
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STAQ: A FINITE MEMORY APPROACH TO DISCRETE
ACTION POLICY MIRROR DESCENT

Anonymous authors
Paper under double-blind review

ABSTRACT

In Reinforcement Learning (RL), regularization with a Kullback-Leibler diver-
gence that penalizes large deviations between successive policies has emerged
as a popular tool both in theory and practice. This family of algorithms, often
referred to as Policy Mirror Descent (PMD), has the property of averaging out
policy evaluation errors which are bound to occur when using function approxi-
mators. However, exact PMD has remained a mostly theoretical framework, as its
closed-form solution involves the sum of all past Q-functions which is generally
intractable. A common practical approximation of PMD is to follow the natural
policy gradient, but this potentially introduces errors in the policy update. In this
paper, we propose and analyze PMD-like algorithms for discrete action spaces
that only keep the last M Q-functions in memory. We show theoretically that for
a finite and large enough M , an RL algorithm can be derived that introduces no
errors from the policy update, yet keeps the desirable PMD property of averag-
ing out policy evaluation errors. Using an efficient GPU implementation, we then
show empirically on several medium-scale RL benchmarks such as MuJoCo and
MinAtar that increasing M improves performance up to a certain threshold after
which the performance becomes indistinguishable with exact PMD, reinforcing
the theoretical findings that using an infinite sum might be unnecessary and that
keeping in memory the last M Q-functions is a practical alternative to the natural
policy gradient instantiation of PMD.

1 INTRODUCTION

Deep RL has seen rapid development in the past decade, achieving super-human results on several
decision making tasks (Mnih et al., 2015; Silver et al., 2016; Wurman et al., 2022). However, the
use of neural networks as function approximators exacerbates many challenges of RL, such as the
brittleness to hyperparameters (Henderson, 2018) and the poor alignment between empirical behav-
ior often and theoretical understandings (Ilyas et al., 2020; Kumar et al., 2020; van Hasselt et al.,
2018). To address these issues, many deep RL algorithms consider adding regularization terms, one
of which being to penalize the Kullback-Leibler divergence (labeled DKL in the following) between
successive policies (Schulman et al., 2015; Wu et al., 2017; Wang et al., 2017; Vieillard et al.,
2020b). This family of algorithms is often called Policy Mirror Descent (PMD, Abbasi-Yadkori
et al. (2019); Lazic et al. (2021); Zhan et al. (2023)) for its connection—made more explicit in
Sec. 4—to the first-order convex optimization method Mirror Descent (Nemirovsky & Yudin, 1983;
Beck & Teboulle, 2003). One known property of PMD algorithms, at least in the context of value
iteration, it that it averages out policy evaluation errors (Vieillard et al., 2020a). This property can
be intuited from the nature of the policy πk at iteration k, which is a Boltzmann distribution and its
(unnormalized) log-probabilities are a weighted average of past Q-function estimates {qi}k−1

i=0

πk ∝ exp

(
α

k−1∑
i=0

βiqk−i

)
, (1)

for temperature α > 0 and weight β ∈ (0, 1]. In contrast, unregularized RL would pick actions ac-
cording to argmaxa qk−1(·, a), which would be very sensitive to the unavoidable policy evaluation
errors introduced by the use of function approximators, that can be in the context of deep RL very
large (Ilyas et al., 2020).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

While averaging Q-function estimates might cancel out their errors, implementing Eq. 1 exactly
might quickly become intractable due to the infinite nature of the sum. This is especially true when a
non-linear function approximator is used for {qi}k−1

i=0 , precluding the existance of a compact closed-
form expression for the policy. As such, prior work considered several type of approximations to
PMD, such as following the natural gradient (Kakade, 2001; Peters & Schaal, 2006; Schulman et al.,
2015) or performing a few gradient steps over the regularized policy update loss (Schulman et al.,
2017; Tomar et al., 2022). Instead, in this paper we consider a different direction and perform a
rigorous study, both theoretically and empirically, of an algorithm—that we call StaQ—that is a
weighted average of at most the last M < ∞ Q-function estimates, i.e. where the policy is

πk ∝ exp

(
α

1− βM

M−1∑
i=0

βiqk−i

)
. (2)

From a theoretical point of view, we show that for M large enough, such a truncation does not
introduce a policy update error, i.e. that in the absence of policy evaluation errors, StaQ will converge
exactly to the optimal policy. Moreover, StaQ has a similar averaging of error property as PMD, up
to some extra terms that decay exponentially fast w.r.t. M ; suggesting that as we increase M , we
can quickly recover the behavior of exact PMD. From a practical point of view, the study of a such
an algorithm is timely in the age of batched GPU computations: indeed we show that for medium-
sized problems such as the continuous state MuJoCo (Todorov et al., 2012) tasks or the image-based
MinAtar (Young & Tian, 2019) tasks, increasing M has little to no impact on the run-time, making
Eq. 2 a practical alternative policy update to natural policy gradient. This is especially true since the
policy update in the discrete action case, to which the scope of this paper is limited to, is optimization
free. To summarize, the contributions in this paper are as follow:

1. We extend the PMD analysis of (Vieillard et al., 2020a) in two ways: i) we show that the
averaging effect can be obtained by introducing a DKL penalization only during policy
update—instead of during policy evaluation and update, and ii) we extend the analysis to
the policy iteration setting, which was analyzed by (Cen et al., 2022; Zhan et al., 2023)
without showing the averaging effect of the DKL regularization.

2. We extend the above analysis to the case of a finite M , showing that for M large enough,
the policy update is error free, and that the averaging of policy evaluation errors is similar
to that of exact PMD up to some extra terms that decay exponentially fast w.r.t. M.

3. We perform an efficient batched implementation of the above algorithm and show that
increasing M has beneficial effects on performance, with diminishing returns, to the point
that StaQ with a high enough M can become indistinguishable from exact PMD.

2 RELATED WORK

Regularization in RL. Regularization has seen widespread usage in RL. It was used with (natural)
policy gradient (Kakade, 2001; Schulman et al., 2015; Yuan et al., 2022), policy search (Deisenroth
et al., 2013), policy iteration (Abbasi-Yadkori et al., 2019; Zhan et al., 2023) and value iteration
methods (Fox et al., 2016; Vieillard et al., 2020b). Common choices of regularizers include mini-
mizing the DKL between the current and previous policy (Azar et al., 2012; Schulman et al., 2015)
or encouraging high Shannon entropy (Fox et al., 2016; Haarnoja et al., 2018), but other regularizers
exist (Lee et al., 2019; Alfano et al., 2023). We refer the reader to Neu et al. (2017); Geist et al.
(2019) for a broader categorization of entropy regularizers and their relation to existing deep RL
methods. In this paper, we use both a DKL penalization w.r.t. the previous policy and a Shannon en-
tropy bonus in a policy iteration context. In Vieillard et al. (2020b), both types of regularizers were
used but in a value iteration context. Abbasi-Yadkori et al. (2019); Lazic et al. (2021) are policy
iteration methods but only use DKL penalization.

Policy Mirror Descent. Prior works on PMD focus mostly on performing a theoretical analysis of
convergence speeds or sample complexity for different choices of regularizers (Li et al., 2022; John-
son et al., 2023; Alfano et al., 2023; Zhan et al., 2023; Lan, 2022; Protopapas & Barakat, 2024). As
PMD provides a general framework for many regularized RL algorithms, PMD theoretical results
can be naturally extended to many policy gradient algorithms like natural policy gradient (Khodada-
dian et al., 2021) and TRPO (Schulman et al., 2015) as shown in Neu et al. (2017); Geist et al.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(2019). However, the deep RL algorithms from the PMD family generally perform inexact policy
updates, adding a source of error from the theoretical perspective. For example, TRPO and the more
recent MDPO (Tomar et al., 2022) rely on approximate policy updates using policy gradients. It was
shown in Zhan et al. (2023), that an inexact policy update will add an additional error floor indepen-
dent of the policy evaluation error. By proposing a finite-memory policy update, we provide new
convergence results that offer a new deep RL algorithm policy update step that does not introduce
any additional policy update error, in contrast to prior works.

Ensemble methods and growing neural architectures in RL. Saving past Q-functions has previ-
ously been investigated in the context of policy evaluation. In Tosatto et al. (2017), a first Q-function
is learned, then frozen and a new network is added, learning the residual error. Shi et al. (2019) uses
past Q-functions to apply Anderson acceleration for a value iteration type of algorithm. Anschel
et al. (2017) extend DQN by saving the past 10 Q-functions, and using them to compute lower
variance target values. Instead of past Q-functions, Chen et al. (2021); Lee et al. (2021); Agarwal
et al. (2020); Lan et al. (2020) use an ensemble of independent Q-network functions to stabilize
Q-function learning in DQN type of algorithms. The aforementioned works are orthogonal to ours,
as they are concerned with learning one Q, which can all be integrated into StaQ. Conversely, both
Girgin & Preux (2008) and Della Vecchia et al. (2022) use a special neural architecture called the
cascade-correlation network (Fahlman & Lebiere, 1989) to grow neural policies. The former work
studies such policies in combination with LSPI (Lagoudakis & Parr, 2003), without entropy regular-
ization. The latter work is closer to ours, using a DKL-regularizer but without a deletion mechanism.
As such the policy grows indefinitely, limiting the scaling of the method. Finally, Abbasi-Yadkori
et al. (2019) save the past 10 Q-functions to compute the policy in Eq. 1 for the specific case of
β = 1, but do not study the impact of deleting older Q-functions as we do in this paper. Growing
neural architectures are more common in the neuroevolution community (Stanley & Miikkulainen,
2002), and have been used for RL, but are beyond the scope of this paper.

Parallels with Continual Learning. Continual Learning (CL) moves from the usual i.i.d assump-
tion of supervised learning towards a more general assumption that data distributions change through
time (Parisi et al., 2019; Lesort et al., 2020; De Lange et al., 2021; Wang et al., 2024). This prob-
lem is closely related to that of incrementally updating the policy πk, due to the changing data
distributions that each Q-function is trained on, and our approach of using a growing neural archi-
tecture to implement a DKL-regularized policy update can be seen as a form of parameter isolation
method in the CL literature, which offer some of the best stability-performance trade-offs (see Sec.
6 in De Lange et al. (2021)). Parameter isolation methods were explored in the context of continual
RL (Rusu et al., 2016), yet remain understudied in a standard single-task RL setting.

3 PRELIMINARIES

Let a Markov Decision Problem (MDP) be defined by the tuple (S,A,R, P, γ), such that S and A
are finite state and action spaces, R is a bounded reward function R : S×A 7→ [−Rx, Rx] for some
positive constant Rx, P defines the (Markovian) transition probabilities of the decision process and
γ is a discount factor. The algorithms presented in this paper can be extended to more general state
spaces. However, we limit ourselves to studying finite action spaces, to simplify the sampling from
the Boltzmann distribution for the policy (Eq. 2), which would require deeper algorithmic changes
for continuous actions spaces.

Let ∆(A) be the space of probability distributions over A, and h be the negative entropy given by
h : ∆(A) 7→ R, h(p) = p · log p, where · is the dot product and the log is applied element-wise to
the vector p. Let π : S 7→ ∆(A) be a stationary stochastic policy mapping states to distributions
over actions. We denote the entropy regularized V-function for policy π and regularization weight
τ > 0 as V π

τ : S 7→ R, which is defined by

V π
τ (s) = Eπ

[∞∑
t=0

γt{R(st, at)− τh(π(st))}

∣∣∣∣∣s0 = s

]
. (3)

In turn, the entropy regularized Q-function is given by Qπ
τ (s, a) = R(s, a) + γEs′ [V

π
τ (s′)]. The

V-function can be written as the expectation of the Q-function plus the current state entropy, i.e.
V π
τ (s) = Ea [Q

π
τ (s, a)]− τh(π(s)) which leads to the Bellman equation

Qπ
τ (s, a) = R(s, a) + γEs′,a′ [Qπ

τ (s
′, a′)− τh(π(s′))] . (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In the following, we will write policies of the form π(s) ∝ exp(Q(s, ·)) for all s ∈ S more suc-
cinctly as π ∝ exp(Q). We define optimal V and Q functions where

for all s ∈ S, a ∈ A, V ⋆
τ (s) := max

π
V π
τ (s) and Q⋆

τ (s, a) := max
π

Qπ
τ (s, a) (5)

Moreover, the policy π⋆ ∝ exp
(

Q⋆
τ

τ

)
satisfies Qπ⋆

τ = Q⋆
τ and V π⋆

τ = V ⋆
τ simultaneously for all

s ∈ S (Zhan et al., 2023). In the following, we will overload notations of real functions defined on
S × A and allow them to only take a state input and return a vector in R|A|. For example, Qπ

τ (s)
denotes a vector for which the ith entry i ∈ {1, . . . , |A|} is equal to Qπ

τ (s, i).

For the convergence analysis, we will make use of a matrix representation of the MDP by
overloading the notations of R and P . Let Is : S 7→ {1, . . . , |S|} be an arbitrary bijective function
that will provide an ordering over the state space, and we let Isa : S × A 7→ {1, . . . , |S||A|} be
an arbitrary bijective function that orders the state-action space. Using these indexing functions,
we will overload the notation of the reward function by seeing R as an |S||A| × 1 matrix such
that row Isa(s, a) and column 1 of the matrix R verifies R(Isa(s,a),1) = R(s, a). Similarly for the
transition function P which we see as an |S||A|×|S| matrix such that P(Isa(s,a),Is(s′)) = P (s′|s, a).

A policy π will be seen as a |S| × |S||A| matrix such that π(Is(s′),Isa(s,a)) = π(a|s) if s′ = s and 0
otherwise. On such matrix representation of the policy we can apply the negative entropy row-wise
such that h(π) is a |S| × 1 matrix where h(π)(Is(s),1) = h(π(s)). Using all of the above notations,
we write the Bellman operator/equation associated to policy π in matrix notation over a Q-function
represented by an |S||A| × 1 matrix that verifies

Tπ
τ Q

π
τ = Qπ

τ = R+ γP [πQπ
τ − τh(π)] . (6)

This operator can be applied to any |S||A| × 1 matrix f , by simply replacing Qπ
τ by f in Eq. 6. We

also write the Bellman optimality operator on matrices as

T ⋆
τ f = R+ γP

[
max

p
pf − τh(p)

]
, (7)

where the maximization maxp is made row-wise over probability matrices of shape |S| × |S||A|
encoded using the same convention as policy matrices π described above.

4 POLICY MIRROR DESCENT AND AVERAGING OF ERROR

To find π⋆, we focus on Entropy-regularized Policy Mirror Descent (EPMD) methods (Neu et al.,
2017; Abbasi-Yadkori et al., 2019; Lazic et al., 2021) and notably on those that regularize the policy
update with an entropy and DKL term and use an entropy regularized Bellman operator (Lan, 2022;
Zhan et al., 2023). The EPMD setting discussed here is also similar to the regularized natural policy
gradient algorithm on softmax policies of Cen et al. (2022). We will put special emphasis in this
section on policy evaluation errors and show how convergence of EPMD depends on this error.

4.1 ENTROPY REGULARIZED VALUE ITERATION

To ease the discussion, let us first consider an approximate value iteration algorithm. Let ξk :
S ×A 7→ R be the unnormalized log-probability (which we refer to as logits for short) of πk, i.e.

πk ∝ exp(ξk). (8)

We define entropy regularized value iteration by the following two steps.

Evaluation step: let qk : S×A 7→ R be a sequence of functions such that q0 = 0 and for all k ≥ 0,
qk+1 = T k+1

τ qk + ϵk+1, where T k+1
τ = T

πk+1
τ is the Bellman operator associated to policy πk+1

and ϵk+1 represents the evaluation error due to, e.g., knowing only a sample estimate of the Bellman
operator or knowing it only on a sub-set of the state-action space.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Policy update step: letting ξk = 0, i.e. the first policy is uniform over the action space, for each qk
we update the policy in EPMD by solving the following optimization problem

∀s ∈ S, πk+1(s) = argmax
p∈∆(A)

{qk(s) · p− τh(p)− ηDKL(p;πk(s))} (9)

where DKL(p; p
′) = p · (log p − log p′) and η > 0 is the DKL regularization weight. This update

admits the well known closed-form solution given by

ξk+1 = βξk + αqk, (10)

where α = 1
η+τ and β = η

η+τ . Let us characterize the convergence of such an algorithm. In the
remainder of this paper, we will be interested in bounding the norm ∥Q⋆

τ − τξk∥∞ which we want
as small as possible since the logits of the optimal policy are Q⋆

τ

τ . Moreover, from a bound over
∥Q⋆

τ − τξk∥∞ we can derive the more common bound over Q-functions since

Lemma 4.1. Let policy πk ∝ exp(ξk) and Qk
τ its Q-function; then

∥∥Q⋆
τ −Qk

τ

∥∥
∞ ≤ 2∥Q⋆

τ−τξk∥∞
1−γ .

The proof for all theoretical statements are given in the appendix. The convergence of entropy
regularized value iteration is given by the following theorem
Theorem 4.2. (Convergence of entropy regularized value iteration) Letting Ej = (1 −
β)
∑j

i=1 β
j−iϵi and Rm = Rx + γτ log |A|, we have at iteration k + 1 that ∥Q⋆

τ − τξk+1∥∞ ≤
γk+1 ∥Q⋆

τ∥∞ +Rm

∑k
i=0 γ

iβk−i +
∑k

i=0 γ
i ∥Ek−i∥∞.

The first term of the upper bound goes to zero as k → ∞. This term is also found in unregularized
value iteration (see, e.g. Theorem 1.12 of Agarwal et al. (2021a)) and is due to the contraction
property of the Bellman operators. The second term is a constant multiplied by

∑k
i=0 γ

iβk−i. It can
be shown that this sum satisfies

k∑
i=0

γiβk−i ≤ max{γ, β}k(k + 1), (11)

which goes to zero as k → ∞. In the limit of η → 0, where we would drop the DKL regularization,
β → 0 and

∑k
i=0 γ

iβk−i → γk, yielding an error term that goes to zero at the same rate as
γk+1 ∥Q⋆

τ∥∞. However, as we increase the DKL regularization, β approaches 1 and this second
term becomes whenever β > γ

k∑
i=0

γiβk−i = βk
k∑

i=0

(
γ

β

)i

≤ βk+1

β − γ
. (12)

While this term still goes to zero as k → ∞, by increasing the DKL regularization we pay the price
of a slower convergence when β > γ. Finally, the term

∑k
i=0 γ

i ∥Ek−i∥∞ constitutes the error floor
of entropy regularized value iteration stemming from the evaluation errors ϵi. This error floor might
remain above zero even as k → ∞. In the limit of η → 0, ∥Ej∥∞ → ∥ϵj∥∞ and the error floor
will tend to

∑k
i=0 γ

i ∥ϵj∥∞, i.e. a weighted sum of the norms of the evaluation errors. However, as
we increase the DKL penalization, there is a hope that the evaluation errors will cancel each other
in (1 − β)

∑j
i=1 β

j−iϵi, leading to a lower value of ∥Ej∥∞ than if we would only consider the
norm of the last error ∥ϵj∥∞. As such, by increasing η we might slow down the convergence rate
but potentially lower the error floor

∑k
i=0 γ

i ∥Ek−i∥∞ and return a better final policy. This result is
similar to that of Vieillard et al. (2020a), except that our algorithm uses a Bellman operator that only
applies entropy regularization (as used for example in the learning of Q-functions in SAC (Haarnoja
et al., 2018)), whereas Vieillard et al. (2020a) considered the Bellman operator that applies both an
entropy and a DKL regularization. Moreover, the latter work was restricted to the analysis of value
iteration, but before discussing StaQ we need first to extend the above analysis to policy iteration as
StaQ is a policy iteration algorithm.

4.2 ENTROPY REGULARIZED POLICY ITERATION

The policy iteration version of EPMD is quite similar to value iteration except that in the evaluation
step, qk = Qk

τ + ϵk, where Qk
τ = Qπk

τ is the Q-function associated to πk. The approximation qk of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Qk
τ can be obtained for instance by applying the Bellman operator T k

τ (or a noisy version thereof)
several times on qk−1—instead of a single time in value iteration. As value and policy iteration
algorithms are quite similar, the analysis of the latter follows the same general template, except that
the error propagates in slightly more complex ways. In the case of policy iteration, we need a way
to relate qk and qk+1 as this relation is not as direct as in value iteration. To do so, we will make use
of the policy improvement lemma (Section 4.2 of Sutton & Barto (2018)). In the unregularized RL
case, the lemma states that a policy greedy w.r.t. a Q-function will have a greater or equal Q-function
at every state-action pair. A similar property holds in the entropy regularized case. However, in the
presence of policy evaluation errors, the new policy πk+1—obtained by maximizing Eq. 9—might
increase the probability of sub-par actions and improvement is only guaranteed up to some policy
improvement error characterized by the following lemma

Lemma 4.3 (Approximate policy improvement). Let µk = (I − γPπk)
−1 be the (unormalized)

state distribution associated to policy πk. At any iteration k ≥ 0 of entropy regularized policy
iteration, we have that Qk+1

τ ≥ Qk
τ − ϵ∆k

, with ϵ∆k
:= γµk+1P (πk − πk+1)ϵk.

The policy improvement error ϵ∆k
is invariant to a constant shift in the evaluation error ϵk. Indeed,

we have that for any real value c, (πk − πk+1)(ϵk + c1) = (πk − πk+1)ϵk, where 1 is a vector
of ones. Additionally, if ϵk = 0 or any other constant vector then policy improvement is guaran-
teed. However, we might not improve over the previous Q-function if we overestimate a bad action
or underestimate a good one. The overall convergence of entropy regularized policy iteration is
characterized by the following theorem

Theorem 4.4. (Convergence of entropy regularized policy iteration) Letting ϵ−1 = 0 and Ej :=

(1 − β)
∑j

i=0 β
j−i(ϵi − γPπi(ϵi−1 + ϵ∆i

)), we have at iteration k + 1 that ∥Q⋆
τ − τξk+1∥∞ ≤

γk+1 ∥Q⋆
τ∥∞ + 2−γ−β

1−γ Rm

∑k
i=0 γ

iβk−i +
∑k

i=0 γ
i ∥Ek−i∥∞.

As can be seen, the upper bound of Theorem 4.4 follows a very similar structure to that of value iter-
ation, with the main difference being in the error floor

∑k
i=0 γ

i ∥Ek−i∥∞ that now notably depends
on the policy improvement error discussed above. While this error floor involves more quantities, the
general scheme remains the same and one hopes that there are values of η such that a cancellation of
terms leads to a lower error floor compared to the unregularized case while not slowing policy itera-
tion too much. This analysis improves over that of Zhan et al. (2023), that only considered a uniform
worst case error, leading to a less interesting upper bound where the smallest error floor—and the
fastest convergence rate—is always obtained by choosing η = 0, using no DKL regularization.

4.3 APPROXIMATE POLICY UPDATE

We have analyzed so far the convergence of EPMD algorithms, considering only evaluation errors.
In practice, the policy update step that consists in solving the optimization problem in Eq. 9 might
prove challenging to solve without approximations. Indeed, while this policy update leads to a
closed form solution in the space of policy logits (Eq. 10), it might not be possible to implement
exactly if the state-action space is too large. In this case, one could use a function approximator to
represent these logits but that would likely introduce a new type of error and raises the question of
what loss to use to update the policy’s parameters.

Let ΘQ and Θπ respectively be the parameter spaces of Q-functions and policy logits; these parame-
ter spaces can for instance be subsets of Rd for some integer d. Let ξθ : S×A 7→ R, with θ ∈ Θπ be
a function that provides the logits of a policy πθ ∝ exp(ξθ) and let qθ′ : S ×A 7→ R, with θ′ ∈ Θπ ,
be the (approximate) Q-function associated to πθ. We want to find ξθ′′ as the solution to the entropy
regularized policy update in Eq. 9. We know that ideally we would have ξθ′′ = βξθ + αqθ′ , but this
does not give an expression for θ′′ since in general the policy maximizing Eq. 9 is not necessarily
parameterized by βθ + αθ′.

One exception to the above claim is when the Q-function and the logits function are linear w.r.t.
some predefined feature function, in which case ξβθ+αθ′ = βξθ + αqθ′ . This is the so-called com-
patible feature setting of policy gradient (Sutton et al., 1999; Geist & Pietquin, 2010; Pajarinen et al.,
2019) where the Q-function and the logits share the same linear-in-feature function approximation
class and in which case, policy gradient and natural policy gradient become equivalent (Peters &
Schaal, 2008). However, beyond the linear-in-feature case, the closed form solution of the entropy

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

regularized policy update in the space of logits does not yield a trivial update in parameter space.

One approach to policy update in parameter space is to solve the following optimization problem

argmax
θ′′∈Θπ

θ′′ · ∇θJτ (πθ)− ηEs∼µπθ
DKL(πθ′′(s);πθ(s)), (13)

where Jτ (πθ) is the policy return πθ, i.e. the expectation of the V πθ over states sampled from
a predefined initial state distribution. Interestingly, Cen et al. (2022) showed that in the tabular
case (i.e. when optimizing directly over the logit space), the above problem is equivalent to the
maximization in Eq. 9 over each state independently. In the general case however, because of the
approximation in the optimization of Eq. 13 or because of the use of a restricted policy class, we are
likely to obtain a new policy πθ′′ that is worse than πk+1 in the sense of the policy update objective
defined in Eq. 9.

In Zhan et al. (2023), the authors analyzed an approximate EPMD scheme such that the policy
update objective in Eq. 9 is optimized up to some error ϵopt for all states and all iterations. They
showed that the resulting algorithm would converge at the same rate as its exact counterpart but
would reach an error floor that depends on ϵopt, independently of the existence of policy evaluation
errors. In this paper, we investigate an alternative policy update, that truncates the infinite sum of
EPMD to result in a practical algorithm that does not introduce errors from the policy update yet
keeps the appealing property of averaging policy evaluation errors.

5 FINITE-MEMORY POLICY MIRROR DESCENT

Let us now consider a PMD-like algorithm that keeps in memory at most M—with M being a finite
and strictly positive integer—Q-function estimates. The policy at iteration k is now given by Eq. 2,
which can be written as a recursive update in the logits space in the following way

ξk+1 = βξk + αqk +
αβM

1− βM
(qk − qk−M), (14)

where qk−M := 0 whenever k−M < 0, and qk = Qk
τ + ϵk otherwise. In contrast to vanilla EPMD

in Eq. 10, we now ‘delete’ at each update the oldest Q-function estimate qk−M and also slightly
overweight the most recent Q-function estimate to ensure that the Q-function weights sum to 1.
This weight correction in Eq. 2—the extra multiplication by 1

1−βM compared to the vanilla sum in

Eq. 1—is important as otherwise, the logits might never converge to Q⋆
τ

τ even when the last M Q-
function estimates are all equal to Q⋆

τ . Indeed, without the weight correction and since τα = 1− β,
we would have τξk = (1− β)

∑M−1
i=0 βiQ⋆

τ = (1− βM)Q⋆
τ .

The logits update in Eq. 14 can be interpreted as the result of the following optimization problem

∀s ∈ S, πk+1(s) = argmax
p∈∆(A)

p · [qk +
βM

1− βM
(qk − qk−M)](s)− τh(p)− ηDKL(p;πk(s)) (15)

Now instead of maximizing the latest Q-function estimate, the policy also maximizes the difference
between the latest and oldest estimate out of the last M Q-functions. This introduces an additional
source of policy improvement error, but in our theoretical analysis, we show that for a finite but
large enough M , this error will vanish as k → ∞, leaving us with an error floor that only depends
on the evaluation errors. Specifically, the algorithm given by Eq. 14 has the following convergence
properties
Theorem 5.1 (Convergence of finite memory EPMD). Let M such that M >

log (1−γ)3

(1+γ)(1−γ)2+4(γ+γ2)/ log β, γM = γ
1−βM , c = βM

1−βM

(
4(γ+γ2)
(1−γ)2 + γ

)
, let d0 be the

unique root of d2M+1 − γMd2M − c in the interval (γM , 1), define the matrix Ak+1 =

γPπk+1(I + γµk+1P (πk+1 − πk)), and error terms Ej =
1−β

1−βM

∑M−1
i=0 βi(ϵk−i −Ak−iϵk−i−1),

and Tk = ∥Ek∥∞ + βM (1−β)
(1−βM)2

∥∥∥∑M−1
i=0 βiAk−i(ϵk−i−1 − ϵk−i−1−M)

∥∥∥
∞

and worst error term

T̄ = max
0≤i≤k

Ti, then ∥Q⋆
τ − ξk+1∥∞ ≤ dk+1

0 ∥Q⋆
τ∥∞ +

∑k
i=0 γ

i
M

(
Tk−i + c T̄

1−γM−c

)
.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 1: Overview of StaQ, showing the continual training of a Q-function (left), from which we
periodically “stack” frozen weight snapshots to form the policy (right). See Sec. 5.1 for more details.
At each iteration k, two steps are performed. i) Policy evaluation, where we generate a dataset Dk

of transitions that are gathered by a behavior policy πb
k, typically derived from πk, and then learn

Qπk from Dk. ii) Policy update, performed by “stacking” the NN of Qπk into the current policy.
The policy update is optimization-free and theoretically grounded (Sec. 5), thus only the choice of
πb
k and the policy evaluation algorithm can remain sources of instabilities in this deep RL setting.

In finite memory EPMD we no longer have an explicit expression for the convergence rate, but
provided M is large enough, we know that it exists as the unique root of a function in the range
(γM , 1). Moreover, as M → ∞, the convergence rate goes to γ, and as in exact EPMD, we note
that in the absence of evaluation errors, the algorithm converges to the optimal policy. In terms
of error floor, we find a similar expression of Ej as in Sec. 4.2 up to the truncation to the latest
M errors. However, the error floor does not depend only on Ej but on an additional term in Tj

that depends on older evaluation error terms. This additional term is weighted by βM (1−β)
(1−βM)2

which
decreases exponentially fast towards zero as we increase M . Finally, the error floor is not just a
weighted sum of average evaluation errors but also depends on the worst average evaluation error T̄ .
Fortunately, this term is weighted again by a constant that decreases exponentially fast towards zero
as M increases. Thus the theoretical analysis indicates in terms of averaging of policy evaluation
errors, we approach the desirable behavior of an exact EPMD policy update exponentially fast by
increasing M .

The remainder of the paper is devoted to exploring the practical implications of such a result: what
are the tangible benefits of EPMD and how fast—in terms of memory size M—can a finite memory
variant approach the behavior of EPMD with an exact policy update. To perform such a study we
need an efficient implementation of EPMD that allows us to examine exact EPMD, at least for a few
million timesteps, and support a high memory size M .

5.1 PRACTICAL IMPLEMENTATION

We implement an efficient version of the policy in Eq. 2 using a stacked neural networks (SNN,
illustrated in Fig. 1). By using batched operations we make efficient use of GPUs and compute
multiple Q-values in parallel. We call the resulting algorithm StaQ. After each policy evaluation, we
push the weights corresponding to this new Q-function onto the stack. If the stacked NN contains
more than M NNs, the oldest NN is deleted in a “first in first out” fashion. If implementing exact
EPMD, then we never delete older Q-functions.

To further reduce the impact of a large M , we pre-compute ξk for all entries in the replay buffer1 at
the start of policy evaluation. The logits ξk are used to sample on-policy actions when computing
the targets for Qk

τ . As a result of the pre-computation, during policy evaluation, forward and back-
ward passes only operate on the current Q-function and hence the impact of large M is minimized.
However rolling out the current behavioural policy πb

k still requires a full forward pass. Conversely,
the policy update consists only of adding the new weights to the stack, and thus, is optimization free
and (almost) instantaneous. Table 1 shows the training time of StaQ as a function of M for two
environments. Varying M or the state space size has little impact on the runtime of StaQ on GPU,
at least for these medium-sized environments.

1Since we use small replay buffer sizes of 50K transitions, we are likely to process each transition multiple
times (25.6 times in expectation in our experiments) making this optimization worthwhile.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Training times for StaQ (5 million steps), as a function of M , on Hopper-v4 (state dim.=11)
and Ant-v4 (state dim. = 105), computed on an NVIDIA Tesla V100 and averaged over 3 seeds.

Memory size M 1 50 100 300 500

Hopper-v4 Training time (hrs) 9.8 10.1 10.3 10.3 10.9

Ant-v4 Training time (hrs) 10.4 10.7 10.3 11 10.5

6 EXPERIMENTS

Environments. We use all 9 environments suggested by Ceron & Castro (2021) for comparing
deep RL algorithms with finite action spaces, comprising 4 classic control tasks from Gymna-
sium (Towers et al., 2023), and all MinAtar tasks (Young & Tian, 2019). To that we add 5 MuJoCo
tasks (Todorov et al., 2012), adapted to discrete action spaces by considering only extreme actions
similarly to (Seyde et al., 2021). To illustrate, the discrete version of a MuJoCo task with action
space A = [−1, 1]d consists in several 2d dimensional vectors that have zeroes everywhere except
at entry i ∈ {1, . . . , d} that can either take a value of 1 or −1; to that we add the zero action, for a
total of 2d+ 1 actions.

Algorithms. In our main set of experiments, we compare finite memory EPMD for several values
of M on up to 5 million timesteps. We notably consider the two extremes of M = 1, using no
DKL regularization and M = 1000 that never deletes a Q-function within the 5 million timesteps
window (labeled “Exact PMD” in figures). As lower values of M such as M = 1 might decrease en-
tropy too quickly because of too aggressive a DKL between successive iterations, we add a constant
probability ϵ = 0.05 of sampling a random action throughout the learning phase for all algorithms.
This reduces the differences between the algorithms on components outside of the error floor which
is the main purpose of this experiment. To variants of StaQ, we consider another baseline that
implements a policy update by approximately solving Eq. 13 using TRPO’s conjugate gradient im-
plementation. This baseline, labeled “NatGrad” uses the exact same policy evaluation procedure
and hyperparameters (including regularization weights τ and η) as StaQ variants and differs only in
the policy update.

Following common practices in natural gradient descent implementations, we also consider adding
a post-update line search step that constrains the DKL between successive policies to be under
an ϵKL threshold. To select an appropriate value for ϵKL, we performed a preliminary study in
App. B.2, comparing the default value ϵKL = 0.01 used in many of TRPO’s implementation—e.g.
in stable-baselines3 (Raffin et al., 2021)—with a smaller value of ϵKL = 0.001 which we
found to work better in most of the tasks. This second baseline is labeled “NatGrad + LS” and
has subtle differences with TRPO: for instance even when an entropy bonus is used, TRPO does
not learn soft value functions and only regularizes the policy update with an additional entropy
term. We found that by matching StaQ’s setting, “NatGrad + LS” is comparable in performance
to stable-baselines3’s TRPO on most of the tasks but can largely outperform it on others,
especially on MinAtar tasks, as seen from the results in App. B.3.

In the appendix, we complement this experiment that isolates the policy update from the rest of
the deep RL components, with a secondary set of comparisons to existing deep RL baselines such
as the value iteration algorithm DQN (Mnih et al., 2015) and its entropy-regularized variant M-
DQN (Vieillard et al., 2020b), the policy gradient algorithm TRPO (Schulman et al., 2015) and
PPO (Schulman et al., 2017). StaQ performs entropy regularization on top of a Fitted-Q Iteration
(FQI) approach. DQN only uses FQI and is a good baseline to measure the impact of entropy regu-
larization over vanilla FQI, while the other baselines cover a wide range of alternative approaches to
regularization in deep RL: through a bonus term (M-DQN), following the natural gradient (TRPO)
or with a clipping loss (PPO). These baselines differ more widely and in ways orthogonal (policy
evaluation, exploration, replay buffer management) to the main focus of this paper which is the pol-
icy update of EPMD. These results are thus harder to interpret and are only provided for reference.

Metrics. We launch 20 independent runs for each algorithm and each task and report normalized
aggregated performance metrics. Normalization is performed by dividing final policy performance
by the highest final policy evaluation across all algorithms and seeds. Final policy performance—and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0.45 0.60 0.75
NatGrad

NatGrad + LS
M=1

M=50
M=100
M=300
M=500

Exact PMD
Mean

Normalized Aggregate Policy Performance (all envs)
(a) MuJoCo

0.45 0.60 0.75
NatGrad

NatGrad + LS
M=1

M=50
M=100
M=300
M=500

Exact PMD
Mean

Normalized Aggregate Policy Performance (all envs)
(b) MinAtar

0.45 0.60 0.75
NatGrad

NatGrad + LS
M=1

M=50
M=100
M=300
M=500

Exact PMD
Mean

Normalized Aggregate Policy Performance (all envs)
(c) MuJoCo + MinAtar

0.4 0.6 0.8
NatGrad

NatGrad + LS
M=1

M=50
M=100
M=300
M=500

Exact PMD
IQM

Normalized Aggregate Policy Performance (all envs)
(d) MuJoCo

0.30 0.45 0.60 0.75
NatGrad

NatGrad + LS
M=1

M=50
M=100
M=300
M=500

Exact PMD
IQM

Normalized Aggregate Policy Performance (all envs)
(e) MinAtar

0.30 0.45 0.60 0.75
NatGrad

NatGrad + LS
M=1

M=50
M=100
M=300
M=500

Exact PMD
IQM

Normalized Aggregate Policy Performance (all envs)
(f) MuJoCo + MinAtar

Figure 2: Normalized aggregate policy performance on 5 MuJoCo and 5 MinAtar tasks with 20
independent runs for each algorithm and task, showing mean and interquantile mean with 95%
stratified bootstrap confidence interval. There is an almost monotonic increase in performance as a
function of M , with M ≥ 100 matching the mean performance of exact PMD on MuJoCo tasks,
and M ≥ 300 matching the mean performance of exact PMD on MinAtar tasks. Per task learning
curves and box plots of final performances can be found in App. B.1.

intermediary policy evaluations reported in the appendix—are obtained by averaging the cumulative
undiscounted rewards over 25 rollouts. Once normalized, policy performance is aggregated using
the mean or interquantile mean with 95% stratified bootstrap confidence intervals as recommended
by (Agarwal et al., 2021b). In the appendix, we provide training curves showing mean and 95%
confidence intervals of the current policy evaluated every 200K environment steps, as well as per-
task box plots of the final policy performance for each of the 20 runs of each algorithm.

Results. Fig 2 shows an almost monotonic improvement in performance on the aggregate plot,
which is especially true for MinAtar tasks (both mean and IQM metrics) and for the mean per-
formance on MuJoCo. Looking at per task performance in App. B.1, we find that for almost all
environments, a sufficiently large M matches the performance of exact EPMD, with M ≥ 300 be-
ing virtually indistinguishable from exact EPMD on all tasks. These results reinforce the theoretical
insights that StaQ can match the behavior of exact EPMD. Compared to natural policy gradient,
the performance is generally improved across all tasks, indicating that StaQ is potentially a better
alternative to the latter PMD approximate scheme, at least on environments where Q-function com-
putations can be efficiently batched. When compared to deep RL baselines Fig. 6, we also noted
lower inter-seed oscillations in StaQ, which we demonstrate explicitly in App. B.4.

7 CONCLUSION

In this paper, we proposed a policy update rule based on policy mirror descent, that keeps in memory
at most M Q-functions. We showed that by increasing M we can quickly mimic exact EPMD
both from a theoretical and empirical perspective. Surprisingly, even when M is large, the final
computational burden is small on modern hardware, due to the stacking of the Q-functions. The
resulting policy update has a solid theoretical foundation and clear empirical benefits as it improves
performance and reduces learning instability compared to other entropy regularization methods in
the literature, making it a valid alternative to existing EPMD schemes, at least for medium-sized
tasks such as MuJoCo or MinAtar. Due to its exact policy update, and the absence of gap between
the theoretical algorithm and the practical implementation, StaQ provides a promising setting for
testing other components of RL such as policy evaluation, for instance, the recent methods that use
normalization techniques to reduce policy evaluation error (Gallici et al., 2025; Bhatt et al., 2024).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellert
Weisz. POLITEX: Regret bounds for policy iteration using expert prediction. In International
Conference on Machine Learning, 2019.

Alekh Agarwal, Nan Jiang, Sham M. Kakade, and Wen Sun. Reinforcement Learning: Theory and
Algorithms. 2021a.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International conference on machine learning, pp. 104–114. PMLR,
2020.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In Advances in Neural Infor-
mation Processing Systems, 2021b.

Carlo Alfano, Rui Yuan, and Patrick Rebeschini. A novel framework for policy mirror descent with
general parameterization and linear convergence. In Advances in Neural Information Processing
Systems, 2023.

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-DQN: Variance reduction and stabiliza-
tion for deep reinforcement learning. In International Conference on Machine Learning, 2017.

Mohammad Gheshlaghi Azar, Vicenç Gómez, and Hilbert J. Kappen. Dynamic policy programming.
Journal of Machine Learning Research, 2012.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, May 2003. ISSN 0167-6377.
doi: 10.1016/S0167-6377(02)00231-6.

Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox,
and Jan Peters. CrossQ: Batch Normalization in Deep Reinforcement Learning for Greater Sam-
ple Efficiency and Simplicity, March 2024.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence of
natural policy gradient methods with entropy regularization. Operations Research, 2022.

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insight-
ful and inclusive deep reinforcement learning research. In International Conference on Machine
Learning, 2021.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double q-learning:
Learning fast without a model. arXiv preprint arXiv:2101.05982, 2021.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

M. P. Deisenroth, G. Neumann, and J. Peters. A Survey on Policy Search for Robotics. Foundations
and Trends in Robotics, 2013.

Riccardo Della Vecchia, Alena Shilova, Philippe Preux, and Riad Akrour. Entropy regularized
reinforcement learning with cascading networks. arXiv, 2022.

Scott Fahlman and Christian Lebiere. The cascade-correlation learning architecture. Advances in
neural information processing systems, 2, 1989.

Roy Fox, Ari Pakman, and Naftali Tishby. G-learning: Taming the noise in reinforcement learning
via soft updates. In Conference on Uncertainty in Artificial Intelligence, 2016.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
Foerster, and Mario Martin. Simplifying Deep Temporal Difference Learning, March 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jonas Gehring, Gabriel Synnaeve, Andreas Krause, and Nicolas Usunier. Hierarchical skills for
efficient exploration. In Advances in Neural Information Processing Systems, 2021.

Matthieu Geist and Olivier Pietquin. Revisiting natural actor-critics with value function approxima-
tion. In International Conference on Modeling Decisions for Artificial Intelligence, 2010.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized Markov decision
processes. In Proceedings of the 36th International Conference on Machine Learning (ICML),
2019.

Sertan Girgin and Philippe Preux. Basis function construction in reinforcement learning using
cascade-correlation learning architecture. In IEEE International Conference on Machine Learn-
ing and Applications, 2008.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic Algo-
rithms and Applications. In International Conference on Machine Learning (ICML), 2018.

Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning from
pixels. In Advances in Neural Information Processing Systems, 2022.

Peter Henderson. Reproducibility and reusability in deep reinforcement learning. Master’s thesis,
McGill University, 2018.

Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. A closer look at deep policy gradients. In International Con-
ference on Learning Representations, 2020.

Emmeran Johnson, Ciara Pike-Burke, and Patrick Rebeschini. Optimal convergence rate for exact
policy mirror descent in discounted markov decision processes. Advances in Neural Information
Processing Systems, 36:76496–76524, 2023.

Sham M Kakade. A natural policy gradient. In Advances in Neural Information Processing Systems,
2001.

Sajad Khodadadian, Prakirt Raj Jhunjhunwala, Sushil Mahavir Varma, and Siva Theja Maguluri. On
the linear convergence of natural policy gradient algorithm. In 2021 60th IEEE Conference on
Decision and Control (CDC), pp. 3794–3799. IEEE, 2021.

Kalimuthu Krishnamoorthy and Thomas Mathew. Statistical Tolerance Regions: Theory, Applica-
tions, and Computation. John Wiley & Sons, May 2009. ISBN 978-0-470-47389-4.

Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback in reinforcement
learning via distribution correction. In Advances in Neural Information Processing Systems, 2020.

Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of Machine Learn-
ing Research, 2003.

Guanghui Lan. Policy mirror descent for reinforcement learning: linear convergence, new sampling
complexity, and generalized problem classes. Mathematical Programming, 2022.

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin q-learning: Controlling
the estimation bias of q-learning. arXiv preprint arXiv:2002.06487, 2020.

Nevena Lazic, Dong Yin, Yasin Abbasi-Yadkori, and Csaba Szepesvari. Improved regret bound
and experience replay in regularized policy iteration. In International Conference on Machine
Learning, 2021.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified frame-
work for ensemble learning in deep reinforcement learning. In International Conference on Ma-
chine Learning, pp. 6131–6141. PMLR, 2021.

Kyungjae Lee, Sungyub Kim, Sungbin Lim, Sungjoon Choi, and Songhwai Oh. Tsallis reinforce-
ment learning: A unified framework for maximum entropy reinforcement learning. arXive, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat, and Natalia
Dı́az-Rodrı́guez. Continual learning for robotics: Definition, framework, learning strategies, op-
portunities and challenges. Information Fusion, 2020.

Yan Li, Guanghui Lan, and Tuo Zhao. Homotopic policy mirror descent: Policy convergence,
implicit regularization, and improved sample complexity. arXiv preprint arXiv:2201.09457, 2022.

Jincheng Mei, Chenjun Xiao, Ruitong Huang, Dale Schuurmans, and Martin Müller. On principled
entropy exploration in policy optimization. International Joint Conferences on Artificial Intelli-
gence Organization, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 2015.

A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency in Optimization.
Wiley-Interscience Series in Discrete Mathematics. John Wiley, 1983.

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov
decision processes. arXiv, 2017.

Joni Pajarinen, Hong Linh Thai, Riad Akrour, Jan Peters, and Gerhard Neumann. Compatible
natural gradient policy search. Machine Learning, 2019.

German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 2019.

Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In International Conference on
Intelligent Robots and Systems, 2006.

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 2008.

Kimon Protopapas and Anas Barakat. Policy mirror descent with lookahead. Advances in Neural
Information Processing Systems, 37:26443–26481, 2024.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR, 2016.

John Schulman, Sergey Levine, Michael Jordan, and Pieter Abbeel. Trust Region Policy Optimiza-
tion. International Conference on Machine Learning, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv, 2017.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
Wulfmeier, and Daniela Rus. Is bang-bang control all you need? solving continuous control with
bernoulli policies. In Advances in Neural Information Processing Systems, 2021.

Wenjie Shi, Shiji Song, Hui Wu, Ya-Chu Hsu, Cheng Wu, and Gao Huang. Regularized anderson ac-
celeration for off-policy deep reinforcement learning. Advances in Neural Information Processing
Systems, 32, 2019.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 2016.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary Computation, 2002.

13

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Richard S. Sutton and Andrew Barto. Reinforcement learning: an introduction. The MIT Press,
2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in Neural Information
Processing Systems, 1999.

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
In AAAI Conference on Artificial Intelligence, 2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In International Conference on Intelligent Robots and Systems (IROS), 2012.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy
optimization. In International Conference on Learning Representations, 2022.

Samuele Tosatto, Matteo Pirotta, Carlo d’Eramo, and Marcello Restelli. Boosted fitted q-iteration.
In International Conference on Machine Learning, pp. 3434–3443. PMLR, 2017.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, March 2023. URL https://zenodo.org/record/8127025.

Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Mo-
dayil. Deep reinforcement learning and the deadly triad. arXiv, 2018.

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Remi Munos, and Matthieu Geist.
Leverage the average: an analysis of kl regularization in reinforcement learning. In Advances in
Neural Information Processing Systems, 2020a.

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement learning. In Ad-
vances in Neural Information Processing Systems, 2020b.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu,
and Nando de Freitas. Sample efficient actor-critic with experience replay. In International
Conference on Learning Representations, 2017.

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation. In Advances in
Neural Information Processing Systems, 2017.

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, Leilani
Gilpin, Piyush Khandelwal, Varun Raj Kompella, HaoChih Lin, Patrick MacAlpine, Declan Oller,
Takuma Seno, Craig Sherstan, Michael D. Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory
Douglas, Dion Whitehead, Peter Dürr, Peter Stone, Michael Spranger, and Hiroaki Kitano. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 2022.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

Rui Yuan, Simon S Du, Robert M Gower, Alessandro Lazaric, and Lin Xiao. Linear convergence of
natural policy gradient methods with log-linear policies. arXiv preprint arXiv:2210.01400, 2022.

Wenhao Zhan, Shicong Cen, Baihe Huang, Yuxin Chen, Jason D. Lee, and Yuejie Chi. Policy
mirror descent for regularized reinforcement learning: A generalized framework with linear con-
vergence. SIAM Journal on Optimization, 2023.

14

https://zenodo.org/record/8127025

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A PROOFS

This section includes proofs of the lemmas and theorems of the main paper.

A.1 PROPERTIES OF ENTROPY REGULARIZED BELLMAN OPERATORS

We first start with a reminder of some basic properties of the (entropy regularized) Bellman opera-
tors, as presented in (Geist et al., 2019; Zhan et al., 2023). Within the MDP setting defined in Sec. 3,
let Tπ

τ be the operator defined for any map f : S ×A 7→ R by

(Tπ
τ f) (s, a) = R(s, a) + γEs′,a′ [f(s′, a′)− τh(π(s′))], (16)

This operator has the following three properties.

Proposition A.1 (Contraction). Tπ
τ is a γ-contraction w.r.t. the ∥.∥∞ norm, i.e. ∥Tπ

τ f − Tπ
τ g∥∞ ≤

γ ∥f − g∥∞ for any real functions f and g of S ×A.

Proposition A.2 (Fixed point). Qπ
τ is the unique fixed point of the operator Tπ

τ , i.e. Tπ
τ Q

π
τ = Qπ

τ .

Let f , g be two real functions of S×A. We say that f ≥ g iff f(s, a) ≥ g(s, a) for all (s, a) ∈ S×A.

Proposition A.3 (Monotonicity). Tπ
τ is monotonous, i.e. if f ≥ g then Tπ

τ f ≥ Tπ
τ g.

Let the Bellman optimality T ⋆
τ operator be defined by

(T ⋆
τ f) (s, a) = R(s, a) + γEs′

[
max

p∈∆(A)
f(s′) · p− τh(p)

]
. (17)

For the Bellman optimality operator we need the following two properties.

Proposition A.4 (Contraction). T ⋆
τ is a γ-contraction w.r.t. the ∥.∥∞ norm, i.e. ∥T ⋆

τ f − T ⋆
τ g∥∞ ≤

γ ∥f − g∥∞ for any real functions f and g of S ×A.

Proposition A.5 (Optimal fixed point). T ⋆
τ admits Q⋆

τ as a unique fixed point, satisfying T ⋆
τ Q

⋆
τ =

Q⋆
τ .

Finally, we will make use of the well known property that the softmax distribution is entropy maxi-
mizing (Geist et al., 2019). Specifically, we know that the policy πk ∝ exp(ξk) satisfies the follow-
ing property

for all s ∈ S, πk(s) = argmax
p∈∆(A)

ξk(s) · p− h(p). (18)

A.2 PROOF OF LEMMA 4.1

Proof. We first observe from the definition of πk that

T k
τ τξk = R+ γP (πkτξk − τh(πk)), (19)

(i)
= R+ γP (max

p
pτξk − τh(p)), (20)

= T ⋆
τ τξk, (21)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

with (i) due to Eq. 18. Then

Qk
τ − τξk = (T k

τ Q
k
τ − T k

τ τξk) + (T k
τ τξk − τξk) (22)

= γPk(Q
k
τ − τξk) + (T k

τ τξk − τξk), (23)

= (I − γPk)
−1(T k

τ τξk − τξk), (24)

= (I − γPk)
−1(T ⋆

τ τξk − τξk), (25)

⇒
∥∥Qk

τ − τξk
∥∥
∞ ≤ 1

1− γ
∥T ⋆

τ τξk − τξk∥∞ , (26)

=
1

1− γ
∥T ⋆

τ τξk −Q⋆
τ +Q⋆

τ − τξk∥∞ , (27)

≤ 1

1− γ
(∥T ⋆

τ Q
⋆
τ − T ⋆

τ τξk∥∞ + ∥Q⋆
τ − τξk∥∞) , (28)

≤ 1 + γ

1− γ
∥Q⋆

τ − τξk∥∞ . (29)

Finally, ∥∥Q⋆
τ −Qk

τ

∥∥
∞ ≤ ∥Q⋆

τ − τξk∥∞ +
∥∥Qk

τ − τξk
∥∥
∞ , (30)

≤ ∥Q⋆
τ − τξk∥∞ +

1 + γ

1− γ
∥Q⋆

τ − τξk∥∞ , (31)

=
2 ∥Q⋆

τ − τξk∥∞
1− γ

. (32)

A.3 PROOF OF THEOREM 4.2

Proof. Looking at the value function, we have

πk+1qk − τh(πk+1) = πk+1

(
1

1− β
(τξk+1 − βτξk)

)
− τh(πk+1), (33)

= πk+1

(
1

1− β
(τξk+1 − βτξk)

)
− 1

1− β
(τh(πk+1)− βτh(πk+1)),

(34)

= πk+1

(
1

1− β
[τξk+1 − τh(πk+1)− β(τξk − τh(πk+1))]

)
, (35)

(i)

≥
(

1

1− β
[πk+1τξk+1 − τh(πk+1)− β(πkτξk − τh(πk))]

)
, (36)

with (i) due to πkτξk − τh(πk) = maxp pτξk − τh(p) ≥ πk+1τξk+1 − τh(πk+1). Using this
inequality in qk+1 yields

qk+1 = T k+1
τ qk + ϵk+1, (37)

= R+ γP (πk+1qk − τh(πk+1)) + ϵk+1, (38)

≥ R+ γP

(
1

1− β
[πk+1τξk+1 − τh(πk+1)− β(πkτξk − τh(πk))]

)
+ ϵk+1, (39)

=
1

1− β
(R− βR) + γP

(
1

1− β
[πk+1τξk+1 − τh(πk+1)− β(πkτξk − τh(πk))]

)
+ ϵk+1,

(40)

=
1

1− β
(T k+1

τ τξk+1 − βT k
τ τξk) + ϵk+1, (41)

=
1

1− β
(T ⋆

τ τξk+1 − βT ⋆
τ τξk) + ϵk+1, (42)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where the last step is again due to Eq. 18. Now using this inequality in the definition of ξk+1 gives

τξk+1 = (1− β)

k∑
i=0

βk−iqi, (43)

(i)
= (1− β)

k∑
i=1

βk−iqi, (44)

≥ (1− β)

k∑
i=1

βk−i

(
1

1− β
(T ⋆

τ τξi − βT ⋆
τ τξi−1) + ϵi

)
, (45)

= T ⋆
τ τξk − βkT ⋆

τ τξ0 + (1− β)

k∑
i=1

βk−iϵi, (46)

with (i) due to q0 = 0. Letting Ej = (1− β)
∑j

i=1 β
j−iϵi and Rm = Rx + γτ log |A| be an upper

bound to ∥T ⋆
τ τξ0∥∞, we finally obtain

Q⋆
τ − τξk+1 ≤ Q⋆

τ − T ⋆
τ τξk + βkT ⋆

τ τξ0 − Ek, (47)

⇒ ∥Q⋆
τ − τξk+1∥∞ ≤ ∥Q⋆

τ − T ⋆
τ τξk∥∞ + βk ∥T ⋆

τ τξ0∥∞ + ∥Ek∥∞ , (48)

≤ γ ∥Q⋆
τ − τξk∥∞ + βkRm + ∥Ek∥∞ , (49)

≤ γk+1 ∥Q⋆
τ∥∞ +Rm

k∑
i=0

γiβk−i +

k∑
i=0

γi ∥Ek−i∥∞ . (50)

if β > γ

k∑
i=0

γiβk−i = βk
k∑

i=0

(
γ

β

)i

, (51)

=
βk+1 − γk+1

β − γ
. (52)

if β < γ

k∑
i=0

γiβk−i =

k∑
i=0

γk−iβi, (53)

=
γk+1 − βk+1

γ − β
. (54)

if β = γ

k∑
i=0

γiβk−i = γk(k + 1). (55)

In all cases
k∑

i=0

γiβk−i ≤ max{γ, β}k(k + 1). (56)

A.4 PROOF OF LEMMA 4.3

Proof. As πk+1 maximizes the policy update Eq. 9, and from the non-negativity of the DKL and the
fact that DKL(πk;πk) = 0 we have

πkqk − τh(πk) ≤ πk+1qk − τh(πk+1)− ηDKL(πk+1;πk), (57)
≤ πk+1qk − τh(πk+1), (58)

⇔ πkQ
k
τ − τh(πk) ≤ πk+1Q

k
τ − τh(πk+1) + (πk+1 − πk)ϵk. (59)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Qk+1
τ −Qk

τ = γP (πk+1Q
k+1
τ − τh(πk+1))− γP (πkQ

k
τ − τh(πk)), (60)

(i)

≥ γP (πk+1Q
k+1
τ − τh(πk+1))− γP (πk+1Q

k
τ − τh(πk+1) + (πk+1 − πk)ϵk),

(61)

= γPπk+1(Q
k+1
τ −Qk

τ) + γP (πk − πk+1)ϵk, (62)

⇔ (I − γPπk+1)(Q
k+1
τ −Qk

τ) ≥ γP (πk − πk+1)ϵk, (63)

⇔ Qk+1
τ −Qk

τ

(ii)

≥ γ(I − γPπk+1)
−1P (πk − πk+1)ϵk. (64)

where in (i) we have used the fact that P is a probability matrix with only positive entries, and
similarly in (ii) for the matrix (I − γPπk+1)

−1 =
∑∞

i=0(γPπk+1)
i.

A.5 PROOF OF THEOREM 4.4

Proof. The beginning of the proof is the same as in value iteration and we can show using the same
arguments that

πk+1qk − τh(πk+1) ≥
(

1

1− β
[πk+1τξk+1 − τh(πk+1)− β(πkτξk − τh(πk))]

)
. (65)

Using this inequality in qk+1 yields

qk+1 = Qk+1
τ + ϵk+1, (66)

= R+ γP (πk+1Q
k+1
τ − τh(πk+1)) + ϵk+1, (67)

(i)

≥ R+ γP (πk+1(qk − ϵk − ϵ∆k
)− τh(πk+1)) + ϵk+1, (68)

≥ R+ γP

(
1

1− β
[πk+1τξk+1 − τh(πk+1)− β(πkτξk − τh(πk))]

)
+ ϵk+1 − γPk+1(ϵk + ϵ∆k

),

(69)

=
1

1− β
(T k+1

τ τξk+1 − βT k
τ τξk) + ϵk+1 − γPk+1(ϵk + ϵ∆k

), (70)

=
1

1− β
(T ⋆

τ τξk+1 − βT ⋆
τ τξk) + ϵk+1 − γPk+1(ϵk + ϵ∆k

), (71)

where for (i) we used Lemma 4.3 and the definition of qk. Now using this inequality in the definition
of ξk+1 gives

τξk+1 = (1− β)

k∑
i=0

βk−iqi, (72)

≥ (1− β)βkq0 + (1− β)

k∑
i=1

βk−i

(
1

1− β
(T ⋆

τ τξi − βT ⋆
τ τξi−1) + ϵi − γPi(ϵi−1 + ϵ∆i−1

)

)
,

(73)

= T ⋆
τ τξk − βkT ⋆

τ ξ0 + (1− β)

k∑
i=0

βk−i(ϵi − ϵ′i) + (1− β)βkQ0
τ , (74)

with ϵ′0 = 0 and ∀i > 0 : ϵ′i = γPi(I + γP (I − γPi)
−1(πi−1 − πi))ϵi−1. Letting Ej :=

(1− β)
∑j

i=0 β
j−i(ϵi − ϵ′i), Rm := Rx + γτ log |A| be an upper bound to ∥T ⋆

τ ξ0∥∞ and R̄ = Rm

1−γ

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

be an upper bound to
∥∥Q0

τ

∥∥
∞, we finally obtain

Q⋆
τ − τξk+1 ≤ Q⋆

τ − T ⋆
τ τξk + βkT ⋆

τ ξ0 − Ek + (1− β)βkQ0
τ , (75)

⇒ ∥Q⋆
τ − τξk+1∥∞ ≤ ∥Q⋆

τ − T ⋆
τ τξk∥∞ + βk ∥T ⋆

τ ξ0∥∞ + ∥Ek∥∞ + (1− β)βk
∥∥Q0

τ

∥∥
∞ , (76)

≤ γ ∥Q⋆
τ − τξk∥∞ + βkRm + (1− β)βkR̄+ ∥Ek∥∞ , (77)

≤ γk+1 ∥Q⋆
τ∥∞ + (Rm + (1− β)R̄)

k∑
i=0

γiβk−i +

k∑
i=0

γi ∥Ek−i∥∞ , (78)

= γk+1 ∥Q⋆
τ∥∞ +

2− γ − β

1− γ
Rm

k∑
i=0

γiβk−i +

k∑
i=0

γi ∥Ek−i∥∞ (79)

A.6 PROOF OF EQ. (14)

Proof. For k = 0,

ξ1 = β × 0 + αq0 +
αβM

1− βM
(q0 − 0), (80)

= α

(
1 +

βM

1− βM

)
q0, (81)

=
α

1− βM
q0. (82)

If it is true for k, then

ξk+1 = β
α

1− βM

M−1∑
i=0

βiqk−1−i + αqk +
αβM

1− βM
(qk − qk−M), (83)

=
α

1− βM

M−2∑
i=0

βi+1qk−1−i +
αβM

1− βM
(qk−M − qk−M) +

α

1− βM
qk, (84)

=
α

1− βM

M−1∑
i=0

βiqk−i (85)

A.7 PROOF OF THEOREM 5.1

As with policy iteration, we first need a policy improvement lemma

Lemma A.1 (Approximate policy improvement of finite memory EPMD). For any k ≥ 0, Qk+1
τ ≥

Qk
τ − γ(I − γPπk+1)

−1P [(πk+1 − πk)(ϵk +∆k)], with ∆k := βM

1−βM (qk − qk−M).

Proof. We can see the policy πk+1 as the maximizer of Eq. (9) if we would replace qk with qk +
βM

1−βM (qk − qk−M). From the non-negativity of the DKL and the fact that DKL(πk;πk) = 0 we
have

πkqk − τh(πk) ≤ πk+1qk − τh(πk+1) +
βM

1− βM
(πk+1 − πk)(qk − qk−M), (86)

⇒ πkQ
k
τ − τh(πk) ≤ πk+1Q

k
τ − τh(πk+1) +

βM

1− βM
(πk+1 − πk)(qk − qk−M) + (πk+1 − πk)ϵk.

(87)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Let ∆k := βM

1−βM (qk − qk−M). Writing down the (matrix) definition of Qk+1
τ and Qk

τ gives

Qk+1
τ −Qk

τ = γP (πk+1Q
k+1
τ − τh(πk+1))− γP (πkQ

k
τ − τh(πk)), (88)

(i)

≥ γP (πk+1Q
k+1
τ − τh(πk+1))− γP (πk+1Q

k
τ − τh(πk+1) + (πk+1 − πk)(ϵk +∆k)),

(89)

= γPπk+1(Q
k+1
τ −Qk

τ)− γP [(πk+1 − πk)(ϵk +∆k)], (90)

⇔ Qk+1
τ −Qk

τ

(ii)

≥ −γ(I − γPπk+1)
−1P [(πk+1 − πk)(ϵk +∆k)]. (91)

where in (i) we have used the fact that P is a probability matrix with only positive entries, and
similarly in (ii) for the matrix (I − γPπk+1)

−1 =
∑∞

i=0(γPπk+1)
i.

We are now ready to prove the main theorem

Proof. The beginning of the proof is similar to vanilla entropy regularized policy/value iteration

πk+1qk − τh(πk+1) = πk+1

(
1

1− β
(τξk+1 − βτξk)

)
− τh(πk+1)− πk+1∆k, (92)

= πk+1

(
1

1− β
[τξk+1 − τh(πk+1)− β(τξk − τh(πk+1))]

)
− πk+1∆k,

(93)
(i)

≥ 1

1− β
[πk+1τξk+1 − τh(πk+1)− β(πkτξk − τh(πk))]− πk+1∆k. (94)

Using this inequality in qk+1 yields

qk+1 = Qk+1
τ + ϵk+1, (95)

= R+ γP (πk+1Q
k+1
τ − τh(πk+1)) + ϵk+1, (96)

(i)

≥ R+ γP (πk+1(qk − ϵk − γµk+1P (πk+1 − πk)(ϵk +∆k))− τh(πk+1)) + ϵk+1, (97)
(98)

where for (i) we used Lemma 4.3 and the definition of qk. Using Eq. (94) on the following terms
gives

R+ γP (πk+1qk − τh(πk+1)) ≥ R+ γP

(
1

1− β
[πk+1τξk+1 − τh(πk+1)− β(πkτξk − τh(πk))]− πk+1∆k

)
,

(99)

=
1

1− β
(T k+1

τ τξk+1 − βT k
τ τξk)− γPπk+1∆k, (100)

=
1

1− β
(T ⋆

τ τξk+1 − βT ⋆
τ τξk)− γPπk+1∆k. (101)

Completing with the rest of the terms finally gives

qk+1 ≥ 1

1− β
(T ⋆

τ τξk+1 − βT ⋆
τ τξk)− γPπk+1(I + γµk+1P (πk+1 − πk))(ϵk +∆k) + ϵk+1.

(102)
(103)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Let Ak+1 = γPπk+1(I+γµk+1P (πk+1−πk)) using this inequality in the definition of ξk+1 gives

τξk+1 =
1− β

1− βM

M−1∑
i=0

βiqk−i, (104)

≥ 1− β

1− βM

M−1∑
i=0

βi

(
1

1− β
(T ⋆

τ τξk−i − βT ⋆
τ τξk−i−1)−Ak−i(ϵk−i−1 +∆k−i−1) + ϵk−i

)
,

(105)

=
1

1− βM
T ⋆
τ τξk − βM

1− βM
T ⋆
τ ξk−M +

1− β

1− βM

M−1∑
i=0

βi(ϵk−i −Ak−i(ϵk−i−1 +∆k−i−1)).

(106)

Letting Ej :=
1−β

1−βM

∑M−1
i=0 βi(ϵk−i−Ak−iϵk−i−1), ∆k

q = 1−β
1−βM

∑M−1
i=0 βiAk−i∆k−i−1, Rm :=

Rx + γτ log |A| be an upper bound to ∥T ⋆
τ ξ0∥∞ and R̄ = Rm

1−γ be an upper bound to
∥∥Q0

τ

∥∥
∞, we

finally obtain

Q⋆
τ − τξk+1 ≤ Q⋆

τ − 1

1− βM
T ⋆
τ τξk +

βM

1− βM
T ⋆
τ ξk−M − Ek −∆k

q , (107)

⇒ ∥Q⋆
τ − τξk+1∥∞ ≤

∥Q⋆
τ − T ⋆

τ τξk∥∞ + βM ∥Q⋆
τ − T ⋆

τ τξk−M∥∞
1− βM

+
∥∥∆k

q

∥∥
∞ + ∥Ek∥∞ ,

(108)

≤ γ
∥Q⋆

τ − τξk∥∞ + βM ∥Q⋆
τ − τξk−M∥∞

1− βM
+
∥∥∆k

q

∥∥
∞ + ∥Ek∥∞ (109)

Let us now look into the term
∥∥∆k

q

∥∥
∞, and split it into policy evaluation error and distance to Q⋆

τ

∥∥∆k
q

∥∥
∞ =

∥∥∥∥∥ 1− β

1− βM

M−1∑
i=0

βiAk−i∆k−i−1

∥∥∥∥∥
∞

, (110)

=

∥∥∥∥∥ 1− β

1− βM

M−1∑
i=0

βiAk−i
βM

1− βM
(qk−i−1 − qk−i−1−M)

∥∥∥∥∥
∞

, (111)

=

∥∥∥∥∥βM (1− β)

(1− βM)2

M−1∑
i=0

βiAk−i(Qk−i−1 −Qk−i−1−M + ϵk−i−1 − ϵk−i−1−M)

∥∥∥∥∥
∞

,

(112)

≤

∥∥∥∥∥βM (1− β)

(1− βM)2

M−1∑
i=0

βiAk−i(ϵk−i−1 − ϵk−i−1−M)

∥∥∥∥∥
∞

+

∥∥∥∥∥βM (1− β)

(1− βM)2

M−1∑
i=0

βiAk−i(Qk−i−1 −Qk−i−1−M)

∥∥∥∥∥
∞

.

(113)

To bound the infinite norm of Ak, we note that (1−γ)µk is a probability matrix (the state distribution
induced by policy πk). Using the sub-aditivity of norms and the fact that the multiplication of
probability matrices is a probability matrix with infinite norm equal to 1, we have

∥Ak∥∞ =

∥∥∥∥γPπk+1

(
I +

γ

1− γ
((1− γ)µk+1)P (πk+1 − πk)

)∥∥∥∥
∞

, (114)

≤ γ +
2γ2

1− γ
. (115)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Looking now at the rightmost inner sum in Eq. (113) gives∥∥∥∥∥
M−1∑
i=0

βiAk−i(Qk−i−1 −Qk−i−1−M)

∥∥∥∥∥
∞

≤
M−1∑
i=0

βi ∥Ak−i(Qk−i−1 −Qk−i−1−M)∥∞, (116)

≤
(
γ +

2γ2

1− γ

)M−1∑
i=0

βi ∥Qk−i−1 −Qk−i−1−M∥∞ ,

(117)

≤
(
γ +

2γ2

1− γ

)M−1∑
i=0

βi (∥Q⋆
τ −Qk−i−1∥∞ + ∥Q⋆

τ −Qk−i−1−M∥∞) ,

(118)

(i)

≤ 2

1− γ

(
γ +

2γ2

1− γ

)M−1∑
i=0

βi (∥Q⋆
τ − τξk−i−1∥∞ + ∥Q⋆

τ − τξk−i−1−M∥∞) ,

(119)

where (i) is due to Lemma 4.1. Let zk = ∥Q⋆
τ − τξk∥∞ and Tk grouping all the error terms

Tk = ∥Ek∥∞ +
βM (1− β)

(1− βM)2

∥∥∥∥∥
M−1∑
i=0

βiAk−i(ϵk−i−1 − ϵk−i−1−M)

∥∥∥∥∥
∞

. (120)

Putting everything together we have

zk+1 ≤ γ
zk + βMzk−M

1− βM
+

βM (1− β)

(1− βM)2
2(γ + γ2)

(1− γ)2

M−1∑
i=0

βi (zk−i−1 + zk−i−1−M) + Tk. (121)

Let us first study the sequence {zk} without policy evaluation errors and try to upper bound it with
a simpler sequence. We define the sequence {xk} for all integers k by

xk = ∥Q⋆
τ∥∞ , for all k ≤ 0, (122)

and for k ≥ 0 we let

xk+1 = γ
xk + βMxk−M

1− βM
+

βM (1− β)

(1− βM)2
2(γ + γ2)

(1− γ)2

M−1∑
i=0

βi (xk−i−1 + xk−i−1−M) . (123)

We first find a condition for which the sequence is strictly decreasing starting from k ≥ 0. For k = 0
we have that

x1 =

(
γ
1 + βM

1− βM
+

βM

1− βM

4(γ + γ2)

(1− γ)2

)
x0. (124)

This will be strictly decreasing if

γ
1 + βM

1− βM
+

βM

1− βM

4(γ + γ2)

(1− γ)2
< 1, (125)

⇔ γ(1 + βM) + βM 4(γ + γ2)

(1− γ)2
< (1− βM), (126)

⇔
(
1 + γ +

4(γ + γ2)

(1− γ)2

)
βM < 1− γ, (127)

⇔ log

(
1 + γ +

4(γ + γ2)

(1− γ)2

)
+M log β < log(1− γ), (128)

⇔ M > log
(1− γ)3

(1 + γ)(1− γ)2 + 4(γ + γ2)
/ log β. (129)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

As it is true for k = 0 and the sequence is constant for k < 0, assume now that the sequence is
strictly decreasing from there on, up to some positive index k. Then since all the weights of past
terms are positive, we can replace all terms by their predecessors and we immediately have that

xk+1 < γ
xk−1 + βMxk−M−1

1− βM
+

βM (1− β)

(1− βM)2
2(γ + γ2)

(1− γ)2

M−1∑
i=0

βi (xk−i−2 + xk−i−2−M) , (130)

= xk. (131)

Thus the sequence {xk} is non-increasing for all k if M satisfies the inequality in (129). For such
values of M we will now find an upper bounding sequence that has a simpler geometric form.
Letting c = βM

1−βM

(
4(γ+γ2)
(1−γ)2 + γ

)
, and since the sequence is non-decreasing, we have for all k ≥ 0

that

xk+1 ≤ γ

1− βM
xk + cxk−2M . (132)

Let us now try to find a rate d ∈ (0, 1) such that for all k we have

xk ≤ dkx0. (133)

For all k ≤ 0, the above inequality holds for any d ∈ (0, 1). Now, if the upper bounding is true up
to some index k then using Eq. (132) we have

xk+1 ≤
(

γ

1− βM
dk + cdk−2M

)
x0, (134)

= dk
(

γ

1− βM
+ cd−2M

)
x0. (135)

The smallest acceptable d would be one such that
γ

1− βM
+ cd−2M = d, (136)

⇔ d2M+1 − γ

1− βM
d2M − c = 0. (137)

Let f(d) = d2M+1 − γ
1−βM d2M − c, we have that f(γ

1−βM) = −c < 0 and that f(1) = 1 −
γ

1−βM − c > 0 from the above condition on M . Since f is continuous and increasing between
these two values it accepts a unique root d0 ∈ (γ

1−βM , 1) which would satisfy the sought geometric
sequence upper bound for all k.

We now turn to the part of the sequence of zk that depends on the error terms Tk. Define for k ≤ 0

yk = 0, (138)

and for k ≥ 0

yk+1 = γ
yk + βMyk−M

1− βM
+

βM (1− β)

(1− βM)2
2(γ + γ2)

(1− γ)2

M−1∑
i=0

βi (yk−i−1 + yk−i−1−M) + Tk. (139)

Let T̄ = max
0≤i≤k

Ti, and γM = γ
1−βM . Then we have that

yk ≤ T̄

1− (γM + c)
. (140)

Indeed, it is true for k ≤ 0, and if it is true up to k then

yk+1 ≤ (γM + c)
T̄

1− (γM + c)
+ Tk, (141)

≤ (γM + c)
T̄

1− (γM + c)
+ T̄ , (142)

=
T̄

1− (γM + c)
. (143)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Replacing in Eq. (139), we have

yk+1 ≤ γMyk + c
T̄

1− (γM + c)
+ Tk, (144)

≤ γk+1
M y0 +

k∑
i=0

γi
M

(
Tk−i + c

T̄

1− γM − c

)
, (145)

=

k∑
i=0

γi
M

(
Tk−i + c

T̄

1− γM − c

)
. (146)

Finally, because the upper bound zk+1 in Eq. (121) has linear dependencies on previous zi terms
(i ≤ k), we immediately have that zk ≤ xk + yk. Indeed, it is true for k = 0, since z0 = ∥Q⋆

τ∥∞ =
x0 + y0. And if we assume that it is true for k, using Eq. (121), we immediatly have that it is true
for k + 1. Thus

zk+1 ≤ xk+1 + yk+1, (147)

≤ dk+1
0 ∥Q⋆

τ∥∞ +

k∑
i=0

γi
M

(
Tk−i + c

T̄

1− γM − c

)
. (148)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

Re
tu

rn
 (1

K)

Hopper-v4

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

4
Walker2d-v4

0 1 2 3 4 5

1.5

2

2.5

3

HalfCheetah-v4

0 1 2 3 4 5

1

1.5

2

2.5

3

Ant-v4

0 1 2 3 4 5
0

1

2

3

4

5

Humanoid-v4

0 1 2 3 4 5

Env steps (1M)

0

10

20

30

40

50

60

Re
tu

rn

MinAtar/Asterix-v1

0 1 2 3 4 5

Env steps (1M)

0

10

20

30

40

50

60
MinAtar/Breakout-v1

0 1 2 3 4 5

Env steps (1M)

40

45

50

55

60

65
MinAtar/Freeway-v1

0 1 2 3 4 5

Env steps (1M)

0

25

50

75

100

125

MinAtar/Seaquest-v1

0 1 2 3 4 5

Env steps (1M)

0

50

100

150

200

250

300
MinAtar/SpaceInvaders-v1

M=1 M=50 M=100 M=300 M=500 Exact PMD NatGrad NatGrad + LS

Figure 3: Evaluation of StaQ for different memory sizes M , on MuJoCo and MinAtar environments.
Results show mean and 95% confidence interval for 20 seeds.

0 1000 2000 3000

Exact PMD

M=500

M=300

M=100

M=50

M=1

NatGrad + LS

NatGrad

Hopper-v4

0 1000 2000 3000 4000 5000

Walker2d-v4

1000 2000 3000 4000

HalfCheetah-v4

0 1000 2000 3000 4000

Ant-v4

0 2000 4000 6000

Humanoid-v4

0 20 40 60
Final Policy Performance

Exact PMD

M=500

M=300

M=100

M=50

M=1

NatGrad + LS

NatGrad

MinAtar/Asterix-v1

0 20 40 60
Final Policy Performance

MinAtar/Breakout-v1

50 55 60 65
Final Policy Performance

MinAtar/Freeway-v1

0 50 100 150
Final Policy Performance

MinAtar/Seaquest-v1

0 100 200 300 400
Final Policy Performance

MinAtar/SpaceInvaders-v1

Figure 4: Box plots of final policy performance of StaQ for different memory sizes M , on MuJoCo
and MinAtar environments for 20 seeds.

B EXPERIMENTAL RESULTS

B.1 THE IMPACT OF THE MEMORY-SIZE M

Figure 3 shows the mean and 95% confidence interval of the performance of StaQ for different
choices of Mon MuJoCo and MinAtar tasks. Figure 4 shows the distribution of the final policy
performance across seeds for each algorithm and task. These results are averaged over 20 seeds.
To provide higher statistical confidence of our results, for Humanoid and Acrobot, we show the
mean and 95% confidence intervals in Table 2 and 3, evaluated over 30 seeds. Setting M = 1
corresponds to no KL-regularization as discussed in App. C.1 and can be seen as an adaptation
of SAC to discrete action spaces. M = 1 is unstable on both Hopper and Walker. Adding KL-
regularization and averaging over at least 50 Q-functions greatly helps to stabilize performance
except on the Humanoid task and some MinAtar tasks, where M = 50 was still unstable compared to
exact EPMD. In general we note diminishing returns in increasing M , with M = 100 matching the
performance of exact EPMD in most environment and M = 300 being virtually indistinguishable
from exact EPMD. Compared to natural policy gradient, with and without line search, performance
is generally improved across all tasks, making StaQ a potentially better alternative to natural policy
gradient, at least on environments where Q-function computations can be efficiently batched.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

M=1 M=50 M=100 M=300 M=500 Exact EPMD
Humanoid-v4 4272 ± 282 4600 ± 367 4795 ± 215 5143 ± 90 5102 ± 132 5166 ± 108

Table 2: Performance on Humanoid for various values of M . Mean and 95% confidence interval,
across 30 seeds.

M=1 M=5 M=50 M=100 M=300 M=500
Acrobot-v4 -62.69 ± 0.48 -62.69 ± 0.29 -62.44 ± 0.13 -62.49 ± 0.12 -62.54 ± 0.17 -62.34 ± 0.08

Table 3: Performance on Acrobot for various values of M . Mean and 95% confidence interval,
across 30 seeds.

B.2 HYPERPARAMETER OF NATGRAD + LS

The baseline “NatGrad + LS” introduces an additional hyperparameter ϵKL compared to the standard
PMD setting that StaQ follows. To properly set this hyperparameter we perform a preliminary study
using 3 seeds and a subset of the MuJoCo and MinAtar tasks. The results in Figure 5 show that
on a few tasks, the value of the ϵKL does not impact greatly the performance, but when there are
significant differences between the two algorithms, ϵKL = 0.001 is often better. As such, we use
ϵKL = 0.001 for all experiments involving “NatGrad + LS”.

B.3 COMPARISON WITH DEEP RL BASELINES

We summarize all performance comparisons with the deep RL baselines in Fig. 6 and Table 4. We
provide a discussion of the MountainCar environment and some of the challenges of exploration in
an entropy-regularized setting in App. B.5.

StaQ (M=300) M-DQN DQN PPO TRPO

CartPole-v1 500 457 411 500 500
Acrobot-v1 -62 -63 -63 -63 -64
LunarLander-v2 285 88 -317 227 222
MountainCar-v0 -200 -100 -110 -141 -118
Hopper-v4 3196 2600 2279 2411 2672
Walker2d-v4 3550 1364 1424 2799 3010
HalfCheetah-v4 3061 2098 2294 2001 1731
Ant-v4 2910 1776 1871 2277 2452
Humanoid-v4 5273 2580 2887 588 700
MinAtar/Asterix-v1 46 31 19 9 23
MinAtar/Breakout-v1 48 55 34 10 15
MinAtar/Freeway-v1 62 59 54 60 47
MinAtar/Seaquest-v1 114 51 14 5 7
MinAtar/SpaceInvaders-v1 242 116 95 92 94

Table 4: Final performance on all environments.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 5: Mean and standard deviation of policy performance of “NatGrad + LS” baseline for two
values of ϵKL averaged over 3 seeds.

0 1 2 3 4 5
2.5

3

3.5

4

4.5

5

5.5

Re
tu

rn
 (x

10
0)

CartPole-v1

0 1 2 3 4 5
-0.8

-0.75

-0.7

-0.65

-0.6
Acrobot-v1

0 1 2 3 4 5
-2

-1

0

1

2

3
LunarLander-v2

0 1 2 3 4 5

-2

-1.8

-1.6

-1.4

-1.2

-1

MountainCar-v0

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

Re
tu

rn
 (1

K)

Hopper-v4

0 1 2 3 4 5
0

1

2

3

4
Walker2d-v4

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

First deletion in StaQ
Corresponds to Exact PMD
update until 1.5M

HalfCheetah-v4

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3
Ant-v4

0 1 2 3 4 5
0

1

2

3

4

5

6
Humanoid-v4

0 1 2 3 4 5

Env steps (1M)

0

10

20

30

40

50

60

Re
tu

rn

MinAtar/Asterix-v1

0 1 2 3 4 5

Env steps (1M)

0

10

20

30

40

50

60
MinAtar/Breakout-v1

0 1 2 3 4 5

Env steps (1M)

0

10

20

30

40

50

60

70
MinAtar/Freeway-v1

0 1 2 3 4 5

Env steps (1M)

0

20

40

60

80

100

120

140
MinAtar/Seaquest-v1

0 1 2 3 4 5

Env steps (1M)

0

50

100

150

200

250

MinAtar/SpaceInvaders-v1

StaQ (M=300) M-DQN DQN TRPO PPO NatGrad + LS

Figure 6: Policy performance of StaQ (M = 300) vs deep RL baselines across all environments.
Results showing the mean and standard deviation across 10 seeds.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

B.4 STABILITY PLOTS (VARIATION WITHIN INDIVIDUAL RUNS)

In this section we provide plots that demonstrate the intra seed oscilliations. In Fig. 7-8 we plot the
returns of the first three seeds of the full results (shown in Fig. 6). At each timestep, the returns for
each individual seed are normalised by subtracting and then dividing by the mean across all seeds.
In addition to the first three seeds, the shaded regions indicate one-sided tolerance intervals such
that at least 95% of the population measurements are bounded by the upper or lower limit, with
confidence level 95% (Krishnamoorthy & Mathew, 2009).

We can see from Fig. 7-8 that Approximate Policy Iteration (API) algorithms (StaQ with M=300,
TRPO, PPO) generally exhibit less variation within runs than Approximate Value Iteration (AVI)
ones (DQN, M-DQN). In simple environments, such as CartPole, all three API algorithms have
stable performance, but on higher dimensional tasks, only StaQ retains a similar level of stability
while maintaining good performance. This is especially striking on Hopper, where runs show com-
paratively little variation within iterations while having the highest average performance, as shown
in Fig. 6. We attribute this improved stability in the performance of the evaluation policy by the
averaging over a very large number of Q-functions (M = 300) of StaQ, which reduces the infamous
performance oscillation of deep RL algorithms in many cases.

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

Hopper-v4
StaQ

0 1 2 3 4 5
Env step (1M)

Hopper-v4
DQN

0 1 2 3 4 5
Env step (1M)

Hopper-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

Hopper-v4
TRPO

0 1 2 3 4 5
Env step (1M)

Hopper-v4
PPO

0 1 2 3 4 5
Env step (1M)

-100

-75

-50

-25

0

25

50

75

100

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

Walker2d-v4
StaQ

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
DQN

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
TRPO

0 1 2 3 4 5
Env step (1M)

Walker2d-v4
PPO

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

HalfCheetah-v4
StaQ

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
DQN

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
TRPO

0 1 2 3 4 5
Env step (1M)

HalfCheetah-v4
PPO

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

Ant-v4
StaQ

0 1 2 3 4 5
Env step (1M)

Ant-v4
DQN

0 1 2 3 4 5
Env step (1M)

Ant-v4
M-DQN

0 1 2 3 4 5
Env step (1M)

Ant-v4
TRPO

0 1 2 3 4 5
Env step (1M)

Ant-v4
PPO

Figure 7: Stability plots for MuJoCo environments, plotting normalized performance of the first
three individual runs for each algorithm. See text for more details. Figures continue on the next
page.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

MinAtar/Asterix-v1
StaQ

0 1 2 3 4 5
Env step (1M)

MinAtar/Asterix-v1
DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Asterix-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Asterix-v1
TRPO

0 1 2 3 4 5
Env step (1M)

MinAtar/Asterix-v1
PPO

0 1 2 3 4 5 6 7 8 9 10
Env step (1M)

-40

-20

0

20

40

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

MinAtar/Breakout-v1
StaQ

0 1 2 3 4 5 6 7 8 9 10
Env step (1M)

MinAtar/Breakout-v1
DQN

0 1 2 3 4 5 6 7 8 9 10
Env step (1M)

MinAtar/Breakout-v1
M-DQN

0 1 2 3 4 5 6 7 8 9 10
Env step (1M)

MinAtar/Breakout-v1
TRPO

0 1 2 3 4 5 6 7 8 9 10
Env step (1M)

MinAtar/Breakout-v1
PPO

0 1 2 3 4 5
Env step (1M)

-100

-75

-50

-25

0

25

50

75

100

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

MinAtar/Freeway-v1
StaQ

0 1 2 3 4 5
Env step (1M)

MinAtar/Freeway-v1
DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Freeway-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Freeway-v1
TRPO

0 1 2 3 4 5
Env step (1M)

MinAtar/Freeway-v1
PPO

0 1 2 3 4 5
Env step (1M)

-150

-100

-50

0

50

100

150

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

MinAtar/Seaquest-v1
StaQ

0 1 2 3 4 5
Env step (1M)

MinAtar/Seaquest-v1
DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Seaquest-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/Seaquest-v1
TRPO

0 1 2 3 4 5
Env step (1M)

MinAtar/Seaquest-v1
PPO

0 1 2 3 4 5
Env step (1M)

-60

-40

-20

0

20

40

60

%
 D

ev
ia

tio
n

fro
m

 m
ea

n
re

tu
rn

MinAtar/SpaceInvaders-v1
StaQ

0 1 2 3 4 5
Env step (1M)

MinAtar/SpaceInvaders-v1
DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/SpaceInvaders-v1
M-DQN

0 1 2 3 4 5
Env step (1M)

MinAtar/SpaceInvaders-v1
TRPO

0 1 2 3 4 5
Env step (1M)

MinAtar/SpaceInvaders-v1
PPO

Figure 8: Stability plots for MinAtar environments, plotting normalized performance of the first
three individual runs for each algorithm. See text for more details.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30 35 40
Poisson rate ()

0.0000

0.0002

0.0004

0.0006

0.0008

Su
cc

es
s F

re
qu

en
cy

0 1 2 3 4 5

Env steps (1M)

0

0.2

0.4

0.6

0.8

1

1.2

En
tr

op
y

MountainCar-v0

StaQ(-softmax)
StaQ(sticky)
Max entropy

0 1 2 3 4 5

Env steps (1M)

-200

-180

-160

-140

-120

-100

-80

Re
tu

rn

MountainCar-v0
DQN
M-DQN
TRPO
PPO
StaQ(-softmax)
StaQ(sticky)

Figure 9: Left: Frequency of non-zero rewards of a uniform policy with sticky actions for different
choice of Poisson rate λ on MountainCar over 5M timesteps. Middle: Entropy of learned policies
under different behavior policies. Entropy of the uniform (Max entropy) policy plotted for reference.
Right: Policy returns for StaQ with different behavior policies and deep RL baselines on Mountain-
Car. Adding sticky actions to StaQ’s behavior policy fixes its performance on this task.

B.5 ENTROPY REGULARIZATION DOES NOT SOLVE EXPLORATION

StaQ and exact EPMD achieve strong performance on all 14 environments except on MountainCar
where they fail to learn. In this section, we perform additional experiments to understand the failure
of StaQ on MountainCar. In short, it appears that the initial uniform policy—which has maximum
entropy—acts as a strong (local) attractor for this task: StaQ starts close to the uniform policy,
and exploration with this policy does not generate a reward signal in MountainCar. As StaQ does
not observe a reward signal in early training, it quickly converges to the uniform policy which has
maximum entropy, but also never generates a reward signal. Indeed, if we unroll a pure uniform
policy on MountainCar for 5M steps, we will never observe a reward.

However, StaQ is not limited to a specific choice of behavior policy, and choosing a policy that
introduces more correlation between adjacent actions, like a simple “sticky” policy allows StaQ to
solve MountainCar. This policy samples an action from πk and applies it for a few consecutive steps,
where a number of steps is drawn randomly from Poisson(λ) distribution (in our experiments with
StaQ we fix the rate of Poisson distribution at λ = 10). In Fig. 9, we can see that StaQ with the same
hyperparameters for classical environments (see Table 6) and a ”sticky” behavior policy manages to
find a good policy for MountainCar matching the best baseline. The final policy demonstrates much
lower entropy compared to the default policy that fails at learning for this environment. We focused
on this paper on the benefits of entropy regularization in averaging evaluation error. While it is be-
lieved that entropy might help with exploration, these observations are a good reminder that entropy
regularization remains a heuristic exploration strategy that does not replace a theoretically grounded
strategy, which is beyond the scope of this paper that only focuses on using entropy regularization
to reduce the error floor of approximate policy iteration when using function approximators.

C ADDITIONAL ACTOR-CRITIC BASELINES

C.1 RELATION BETWEEN STAQ AND SOFT ACTOR-CRITIC

In this section, we explain the relation between Soft Actor-Critic (SAC, Haarnoja et al. (2018))
and both M-DQN (Vieillard et al., 2020b) and StaQ with M = 1. SAC is not directly used as
a baseline because SAC is not compatible with discrete action spaces. However, M-DQN can be
seen as an adaptation of SAC to discrete action spaces with an additional KL-divergence regularizer.
Please see the discussion in Vieillard et al. (2020b) on page 3, between Eq. (1) and (2). Vieillard
et al. (2020b) also describe Soft-DQN in Eq. (1) as a straightforward discrete-action version of
SAC, that can be obtained from M-DQN by simply setting the KL-divergence regularization weight
to zero. Soft-DQN was not included as a baseline because the results of Vieillard et al. (2020b)
suggest that M-DQN generally outperforms Soft-DQN. Our results already suggest that adding a
DKL regularizer generally improves performance, and the results in the next section further confirm
this.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

We also note that by setting M = 1 in StaQ, we remove the KL-divergence regularization and only
keep the entropy bonus. This baseline can also be seen as an adaptation of SAC to discrete action
spaces: indeed, if we set M = 1 in Eq. (2) we recover the policy logits

ξk+1 =
α

1− βM

M−1∑
i=0

βiQk−i
τ (149)

=
α

1− β
Qk

τ (150)

=
Qk

τ

τ
, (151)

where the last line is due to ατ = 1 − β. This results in a policy of the form πk+1 ∝ exp
(

Qk
τ

τ

)
.

Meanwhile, for SAC, the actor network is obtained by minimizing the following problem (Eq. 14 in
Haarnoja et al. (2018)) for states sampled from some replay buffer D

πk+1 = argmin
π

Es∼D

KL

π(s)

∣∣∣∣∣∣
exp

(
Qk

τ (s)
τ

)
Znorm.

 (152)

However, in the discrete action setting, we can sample directly from exp
(

Qk
τ

τ

)
—which is the min-

imizer of the above KL-divergence term—and we do not need an explicit actor network. As such
StaQ with M = 1 could be seen as an adaptation of SAC to discrete action spaces. However, we
discuss next a method with an explicit actor that is even closer to SAC.

C.2 ACTOR-CRITIC POLICY MIRROR DESCENT METHODS

We introduce now several additional actor-critic baselines that can be derived from the entropy
regularized PMD update in Eq. 9. As discussed in the previous section, in the absence of a DKL

regularizer, the solution of the policy update problem is exp
(

Qk
τ

τ

)
, which corresponds to StaQ

with M = 1 in our experiments. While we can sample directly from this policy, we consider also
an actor-critic version thereof that updates the actor by attempting to solve Eq. 152 via gradient
descent, resulting in an even closer baseline to SAC. We label this baseline AC-NoKL.

Next, if we add DKL regularization to the policy update, the entropy regularized PMD solution be-
comes πk+1 ∝ πβ

k exp
(
αQk

τ

)
. Tracking this recursive policy definition exactly results in an infinite

sum, but we can approximate πβ
k exp

(
αQk

τ

)
with an actor network. Specifically, we consider a sec-

ond baseline inspired by ECPO (Mei et al., 2019) that advocates for minimizing the M-Projection
between the actor and the PMD solution

πk+1 = argmin
π

Es∼D

[
KL

(
πβ
k exp

(
αQk

τ

)
Znorm.

∣∣∣∣∣π(s)
)]

, (153)

where states are again sampled from a replay buffer D. The authors of ECPO argue that the M-
Projection will better preserve the support of the distribution and prevent the premature elimination
of actions during exploration. We will label this baseline AC-MProj.

Finally, we consider an actor-critic baseline inspired by MDPO (Tomar et al., 2022) that optimizes
a state averaged version of the entropy regularized PMD update, i.e.

πk+1 = argmax
π

Es∼D
[
Qk

τ (s) · π(s)− τh(π(s))− ηDKL(π(s);πk(s))
]
, (154)

by performing a few gradient steps over the above objective. Unlike ECPO, MDPO skips the closed
form solution and optimizes directly the entropy and DKL regularized objective by gradient ascent.
We will call this baseline AC-DirectOpt. An important parameter for MDPO and ECPO is m,
the number of gradient steps that are used to update the actor. Before performing the full scale
evaluation of AC-DirectOpt and AC-MProj—the two AC methods following the updates of MDPO
and ECPO respectively, we first perform a 3 seeds hyper-parameter sensitivity analysis w.r.t. m
on 4 MinAtar tasks. Results show in Fig. 10 and Fig. 11 that on some tasks, this parameter is

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 10: Sensitivity of AC-DirectOpt to the number of gradient steps performed to update the
actors. Plots show mean and std. deviation over 3 seeds. See App. C.2 for details.

Figure 11: Sensitivity of AC-MProj to the number of gradient steps performed to update the actors.
Plots show mean and std. deviation over 3 seeds. See App. C.2 for details.

actually not very crucial, but on some other tasks, using more gradient steps for the actor seems to
improve performance. As such, for the remained of this section, we will use m = 5000 for both
AC-DirectOpt and AC-MProj, which corresponds to performing one actor gradient update per time-
step in the environment. This is the same setting as in SAC, and we will use the same number of
actor updates for the AC-NoKL baseline.

We now perform a 20 seeds comparisons on all 5 MinAtar tasks between StaQ and the three AC
baselines discussed above, isolating again as in the main experiment the policy update from the rest
of the RL components that are kept identical. Fig. 12 shows the performance of the current policy
evaluated every 200K time-steps using 25 rollouts, Fig. 13 shows the distribution of final policy
performance, and Fig. 14 shows aggregate results on the 5 tasks. As can be seen, AC-DirectOpt
and AC-MProj being approximations of Exact PMD, end-up having worse performance on several
tasks. Comparing the AC methods between themselves, AC-DirectOpt and AC-MProj have close
performance on the aggregate metrics, while AC-NoKL lags behind the other two and shows again
the benefits of DKL regularization on policy update. Compared to StaQ, the performance of the
DKL regularized AC methods (i.e. AC-DirectOpt and AC-MProj) is between that of StaQ with
M = 1 and M = 50, while AC-NoKL performs worse than M = 1. The improved performance of
StaQ with higher M comes at little performance cost as can be seen in Table 5, where the run time
remains close to that of M = 1, whereas all three AC methods have to perform double the amount
of gradient steps to update the actor in addition to the critic, resulting in a 35 to 45% longer run time
than StaQ with M = 1.

D HYPERPARAMETERS

Here, we provide the full list of hyperparameters used in our experiments2. StaQ’s hyperparameters
are listed in Table 6, while the hyperparameters for our baselines are provided in Tables 7-9. For
TRPO and PPO, we use the implementation provided in stable-baselines4 (Raffin et al.,
2021), while we used our in-house PyTorch implementation of (M)-DQN3.

To account for the different scales of the reward between environments, we apply a different reward
scaling to the Classic/MuJoCo environments and MinAtar. Note that this is equivalent to inverse-
scaling the entropy weight τ and KL weight η, ensuring that ξk is of the same order of magnitude
for all environments. To account for the varying action dimension |A| of the environments, we set
the scaled entropy coefficient τ̄ as a hyperparameter, defined by τ̄ = τ log |A|, rather than directly

2Code is provided in the supplemental zip file, and will be released to an open-source repository upon
publication.

3We will add the link to the in-house library upon publication.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 5: Runtime of StaQ and AC PMD baselines on MinAtar/SapceInvaders-v1 on an NVIDIA
Tesla V100 GPU.

M=1 M=100 M=300 AC-NoKL AC-MProj AC-DirectOpt
MinAtar/SpaceInvaders-v1 9.6 10.4 10.5 13.9 13.1 13.2

0 1 2 3 4 5

Env steps (1M)

0

10

20

30

40

50

Re
tu

rn

MinAtar/Asterix-v1

0 1 2 3 4 5

Env steps (1M)

0

10

20

30

40

50
MinAtar/Breakout-v1

0 1 2 3 4 5

Env steps (1M)

40

45

50

55

60

MinAtar/Freeway-v1

0 1 2 3 4 5

Env steps (1M)

0

20

40

60

80

100

120

MinAtar/Seaquest-v1

0 1 2 3 4 5

Env steps (1M)

0

50

100

150

200

250
MinAtar/SpaceInvaders-v1

M=1 M=50 M=100 M=300 M=500 Exact PMD AC-NoKL AC-DirectOpt AC-MProj

Figure 12: Policy evaluations during training of StaQ with different values of M and actor-critic
PMD baselines. Mean and 95% confidence interval over 20 seeds.

setting τ . Furthermore, the entropy weight is linearly annealed from its minimum and maximum
values.

Policy evaluation. In all our experiments, we use an ensemble of two neural networks, similarly to
e.g. SAC (Haarnoja et al., 2018), to evaluate a Q-function and therefore two SNNs for ξ-logits. In
particular, we optimize the current Q-function weights θ to minimize the loss L(θ),

L(θ) = E(s,a)∼D

[
1

2

(
Qθ (s, a)− Q̂ (s, a)

)2]
(155)

Q̂(s, a) := R(s, a) + γEs′∼D,a∼π(s′)

[
aggi∈{1,2} Qθ̂i

(s′, a′)− τh(π(s′))
]

(156)

where agg computes either the min or mean over the target Q-functions with weights θ̂1, θ̂2. We
find that using the min of the two Q-functions to compute the target values often results in more
stable training. min gives a more conservative target that is robust to overestimation bias in the Q-
functions, and this allows us to reduce the KL weight. However, such a strategy may struggle when
reward is not dense enough, e.g. some MinAtar and some classic control environments. Therefore
we instead use the mean in Classic/MinAtar environments. Future work could use a more sophisti-
cated approach that is both robust to overestimation bias and yet sensitive to weak reward signals.

D.1 IMPACT OF ϵ EXPLORATION

In our main experiment we use ϵ = 0.05 as the probability to sample an action uniformly at random.
In a set of additional experiments we evaluate the impact ϵ has on performance. To this end, we
launch StaQ with M = 300 and Exact PMD that never deletes a Q-function within the 5 million
time-step window for different values of ϵ on the 5 MinAtar tasks. We see that ϵ exploration is
important for both Breakout and Seaquest, but has less of an impact on other tasks. In fact, on Asterix
and SpaceInvades, increasing the epsilon decreases the performance slightly, perhaps because of the
increase to the off-policiness of the data which might deteriorate policy evaluation. As such, our
choice of ϵ = 0.05 in the main experiment appears to provide a good trade-off between improving
exploration and limiting the off-policiness of data on MinAtar tasks. In all cases, independent of the
choice of ϵ, StaQ with M = 300 remains close to Exact PMD in performance.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0 20 40 60
Final Policy Performance

Exact PMD

M=500

M=300

M=100

M=50

M=1

AC-DirectOpt

AC-MProj

AC-NoKL

MinAtar/Asterix-v1

0 20 40 60
Final Policy Performance

MinAtar/Breakout-v1

50 55 60 65
Final Policy Performance

MinAtar/Freeway-v1

0 50 100 150
Final Policy Performance

MinAtar/Seaquest-v1

0 100 200 300 400
Final Policy Performance

MinAtar/SpaceInvaders-v1

Figure 13: Box plot for final policy performance of StaQ with different values of M and actor-critic
PMD baselines, over 20 seeds.

0.48 0.56 0.64 0.72
MinAtar

AC-NoKL
AC-MProj

AC-DirectOpt
M=1

M=50
M=100
M=300
M=500

Exact PMD
Mean

0.4 0.5 0.6 0.7
MinAtar

AC-NoKL
AC-MProj

AC-DirectOpt
M=1

M=50
M=100
M=300
M=500

Exact PMD
IQM

Figure 14: Aggregate final performance for StaQ with different values of M and actor-critic PMD
baselines, for MinAtar tasks over 20 seeds.

Hyperparameter Classic MuJoCo MinAtar

Discount (γ) 0.99 0.99 0.99
Memory size (M) 300 300 300

Policy update interval 5000 5000 5000
Ensembling mode mean min mean

Target type hard hard hard
Target update interval 200 200 200

Epsilon 0.05 0.05 0.05
Reward scale 10 10∗ 100
KL weight (η) 20 10 20

Initial scaled ent. weight 2.0 2.0 2.0
Final scaled ent. weight 0.4 0.4 0.4
Ent. weight decay steps 500K 1M 1M

Architecture 256× 2 256× 2 Conv(16, 3, 3) + 128 MLP
Activation function ReLU ReLU ReLU

Learning rate 0.0001 0.0001 0.0001
Optimizer Adam Adam Adam

Replay capacity 50K 50K 50K
Batch size 256 256 256

Table 6: StaQ hyperparameters, with parameters which vary across environment types in bold.
∗Hopper-V4 uses a reward scale of 1.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Horizon 2048 2048 1024

Num. epochs 10 10 3
Learning starts 5000 20000 20000

GAE parameter 0.95 0.95 0.95
VF coefficient 0.5 0.5 1

Entropy coefficient 0 0 0.01
Clipping parameter 0.2 0.2 0.1× α

Optimizer Adam Adam Adam
Architecture 64× 2 64× 2 ∗ Conv(16, 3, 3) + 128 MLP

Activation function Tanh Tanh Tanh
Learning rate 3× 10−4 3× 10−4 2.5× 10−4 × α

Batch size 64 64 256

Table 7: PPO hyperparameters, based on (Schulman et al., 2017). In the MinAtar environments α is
linearly annealed from 1 to 0 over the course of learning. ∗Humanoid-v4 uses a hidden layer size of
256.

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Horizon 2048 2048 2048

Learning starts 5000 20000 20000

GAE parameter 0.95 0.95 0.95
Stepsize 0.01 0.01 0.01

Optimizer Adam Adam Adam
Architecture 64× 2 64× 2 ∗ Conv(16, 3, 3) + 128 MLP

Activation function Tanh Tanh Tanh
Learning rate 3× 10−4 3× 10−4 2.5× 10−4

Batch size 64 64 256

Table 8: TRPO hyperparameters, based on (Schulman et al., 2015). ∗Humanoid-v4 uses a hidden
layer size of 256.

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Target update interval 100 8000 8000

Epsilon 0.1 0.1 0.1
Decay steps 20K 20K 20K

M-DQN temperature 0.03 0.03 0.03
M-DQN scaling term 1.0 0.9 0.9

M-DQN clipping value -1 -1 -1

Architecture 512× 2 128× 2 Conv(16, 3, 3) + 128 MLP
Activation function ReLU ReLU ReLU

Learning rate 1× 10−3 5× 10−5 2.5× 10−4

Optimizer Adam Adam Adam
Replay capacity 50K 1M 1M

Batch size 128 32 32

Table 9: MDQN and DQN hyperparameters, based on (Vieillard et al., 2020b; Ceron & Castro,
2021)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure 15: Impact of the ϵ exploration parameter of StaQ on performance in MinAtar tasks. Plots
showing mean and std. deviation over 5 seeds.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Figure 16: StaQ on MuJoCo with action space discretized using the independence assumption from
Tang & Agrawal (2020) with 7 atoms. Plots show improvements over the discretization that only
considers boundary actions on all but the Humanoid-v4 task. Results averaged over 5 seeds.

E EXTENSION TO CONTINUOUS ACTION SPACES

The main challenge of StaQ in continuous action spaces is to sample from its Boltzmann policy
with logits given by Eq. 14. Straightforward extensions of StaQ to continuous action spaces can be
to distill the policy into an easier to sample from actor (e.g. Gaussian neural policy), or to use the
Gumbel-max trick to sample from StaQ’s policy via optimization. While applying the Gumbel-max
trick might be slow, for StaQ’s theory to hold, we only need accurate samples when computing the
targets for the current Q-function (and these sampled actions can be pre-computed as discussed in
Sec. 5.1 for the logits). For data gathering however, the behavior policy could use less accurate
samples from StaQ’s policy to speed-up inference. Nonetheless, we expect this solution as well as
distilling the StaQ into a more compact actor to yield additional policy update errors compared to
exact PMD and StaQ. As discussed in Sec. 4.3, Zhan et al. (2023) showed that PMD with approxi-
mate policy updates have a higher error floor (see Thm. 2 in Zhan et al.’s paper and the dependence
to ϵopt) and might converge to lower quality solutions. As such, these extensions do not fit claims
of the paper, which is that for some environments and thanks to the continuous advances in GPU
hardware, it can become more advantageous to stack Q-functions to get an error free policy update
with low computational overhead, instead of following the more traditional actor-critic approach to
PMD.

To tackle continuous actions in the spirit of the contributions of our paper, one could use StaQ in-
stead as the gating policy in a hierarchical RL framework. For instance, starting from our MuJoCo
experiments, one could consider the hand discretized actions we used as sub-policies and further
optimize them via gradient ascent. The sub-policies could be more complex, for instance PID con-
trollers or neural based as in the work of Gehring et al. (2021); Hafner et al. (2022), that use a
discrete set of sub-policies and would thus preserve the above properties of fast and accurate policy
updates for the gating policy if optimized by truncated PMD.

Yet another direction to tackle continus action spaces is to leverage an independence assumption in
the policy following Tang & Agrawal (2020). Concretely, Tang & Agrawal discretize each action
dimension into a finite number of atoms and assume that each action dimension follows an inde-

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

pendent distribution—which is also assumed by continuous action RL algorithms using diagonal
Gaussian policies. In our setting, this translate in the logit space, which is also the space of Q-
functions, by assuming separability of the Q-function approximation i.e. that qk, the approximation
of the Q-function Qk, is given by

qk(s, a) =

dim(A)∑
i=1

q
[i]
k (s, a[i]), (157)

where a[i] is entry i of the action vector a and {q[i]k }dim(A)
i=1 is a set of real functions. This inde-

pendence assumption makes it possible to consider fine grained discretizations with extremely large
but finite action spaces, from which one can sample exactly and efficiently by sampling each action
dimension independently. Incidentally, this separability assumption could allow a more efficient
implementation of the Gumbel-max trick discussed above.

To illustrate how this could benefit StaQ, we have implemented the discretization from Tang &
Agrawal (2020) in combination with StaQ using K = 7 atoms by action dimension. Concretely,
the Q-network outputs K values for each action dimension, and the Q-function for a given action is
computed using Eq. 157. We have run 5 seeds of StaQ using this Q-network architecture on the 4
MuJoCo environments shown in Fig. 16. We have kept all hyper-parameters of StaQ similar except
for the target update rate of the Q-target which we have increased to 1000 for HalfCheetah and
Walker and to 2500 for Ant and Humanoid. From the plot, we can see large improvements due to
the finer grained discretization on all but the Humanoid-v4 task. Moreover, using StaQ improves
over previous results reported by Tang & Agrawal (2020), that used PPO and TRPO as base learners
on most MuJoCo tasks, showing the impact our work could have in this line of research.

In summary, beyond environments that have naturally discrete action spaces or low dimensional
continuous action spaces that can be easily discretized, we have outlined here several RL frameworks
that tackle continuous actions spaces yet leverage Boltzmann policies and that could benefit from our
work. We think interesting research questions in this direction is to investigate the improvements the
Boltzmann distribution could bring to exploration compared to the unimodal Gaussian distribution
that is commonly used in continuous action deep RL algorithms.

F PSEUDOCODE OF STAQ

We provide in this section the pseudocode of StaQ in Alg. 1. As an approximate policy iteration
algorithm, StaQ comprises three main steps: i) data collection, ii) policy evaluation iii) policy im-
provement. Data collection (Line 4-5) consist in interacting with the environment to collect transi-
tions of type (state, action, reward, next state) that are stored in a replay buffer. A policy evaluation
algorithm (Eq. 155) is then called to evaluate the current Q-function Qk

τ using the replay buffer.
Finally, the policy update is optimization-free and simply consists in stacking the Q-function in the
SNN policy as discussed in Sec. 5.1. After K iterations, the last policy is returned.

Algorithm 1 StaQ (Finite-memory entropy regularized policy mirror descent)

1: Input: An MDP M, a memory-size M , Number of samples per iteration N , Replay buffer size
D, Initial behavior policy πb

0, entropy weight τ , DKL weight η, ϵ-softmax exploration parameter

2: Output: Policy πK ∝ exp(ξK)
3: for k = 0 to K − 1 do
4: Interact with M using the behavior policy πb

k for N times steps
5: Update replay buffer Dk to contain the last D transitions
6: Learn Qk

τ from Dk using a policy evaluation algorithm (Eq. 155)
7: Obtain logits ξk+1 by stacking the last M Q-functions (see Sec. 5.1) following the finite-

memory EPMD update of Eq. 14.
8: Set πk+1 ∝ exp(ξk+1) and πb

k+1 to an ϵ-softmax policy over πk+1

9: end for

38

	Introduction
	Related Work
	Preliminaries
	policy mirror descent and averaging of error
	Entropy regularized value iteration
	Entropy regularized policy iteration
	Approximate policy update

	Finite-memory policy mirror descent
	Practical implementation

	Experiments
	Conclusion
	Proofs
	Properties of entropy regularized Bellman operators
	Proof of Lemma 4.1
	Proof of Theorem 4.2
	Proof of Lemma 4.3
	Proof of Theorem 4.4
	Proof of Eq. (14)
	Proof of Theorem 5.1

	Experimental results
	The impact of the memory-size M
	Hyperparameter of NatGrad + LS
	Comparison with deep RL baselines
	Stability plots (variation within individual runs)
	Entropy regularization does not solve exploration

	Additional Actor-Critic baselines
	Relation between StaQ and Soft Actor-Critic
	Actor-critic policy mirror descent methods

	Hyperparameters
	Impact of exploration

	Extension to continuous action spaces
	Pseudocode of StaQ

