thus,
d̄t ≤ d̄′t ≤ ast ≤ 2d̄′t. Since ∥yk+1 − y∗k+1∥ ≤ ∥yk − y∗k∥ + η for all s, d̄t ≤ d1 + η(t − 1) and
1 ≤ st ≤ ⌈log(t)⌉+1 ≤ log(4T ). Defining the projection to the unit ball, Π1(x) = x/max{1, ∥x∥},

yk − y∗k
ast

= Π1

(
yk − y∗k
ast

)
Note that

∥η̂y,k(∇yg(xk, yk)− gy,k)∥ ≤ ηy,0σ. (20)

Thus,
t∑

k=1

η̂y,k⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩
ηy,0σast

=

t∑
k=1

〈
η̂y,k(∇yg(xk, yk)− gy,k)

ηy,0σ
,Π1

(
yk − y∗k
ast

)〉

≤

∣∣∣∣∣
t∑

k=1

〈
η̂y,k(∇yg(xk, yk)− gy,k)

ηy,0σ
,Π1

(
yk − y∗k
ast

)〉∣∣∣∣∣ (21)

≤ max
1≤s≤⌊log(4T )⌋

∣∣∣∣∣
t∑

k=1

〈
η̂y,k(∇yg(xk, yk)− gy,k)

ηy,0σ
,Π1

(
yk − y∗k

as

)〉∣∣∣∣∣ .
Let X(s)

k be defined as

X
(s)
k =

〈
η̂y,k(∇yg(xk, yk)− gy,k)

ηy,0σ
,Π1

(
yk − y∗k

as

)〉
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for some s. Then X
(s)
k is a martingale difference sequence since

Ek−1[gy,k] = ∇yg(xk, yk) =⇒ Ek[X
(s)
k ] = 0.

Also note that X(s)
k ≤ 1 with probability 1. Using Lemma A.1 with the X(s)

k we defined and X̂k = 0,
for any k and δ′ ∈ (0, 1), with probability at least 1− δ′, for all t ≤ T ,∣∣∣∣∣∣

∑
k≤t

X
(s)
k

∣∣∣∣∣∣ ≤
√

At(δ′)
∑
k≤t

(X
(s)
k )2 +Bt(δ′).

We can upper bound (X
(s)
k )2,

(X
(s)
k )2 ≤

η̂2y,k∥∇yg(xk, yk)− gy,k∥2

(ηy,0σ)2

∥∥∥∥Π1

(
yk − y∗k

ak

)∥∥∥∥2
≤

η̂2y,k∥∇yg(xk, yk)− gy,k∥2

(ηy,0σ)2

≤
η2y,k−1∥∇yg(xk, yk)− gy,k∥2

(ηy,0σ)2
,

where the first inequality uses Cauchy-Schwarz inequality, the second inequality is due to ∥Π1(x)∥ ≤
1, and the last inequality uses η̂y,k ≤ ηy,k−1. Thus, returning to Equation (21) multiplied by ηy,0σast ,
with probability at least 1− δ′ log(4T ) (union bound for all 1 ≤ s ≤ ⌊log(4T )⌋),
t∑

k=1

η̂y,k⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩ ≤ ηy,0σast

√√√√At(δ′)
∑
k≤t

η2y,k−1

(ηy,0σ)2
∥∇yg(xk, yk)− gy,k∥2 +Bt(δ′).

As ast ≤ 2d̄′t, picking δ′ = δ/ log(4T ), with probability at least 1− δ,
t∑

k=1

η̂y,k⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩ (22)

≤ 2d̄′t

√
At(δ/ log(4T ))

∑
k≤t

η2y,k−1∥∇yg(xk, yk)− gy,k∥2 + η2y,0σ
2Bt(δ/ log(4T )).

Similarly, replacing η̂y,k by η̂2y,k and ηy,0σ by η2y,0σ in Equation (20), following the analysis above,
and using ηy,k−1 ≤ ηy,0 yields that, with probability at least 1− δ,

t∑
k=1

η̂2y,k⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩ (23)

≤ 2d̄′t

√
At(δ/ log(4T ))

∑
k≤t

η4y,k−1∥∇yg(xk, yk)− gy,k∥2 + η4y,0σ
2Bt(δ/ log(4T ))

≤ 2d̄′tηy,0

√
At(δ/ log(4T ))

∑
k≤t

η2y,k−1∥∇yg(xk, yk)− gy,k∥2 + η2y,0σ
2Bt(δ/ log(4T )).

We conclude by applying a union bound over the two events (Equations (22) and (23)).

Lemma C.2. With probability at least 1− 2δ, for all 1 ≤ t ≤ T ,
t∑

k=1

η2y,k−1∥∇yg(xk, yk)− gy,k∥2 ≤ C2 := 2η2 log

(
1 +

σ2T

2γ2

)
+

7η2σ2

γ2
log

T

δ
,

where σ = σy for Algorithm 1 and σ = σg,1 for Algorithm 2.

Proof of Lemma C.2. The proof concludes by applying [2, Lemma 16] with ηs−1 = ηy,k−1,
∇f(xs) = ∇yg(xk, yk), gs = gy,k, σ = σ or σ = σg,1, and η0 = ηy,0 = η/γ.
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C.1 Proof of Lemma 5.7

Before proving Lemma 5.7, let us define

D2 := d21 +

(
1 +

µη

γ

)
C1 +

ηL2

µ3
(µη + α+ γ)(1 + log T ) +

η2

4
(24)

+
4(1 + 2µη/γ)2C2

2

η2
+ 16

(
1 +

µη

γ

)2(
AT (δ)C2 +

η2σ2

γ2
BT (δ)

)
,

where At(δ), Bt(δ), C1, C2 are defined in Lemmas A.1, A.4 and C.2, respectively
Lemma 5.7. With probability at least 1− 4δ, for all t ≤ T + 1, d̄t := maxk≤t ∥yk − y∗k∥ ≤ D, and

t∑
k=1

∥yk − y∗k∥2 ≤ 1

µ2η2

(
4D2L2 + 2Dγ + 2

√
2Dσ

√
t
)
, (8)

t∑
k=1

∥yk − y∗k∥ ≤ 1

µη

((√
2DL+

√
Dγ
)√

t+
√
2Dσt3/4

)
, (9)

where D is defined in Equation (24), and σ = σy for Algorithm 1 and σ = σg,1 for Algorithm 2.

Proof of Lemma 5.7. Rolling a single step of SGD,
∥yk+1 − y∗k∥2 = ∥yk − y∗k∥2 − 2ηy,k⟨gy,k, yk − y∗k⟩+ η2y,k∥gy,k∥2.

Since f(xk, ·) is µ-strongly convex, then
−2ηy,k⟨gy,k, yk − y∗k⟩ = −2ηy,k⟨∇yg(xk, yk), yk − y∗k⟩+ 2ηy,k⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩

≤ −2µηy,k∥yk − y∗k∥2 + 2ηy,k⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩.
Hence,
∥yk+1 − y∗k∥2 ≤ (1− 2µηy,k)∥yk − y∗k∥2 + 2ηy,k⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩+ η2y,k∥gy,k∥2.

By Young’s inequality and Lemma D.1,

∥yk+1 − y∗k+1∥2 ≤ (1 + µηy,k)∥yk − y∗k∥2 +
(
1 +

1

µηy,k

)
∥y∗k+1 − y∗k∥2

≤ (1− µηy,k)∥yk − y∗k∥2 + 2(1 + µηy,k)ηy,k⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩

+ (1 + µηy,k)η
2
y,k∥gy,k∥2 +

(
1 +

1

µηy,k

)
L2η2x,k
µ2

.

Summing from k = 1 to t, applying Lemma A.4, and using ηx,k ≤ η/
√
k,

∥yt+1 − y∗t+1∥2 ≤ ∥y1 − y∗1∥2 −
t∑

k=1

µηy,k∥yk − y∗k∥2 +
t∑

k=1

(1 + µηy,k)η
2
y,k∥gy,k∥2 +

L2η2x,k
µ2

+ 2

t∑
k=1

(ηy,k + µη2y,k)⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩+
L2

µ2

t∑
k=1

η2x,k
µηy,k

≤ ∥y1 − y∗1∥2 −
t∑

k=1

µηy,k∥yk − y∗k∥2 + (1 + µηy,0)C1 +
L2η2

µ2
(1 + log T )

+ 2

t∑
k=1

(ηy,k + µη2y,k)⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩︸ ︷︷ ︸
(A)

+
L2

µ2

t∑
k=1

η2x,k
µηy,k︸ ︷︷ ︸

(B)

. (25)

Bounding (A). In order to create a martingale we replace ηy,k = η/
√

G2
y,k−1 + ∥gy,k∥2 with

η̂y,k = η/
√
G2

y,k−1 + ∥∇yg(xk, yk)∥2, then

(A1) =

t∑
k=1

ηy,k⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩ =
t∑

k=1

η̂y,k⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩ (26)
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+

t∑
k=1

(ηy,k − η̂y,k)⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩.

Observe that

|ηy,k − η̂y,k| = η

∣∣∣√G2
y,k−1 + ∥∇yg(xk, yk)∥2 −

√
G2

y,k−1 + ∥gy,k∥2
∣∣∣√

G2
y,k−1 + ∥gy,k∥2

√
G2

y,k−1 + ∥∇yg(xk, yk)∥2

≤ η

∣∣∥∇yg(xk, yk)∥2 − ∥gy,k∥2
∣∣√

G2
y,k−1 + ∥gy,k∥2

√
G2

y,k−1 + ∥∇yg(xk, yk)∥2
(√

G2
y,k−1 + ∥gy,k∥2 +

√
G2

y,k−1 + ∥∇yg(xk, yk)∥2
)

≤ η
∥∇yg(xk, yk)− gy,k∥(∥∇yg(xk, yk)∥+ ∥gy,k∥)√

G2
y,k−1 + ∥gy,k∥2

√
G2

y,k−1 + ∥∇yg(xk, yk)∥2
(√

G2
y,k−1 + ∥gy,k∥2 +

√
G2

y,k−1 + ∥∇yg(xk, yk)∥2
)

≤ η
∥∇yg(xk, yk)− gy,k∥√

G2
y,k−1 + ∥gy,k∥2

√
G2

y,k−1 + ∥∇yg(xk, yk)∥2
. (27)

Thus,
t∑

k=1

(ηy,k − η̂y,k)⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩ ≤
t∑

k=1

|ηy,k − η̂y,k|∥∇yg(xk, yk)− gy,k∥dk

≤ d̄t

t∑
k=1

|ηy,k − η̂y,k|∥∇yg(xk, yk)− gy,k∥

≤ ηd̄t

t∑
k=1

∥∇yg(xk, yk)− gy,k∥2√
G2

y,k−1 + ∥gy,k∥2
√
G2

y,k−1 + ∥∇yg(xk, yk)∥2

≤ d̄t
η

t∑
k=1

η2y,k−1∥∇yg(xk, yk)− gy,k∥2. (28)

Combing Equations (26) and (28) with Lemma C.1, with probability at least 1− 2δ,

(A1) ≤
d̄t
η

t∑
k=1

η2y,k−1∥∇yg(xk, yk)− gy,k∥2 (29)

+ 2d̄′t

√
At(δ/ log(4T ))

∑
k≤t

η2y,k−1∥∇yg(xk, yk)− gy,k∥2 + η2y,0σ
2Bt(δ/ log(4T )).

Similarly,

(A2) =

t∑
k=1

η2y,k⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩ =
t∑

k=1

η̂2y,k⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩ (30)

+

t∑
k=1

(η2y,k − η̂2y,k)⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩.

Using Equation (27),
t∑

k=1

(η2y,k − η̂2y,k)⟨∇yg(xk, yk)− gy,k, yk − y∗k⟩ ≤
t∑

k=1

|ηy,k + η̂y,k||ηy,k − η̂y,k|∥∇yg(xk, yk)− gy,k∥dk

≤ 2ηy,0d̄t

t∑
k=1

|ηy,k − η̂y,k|∥∇yg(xk, yk)− gy,k∥

≤ 2ηy,0ηd̄t

t∑
k=1

∥∇yg(xk, yk)− gy,k∥2√
G2

y,k−1 + ∥gy,k∥2
√
G2

y,k−1 + ∥∇yg(xk, yk)∥2
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≤ 2ηy,0d̄t
η

t∑
k=1

η2y,k−1∥∇yg(xk, yk)− gy,k∥2. (31)

Combing Equations (30) and (31) with Lemma C.1, with probability at least 1− 2δ,

(A2) ≤
2µηy,0d̄t

η

t∑
k=1

η2y,k−1∥∇yg(xk, yk)− gy,k∥2 (32)

+ 2d̄′tηy,0

√
At(δ/ log(4T ))

∑
k≤t

η2y,k−1∥∇yg(xk, yk)− gy,k∥2 + η2y,0σ
2Bt(δ/ log(4T )).

Hence, due to (A) ≤ 2(A1) + 2(A2) and Equations (29) and (32), with probability at least 1− 2δ,

(A) ≤ 2(1 + 2µηy,0)d̄t
η

t∑
k=1

η2y,k−1∥∇yg(xk, yk)− gy,k∥2

+ 4(1 + µηy,0)d̄
′
t

√
At(δ/ log(4T ))

∑
k≤t

η2y,k−1∥∇yg(xk, yk)− gy,k∥2 + η2y,0σ
2Bt(δ/ log(4T )).

Using ab ≤ a2/2 + b2/2,

(A) ≤ d̄2t
4

+
4(1 + 2µηy,0)

2

η2

(
t∑

k=1

η2y,k−1∥∇yg(xk, yk)− gy,k∥2
)2

+
d̄′2t
4

+ 16(1 + µηy,0)
2

At(δ/ log(4T ))
∑
k≤t

η2y,k−1∥∇yg(xk, yk)− gy,k∥2 + η2y,0σ
2Bt(δ/ log(4T ))


≤ d̄2t

2
+

4(1 + 2µηy,0)
2

η2

(
t∑

k=1

η2y,k−1∥∇yg(xk, yk)− gy,k∥2
)2

+
η2

4

+ 16(1 + µηy,0)
2

At(δ/ log(4T ))
∑
k≤t

η2y,k−1∥∇yg(xk, yk)− gy,k∥2 + η2y,0σ
2Bt(δ/ log(4T ))

 .

Under a union bound with Lemma C.2, with probability at least 1− 4δ,

(A) ≤ d̄2t
2

+
4(1 + 2µηy,0)

2C2
2

η2
+

η2

4
+ 16(1 + µηy,0)

2
(
At(δ/ log(4T ))C2 + η2y,0σ

2Bt(δ/ log(4T ))
)

≤ d̄2t
2

+
4(1 + 2µηy,0)

2C2
2

η2
+

η2

4
+ 16(1 + µηy,0)

2
(
AT (δ)C2 + η2y,0σ

2BT (δ)
)
.

Bounding (B). By the definitions of ηx,t and ηy,t,

t∑
k=1

η2x,k
µηy,k

=
ηα

µ

t∑
k=1

√
γ2 +

∑k
s=1 ∥gy,s∥2

k
√

α2 +
∑k

s=1 ∥gx,s − g̃x,s∥2 + ∥gy,s∥2
≤ ηα

µ

(
1 +

γ

α

) t∑
k=1

1

k
(33)

≤ η(α+ γ)

µ
(1 + log T ). (34)

Then

(B) =
L2

µ2

t∑
k=1

η2x,k
µηy,k

≤ L2η(α+ γ)

µ3
(1 + log T ).

Thus, returning to Equation (25) and using the definition of D, with probability at least 1− 4δ,

d2t+1 ≤ d̄2t
2

+ d21 + (1 + µηy,0)C1 +
L2η2

µ2
(1 + log T ) +

L2η(α+ γ)

µ3
(1 + log T )
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+
4(1 + 2µηy,0)

2C2
2

η2
+

η2

4
+ 16(1 + µηy,0)

2
(
AT (δ)C2 + η2y,0σ

2BT (δ)
)

≤ d̄2t
2

+
D2

2
. (35)

We use induction to show that with probability at least 1 − 4δ, d̄2t ≤ D2 for all 1 ≤ t ≤ T + 1.
Note that for t = 1, d̄21 = d21 ≤ D2. Assume d̄k ≤ D2 for all k ≤ t ≤ T ; then for k = t + 1,
d2t+1 ≤ d̄2t/2 +D2/2 ≤ D2 due to Equation (35). Thus, d̄2t+1 = max{d2t+1, d̄

2
t} ≤ D2.

We proceed to prove Equations (8) and (9). Rearranging Equation (25), using Equation (35) and
d̄2t ≤ D2, with probability at least 1− 4δ,

t∑
k=1

µηy,k∥yk − y∗k∥2 ≤ d̄2t
2

+
D2

2
≤ D2. (36)

Using ηy,k ≤ ηy,t for k ≤ t,

t∑
k=1

∥yk − y∗k∥2 ≤ D2

µηy,t
=

D
√
γ2 +

∑t
k=1 ∥gy,k∥2

µη
≤

D
√
γ2 + 2σ2t+ 2L2

∑t
k=1 ∥yk − y∗k∥2

µη

≤ D
√
γ2 + 2σ2t

µη
+

√
2DL

µη

√√√√ t∑
k=1

∥yk − y∗k∥2,

where the second inequality uses Young’s inequality and Assumption 3.1, and the last inequality is
due to

√
a+ b ≤

√
a+

√
b for a, b ≥ 0. Solving the inequality gives√√√√ t∑

k=1

∥yk − y∗k∥2 ≤ 1

µη

(
√
2DL+

√
D
(
γ +

√
2σ

√
t
))

,

which implies that

t∑
k=1

∥yk − y∗k∥2 ≤ 1

µ2η2

(
4D2L2 + 2Dγ + 2

√
2Dσ

√
t
)
,

and

t∑
k=1

∥yk − y∗k∥ ≤

√√√√t

t∑
k=1

∥yk − y∗k∥2 ≤
√
t

µη

(
√
2DL+

√
D
(
γ +

√
2σ

√
t
))

≤ 1

µη

((√
2DL+

√
Dγ
)√

t+
√
2Dσt3/4

)
.

D Analysis of Algorithm 1

D.1 Technical Lemmas

Lemma D.1 ([50, Lemma 4.3]). Under Assumption 3.1, y∗(x) is L/µ-Lipschitz and Φ(x) is (µ+
L)L/µ-smooth.

Lemma D.2. Define ϵ̂t = mt−∇Φ(xt), ϵBt = ∇xf(xt, yt)−∇Φ(xt), and ϵt = gx,t−∇xf(xt, yt).
Further, let St = ∇Φ(xt−1)−∇Φ(xt). For all t ≥ 1, it holds that

ϵ̂t = β2:tϵ̂1 +

t∑
k=2

β(k+1):tαkϵk +

t∑
k=2

β(k+1):tαkϵ
B
k +

t∑
k=2

βk:tSk.
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Proof of Lemma D.2. The proof follows from a straightforward calculation:

ϵ̂t = mt −∇Φ(xt)

= βtmt−1 + (1− βt)gx,t −∇Φ(xt)

= βt(ϵ̂t−1 +∇Φ(xt−1)) + (1− βt)(ϵt + ϵBt +∇Φ(xt))−∇Φ(xt)

= βtϵ̂t−1 + (1− βt)ϵt + (1− βt)ϵ
B
t + βtSt.

Unrolling the recursion and using αt = 1− βt yields the result.

Lemma D.3 (Descent Lemma). Under Assumptions 3.1 and 3.2, define ϵ̂t := mt −∇Φ(xt), then

Φ(xt+1) ≤ Φ(xt)− ηx,t∥∇Φ(xt)∥+ 2ηx,t∥ϵ̂t∥+
(µ+ L)Lη2x,t

2µ
.

Further, define ∆1 := Φ(x1)− Φ∗, taking summation and rearranging we have

T∑
t=1

ηx,t∥∇Φ(xt)∥ ≤ ∆1 + 2

T∑
t=1

ηx,t∥ϵ̂t∥+
(µ+ L)L

2µ

T∑
t=1

η2x,t.

D.2 Proof of Theorem 4.1

Before proving Theorem 4.1, let us define (recall the definition of κσ and t0 in Equation (6), here
κσ = σ̄x/

¯
σx in minimax optimization)

∆1 = Φ(x1)− Φ∗, t0 = max

{
2, 8

(
32κ4

σ − 30κ2
σ + 7

)
log

(
60 log(6T )

δ

)}
, (37)

Cm = ∆1 + 4ησ̄x

(√
t0 − 1− 1 + e

√
κσ

(
1 + 2

√
σ̄x/α

))
+

(µ+ L)Lη2

2µ
(1 + log T )

+ 2η
√

1 + 32 log(2T/δ)
((

t0 − 1 + 2e
√
t0 − 2

√
κσ

(
1 + 2

√
σ̄x/α

))
σ̄x + 3

√
eκ2

σα log T
)

+
4(µ+ L)Lη2

µ

(
t0 − 1 + e

√
κσ

(
1 + 2

√
σ̄x/α

)
+ e(

√
κσ + 2κσ) log T

)
+

(
LD

√
η(α+ γ)

µ
(1 + log T )

)
I(σ̄x = 0) (38)

+

(
2ηLD

3
((t0 − 1)3/2 − 1) + 2(t0 − 2)LDηe

√
κσ

(
1 + 2

√
σ̄x/α

)
+
2Lα

µ
¯
σx

(
1 + 2e

√
κσ

(
1 + 2

√
σ̄x/α

))(
2
(√

2DL+
√
Dγ
)
+
√
2Dσy(1 + log T )

))
I(
¯
σx > 0).

Theorem 4.1. Under Assumptions 3.1 and 3.2 and the parameter choices in Equations (3) and (4),
let σ̄x = σy , then for any δ ∈ (0, 1/7), it holds with probability at least 1− 7δ that

1

T

T∑
t=1

∥∇Φ(xt)∥ ≤ Cm

η
√
α

(
1√
T

(
α2 +

L2

µ2η2
(
4D2L2 + 2Dγ

))1/4

+
1

T 3/8

(
2
√
2L2Dσ̄x

µ2η2

)1/4

+
1

T 1/4

(
5σ̄2

x

)1/4 ,

where Cm = Õ(κ4
σ) and D are defined in Equations (24) and (38), respectively.

Proof of Theorem 4.1. Without loss of generality, we assume t0 is an integer (see definition in
Equation (6)). By Lemmas D.2, D.3, G.2 and G.3, with probability at least 1− 7δ,

T∑
t=1

ηx,t∥∇Φ(xt)∥ ≤ ∆1 + 2

T∑
t=1

ηx,t∥ϵ̂t∥+
(µ+ L)L

2µ

T∑
t=1

η2x,t
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≤ ∆1 + 2

T∑
t=1

ηx,t

(
β2:t∥ϵ̂1∥+

∥∥∥∥∥
t∑

k=2

β(k+1):tαkϵk

∥∥∥∥∥+
∥∥∥∥∥

t∑
k=2

β(k+1):tαkϵ
B
k

∥∥∥∥∥+
t∑

k=2

βk:t∥Sk∥

)
+

(µ+ L)L

2µ

T∑
t=1

η2x,t

≤ ∆1 + 2

T∑
t=1

ηt

(
β2:t∥ϵ̂1∥+

∥∥∥∥∥
t∑

k=2

β(k+1):tαkϵk

∥∥∥∥∥+
t∑

k=2

βk:t∥Sk∥

)
+ 2

T∑
t=1

ηx,t

∥∥∥∥∥
t∑

k=2

β(k+1):tαkϵ
B
k

∥∥∥∥∥+ (µ+ L)L

2µ

T∑
t=1

η2x,t

≤ ∆1 + 4ησ̄x

(√
t0 − 1− 1 + e

√
κσ

(
1 + 2

√
σ̄x/α

))
+

(µ+ L)Lη2

2µ
(1 + log T )

+ 2η
√
1 + 32 log(2T/δ)

((
t0 − 1 + 2e

√
t0 − 2

√
κσ

(
1 + 2

√
σ̄x/α

))
σ̄x + 3

√
eκ2

σα log T
)

+
4(µ+ L)Lη2

µ

(
t0 − 1 + e

√
κσ

(
1 + 2

√
σ̄x/α

)
+ e(

√
κσ + 2κσ) log T

)
+

(
LD

√
η(α+ γ)

µ
(1 + log T )

)
I(σ̄x = 0)

+

(
2ηLD

3
((t0 − 1)3/2 − 1) + 2(t0 − 2)LDηe

√
κσ

(
1 + 2

√
σ̄x/α

)
+
2Lα

µ
¯
σx

(
1 + 2e

√
κσ

(
1 + 2

√
σ̄x/α

))(
2
(√

2DL+
√
Dγ
)
+
√

2Dσy(1 + log T )
))

I(
¯
σx > 0)

= Cm.

Then, using ηx,t ≥ ηx,T for t ≤ T ,
T∑

t=1

ηx,T ∥∇Φ(xt)∥ ≤
T∑

t=1

ηx,t∥∇Φ(xt)∥ ≤ Cm.

Therefore, by Lemma 5.7, with probability at least 1− 7δ,

1

T

T∑
t=1

∥∇Φ(xt)∥ ≤ Cm

Tηx,T
=

Cm

√
T

η
√
αT

(
α2 +

t∑
t=1

∥gx,t − g̃x,t∥2 + ∥gy,t∥2
)1/4

≤ Cm

η
√
α
√
T

(
α2 + 4σ̄2

xT + σ2
yT + L2

T∑
t=1

∥yt − y∗t ∥2
)1/4

≤ Cm

η
√
α
√
T

(
α2 + 4σ̄2

xT + σ2
yT +

L2

µ2η2

(
4D2L2 + 2Dγ + 2

√
2Dσy

√
T
))1/4

≤ Cm

η
√
α

 1√
T

(
α2 +

L2

µ2η2
(
4D2L2 + 2Dγ

))1/4

+
1

T 3/8

(
2
√
2L2Dσy

µ2η2

)1/4

+
1

T 1/4

(
4σ̄2

x + σ2
y

)1/4 .

Setting σ̄x = σy completes the proof.

E Analysis of Algorithm 2

E.1 Neumann Series

For bilevel optimization problems with lower-level strong convexity, we estimate the hypergradient

∇Φ(x) = ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))[∇2

yyg(x, y
∗(x))]−1∇yf(x, y

∗(x))

via the Neumann series approach [22, 40, 34, 43]:

∇̄f(x, y; ξ̄) = ∇xF (x, y; ξ)−∇2
xyG(x, y; ζ(0))Hyy∇yF (x, y; ξ), (39)

where the matrix Hyy is defined by

Hyy =
1

lg,1

N−1∑
n=0

q∏
j=1

(
I −

∇2
yyG(x, y; ζ(n,j))

lg,1

)
, (40)
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and the set of random variables ξ̄ is defined as

ξ̄ := {ξ, ζ(0), ζ̄(0), . . . , ζ̄(N−1)}, with ζ̄(n) := {ζ(n,1), . . . , ζ(n,n)} for n ≥ 0.

In addition, define the gradient approximation of Φ as
∇̄f(x, y) = ∇xf(x, y)−∇2

xyg(x, y)[∇2
yyg(x, y)]

−1∇yf(x, y). (41)

E.2 Technical Lemmas

Lemma E.1 ([22, Lemma 2.2]). Under Assumptions 3.3 and 3.4, we have
∥∇̄f(x, y)−∇Φ(x)∥ ≤ Lf∥y − y∗(x)∥, ∥y∗(x1)− y∗(x2)∥ ≤ Ly∥x1 − x2∥,

∥∇Φ(x1)−∇Φ(x2)∥ ≤ LF ∥x1 − x2∥,
where the constants Lf , Ly, LF are defined as

Lf := lf,1 +
lg,1lf,1
µg

+
lf,0
µg

(
lg,2 +

lg,1lg,2
µg

)
, Ly =

lg,1
µg

, (42)

LF := lf,1 +
lg,1(lf,1 + Lf )

µg
+

lf,0
µg

(
lg,2 +

lg,1lg,2
µg

)
. (43)

Lemma E.2 ([22, Lemma 3.2], [34, Lemma 1]). Under Assumptions 3.3 and 3.4, we have

∥E[Hyy]∥ ≤ ∥Hyy∥ ≤ 1

µg
, ∥[∇2

yyg(x, y)]
−1 − E[Hyy]∥ ≤ 1

µg

(
1− µg

lg,1

)N

,

∥∇̄f(x, y)− E[∇̄f(x, y; ξ̄)]∥ ≤ lg,1lf,0
µg

(
1− µg

lg,1

)N

.

Lemma E.3. Under Assumptions 3.3 and 3.4, we have

∥∇̄f(x, y; ξ̄)− E[∇̄f(x, y; ξ̄)]∥ ≤ σ̄ϕ := σf +
lf,0σg,2

µg
+

2lg,1lf,0
µg

I(σg,2 ̸= 0) +
lg,1σf

µg
. (44)

Proof of Lemma E.3. By triangle inequality,
∥∇̄f(x, y; ξ̄)− E[∇̄f(x, y; ξ̄)]∥
= ∥(∇xF (x, y; ξ)−∇2

xyG(x, y; ζ(0))Hyy∇yF (x, y; ξ))− (∇xf(x, y)−∇2
xyg(x, y)E[Hyy]∇yf(x, y))∥

≤ ∥∇xF (x, y; ξ)−∇xf(x, y)∥+ ∥(∇2
xyG(x, y; ζ(0))−∇2

xyg(x, y))Hyy∇yF (x, y; ξ)∥
+ ∥∇2

xyg(x, y)(Hyy − E[Hyy])∇yF (x, y; ξ)∥+ ∥∇2
xyg(x, y)E[Hyy](∇yF (x, y; ξ)−∇yf(x, y))∥.

By Assumptions 3.3 and 3.4 and Lemma E.2, we have
∥∇xF (x, y; ξ)−∇xf(x, y)∥ ≤ σf ,

and
∥(∇2

xyG(x, y; ζ(0))−∇2
xyg(x, y))Hyy∇yF (x, y; ξ)∥

≤ ∥∇2
xyG(x, y; ζ(0))−∇2

xyg(x, y)∥∥Hyy∥∥∇yF (x, y; ξ)∥ ≤ lf,0σg,2

µg
,

and
∥∇2

xyg(x, y)(Hyy − E[Hyy])∇yF (x, y; ξ)∥

≤ ∥∇2
xyg(x, y)∥∥(Hyy − E[Hyy])∥∥∇yF (x, y; ξ)∥ ≤ 2lg,1lf,0

µg
I(σg,2 ̸= 0),

and

∥∇2
xyg(x, y)E[Hyy](∇yF (x, y; ξ)−∇yf(x, y))∥ ≤ lg,1σf

µg
.

Hence, using the definition of σ̄ϕ as in Equation (44) we obtain

∥∇̄f(x, y; ξ̄)− E[∇̄f(x, y; ξ̄)]∥ ≤ σf +
lf,0σg,2

µg
+

2lg,1lf,0
µg

I(σg,2 ̸= 0) +
lg,1σf

µg
= σ̄ϕ.
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Lemma E.4. Define ϵ̂t = mt−∇Φ(xt), ϵBt = ∇̄f(xt, yt)−∇Φ(xt), ϵNt = Et−1[gx,t]−∇̄f(xt, yt),
and ϵt = gx,t − Et−1[gx,t]. Further, let St = ∇Φ(xt−1)−∇Φ(xt). For all t ≥ 1, it holds that

ϵ̂t = β2:tϵ̂1 +

t∑
k=2

β(k+1):tαkϵk +

t∑
k=2

β(k+1):tαkϵ
B
k +

t∑
k=2

β(k+1):tαkϵ
N
k +

t∑
k=2

βk:tSk.

Proof of Lemma E.4. The proof follows from a straightforward calculation:

ϵ̂t = mt −∇Φ(xt)

= βtmt−1 + (1− βt)gx,t −∇Φ(xt)

= βt(ϵ̂t−1 +∇Φ(xt−1)) + (1− βt)(ϵt + ϵBt + ϵNt +∇Φ(xt))−∇Φ(xt)

= βtϵ̂t−1 + (1− βt)ϵt + (1− βt)ϵ
B
t + (1− βt)ϵ

N
t + βtSt.

Unrolling the recursion and using αt = 1− βt yields the result.

Lemma E.5 (Descent Lemma). Under Assumptions 3.3 and 3.4, define ϵ̂t := mt −∇Φ(xt), then

Φ(xt+1) ≤ Φ(xt)− ηx,t∥∇Φ(xt)∥+ 2ηx,t∥ϵ̂t∥+
LF η

2
x,t

2
.

Further, define ∆1 := Φ(x1)− Φ∗, taking summation and rearranging we have
T∑

t=1

ηx,t∥∇Φ(xt)∥ ≤ ∆1 + 2

T∑
t=1

ηx,t∥ϵ̂t∥+
LF

2

T∑
t=1

η2x,t.

E.3 Proof of Theorem 4.2

Before proving Theorem 4.2, let us define (recall the definition of κσ, t0, and σ̄ϕ in Equations (6)
and (44), here κσ = σ̄ϕ/

¯
σϕ in bilevel optimization)

∆1 = Φ(x1)− Φ∗, t0 = max

{
2, 8

(
32κ4

σ − 30κ2
σ + 7

)
log

(
60 log(6T )

δ

)}
, (45)

Cb = ∆1 + 4ησ̄ϕ

(√
t0 − 1− 1 + e

√
κσ

(
1 + 2

√
σ̄ϕ/α

))
+

LF η
2

2
(1 + log T )

+ 2η
√
1 + 32 log(2T/δ)

((
t0 − 1 + 2e

√
t0 − 2

√
κσ

(
1 + 2

√
σ̄ϕ/α

))
σ̄ϕ + 3

√
eκ2

σα log T

)
+ 4LF η

2

(
t0 − 1 + e

√
κσ

(
1 + 2

√
σ̄ϕ/α

)
+ e(

√
κσ + 2κσ) log T

)

+
2ηlg,1lf,0

3µg
+

(
LfD

√
η(α+ γ)

µ
(1 + log T )

)
I(σ̄ϕ = 0) (46)

+

(
2ηLfD

3
((t0 − 1)3/2 − 1) + 2(t0 − 2)LfDηe

√
κσ

(
1 + 2

√
σ̄ϕ/α

)
+
2Lfα

µ
¯
σϕ

(
1 + 2e

√
κσ

(
1 + 2

√
σ̄ϕ/α

))(
2
(√

2Dlg,1 +
√

Dγ
)
+
√
2Dσg,1(1 + log T )

))
I(
¯
σϕ > 0).

Theorem 4.2. Under Assumptions 3.3 and 3.4 and the parameter choices in Equations (3) and (4),
for any δ ∈ (0, 1/7), choose N ≥ 3 log T

2 log(1/(1−µg/lg,1))
, it holds with probability at least 1− 7δ that

1

T

T∑
t=1

∥∇Φ(xt)∥ ≤ Cb

η
√
α

 1√
T

(
α2 +

l2g,1
µ2η2

(
4D2l2g,1 + 2Dγ

))1/4

+
1

T 3/8

(
2
√
2l2g,1Dσg,1

µ2η2

)1/4

+
1

T 1/4

(
4σ̄2

ϕ + σ2
g,1

)1/4 ,

where Cb = Õ(κ4
σ), D, and σ̄ϕ are defined in Equations (24), (44) and (46), respectively.
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Proof of Theorem 4.2. Without loss of generality, we assume t0 is an integer (see definition in
Equation (6)). By Lemmas E.4, E.5, G.2 and G.3, with probability at least 1− 7δ,
T∑

t=1

ηx,t∥∇Φ(xt)∥ ≤ ∆1 + 2

T∑
t=1

ηx,t∥ϵ̂t∥+
LF

2

T∑
t=1

η2x,t

≤ ∆1 + 2

T∑
t=1

ηx,t

(
β2:t∥ϵ̂1∥+

∥∥∥∥∥
t∑

k=2

β(k+1):tαkϵk

∥∥∥∥∥+
∥∥∥∥∥

t∑
k=2

β(k+1):tαkϵ
B
k

∥∥∥∥∥
+

∥∥∥∥∥
t∑

k=2

β(k+1):tαkϵ
N
k

∥∥∥∥∥+
t∑

k=2

βk:t∥Sk∥

)
+

LF

2

T∑
t=1

η2x,t

≤ ∆1 + 4ησ̄ϕ

(√
t0 − 1− 1 + e

√
κσ

(
1 + 2

√
σ̄ϕ/α

))
+

LF η
2

2
(1 + log T )

+ 2η
√
1 + 32 log(2T/δ)

((
t0 − 1 + 2e

√
t0 − 2

√
κσ

(
1 + 2

√
σ̄ϕ/α

))
σ̄ϕ + 3

√
eκ2

σα log T

)
+ 4LF η

2

(
t0 − 1 + e

√
κσ

(
1 + 2

√
σ̄ϕ/α

)
+ e(

√
κσ + 2κσ) log T

)

+
2ηT 3/2lg,1lf,0

3µg

(
1− µg

lg,1

)N

+

(
LfD

√
η(α+ γ)

µ
(1 + log T )

)
I(σ̄ϕ = 0)

+

(
2ηLfD

3
((t0 − 1)3/2 − 1) + 2(t0 − 2)LfDηe

√
κσ

(
1 + 2

√
σ̄ϕ/α

)
+
2Lfα

µ
¯
σϕ

(
1 + 2e

√
κσ

(
1 + 2

√
σ̄ϕ/α

))(
2
(√

2Dlg,1 +
√
Dγ
)
+
√
2Dσg,1(1 + log T )

))
I(
¯
σϕ > 0)

≤ Cb.

Then, using ηx,t ≥ ηx,T for t ≤ T ,
T∑

t=1

ηx,T ∥∇Φ(xt)∥ ≤
T∑

t=1

ηx,t∥∇Φ(xt)∥ ≤ Cb.

Therefore, by Lemma 5.7, with probability at least 1− 7δ,

1

T

T∑
t=1

∥∇Φ(xt)∥ ≤ Cb

Tηx,T
=

Cb

√
T

η
√
αT

(
α2 +

t∑
t=1

∥gx,t − g̃x,t∥2 + ∥gy,t∥2
)1/4

≤ Cb

η
√
α
√
T

(
α2 + 4σ̄2

ϕT + σ2
g,1T + l2g,1

T∑
t=1

∥yt − y∗t ∥2
)1/4

≤ Cb

η
√
α
√
T

(
α2 + 4σ̄2

ϕT + σ2
g,1T +

l2g,1
µ2η2

(
4D2l2g,1 + 2Dγ + 2

√
2Dσg,1

√
T
))1/4

≤ Cb

η
√
α

 1√
T

(
α2 +

l2g,1
µ2η2

(
4D2l2g,1 + 2Dγ

))1/4

+
1

T 3/8

(
2
√
2l2g,1Dσg,1

µ2η2

)1/4

+
1

T 1/4

(
4σ̄2

ϕ + σ2
g,1

)1/4 .

F Linear Programming Basics

Definition F.1 (General Form of Linear Programming [3, Section 1.1]). The linear programming
problem can be written as

min
x∈Rn

c⊤x

s.t., Ax ≥ b.
(47)
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Definition F.2 ([3, Definition 2.1]). A polyhedron is a set that can be described in the form
{x ∈ Rn | Ax ≥ b}, where A ∈ Rm×n is a matrix and b ∈ Rn is a vector.

Definition F.3 ([3, Definition 2.6]). Let P be a polyhedron. A vector x ∈ P is an extreme point
of P if we cannot find two vectors y, z ∈ P , both different from x, a scalar λ ∈ [0, 1], such that
x = λy + (1− λ)z.

Theorem F.4 ([3, Theorem 2.8]). Consider the linear programming problem of minimizing c⊤x over
a polyhedron P . Suppose that P has at least one extreme point. Then, either the optimal cost is equal
to −∞, or there exists an extreme point which is optimal.

Lemma F.5. Assume 0 ≤
¯
αt ≤ αt ≤ ᾱt and 0 ≤

¯
βt ≤ βt ≤ β̄t. Further, let ϵi ∈ Rd and denote

γk,t := β(k+1):tαk,
¯
γk,t :=

¯
β(k+1):t¯

αk, and γ̄k,t := β̄(k+1):tᾱk. There exists a set {b∗ij,t} with each
b∗ij,t satisfying either b∗ij,t =

¯
γi,t

¯
γj,t or b∗ij,t = γ̄i,tγ̄j,t for every pair (i, j), such that

t∑
i=3

i−1∑
j=2

γi,tγj,t⟨ϵi, ϵj⟩ ≤
t∑

i=3

i−1∑
j=2

b∗ij,t⟨ϵi, ϵj⟩.

Proof of Lemma F.5. Consider the following constrained optimization problem:

max
γt

t∑
i=3

i−1∑
j=2

γi,tγj,t⟨ϵi, ϵj⟩

s.t.,
¯
αi ≤ αi ≤ ᾱi,

¯
βi ≤ βi ≤ β̄i, ∀i ≤ t.

(48)

A relaxed version of problem (48) is:

max
γt

t∑
i=3

i−1∑
j=2

γi,tγj,t⟨ϵi, ϵj⟩

s.t.,
¯
γi,t ≤ γi,t ≤ γ̄i,t, ∀i ≤ t.

(49)

Moreover, problem (49) is equivalent to:

min
γt

t∑
i=3

i−1∑
j=2

γi,tγj,t(−⟨ϵi, ϵj⟩)

s.t.,
¯
γi,t ≤ γi,t ≤ γ̄i,t, ∀i ≤ t.

(50)

Now we proceed to verify that

(a) A relaxed version of Equation (50), namely Equation (53), is a linear programming problem of
minimizing c⊤t xt over a polyhedron Pt for some ct, xt, Pt;

(b) Pt has at least one extreme point;

(c) The optimal cost of Equation (50) is not equal to −∞.

Fact (a). We first define a few notations. Define cij , xij,t,
¯
bij,t, b̄ij,t, and the index set It as

cij = −⟨ϵi, ϵj⟩, xij,t = γi,tγj,t,
¯
bij,t =

¯
γi,t

¯
γj,t, b̄ij,t = γ̄i,tγ̄j,t, It = {(i, j) | 3 ≤ i ≤ t, 2 ≤ j < i}.

Let ct, x, Pt be defined as

ct = (cij)(i,j)∈It
=

 c32
...

ct(t−1)

 , xt = (xij,t)(i,j)∈It
=

 x32,t

...
xt(t−1),t

 , Pt = {xt | Atxt ≥ bt},

(51)
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where At, bt are defined as

¯
bt = (

¯
bij,t)(i,j)∈It

, b̄t = (b̄ij,t)(i,j)∈It
, At =



1 · · · 0
...

. . .
...

0 · · · 1
−1 · · · 0

...
. . .

...
0 · · · −1


, bt =

[
¯
bt
−b̄t

]
=



¯
b32,t

...

¯
bt(t−1),t

−b̄32,t
...

−b̄t(t−1),t


.

(52)
According to Definition F.1, the optimization problem in Equation (50) can be relaxed into the
following linear programming formulation (with a potentially higher objective value):

min
xt

c⊤t xt

s.t., Atxt ≥ bt.
(53)

Fact (b). We will show that the set of extreme points of Pt is

St =
{
[b∗32,t . . . b∗t(t−1),t]

⊤ | b∗ij,t = ¯
bij,t or b∗ij,t = b̄ij,t for 2 ≤ j < i ≤ t

}
.

( =⇒ ) Let xt = [b∗32,t . . . b∗t(t−1),t]
⊤ ∈ S. Check that Atxt ≥ bt, thus xt ∈ Pt. Assume there

exists y, z ∈ Pt (both different from xt) and a scalar λ ∈ (0, 1), such that xt = λy + (1− λ)z. Note
that at least one element of y differs from the corresponding element in xt, denote this element by
yij , where (i, j) ∈ It. We consider the following two cases:

• If yij > xij,t =
¯
bij,t, then

zij =
xij,t − λyij

1− λ
< xij,t =

¯
bij,t.

This implies that z /∈ Pt since Atz ≱ bt.

• If yij < xij,t = b̄ij,t, then

zij =
xij,t − λyij

1− λ
> xij,t = b̄ij,t.

This implies that z /∈ Pt since Atz ≱ bt.

Therefore, z /∈ Pt in both cases. By Definition F.3, xt is an extreme point of Pt.

( ⇐= ) Assume there exists some xt ∈ Pt such that xt /∈ St. Then there must be at least one element
of xt, denoted by xij,t, satisfying xij,t ̸=

¯
bij,t and xij,t ̸= b̄ij,t. Let y, z, and xt differ only in the

ij-th element, and define yij , zij as

yij = xij,t−min
{
xij,t −

¯
bij,t, b̄ij,t − xij,t

}
and yij = xij,t+min

{
xij,t −

¯
bij,t, b̄ij,t − xij,t

}
.

Then y, z ∈ Pt since Aty ≥ bt and Atz ≥ bt. Note that xt = (y + z)/2, hence by Definition F.3, xt

is not an extreme point of Pt.

Fact (c). If t is finite, then∣∣∣∣∣∣−
t∑

i=3

i−1∑
j=2

γi,tγj,t⟨ϵi, ϵj⟩

∣∣∣∣∣∣ ≤
t∑

i=3

i−1∑
j=2

γi,tγj,t|⟨ϵi, ϵj⟩| ≤
t∑

i=3

i−1∑
j=2

γ̄i,tγ̄j,t|⟨ϵi, ϵj⟩| < ∞.

Hence,

−
t∑

i=3

i−1∑
j=2

γi,tγj,t⟨ϵi, ϵj⟩ > −∞.

Combining Fact (a), Fact (b), Fact (c), and using Theorem F.4, we know that there exists an extreme
point x∗

t ∈ S such that
t∑

i=3

i−1∑
j=2

b∗ij,t(−⟨ϵi, ϵj⟩) = c⊤t x
∗
t ≤ c⊤t xt =

t∑
i=3

i−1∑
j=2

γi,tγj,t(−⟨ϵi, ϵj⟩).
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Therefore, for problem (53),

t∑
i=3

i−1∑
j=2

γi,tγj,t⟨ϵi, ϵj⟩ ≤
t∑

i=3

i−1∑
j=2

b∗ij,t⟨ϵi, ϵj⟩.

We conclude the proof by noting that problem (53) is a relaxed version of problem (48).

G Useful Algebraic Facts

Lemma G.1. Let p ∈ (0, 1] and q ∈ (0, 1). Further, let a, b ∈ N≥2 with a ≤ b, and c, c1, c2 > 0.

(a) We have

b∏
t=a

(1− (1 + ct)−q) ≤ exp

(
(1 + ac)1−q − (1 + bc)1−q

c(1− q)

)
.

(b) If p ≥ q and c1 ≤ c2, then

b∑
t=a

(1 + c1t)
−q/2t−p

t∏
k=a

(1− (1 + c2k)
−q)

≤
(
c2
c1

)q/2

(a− 1)−p(1 + (a− 1)c2)
q/2 exp

(
(1 + ac2)

1−q − (1 + (a− 1)c2)
1−q

c2(1− q)

)
.

(c) If c1 ≤ c2 and (p− q)(1 + (a− 1)c2)
q−1 ≤ 1/2, then

b∑
t=a

(1 + c1t)
−p

b∏
k=t+1

(1− (1 + c2k)
−q) ≤ 2

(
c2
c1

)p

(1 + (b+ 1)c2)
q−p exp

(
(1 + c2)

1−q − 1

c2(1− q)

)
.

Proof of Lemma G.1. We prove the results individually.

Lemma G.1(a). Using 1− x ≤ exp(−x) and the monotonicity of (1 + ct)−q ,

b∏
t=a

(1− (1 + ct)−q) ≤ exp

(
−

b∑
t=a

(1 + ct)−q

)
≤ exp

(
−
∫ b+1

a

(1 + ct)−qdt

)

= exp

(
1

c(1− q)

(
(1 + ac)1−q − (1 + (b+ 1)c)1−q

))
≤ exp

(
1

c(1− q)

(
(1 + ac)1−q − (1 + bc)1−q

))
.

Lemma G.1(b). By Lemma G.1(a),

b∑
t=a

(1 + c1t)
−q/2t−p

t∏
k=a

(1− (1 + c2k)
−q)

≤ exp

(
(1 + ac2)

1−q

c2(1− q)

) b∑
t=a

(1 + c1t)
−q/2t−p exp

(
− (1 + c2t)

1−q

c2(1− q)

)
.

Using the monotonicity of (1 + c1t)
−q/2t−p exp

(
− (1+c2t)

1−q

c2(1−q)

)
and c1 ≤ c2,

b∑
t=a

(1 + c1t)
−q/2t−p exp

(
− (1 + c2t)

1−q

c2(1− q)

)
≤
∫ b

a−1

(1 + c1t)
−q/2t−p exp

(
− (1 + c2t)

1−q

c2(1− q)

)
dt
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≤
∫ b

a−1

(1 + c2t)
q/2

(1 + c1t)q/2
(1 + c2t)

−q/2t−p exp

(
− (1 + c2t)

1−q

c2(1− q)

)
dt

≤ (1 + bc2)
q/2

(1 + bc1)q/2

∫ b

a−1

(1 + c2t)
−q/2t−p exp

(
− (1 + c2t)

1−q

c2(1− q)

)
dt

≤
(
c2
c1

)q/2 ∫ b

a−1

(1 + c2t)
−q/2t−p exp

(
− (1 + c2t)

1−q

c2(1− q)

)
dt︸ ︷︷ ︸

(I)

.

We continue to bound term (I). By partial integration and p ≥ q,

I = (a− 1)−p(1 + (a− 1)c2)
q/2 exp

(
− (1 + (a− 1)c2)

1−q

c2(1− q)

)
− b−p(1 + bc2)

q/2 exp

(
− (1 + bc2)

1−q

c2(1− q)

)
+

∫ b

a−1

((
−p

t
− pc2 +

qc2
2

)
(1 + c2t)

q−1
)
(1 + c2t)

−q/2t−p exp

(
− (1 + c2t)

1−q

c2(1− q)

)
dt

≤ (a− 1)−p(1 + (a− 1)c2)
q/2 exp

(
− (1 + (a− 1)c2)

1−q

c2(1− q)

)
− b−p(1 + bc2)

q/2 exp

(
− (1 + bc2)

1−q

c2(1− q)

)
−
(p
b
+ pc2 −

qc2
2

)
(1 + bc2)

q−1

∫ b

a−1

(1 + c2t)
−q/2t−p exp

(
− (1 + c2t)

1−q

c2(1− q)

)
dt.

Rearranging it yields

I ≤
(a− 1)−p(1 + (a− 1)c2)

q/2 exp
(
− (1+(a−1)c2)

1−q

c2(1−q)

)
− b−p(1 + bc2)

q/2 exp
(
− (1+bc2)

1−q

c2(1−q)

)
1 +

(
p
b + pc2 − qc2

2

)
(1 + bc2)q−1

≤ (a− 1)−p(1 + (a− 1)c)q exp

(
− (1 + (a− 1)c)1−q

c(1− q)

)
.

Thus, we obtain

b∑
t=a

(1 + c1t)
−q/2t−p

t∏
k=a

(1− (1 + c2k)
−q) ≤ exp

(
(1 + ac2)

1−q

c2(1− q)

)(
c2
c1

)q/2

I

≤
(
c2
c1

)q/2

(a− 1)−p(1 + (a− 1)c2)
q/2 exp

(
(1 + ac2)

1−q − (1 + (a− 1)c2)
1−q

c2(1− q)

)
.

Lemma G.1(c). Using 1− x ≤ exp(−x),

b∑
t=a

(1 + c1t)
−p

b∏
k=t+1

(1− (1 + c2k)
−q) ≤ exp

(
−

b∑
k=1

(1 + c2k)
−q

)
b∑

t=a

(1 + c1t)
−p exp

(
t∑

k=1

(1 + c2k)
−q

)
.

Using the monotonicity of (1 + c2k)
−q , we have

exp

(
−

b∑
k=1

(1 + c2k)
−q

)
≤ exp

(
−
∫ b+1

1

(1 + c2k)
−qdk

)
= exp

(
(1 + c2)

1−q − (1 + (b+ 1)c2)
1−q

c2(1− q)

)
and

exp

(
t∑

k=1

(1 + c2k)
−q

)
≤ exp

(∫ t

0

(1 + c2k)
−qdk

)
≤ exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
.

Due to c1 ≤ c2 and the monotonicity of
(

1+c2t
1+c1t

)p
, we continue to bound

b∑
t=a

(1 + c1t)
−p exp

(
t∑

k=1

(1 + c2k)
−q

)
≤

b∑
t=a

(1 + c1t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
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=

b∑
t=a

(1 + c2t)
p

(1 + c1t)p
(1 + c2t)

−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)

≤ (1 + bc2)
p

(1 + bc1)p

b∑
t=a

(1 + c2t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)

≤
(
c2
c1

)p b∑
t=a

(1 + c2t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
.

Denote h(t) as

h(t) := (1 + c2t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
.

By simple calculation,

h′(t) =
(
−pc2 + (1 + c2t)

1−q
)
(1 + c2t)

−p−1 exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
.

Define t1 as

t1 :=
(pc2)

1
1−q − 1

c2
.

Note that h(t) is monotonically decreasing for t ≤ t1 and monotonically increasing for t ≥ t1.

If t1 ≤ a, then
b∑

t=a

(1 + c2t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
≤
∫ b+1

a

(1 + c2t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
dt.

If a ≤ t1 ≤ b, then

b∑
t=a

(1 + c2t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
≤

⌊t1⌋∑
t=a

+

b∑
t=⌈t1⌉

 (1 + c2t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)

≤

(∫ ⌊t1⌋

a−1

+

∫ b+1

⌈t1⌉

)
(1 + c2t)

−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
dt

≤
∫ b+1

a−1

(1 + c2t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
dt.

If t1 ≥ b, then
b∑

t=a

(1 + c2t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
≤
∫ b

a−1

(1 + c2t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
dt.

Therefore, based on the three cases above,
b∑

t=a

(1 + c2t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
≤
∫ b+1

a−1

(1 + c2t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
dt =: I ′.

We proceed to upper bound the integral I ′. By partial integration and (p−q)(1+(a−1)c2)
q−1 ≤ 1/2,

I ′ =

∫ b+1

a−1

(1 + c2t)
q−p(1 + c2t)

−q exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
dt

= (1 + (b+ 1)c2)
q−p exp

(
(1 + (b+ 1)c2)

1−q − 1

c2(1− q)

)
− (1 + (a− 1)c2)

q−p exp

(
(1 + (a− 1)c2)

1−q − 1

c2(1− q)

)
+ (p− q)

∫ b+1

a−1

(1 + c2t)
q−p−1 exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
dt
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≤ (1 + (b+ 1)c2)
q−p exp

(
(1 + (b+ 1)c2)

1−q − 1

c2(1− q)

)
− (1 + (a− 1)c2)

q−p exp

(
(1 + (a− 1)c2)

1−q − 1

c2(1− q)

)
+ (p− q)(1 + (a− 1)c2)

q−1

∫ b+1

a−1

(1 + c2t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
dt

≤ (1 + (b+ 1)c2)
q−p exp

(
(1 + (b+ 1)c2)

1−q − 1

c2(1− q)

)
− (1 + (a− 1)c2)

q−p exp

(
(1 + (a− 1)c2)

1−q − 1

c2(1− q)

)
+

1

2

∫ b+1

a−1

(1 + c2t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
dt.

Rearranging it yields

I ′ ≤ 2(1 + (b+ 1)c2)
q−p exp

(
(1 + (b+ 1)c2)

1−q − 1

c2(1− q)

)
.

Therefore,

b∑
t=a

(1 + c1t)
−p

b∏
k=t+1

(1− (1 + c2k)
−q)

≤ exp

(
(1 + c2)

1−q − (1 + (b+ 1)c2)
1−q

c2(1− q)

)(
c2
c1

)p b∑
t=a

(1 + c2t)
−p exp

(
(1 + c2t)

1−q − 1

c2(1− q)

)
≤ exp

(
(1 + c2)

1−q − (1 + (b+ 1)c2)
1−q

c2(1− q)

)(
c2
c1

)p

I ′

≤ 2

(
c2
c1

)p

(1 + (b+ 1)c2)
q−p exp

(
(1 + c2)

1−q − 1

c2(1− q)

)
.

Lemma G.2. For all t ≥ 1, let αt, βt, ηt, and κσ be defined as in Equations (5) and (6):

αt =
α√

α2 +
∑t

k=1 ∥gk − g̃k∥2
, βt = 1− αt, ηt =

η
√
αt√
t

, and κσ =

{
σ̄/

¯
σ

¯
σ > 0

1 σ̄ = 0
.

Then with probability at least 1− δ, we have

(a) For a ≥ t0,
∑T

t=a ηtβa:t ≤ 2ηe
√
κσ

(
(a− 1)−1/2 + 2

√
σ̄/α(a− 1)−1/4

)
.

(b)
∑T

t=1 ηtβ2:t ≤ 2η
(√

t0 − 1− 1 + e
√
κσ

(
1 + 2

√
σ̄/α

))
.

(c)
∑T

t=1 ηt

√∑t
k=2 β̄

2
(k+1):tᾱ

2
k

≤ η
(
t0 − 1 + 2e

√
t0 − 2

√
κσ

(
1 + 2

√
σ̄/α

)
+ 3

√
eκσα

¯
σ−1 log T

)
I(
¯
σ > 0).

(d)
∑T

t=1 ηt
∑t

k=2 ηk−1βk:t ≤ 2η2
(
(t0 − 1)

(
1 + e

√
κσ

(
1 + 2

√
σ̄/α

))
+ e(

√
κσ + 2κσ) log T

)
.

(e)
∑T

t=1 η
2
t ≤ η2(1 + log T ).

Proof of Lemma G.2. We prove the results individually. Without loss of generality, we assume t0 is
an integer. By Lemma 5.5, with probability at least 1− δ, we have

¯
αt ≤ αt ≤ ᾱt and

¯
βt ≤ βt ≤ β̄t.

Lemma G.2(a). Consider the case where 0 <
¯
σ ≤ σ̄. Apply Lemma G.1(b) with a = a ≥ t0, b = T ,

p = q = 1/2, c1 =
¯
σ2/α2, and c2 = 4σ̄2/α2,

T∑
t=a

ηtβa:t ≤ 2η
√
κσ(a− 1)−1/2

(
1 +

4σ̄2

α2
(a− 1)

)1/4

exp

(√
1 + 4aσ̄2/α2 −

√
1 + 4(a− 1)σ̄2/α2

2σ̄2/α2

)
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≤ 2η
√
κσ(a− 1)−1/2

(
1 + 2

√
σ̄/α(a− 1)1/4

)
exp(1)

= 2ηe
√
κσ

(
(a− 1)−1/2 + 2

√
σ̄/α(a− 1)−1/4

)
≤ 2ηe

√
κσ

(
1 + 2

√
σ̄/α

)
,

where the second inequality uses (1 + x)1/4 ≤ 1 + x1/4, and the last inequality is due to a ≥ t0 ≥ 2.
The bound also holds for the case where

¯
σ = σ̄ = 0.

Lemma G.2(b). Apply Lemma G.2(a) with a = t0,

T∑
t=t0

ηtβt0:t ≤ 2ηe
√
κσ

(
1 + 2

√
σ̄/α

)
(t0 − 1)−1/4 ≤ 2ηe

√
κσ

(
1 + 2

√
σ̄/α

)
.

Hence, using ηt ≤ η/
√
t and βt ≤ 1,

T∑
t=1

ηtβ2:t =

t0−1∑
t=1

ηtβ2:t +

T∑
t=t0

ηtβ2:t ≤ 2η(
√
t0 − 1− 1) +

T∑
t=t0

ηtβt0:t

≤ 2η
(√

t0 − 1− 1 + e
√
κσ

(
1 + 2

√
σ̄/α

))
.

Lemma G.2(c). Consider the case where 0 <
¯
σ ≤ σ̄. Apply Lemma G.1(c) with a = t0, b = t,

p = 1, q = 1/2, c1 =
¯
σ2/α2, and c2 = 4σ̄2/α2,√√√√ t∑

k=t0

ᾱ2
kβ̄

2
(k+1):t ≤

√√√√12σ̄2

¯
σ2

(
1 +

4σ̄2

α2
(t+ 1)

)−1/2

exp

(√
1 + 4σ̄2/α2 − 1

2σ̄2/α2

)

≤

√
12eκ2

σ

(
1 +

4σ̄2

α2
(t+ 1)

)−1/2

=
√
12eκσ

(
1 +

4σ̄2

α2
(t+ 1)

)−1/4

.

Using the definition of ηt,

T∑
t=t0

ηt

√√√√ t∑
k=t0

β̄2
(k+1):tᾱ

2
k ≤ η

√
12eκσ

T∑
t=t0

(
1 + ¯

σ2

α2
t

)−1/4

t−1/2

(
1 +

4σ̄2

α2
(t+ 1)

)−1/4

≤ 3η
√
eκσ

T∑
t=t0

α√
¯
σσ̄

t−1 ≤ 3η
√
eκσα

¯
σ−1 log T.

Thus,

T∑
t=1

ηt

√√√√ t∑
k=2

β̄2
(k+1):tᾱ

2
k =

t0−1∑
t=1

ηt

√√√√ t∑
k=2

β̄2
(k+1):tᾱ

2
k +

T∑
t=t0

ηt

√√√√ t∑
k=2

β̄2
(k+1):tᾱ

2
k

≤
t0−1∑
t=1

η
√
t− 1√
t

+

T∑
t=t0

ηt

√√√√t0−1∑
k=2

β̄2
(k+1):tᾱ

2
k +

t∑
k=t0

β̄2
(k+1):tᾱ

2
k

≤ η(t0 − 1) +
√
t0 − 2

T∑
t=t0

ηtβt0:t +

T∑
t=t0

ηt

√√√√ t∑
k=t0

β̄2
(k+1):tᾱ

2
k

≤ η(t0 − 1) + 2ηe
√
t0 − 2

√
κσ

(
1 + 2

√
σ̄/α

)
+ 3η

√
eκσα

¯
σ−1 log T

= η
(
t0 − 1 + 2e

√
t0 − 2

√
κσ

(
1 + 2

√
σ̄/α

)
+ 3

√
eκσα

¯
σ−1 log T

)
,

where the first inequality uses ηt ≤ η/
√
t, the second inequality is due to

√
a+ b ≤

√
a+

√
b for

a, b ≥ 0, and the third inequality uses Lemma G.2(a).

For the case
¯
σ = σ̄ = 0, we have αt = 1 and βt = 0, hence

∑T
t=1 ηt

√∑t
k=2 β̄

2
(k+1):tᾱ

2
k = 0.
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Lemma G.2(d). We have

T∑
t=1

ηt

t∑
k=2

ηk−1βk:t =

t0−1∑
t=1

ηt

t∑
k=2

ηk−1βk:t +

T∑
t=t0

ηt

t∑
k=2

ηk−1βk:t

≤
t0−1∑
t=1

η√
t

t−1∑
k=1

η√
k
+

T∑
t=t0

ηt

t0∑
k=2

ηk−1βk:t +

T∑
t=t0

ηt

t∑
k=t0+1

ηk−1βk:t

≤ 2η2(t0 − 1) + η(t0 − 1)

T∑
t=t0

ηtβt0:t +

T∑
t=t0

ηt

t∑
k=t0+1

ηk−1βk:t

≤ 2η2(t0 − 1) + 2η2e(t0 − 1)
√
κσ

(
1 + 2

√
σ̄/α

)
+

T∑
t=t0

ηt

t∑
k=t0+1

ηk−1βk:t,

where the first inequality uses ηt ≤ η/
√
t, the second inequality is due to ηt ≤ η, and the last

inequality uses Lemma G.2(a). We continue to bound the last term above:

T∑
t=t0

ηt

t∑
k=t0+1

ηk−1βk:t =

T∑
t=t0

t∑
k=t0+1

ηtηk−1βk:t =

T∑
k=t0+1

ηk−1

T∑
t=k

ηtβk:t

≤ 2ηe
√
κσ

T∑
k=t0+1

ηk−1

(
(k − 1)−1/2 + 2

√
σ̄/α(k − 1)−1/4

)

≤ 2ηe
√
κσ

T−1∑
k=t0

ηk−1 + 2η
√
κσk

−1

≤ 2η2e
√
κσ(1 + 2

√
κσ) log T,

where the first inequality uses Lemma G.2(a), and the second inequality is due to ηt = η
√
αt/

√
t ≤

η/
√
t. Therefore,

T∑
t=1

ηt

t∑
k=2

ηk−1βk:t ≤ 2η2
(
t0 − 1 + e(t0 − 1)

√
κσ

(
1 + 2

√
σ̄/α

)
+ e(

√
κσ + 2κσ) log T

)
.

Lemma G.2(e). By the definition of ηt and the fact that αt ≤ 1,

T∑
t=1

η2t =

T∑
t=1

η2αt

t
≤

T∑
t=1

η2

t
≤ η2(1 + log T ).

Lemma G.3. For all t ≥ 1, let αt, βt, and ηx,t be defined as in Equations (3) and (4) (see Sections 4.2
and 4.3), and let ϵBt be defined as in Lemma D.2 for minimax optimization and in Lemma E.4 for
bilevel optimization:

αt =
α√

α2 +
∑t

k=1 ∥gx,k − g̃x,k∥2
, βt = 1− αt, ϵBt =

{
∇xf(xt, yt)−∇Φ(xt) (minimax)
∇̄f(xt, yt)−∇Φ(xt) (bilevel)

α′
t =

α√
α2 +

∑t
k=1 ∥gx,k − g̃x,k∥2 + ∥gy,k∥2

, and ηx,t =
η
√
α′
t√

t
.

Then with probability at least 1− 4δ, we have

T∑
t=1

ηx,t

∥∥∥∥∥
t∑

k=2

β(k+1):tαkϵ
B
k

∥∥∥∥∥ ≤

(
LD

√
η(α+ γ)

µ
(1 + log T )

)
I(σ̄u = 0)
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+

(
2ηLD

3
((t0 − 1)3/2 − 1) + 2(t0 − 2)LDηe

√
κσ

(
1 + 2

√
σ̄u/α

)
+
2Lα

µ
¯
σu

(
1 + 2e

√
κσ

(
1 + 2

√
σ̄u/α

))(
2
(√

2DL+
√
Dγ
)
+
√
2Dσl(1 + log T )

))
I(
¯
σu > 0),

where (with a slight abuse of notation for L) L = L, σ̄u = σ̄x,
¯
σu =

¯
σx, σl = σy for Algorithm 1,

and L = lg,1, σ̄u = σ̄ϕ,
¯
σu =

¯
σϕ, σl = σg,1 for Algorithm 2.

Proof of Lemma G.3. We consider the cases
¯
σu = σ̄u = 0 and 0 <

¯
σu ≤ σ̄u separately.

Case
¯
σu = σ̄u = 0. In this case,

αt = 1, βt = 0, α′
t =

α√
α2 +

∑t
k=1 ∥gy,k∥2

and ηt =
η
√
α′
t√

t
.

By Assumption 3.1, ∥ϵBt∥ = ∥∇xf(xt, yt)−∇Φ(xt)∥ ≤ L∥yt − y∗t ∥. Thus,

T∑
t=1

ηx,t

∥∥∥∥∥
t∑

k=2

β(k+1):tαkϵ
B
k

∥∥∥∥∥ =

T∑
t=1

ηx,t∥αtϵ
B
t∥ ≤ L

T∑
t=1

ηx,t∥yt − y∗t ∥.

Using Cauchy–Schwarz inequality and Equations (33) and (36), with probability at least 1− 4δ,

T∑
t=1

ηx,t∥yt − y∗t ∥ ≤

√√√√ T∑
t=1

η2x,t
µηy,t

√√√√ T∑
t=1

µηy,t∥yt − y∗t ∥2 ≤ D

√
η(α+ γ)

µ
(1 + log T ).

Hence,

T∑
t=1

ηx,t

∥∥∥∥∥
t∑

k=2

β(k+1):tαkϵ
B
k

∥∥∥∥∥ ≤ LD

√
η(α+ γ)

µ
(1 + log T ). (54)

Case 0 <
¯
σu ≤ σ̄u. By triangle inequality,

T∑
t=1

ηx,t

∥∥∥∥∥
t∑

k=2

β(k+1):tαkϵ
B
k

∥∥∥∥∥ ≤
T∑

t=1

ηx,t

t∑
k=2

β(k+1):tαk∥ϵBk∥ ≤ L

T∑
t=1

ηx,t

t∑
k=2

β(k+1):tαk∥yk − y∗k∥.

Then with probability at least 1− 4δ,

T∑
t=1

ηx,t

t∑
k=2

β(k+1):tαk∥yk − y∗k∥ =

t0−1∑
t=1

ηx,t

t∑
k=2

β(k+1):tαk∥yk − y∗k∥+
T∑

t=t0

ηx,t

t∑
k=2

β(k+1):tαk∥yk − y∗k∥

≤ D

t0−1∑
t=1

tηx,t +

T∑
t=t0

ηx,t

t0−1∑
k=2

β(k+1):tαk∥yk − y∗k∥+
T∑

t=t0

ηx,t

t∑
k=t0

β(k+1):tαk∥yk − y∗k∥

≤ 2ηD

3
((t0 − 1)3/2 − 1) + (t0 − 2)D

T∑
t=t0

ηx,tβt0:t +

T∑
t=t0

ηx,t

t∑
k=t0

β(k+1):tαk∥yk − y∗k∥

≤ 2ηD

3
((t0 − 1)3/2 − 1) + 2(t0 − 2)Dηe

√
κσ

(
1 + 2

√
σ̄u/α

)
+

T∑
t=t0

ηx,t

t∑
k=t0

β(k+1):tαk∥yk − y∗k∥.

Swapping the order of summation for the last term, and applying Lemma G.2(a),

T∑
t=t0

ηx,t

t∑
k=t0

β(k+1):tαk∥yk − y∗k∥ =

T∑
k=t0

αk∥yk − y∗k∥
T∑

t=k

ηx,tβ(k+1):t

=

T∑
k=t0

αk∥yk − y∗k∥

(
ηx,k +

T∑
t=k+1

ηx,tβ(k+1):t

)
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≤
T∑

k=t0

αk∥yk − y∗k∥
(
η
√
αk√
k

+ 2ηe
√
κσ

(
1 + 2

√
σ̄u/α

)
k−1/4

)

≤ ηα

¯
σu

(
1 + 2e

√
κσ

(
1 + 2

√
σ̄u/α

)) T∑
k=t0

k−3/4∥yk − y∗k∥.

Using summation by parts
∑T

t=1 at(bt−bt−1) = aT bT−a1b0−
∑T−1

t=1 (at+1−at)bt with at = t−3/4

and bt =
∑t

k=1 ∥yk − y∗k∥,

T∑
k=t0

k−3/4∥yk − y∗k∥ ≤ T−3/4
T∑

k=1

∥yk − y∗k∥+
T−1∑
t=1

(t−3/4 − (t+ 1)−3/4)

t∑
k=1

∥yk − y∗k∥

≤ T−3/4
T∑

k=1

∥yk − y∗k∥+
3

4

T−1∑
t=1

t−7/4
t∑

k=1

∥yk − y∗k∥

≤ 1

µη
T−3/4

((√
2DL+

√
Dγ
)√

T +
√
2DσlT

3/4
)
+

3

4µη

T−1∑
t=1

t−7/4
((√

2DL+
√
Dγ
)√

t+
√

2Dσlt
3/4
)

≤ 1

µη

((√
2DL+

√
Dγ
)
T−1/4 +

√
2Dσl

)
+

3

4µη

(
4
(√

2DL+
√
Dγ
)
+
√
2Dσl(1 + log T )

)
≤ 2

µη

(
2
(√

2DL+
√
Dγ
)
+
√
2Dσl(1 + log T )

)
,

where the second inequality uses t−3/4 − (t+ 1)−3/4 ≤ 3t−7/4/4, and the third inequality is due to
Lemma 5.7. Therefore,

T∑
t=1

ηx,t

∥∥∥∥∥
t∑

k=2

β(k+1):tαkϵ
B
k

∥∥∥∥∥ ≤ 2ηLD

3
((t0 − 1)3/2 − 1) + 2(t0 − 2)LDηe

√
κσ

(
1 + 2

√
σ̄u/α

)
+

2Lα

µ
¯
σu

(
1 + 2e

√
κσ

(
1 + 2

√
σ̄u/α

))(
2
(√

2DL+
√
Dγ
)
+
√

2Dσl(1 + log T )
)
. (55)

Combining Equations (54) and (55), we obtain

T∑
t=1

ηx,t

∥∥∥∥∥
t∑

k=2

β(k+1):tαkϵ
B
k
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(
LD

√
η(α+ γ)

µ
(1 + log T )

)
I(σ̄u = 0)

+

(
2ηLD

3
((t0 − 1)3/2 − 1) + 2(t0 − 2)LDηe

√
κσ

(
1 + 2

√
σ̄u/α

)
+
2Lα

µ
¯
σu

(
1 + 2e

√
κσ

(
1 + 2

√
σ̄u/α

))(
2
(√

2DL+
√
Dγ
)
+
√
2Dσl(1 + log T )

))
I(
¯
σu > 0).

Lemma G.4. For all t ≥ 1, let αt, βt, ηx,t, and ϵNt be defined as in Equations (3) and (4)
and Lemma E.4 for bilevel optimization (see Section 4.3):

αt =
α√

α2 +
∑t

k=1 ∥gx,k − g̃x,k∥2
, βt = 1− αt, ϵNt = Et−1[gx,t]− ∇̄f(xt, yt),

α′
t =

α√
α2 +

∑t
k=1 ∥gx,k − g̃x,k∥2 + ∥gy,k∥2

, and ηx,t =
η
√
α′
t√

t
.

Then we have
T∑

t=1

ηx,t

∥∥∥∥∥
t∑

k=2

β(k+1):tαkϵ
N
k

∥∥∥∥∥ ≤ 2ηT 3/2lg,1lf,0
3µg

(
1− µg

lg,1

)N

.
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Proof of Lemma G.4. By triangle inequality and Lemma E.2,

T∑
t=1

ηx,t

∥∥∥∥∥
t∑

k=2

β(k+1):tαkϵ
N
k
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T∑

t=1

ηx,t

t∑
k=2

β(k+1):tαk∥ϵNk∥

≤ lg,1lf,0
µg

(
1− µg
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)N T∑
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ηx,t
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≤ lg,1lf,0
µg

(
1− µg

lg,1

)N T∑
t=1

η√
t
(t− 1)

≤ 2ηT 3/2lg,1lf,0
3µg

(
1− µg

lg,1

)N

,

where the third inequality uses ηx,t ≤ η/
√
t and αt, βt ≤ 1.

H Discussion on Existing Algorithms for Minimax Optimization

Among existing algorithms for nonconvex-strongly-concave minimax optimization, TiAda [47] is
the only work that attempts to be noise-adaptive. However, their convergence guarantees in the
stochastic setting depend only on upper bounds of the stochastic gradient norm and the function value
(e.g., Assumption 3.4, 3.5, and Theorem 3.2 in [47]), rather than the actual noise level of stochastic
gradients. Consequently, TiAda does not achieve optimal convergence in terms of the dependency on
stochastic gradient variance.

I Experimental Settings for Synthetic Experiments

For synthetic experiments, we tune hyperparameters for each baseline using a grid search and report
their best results. Both the parameter α used in the momentum parameter estimate (3) and the
base learning rates (ηx, ηy) are tuned within the set {0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0}. We use the
following parameter choices for various noise magnitude: for σ = 0, α = 2.0, ηx = 3.0, ηy = 3.0
for Ada-Minimax , and ηx = 4.0, ηy = 4.0 for TiAda; for σ = 20, α = 2.0, ηx = 1.5, ηy = 1.5 for
Ada-Minimax , and ηx = 2.0, ηy = 2.0 for TiAda; for σ = 50, α = 3.0, ηx = 2.0, ηy = 2.0 for
Ada-Minimax , and ηx = 2.0, ηy = 2.0 for TiAda; for σ = 100, α = 5.0, ηx = 3.0, ηy = 3.0 for
Ada-Minimax , and ηx = 2.5, ηy = 2.5 for TiAda. Other hyperparameters in TiAda are set to the
default choices as suggested in [47].

J Experimental Settings for Deep AUC Maximization

For a fair comparison, we tune hyperparameters for each baseline using a grid search and report
their best results. The base learning rates (ηx, ηy) are tuned within the range of [0.001, 0.1]. Specif-
ically, we select (ηx, ηy) = (0.1, 0.05) for SGDA, (0.01, 0.1) for PDSM, (0.1, 0.05) for TiAda,
and (0.01, 0.01) for Ada-Minimax. The exponential hyperparameters (α, β) for TiAda follow
the original settings in their paper, i.e., (0.6, 0.4). For Ada-Minimax, the parameters (α, γ) are
tuned within α ∈ {0.1, 0.5, 1.0, 2.0} and γ ∈ {0.01, 0.1, 1.0, 2.0}, resulting in the optimal choice
(α, γ) = (0.5, 0.1).

K Experiments for Hyperparameter Optimization

In this section, we consider hyperparameter optimization on the TREC text classification dataset [49],
provided under the Creative Commons Attribution 4.0 License. We formulate the hyperparameter
optimization problem as follows:

min
λ

1

|Dval|
∑

ξ∈Dval

L(w∗(λ); ξ), s.t. w∗(λ) = argmin
w

1

|Dtr|
∑
ζ∈Dtr

(
L(w; ζ) +

λ

2
∥w∥2

)
,
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Figure 4: Comparison of BERT model on hyperparameter optimization.

where L(w; ξ) denotes the loss function, w represents model parameters, and λ is the regularization
hyperparameter. Here, Dtr and Dval denote the training and validation datasets, respectively. In our
experiments, we employ a BERT model with 4 self-attention layers, each comprising 4 attention
heads, followed by a fully-connected layer with an output dimension of 6, corresponding to the
six classification categories. The model is trained from scratch for 50 epochs. We compare our
algorithm’s training and test performance against the tuning-free bilevel optimization (TFBO) method
proposed by [73]. For TFBO, we conduct a grid search to select optimal initial values for the
upper-level learning rate α0, lower-level learning rate β0, and linear system learning rate φ within
the range [1.0× 10−5, 10.0], and set them to {0.01, 0.1, 0.1}. For Ada-BiO, we similarly perform
hyperparameter tuning over the parameters (ηx, ηy, α, γ) within the range [1.0×10−5, 1.0], selecting
the optimal values (1.0× 10−5, 0.5, 1.0, 0.1) for evaluation.

The training and test accuracy curves are illustrated in Figure 4. TFBO fails to converge because it
is originally designed for deterministic scenarios, rendering it ineffective for stochastic settings. In
contrast, Ada-BiO demonstrates rapid convergence in terms of training accuracy and consistently
achieves superior test performance.

L Experiments for Verifying Assumptions

We empirically verify Assumption 3.2(ii), which states that the noise of the stochastic gradient satisfies

¯
σx ≤ ∥∇xF (x, y; ξ) − ∇xf(x, y)∥ ≤ σ̄x with

¯
σx ≥ 0. Specifically, following the experimental

setup for deep AUC maximization described in Section 6.2, we compute the exact gradient ∇xf(x, y)
after each training epoch by averaging the gradients over the entire validation dataset with fixed
model parameters and hyperparameters. Similarly, we compute the stochastic gradient ∇xF (x, y; ξ),
but using a randomly sampled mini-batch from the validation set. We observe that the empirical
maximal and minimal noise levels are σ̄x = 210.71 and

¯
σx = 0.21, respectively, thus confirming

that practical stochastic gradient noise is indeed bounded from both sides.
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