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ABSTRACT

In Reinforcement Learning (RL), regularization with a Kullback-Leibler diver-
gence that penalizes large deviations between successive policies has emerged
as a popular tool both in theory and practice. This family of algorithms, often
referred to as Policy Mirror Descent (PMD), has the property of averaging out
policy evaluation errors which are bound to occur when using function approxi-
mators. However, exact PMD has remained a mostly theoretical framework, as its
closed-form solution involves the sum of all past Q-functions which is generally
intractable. A common practical approximation of PMD is to follow the natural
policy gradient, but this potentially introduces errors in the policy update. In this
paper, we propose and analyze PMD-like algorithms for discrete action spaces
that only keep the last M Q-functions in memory. We show theoretically that for
a finite and large enough M , an RL algorithm can be derived that introduces no
errors from the policy update, yet keeps the desirable PMD property of averag-
ing out policy evaluation errors. Using an efficient GPU implementation, we then
show empirically on several medium-scale RL benchmarks such as Mujoco and
MinAtar that increasing M improves performance up to a certain threshold where
performance becomes indistinguishable with exact PMD, reinforcing the theoret-
ical findings that using an infinite sum might be unnecessary and that keeping
in memory the last M Q-functions is a practical alternative to the natural policy
gradient instantiation of PMD.

1 INTRODUCTION

Deep RL has seen rapid development in the past decade, achieving super-human results on several
decision making tasks (Mnih et al., 2015; Silver et al., 2016; Wurman et al., 2022). However, the
use of neural networks as function approximators exacerbates many challenges of RL, such as the
brittleness to hyperparameters (Henderson, 2018) and the poor alignment between empirical behav-
ior often and theoretical understandings (Ilyas et al., 2020; Kumar et al., 2020; van Hasselt et al.,
2018). To address these issues, many deep RL algorithms consider adding regularization terms, one
of which being to penalize the Kullback-Leibler divergence (labeled DKL in the following) between
successive policies (Schulman et al., 2015; Wu et al., 2017; Wang et al., 2017; Vieillard et al.,
2020b). This family of algorithms is often called Policy Mirror Descent (PMD, Abbasi-Yadkori
et al. (2019); Lazic et al. (2021); Zhan et al. (2023)) for its connection—made more explicit in
Sec. 4—to the first-order convex optimization method Mirror Descent (Nemirovsky & Yudin, 1983;
Beck & Teboulle, 2003). One known property of PMD algorithms, at least in the context of value
iteration, it that it averages out policy evaluation errors (Vieillard et al., 2020a). This property can
be intuited from the nature of the policy πk at iteration k, which is a Boltzmann distribution and its
(unnormalized) log-probabilities are a weighted average of past Q-function estimates {qi}k−1

i=0

πk ∝ exp

(
α

k−1∑
i=0

βiqk−i

)
, (1)

for temperature α > 0 and weight β ∈ (0, 1]. In contrast, unregularized RL would pick actions ac-
cording to argmaxa qk−1(·, a), which would be very sensitive to the unavoidable policy evaluation
errors introduced by the use of function approximators, that can be in the context of deep RL very
large (Ilyas et al., 2020).
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While averaging Q-function estimates might cancel out their errors, implementing Eq. 1 exactly
might quickly become intractable due to the infinite of the sum. This is especially true when a non-
linear function approximator is used for {qi}k−1

i=0 , precluding the existance of a compact closed-form
expression for the policy. As such, prior work considered several type of approximations to PMD,
such as following the natural gradient (Kakade, 2001; Peters & Schaal, 2006; Schulman et al., 2015)
or performing a few gradient steps over the regularized policy update loss (Schulman et al., 2017;
Tomar et al., 2020). Instead, in this paper we consider a different direction and perform a rigorous
study, both theoretically and empirically, of an algorithm—that we call StaQ—that is a weighted
average of at most the last M < ∞ Q-function estimates, i.e. where the policy is

πk ∝ exp

(
α

1− βM

M−1∑
i=0

βiqk−i

)
. (2)

From a theoretical point of view, we show that for M large enough, such a truncation does not
introduce a policy update error, i.e. that in the absence of policy evaluation errors, StaQ will converge
exactly to the optimal policy. Moreover, StaQ has a similar averaging of error property as PMD, up
to some extra terms that decay exponentially fast w.r.t. M ; suggesting that as we increase M , we
can quickly recover the behavior of exact PMD. From a practical point of view, the study of a such
an algorithm is timely in the age of batched GPU computations: indeed we show that for medium-
sized problems such as the continuous state Mujoco (Todorov et al., 2012) tasks or the image-based
MinAtar (Young & Tian, 2019) tasks, increasing M has little to no impact on the run-time, making
Eq. 2 a practical alternative policy update to natural policy gradient. This is especially true since the
policy update in the discrete action case, to which the scope of this paper is limited to, is optimization
free. To summarize, the contributions in this paper are as follow:

1. We extend the PMD analysis of (Vieillard et al., 2020a) in two ways: i) we show that the
averaging effect can be obtained by introducing a DKL penalization only during policy
update—instead of during policy evaluation and update, and ii) we extend the analysis to
the policy iteration setting, which was analyzed by (Cen et al., 2022; Zhan et al., 2023)
without showing the averaging effect of the DKL regularization.

2. We extend the above analysis to the case of a finite M , showing that for M large enough,
the policy update is error free, and that the averaging of policy evaluation errors is similar
to that of exact PMD up to some extra terms that decay exponentially fast w.r.t. M.

3. We perform an efficient batched implementation of the above algorithm and show that
increasing M has beneficial effects on performance, with diminishing returns, to the point
that StaQ with a high enough M can become indistinguishable from exact PMD.

2 RELATED WORK

Regularization in RL. Regularization has seen widespread usage in RL. It was used with (natural)
policy gradient (Kakade, 2001; Schulman et al., 2015; Yuan et al., 2022), policy search (Deisenroth
et al., 2013), policy iteration (Abbasi-Yadkori et al., 2019; Zhan et al., 2023) and value iteration
methods (Fox et al., 2016; Vieillard et al., 2020b). Common choices of regularizers include mini-
mizing the DKL between the current and previous policy (Azar et al., 2012; Schulman et al., 2015)
or encouraging high Shannon entropy (Fox et al., 2016; Haarnoja et al., 2018), but other regularizers
exist (Lee et al., 2019; Alfano et al., 2023). We refer the reader to Neu et al. (2017); Geist et al.
(2019) for a broader categorization of entropy regularizers and their relation to existing deep RL
methods. In this paper, we use both a DKL penalization w.r.t. the previous policy and a Shannon en-
tropy bonus in a policy iteration context. In Vieillard et al. (2020b), both types of regularizers were
used but in a value iteration context. Abbasi-Yadkori et al. (2019); Lazic et al. (2021) are policy
iteration methods but only use DKL penalization.

Policy Mirror Descent. Prior works on PMD focus mostly on performing a theoretical analysis of
convergence speeds or sample complexity for different choices of regularizers (Li et al., 2022; John-
son et al., 2023; Alfano et al., 2023; Zhan et al., 2023; Lan, 2022; Protopapas & Barakat, 2024). As
PMD provides a general framework for many regularized RL algorithms, PMD theoretical results
can be naturally extended to many policy gradient algorithms like natural policy gradient (Khodada-
dian et al., 2021) and TRPO (Schulman et al., 2015) as shown in Neu et al. (2017); Geist et al.
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(2019). However, the deep RL algorithms from the PMD family generally perform inexact policy
updates, adding a source of error from the theoretical perspective. For example, TRPO and the more
recent MDPO (Tomar et al., 2020) rely on approximate policy updates using policy gradients. We
build on (Zhan et al., 2023) by proposing a finite-memory variant, proving the new convergence re-
sults and offering a new deep RL algorithm policy update step that does not introduce any additional
policy update error, in contrast to prior works.

Ensemble methods and growing neural architectures in RL. Saving past Q-functions has previ-
ously been investigated in the context of policy evaluation. In Tosatto et al. (2017), a first Q-function
is learned, then frozen and a new network is added, learning the residual error. Shi et al. (2019) uses
past Q-functions to apply Anderson acceleration for a value iteration type of algorithm. Anschel
et al. (2017) extend DQN by saving the past 10 Q-functions, and using them to compute lower
variance target values. Instead of past Q-functions, Chen et al. (2021); Lee et al. (2021); Agarwal
et al. (2020); Lan et al. (2020) use an ensemble of independent Q-network functions to stabilize
Q-function learning in DQN type of algorithms. The aforementioned works are orthogonal to ours,
as they are concerned with learning one Q, which can all be integrated into StaQ. Conversely, both
Girgin & Preux (2008) and Della Vecchia et al. (2022) use a special neural architecture called the
cascade-correlation network (Fahlman & Lebiere, 1989) to grow neural policies. The former work
studies such policies in combination with LSPI (Lagoudakis & Parr, 2003), without entropy regular-
ization. The latter work is closer to ours, using a DKL-regularizer but without a deletion mechanism.
As such the policy grows indefinitely, limiting the scaling of the method. Finally, Abbasi-Yadkori
et al. (2019) save the past 10 Q-functions to compute the policy in Eq. 1 for the specific case of
β = 1, but do not study the impact of deleting older Q-functions as we do in this paper. Growing
neural architectures are more common in the neuroevolution community (Stanley & Miikkulainen,
2002), and have been used for RL, but are beyond the scope of this paper.

Parallels with Continual Learning. Continual Learning (CL) moves from the usual i.i.d assump-
tion of supervised learning towards a more general assumption that data distributions change through
time (Parisi et al., 2019; Lesort et al., 2020; De Lange et al., 2021; Wang et al., 2024). This prob-
lem is closely related to that of incrementally updating the policy πk, due to the changing data
distributions that each Q-function is trained on, and our approach of using a growing neural archi-
tecture to implement a DKL-regularized policy update can be seen as a form of parameter isolation
method in the CL literature, which offer some of the best stability-performance trade-offs (see Sec.
6 in De Lange et al. (2021)). Parameter isolation methods were explored in the context of continual
RL (Rusu et al., 2016), yet remain understudied in a standard single-task RL setting.

3 PRELIMINARIES

Let a Markov Decision Problem (MDP) be defined by the tuple (S,A,R, P, γ), such that S and A
are finite state and action spaces, R is a bounded reward function R : S×A 7→ [−Rx, Rx] for some
positive constant Rx, P defines the (Markovian) transition probabilities of the decision process and
γ is a discount factor. The algorithms presented in this paper can be extended to more general state
spaces. However, we limit ourselves to studying finite action spaces, to simplify the sampling from
the Boltzmann distribution for the policy (Eq. 2), which would require deeper algorithmic changes
for continuous actions spaces.

Let ∆(A) be the space of probability distributions over A, and h be the negative entropy given by
h : ∆(A) 7→ R, h(p) = p · log p, where · is the dot product and the log is applied element-wise to
the vector p. Let π : S 7→ ∆(A) be a stationary stochastic policy mapping states to distributions
over actions. We denote the entropy regularized V-function for policy π and regularization weight
τ > 0 as V π

τ : S 7→ R, which is defined by

V π
τ (s) = Eπ

[ ∞∑
t=0

γt{R(st, at)− τh(π(st))}

∣∣∣∣∣s0 = s

]
. (3)

In turn, the entropy regularized Q-function is given by Qπ
τ (s, a) = R(s, a) + γEs′ [V

π
τ (s′)].

The V-function can be written as the expectation of the Q-function plus the current state en-
tropy, i.e. V π

τ (s) = Ea [Q
π
τ (s, a)] − τh(π(s)) which leads to the Bellman equation Qπ

τ (s, a) =
R(s, a) + γEs′,a′ [Qπ

τ (s
′, a′)− τh(π(s′))]. In the following, we will write policies of the form
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π(s) ∝ exp(Q(s, ·)) for all s ∈ S more succinctly as π ∝ exp(Q). We define optimal V and Q
functions where for all s ∈ S, a ∈ A, V ⋆

τ (s) := maxπ V
π
τ (s) and Q⋆

τ (s, a) := maxπ Q
π
τ (s, a).

Moreover, the policy π⋆ ∝ exp
(

Q⋆
τ

τ

)
satisfies Qπ⋆

τ = Q⋆
τ and V π⋆

τ = V ⋆
τ simultaneously for all

s ∈ S (Zhan et al., 2023). In the following, we will overload notations of real functions defined on
S × A and allow them to only take a state input and return a vector in R|A|. For example, Qπ

τ (s)
denotes a vector for which the ith entry i ∈ {1, . . . , |A|} is equal to Qπ

τ (s, i).

For the convergence analysis, we will make use of a matrix representation of the MDP by
overloading the notations of R and P . Let Is : S 7→ {1, . . . , |S|} be an arbitrary bijective function
that will provide an ordering over the state space, and we let Isa : S × A 7→ {1, . . . , |S||A|} be
an arbitrary bijective function that orders the state-action space. Using these indexing functions,
we will overload the notation of the reward function by seeing R as an |S||A| × 1 matrix such
that row Isa(s, a) and column 1 of the matrix R verifies R(Isa(s,a),1) = R(s, a). Similarly for the
transition function P which we see as an |S||A|×|S| matrix such that P(Isa(s,a),Is(s′)) = P (s′|s, a).

A policy π will be seen as a |S| × |S||A| matrix such that π(Is(s′),Isa(s,a)) = π(a|s) if s′ = s and 0
otherwise. On such matrix representation of the policy we can apply the negative entropy row-wise
such that h(π) is a |S| × 1 matrix where h(π)(Is(s),1) = h(π(s)). Using all of the above notations,
we write the Bellman operator/equation associated to policy π in matrix notation over a Q-function
represented by an |S||A| × 1 matrix that verifies

Tπ
τ Q

π
τ = Qπ

τ = R+ γP [πQπ
τ − τh(π)] . (4)

This operator can be applied to any |S||A| × 1 matrix f , by simply replacing Qπ
τ by f in Eq. 4. We

also write the Bellman optimality operator on matrices as

T ⋆
τ f = R+ γP

[
max

p
pf − τh(p)

]
, (5)

where the maximization maxp is made row-wise over probability matrices of shape |S| × |S||A|
encoded using the same convention as policy matrices π described above.

4 POLICY MIRROR DESCENT AND AVERAGING OF ERROR

To find π⋆, we focus on Entropy-regularized Policy Mirror Descent (EPMD) methods (Neu et al.,
2017; Abbasi-Yadkori et al., 2019; Lazic et al., 2021) and notably on those that regularize the policy
update with an entropy and DKL term and use an entropy regularized Bellman operator (Lan, 2022;
Zhan et al., 2023). The EPMD setting discussed here is also similar to the regularized natural policy
gradient algorithm on softmax policies of Cen et al. (2022). We will put special emphasis in this
section on policy evaluation errors and show how convergence of EPMD depends on this error.

4.1 ENTROPY REGULARIZED VALUE ITERATION

To ease the discussion, let us first consider an approximate value iteration algorithm. Let ξk :
S ×A 7→ R be the unnormalized log-probability (which we refer to as logits for short) of πk, i.e.

πk ∝ exp(ξk), (6)

We define entropy regularized value iteration by the following set of operations. Evaluation step:
let qk : S × A 7→ R be a sequence of functions such that q0 = 0 and for all k ≥ 0, qk+1 =
T k+1
τ qk + ϵk+1, where T k+1

τ = T
πk+1
τ is the Bellman operator associated to policy πk+1 and ϵk+1

represents the evaluation error due to, e.g., knowing only a sample estimate of the Bellman operator
or knowing it only on a sub-set of the state-action space. Policy update step: letting ξk = 0, i.e. the
first policy is uniform over the action space, for each qk we update the policy in EPMD by solving
the following optimization problem

∀s ∈ S, πk+1(s) = argmax
p∈∆(A)

{qk(s) · p− τh(p)− ηDKL(p;πk(s))} (7)

4
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where DKL(p; p
′) = p · (log p − log p′) and η > 0 is the DKL regularization weight. This update

admits the well known closed-form solution given by

ξk+1 = βξk + αqk, (8)

where α = 1
η+τ and β = η

η+τ . Let us characterize the convergence of such an algorithm. In the
remainder of this paper, we will be interested in bounding the norm ∥Q⋆

τ − τξk∥∞ which we want
as small as possible since the logits of the optimal policy are Q⋆

τ

τ . Moreover, from a bound over
∥Q⋆

τ − τξk∥∞ we can derive the more common bound over Q-functions since

Lemma 4.1. Let policy πk ∝ exp(ξk) and Qk
τ its Q-function; then

∥∥Q⋆
τ −Qk

τ

∥∥
∞ ≤ 2∥Q⋆

τ−τξk∥∞
1−γ .

The proof for all theoretical statements are given in the appendix. As such the convergence of
entropy regularized value iteration is given by
Theorem 4.2. (Convergence of entropy regularized value iteration) Letting Ej = (1 −
β)
∑j

i=1 β
j−iϵi and Rm = Rx + γτ log |A|, we have at iteration k + 1 that ∥Q⋆

τ − τξk+1∥∞ ≤
γk+1 ∥Q⋆

τ∥∞ +Rm

∑k
i=0 γ

iβk−i +
∑k

i=0 γ
i ∥Ek−i∥∞.

The first term of the upper bound goes to zero as k → ∞. This term is also found in unregularized
value iteration (see, e.g. Theorem 1.12 of Agarwal et al. (2021)) and is due to the contraction
property of the Bellman operators. The second term is a constant multiplied by

∑k
i=0 γ

iβk−i. It can
be shown that this sum satisfies

k∑
i=0

γiβk−i ≤ max{γ, β}k(k + 1), (9)

which goes to zero as k → ∞. In the limit of η → 0, where we would drop the DKL regularization,
β → 0 and

∑k
i=0 γ

iβk−i → γk, yielding an error term that goes to zero at the same rate as
γk+1 ∥Q⋆

τ∥∞. However, as we increase the DKL regularization, β approaches 1 and the second
term becomes whenever β > γ

k∑
i=0

γiβk−i = βk
k∑

i=0

(
γ

β

)i

≤ βk+1

β − γ
. (10)

While this term still goes to zero as k → ∞, by increasing the DKL regularization we pay the price
of a slower convergence when β > γ. Finally, the term

∑k
i=0 γ

i ∥Ek−i∥∞ constitutes the error floor
of entropy regularized value iteration stemming from the evaluation errors ϵi. This error floor might
remain above zero even as k → ∞. In the limit of η → 0, ∥Ej∥∞ → ∥ϵj∥∞ and the error floor
will tend to

∑k
i=0 γ

i ∥ϵj∥∞, i.e. a weighted sum of the norms of the evaluation errors. However, as
we increase the DKL penalization, there is a hope that the evaluation errors will cancel each other
in (1 − β)

∑j
i=1 β

j−iϵi, leading to a lower value of ∥Ej∥∞ than if we would only consider the
norm of the last error ∥ϵj∥∞. As such, by increasing η we might slow down the convergence rate
but potentially lower the error floor

∑k
i=0 γ

i ∥Ek−i∥∞ and return a better final policy. This result is
similar to that of Vieillard et al. (2020a), except that our algorithm uses a Bellman operator that only
applies entropy regularization (as used for example in the learning of Q-functions in SAC (Haarnoja
et al., 2018)), whereas Vieillard et al. (2020a) considered the Bellman operator that applies both an
entropy and a DKL regularization. Moreover, the latter work was restricted to the analysis of value
iteration, but before discussing StaQ we need first to extend the above analysis to policy iteration as
StaQ is a policy iteration algorithm.

4.2 ENTROPY REGULARIZED POLICY ITERATION

The policy iteration version of EPMD is quite similar to value iteration except that in the evaluation
step, qk = Qk

τ + ϵk, where Qk
τ = Qπk

τ is the Q-function associated to πk. The approximation qk of
Qk

τ can be obtained for instance by applying the Bellman operator T k
τ (or a noisy version thereof)

several times on qk−1—instead of a single time in value iteration. As value and policy iteration
algorithms are quite similar, the analysis of the latter follows the same general template, except that
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the error propagates in slightly more complex ways. In the case of policy iteration, we need a way
to relate qk and qk+1 as this relation is not as direct as in value iteration. To do so, we will make use
of the policy improvement lemma (Section 4.2 of Sutton & Barto (2018)). In the unregularized RL
case, the lemma states that a policy greedy w.r.t. a Q-function will have a greater or equal Q-function
at every state-action pair. A similar property holds in the entropy regularized case. However, in the
presence of policy evaluation errors, the new policy πk+1—obtained by maximizing Eq. 7—might
increase the probability of sub-par actions and improvement is only guaranteed up to some policy
improvement error characterized by the following lemma
Lemma 4.3 (Approximate policy improvement). Let µk = (I−γPπk)

−1 be the (unormalized) state
distribution associate to policy πk. At any iteration k ≥ 0 of entropy regularized policy iteration,
we have that Qk+1

τ ≥ Qk
τ − ϵ∆k

, with ϵ∆k
:= γµk+1P (πk − πk+1)ϵk.

The policy improvement error ϵ∆k
is invariant to a constant shift in the evaluation error ϵk. Indeed,

we have that for any real value c, (πk − πk+1)(ϵk + c1) = (πk − πk+1)ϵk, where 1 is a vector
of ones. Additionally, if ϵk = 0 or any other constant vector then policy improvement is guaran-
teed. However, we might not improve over the previous Q-function if we overestimate a bad action
or underestimate a good one. The overall convergence of entropy regularized policy iteration is
characterized by the following theorem
Theorem 4.4. (Convergence of entropy regularized policy iteration) Letting ϵ−1 = 0 and Ej :=

(1 − β)
∑j

i=0 β
j−i(ϵi − γPπi(ϵi−1 + ϵ∆i

)), we have at iteration k + 1 that ∥Q⋆
τ − τξk+1∥∞ ≤

γk+1 ∥Q⋆
τ∥∞ + 2−γ−β

1−γ Rm

∑k
i=0 γ

iβk−i +
∑k

i=0 γ
i ∥Ek−i∥∞.

As can be seen, the upper bound of Theorem 4.4 follows a very similar structure to that of value iter-
ation, with the main difference being in the error floor

∑k
i=0 γ

i ∥Ek−i∥∞ that now notably depends
on the policy improvement error discussed above. While this error floor involves more quantities, the
general scheme remains the same and one hopes that there are values of η such that a cancellation of
terms leads to a lower error floor compared to the unregularized case while not slowing policy itera-
tion too much. This analysis improves over that of Zhan et al. (2023), that only considered a uniform
worst case error, leading to a less interesting upper bound where the smallest error floor—and the
fastest convergence rate—is always obtained by choosing η = 0, using no DKL regularization.

4.3 APPROXIMATE POLICY UPDATE

We have analyzed so far the convergence of EPMD algorithms, considering only evaluation errors.
In practice, the policy update step that consists in solving the optimization problem in Eq. 7 might
prove challenging to solve without approximations. Indeed, while this policy update leads to a
closed form solution in the space of policy logits (Eq. 8), it might not be possible to implement
exactly if the state-action space is too large. In this case, one could use a function approximator to
represent these logits but that would likely introduce a new type of error and raises the question of
what loss to use to update the policy’s parameters. Let ΘQ and Θπ respectively be the parameter
spaces of Q-functions and policy logits; these parameter spaces can for instance be subsets of Rd

for some integer d. Let ξθ : S × A 7→ R, with θ ∈ Θπ be a function that provides the logits of a
policy πθ ∝ exp(ξθ) and let qθ′ : S × A 7→ R, with θ′ ∈ Θπ , be the (approximate) Q-function
associated to πθ. We want to find ξθ′′ as the solution to the entropy regularized policy update in
Eq. 7. We know that ideally we would have ξθ′′ = βξθ + αqθ′ , but this does not give an expression
for θ′′ since in general the policy maximizing Eq. 7 is not necessarily parameterized by βθ + αθ′.
One exception is when the Q-function and the logits function are linear w.r.t. some predefined
feature function, in which case ξβθ+αθ′ = βξθ + αqθ′ . This is the so-called compatible feature
setting of policy gradient (Sutton et al., 1999; Geist & Pietquin, 2010; Pajarinen et al., 2019) where
the Q-function and the logits share the same linear-in-feature function approximation class and in
which case, policy gradient and natural policy gradient become equivalent (Peters & Schaal, 2008).
However, beyond the linear-in-feature case, the closed form solution of the entropy regularized
policy update in the space of logits does not yield a trivial update in parameter space.

One approach to policy update in parameter space is to solve the following optimization problem

argmax
θ′′∈Θπ

θ′′ · ∇θJτ (πθ)− ηEs∼µπθ
DKL(πθ′′(s);πθ(s)), (11)
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where Jτ (πθ) is the policy return πθ, i.e. the expectation of the V πθ over states sampled from some
a predefined initial state distribution. Interestingly, Cen et al. (2022) showed that in the tabular
case (i.e. when optimizing directly over the logit space), the above problem is equivalent to the
maximization in Eq. 7 over each state independently. In the general case however, because of the
approximation in the optimization of Eq. 11 or because of the use of a restricted policy class, we are
likely to obtain a new policy πθ′′ that is worse than πk+1 in the sense of the policy update objective
defined in Eq. 7. Zhan et al. (2023) analyzed an approximate EPMD scheme such that the policy
update objective in Eq. 7 is optimized up to some error ϵopt for all states and all iterations. They
showed that the resulting algorithm would converge at the same rate as its exact counterpart but
would reach an error floor that depends on ϵopt, independently of the existence of policy evaluation
errors. In this paper, we investigate an alternative policy update, that truncates the infinite sum of
EPMD to result in a practical algorithm that does not introduce errors from the policy update yet
keeps the appealing property of averaging policy evaluation errors.

5 FINITE-MEMORY POLICY MIRROR DESCENT

Let us now consider a PMD-like algorithm that keeps in memory at most M , with a M a strictly
positive integer, Q-function estimates. The policy at iteration k is now given by Eq. 2, which can be
written as a recursive update in the logits space in the following way

ξk+1 = βξk + αqk +
αβM

1− βM
(qk − qk−M ), (12)

where qk−M := 0 whenever k−M < 0, and qk = Qk
τ + ϵk otherwise. In contrast to vanilla EPMD

in Eq. 8, we now ‘delete’ at each update the oldest Q-function estimate qk−M and also slightly
overweight the most recent Q-function estimate to ensure that the Q-function weights sum to 1.
This weight correction in Eq. 2—the extra multiplication by 1

1−βM compared to the vanilla sum in

Eq. 1—is important as otherwise, the logits might never converge to Q⋆
τ

τ even when the last M Q-
function estimates are all equal to Q⋆

τ . Indeed, without the weight correction and since τα = 1− β,
we would have τξk = (1− β)

∑M−1
i=0 βiQ⋆

τ = (1− βM )Q⋆
τ .

The logits update in Eq. 12 can be interpreted as the result of the following optimization problem

∀s ∈ S, πk+1(s) = argmax
p∈∆(A)

p · [qk +
βM

1− βM
(qk − qk−M )](s)− τh(p)− ηDKL(p;πk(s)) (13)

Now instead of maximizing the latest Q-function estimate, the policy also maximizes the difference
between the latest and oldest estimate out of the last M Q-functions. This introduces an additional
source of policy improvement error, but in our theoretical analysis, we show that for a finite but
large enough M , this error will vanish as k → ∞, leaving us with an error floor that only depends
on the evaluation errors. Specifically, the algorithm given by Eq. 12 has the following convergence
properties
Theorem 5.1 (Convergence of finite memory EPMD). Let M such that M >

log (1−γ)3

(1+γ)(1−γ)2+4(γ+γ2)/ log β, γM = γ
1−βM , c = βM

1−βM

(
4(γ+γ2)
(1−γ)2 + γ

)
, let d0 be the

unique root of d2M+1 − γMd2M − c in the interval (γM , 1), define the matrix Ak+1 =

γPπk+1(I + γµk+1P (πk+1 − πk)), and error terms Ej =
1−β

1−βM

∑M−1
i=0 βi(ϵk−i −Ak−iϵk−i−1),

and Tk = ∥Ek∥∞ + βM (1−β)
(1−βM )2

∥∥∥∑M−1
i=0 βiAk−i(ϵk−i−1 − ϵk−i−1−M )

∥∥∥
∞

and worst error term

T̄ = max
0≤i≤k

Ti, then ∥Q⋆
τ − ξk+1∥∞ ≤ dk+1

0 ∥Q⋆
τ∥∞ +

∑k
i=0 γ

i
M

(
Tk−i + c T̄

1−γM−c

)
.

In finite memory EPMD we no longer have an explicit expression for the convergence rate, but
provided M is large enough, we know that it exists as the unique root of a function in the range
(γM , 1). Moreover, as M → ∞, the convergence rate goes to γ, and as in exact EPMD, we note
that in the absence of evaluation errors, the algorithm converges to the optimal policy. In terms
of error floor, we find a similar expression of Ej as in Sec. 4.2 up to the truncation to the latest
M errors. However, the error floor does not depend only on Ej but on an additional term in Tj

that depends on older evaluation error terms. This additional term is weighted by βM (1−β)
(1−βM )2

which

7
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Figure 1: Overview of StaQ, showing the continual training of a Q-function (left), from which we
periodically “stack” frozen weight snapshots to form the policy (right). See Sec. 5.1 for more details.
At each iteration k, two steps are performed. i) Policy evaluation, where we generate a dataset Dk

of transitions that are gathered by a behavior policy πb
k, typically derived from πk, and then learn

Qπk from Dk. ii) Policy update, performed by “stacking” the NN of Qπk into the current policy.
The policy update is optimization-free and theoretically grounded (Sec. 5), thus only the choice of
πb
k and the policy evaluation algorithm can remain sources of instabilities in this deep RL setting.

Table 1: Training times for StaQ (5 million steps), as a function of M , on Hopper-v4 (state dim.=11)
and Ant-v4 (state dim. = 105), computed on an NVIDIA Tesla V100 and averaged over 3 seeds.

Memory size M 1 50 100 300 500

Hopper-v4 Training time (hrs) 9.8 10.1 10.3 10.3 10.9

Ant-v4 Training time (hrs) 10.4 10.7 10.3 11 10.5

decreases exponentially fast towards zero as we increase M . Finally, the error floor is not just a
weighted sum of average evaluation errors but also depends on the worst average evaluation error T̄ .
Fortunately, this term is weighted again by a constant that decreases exponentially fast towards zero
as M increases. Thus the theoretical analysis indicates that we approach the behavior of an exact
EPMD policy update exponentially fast by increasing M . The remainder of the paper is devoted
to exploring the practical implications of such a result: what are the tangible benefits of EPMD
and how fast—in terms of memory size M—can a finite memory variant approach the behavior of
EPMD with an exact policy update. To perform such a study we need an efficient implementation
of EPMD that allows us to examine exact EPMD, at least for a few million timesteps, and support a
high memory size M .

5.1 PRACTICAL IMPLEMENTATION

We implement an efficient version of the policy in Eq. 2 using a stacked neural networks (SNN,
illustrated in Fig. 1). By using batched operations we make efficient use of GPUs and compute
multiple Q-values in parallel. We call the resulting algorithm StaQ. After each policy evaluation, we
push the weights corresponding to this new Q-function onto the stack. If the stacked NN contains
more than M NNs, the oldest NN is deleted in a “first in first out” fashion. If implementing exact
EPMD, then we never delete older Q-functions. To further reduce the impact of a large M , we pre-
compute ξk for all entries in the replay buffer1 at the start of policy evaluation. The logits ξk are used
to sample on-policy actions when computing the targets for Qk

τ . As a result of the pre-computation,
during policy evaluation, forward and backward passes only operate on the current Q-function and
hence the impact of large M is minimized. However rolling out the current behavioural policy πb

k
still requires a full forward pass. Conversely, the policy update consists only of adding the new
weights to the stack, and thus, is optimization free and (almost) instantaneous. Table 1 shows the
training time of StaQ as a function of M for two environments. Varying M or the state space size
has little impact on the runtime of StaQ on GPU, at least for these medium-sized environments.

1Since we use small replay buffer sizes of 50K transitions, we are likely to process each transition multiple
times (25.6 times in expectation in our experiments) making this optimization worthwhile.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 EXPERIMENTS

Environments. We use all 9 environments suggested by Ceron & Castro (2021) for comparing
deep RL algorithms with finite action spaces, comprising 4 classic control tasks from Gymna-
sium (Towers et al., 2023), and all MinAtar tasks (Young & Tian, 2019). To that we add 5 Mujoco
tasks (Todorov et al., 2012), adapted to discrete action spaces by considering only extreme actions
similarly to (Seyde et al., 2021). To illustrate, the discrete version of a Mujoco task with action
space A = [−1, 1]d consists in several 2d dimensional vectors that have zeroes everywhere except
at entry i ∈ {1, . . . , d} that can either take a value of 1 or −1; to that we add the zero action, for a
total of 2d+ 1 actions.

Algorithms. In our main set of experiments, we compare finite memory EPMD for several values
of M on up to 5 million timesteps. We notably consider the two extremes of M = 1, using no DKL

regularization and M = 1000 that never deletes a Q-function within the 5 million timesteps window
(labeled “Exact PMD” in figures). As lower values of M such as M = 1 might decrease entropy
too quickly because of too aggressive a DKL between successive iterations, we add a constant prob-
ability ϵ = 0.05 of sampling a random action throughout the learning phase for all algorithms. This
reduces the differences between the algorithms on components outside of the error floor which is
the main purpose of this experiment. To variants of StaQ, we add another baseline that implements
policy update by solving Eq. 11 using TRPO’s conjugate gradient implementation. This baseline,
labeled NatGrad uses the exact same policy evaluation procedure and hyper-parameters (including
regularization weight η) as StaQ variants and differs only in the policy update. To that we add for
reference the stable-baselines3 (Raffin et al., 2021) implementation of TRPO that enforces
via linesearch a hard DKL constraint instead of a soft penalization.

To that, we add a secondary set of comparisons with existing deep RL baselines such as the value
iteration algorithm DQN (Mnih et al., 2015) and its entropy-regularized variant M-DQN (Vieillard
et al., 2020b), the policy gradient algorithm TRPO (Schulman et al., 2015) and PPO (Schulman et al.,
2017). StaQ performs entropy regularization on top of a Fitted-Q Iteration (FQI) approach. DQN
only uses FQI and is a good baseline to measure the impact of entropy regularization over vanilla
FQI, while the other baselines cover a wide range of alternative approaches to regularization in deep
RL: through a bonus term (M-DQN), following the natural gradient (TRPO) or with a clipping loss
(PPO). These baselines differ more widely and in ways orthogonal (policy evaluation, exploration,
replay buffer management) to the main focus of this paper which is the policy update of EPMD.
These results are thus harder to interpret and are only provided for reference.

Results. Fig 2 in the appendix shows that there are benefits in many environments for a large
memory size M . Notably, we find that, for almost all environments, sufficiently large M matches the
performance of exact EPMD, with M ≥ 300 being virtually indistinguishable from exact EPMD.
These results reinforce the theoretical insights that StaQ can match the behavior of exact EPMD.
Compared to natural policy gradient and TRPO, the performance is generally improved across all
tasks, indicating that StaQ is potentially a better alternative to natural policy gradient, at least on
environments where Q-function computations can be efficiently batched. When compared to deep
RL baselines Fig. 3, we also noted lower inter-seed oscillations in StaQ, which we demonstrate
explicitly in App. B.3.

7 CONCLUSION

In this paper, we proposed a policy update rule based on policy mirror descent, that keeps in memory
at most M Q-functions. We showed that by increasing M we can quickly mimic exact EPMD
both from a theoretical and empirical perspective. Surprisingly, even when M is large, the final
computational burden is small on modern hardware, due to the stacking of the Q-functions. The
resulting policy update has a solid theoretical foundation and clear empirical benefits as it improves
performance and reduces learning instability compared to other entropy regularization methods in
the literature, making it a valid alternative to existing EPMD schemes, at least for medium-sized
tasks such as Mujoco or MinAtar. Due to its exact policy update, and the absence of gap between
the theoretical algorithm and the practical implementation, StaQ provides a promising setting for
testing other components of RL such as policy evaluation, for instance, the recent methods that use
normalization techniques to reduce policy evaluation error (Gallici et al., 2025; Bhatt et al., 2024).
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APPENDIX

A PROOFS

This section includes proofs of the lemmas and theorems of the main paper.

A.1 PROPERTIES OF ENTROPY REGULARIZED BELLMAN OPERATORS

We first start with a reminder of some basic properties of the (entropy regularized) Bellman opera-
tors, as presented in (Geist et al., 2019; Zhan et al., 2023). Within the MDP setting defined in Sec. 3,
let Tπ

τ be the operator defined for any map f : S ×A 7→ R by

(Tπ
τ f) (s, a) = R(s, a) + γEs′,a′ [f(s′, a′)− τh(π(s′))], (14)

This operator has the following three properties.

Proposition A.1 (Contraction). Tπ
τ is a γ-contraction w.r.t. the ∥.∥∞ norm, i.e. ∥Tπ

τ f − Tπ
τ g∥∞ ≤

γ ∥f − g∥∞ for any real functions f and g of S ×A.

Proposition A.2 (Fixed point). Qπ
τ is the unique fixed point of the operator Tπ

τ , i.e. Tπ
τ Q

π
τ = Qπ

τ .

Let f , g be two real functions of S×A. We say that f ≥ g iff f(s, a) ≥ g(s, a) for all (s, a) ∈ S×A.

Proposition A.3 (Monotonicity). Tπ
τ is monotonous, i.e. if f ≥ g then Tπ

τ f ≥ Tπ
τ g.

Let the Bellman optimality T ⋆
τ operator be defined by

(T ⋆
τ f) (s, a) = R(s, a) + γEs′

[
max

p∈∆(A)
f(s′) · p− τh(p)

]
. (15)

For the Bellman optimality operator we need the following two properties.

Proposition A.4 (Contraction). T ⋆
τ is a γ-contraction w.r.t. the ∥.∥∞ norm, i.e. ∥T ⋆

τ f − T ⋆
τ g∥∞ ≤

γ ∥f − g∥∞ for any real functions f and g of S ×A.

Proposition A.5 (Optimal fixed point). T ⋆
τ admits Q⋆

τ as a unique fixed point, satisfying T ⋆
τ Q

⋆
τ =

Q⋆
τ .

Finally, we will make use of the well known property that the softmax distribution is entropy maxi-
mizing (Geist et al., 2019). Specifically, we know that the policy πk ∝ exp(ξk) satisfies the follow-
ing property

for all s ∈ S, πk(s) = argmax
p∈∆(A)

ξk(s) · p− h(p). (16)

A.2 PROOF OF LEMMA 4.1

Proof. We first observe from the definition of πk that

T k
τ τξk = R+ γP (πkτξk − τh(πk)), (17)

(i)
= R+ γP (max

p
pτξk − τh(p)), (18)

= T ⋆
τ τξk, (19)
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with (i) due to Eq. 16. Then

Qk
τ − τξk = (T k

τ Q
k
τ − T k

τ τξk) + (T k
τ τξk − τξk) (20)

= γPk(Q
k
τ − τξk) + (T k

τ τξk − τξk), (21)

= (I − γPk)
−1(T k

τ τξk − τξk), (22)

= (I − γPk)
−1(T ⋆

τ τξk − τξk), (23)

⇒
∥∥Qk

τ − τξk
∥∥
∞ ≤ 1

1− γ
∥T ⋆

τ τξk − τξk∥∞ , (24)

=
1

1− γ
∥T ⋆

τ τξk −Q⋆
τ +Q⋆

τ − τξk∥∞ , (25)

≤ 1

1− γ
(∥T ⋆

τ Q
⋆
τ − T ⋆

τ τξk∥∞ + ∥Q⋆
τ − τξk∥∞) , (26)

≤ 1 + γ

1− γ
∥Q⋆

τ − τξk∥∞ . (27)

Finally, ∥∥Q⋆
τ −Qk

τ

∥∥
∞ ≤ ∥Q⋆

τ − τξk∥∞ +
∥∥Qk

τ − τξk
∥∥
∞ , (28)

≤ ∥Q⋆
τ − τξk∥∞ +

1 + γ

1− γ
∥Q⋆

τ − τξk∥∞ , (29)

=
2 ∥Q⋆

τ − τξk∥∞
1− γ

. (30)

A.3 PROOF OF THEOREM 4.2

Proof. Looking at the value function, we have

πk+1qk − τh(πk+1) = πk+1

(
1

1− β
(τξk+1 − βτξk)

)
− τh(πk+1), (31)

= πk+1

(
1

1− β
(τξk+1 − βτξk)

)
− 1

1− β
(τh(πk+1)− βτh(πk+1)),

(32)

= πk+1

(
1

1− β
[τξk+1 − τh(πk+1)− β(τξk − τh(πk+1))]

)
, (33)

(i)

≥
(

1

1− β
[πk+1τξk+1 − τh(πk+1)− β(πkτξk − τh(πk))]

)
, (34)

with (i) due to πkτξk − τh(πk) = maxp pτξk − τh(p) ≥ πk+1τξk+1 − τh(πk+1). Using this
inequality in qk+1 yields

qk+1 = T k+1
τ qk + ϵk+1, (35)

= R+ γP (πk+1qk − τh(πk+1)) + ϵk+1, (36)

≥ R+ γP

(
1

1− β
[πk+1τξk+1 − τh(πk+1)− β(πkτξk − τh(πk))]

)
+ ϵk+1, (37)

=
1

1− β
(R− βR) + γP

(
1

1− β
[πk+1τξk+1 − τh(πk+1)− β(πkτξk − τh(πk))]

)
+ ϵk+1,

(38)

=
1

1− β
(T k+1

τ τξk+1 − βT k
τ τξk) + ϵk+1, (39)

=
1

1− β
(T ⋆

τ τξk+1 − βT ⋆
τ τξk) + ϵk+1, (40)
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where the last step is again due to Eq. 16. Now using this inequality in the definition of ξk+1 gives

τξk+1 = (1− β)

k∑
i=0

βk−iqi, (41)

(i)
= (1− β)

k∑
i=1

βk−iqi, (42)

≥ (1− β)

k∑
i=1

βk−i

(
1

1− β
(T ⋆

τ τξi − βT ⋆
τ τξi−1) + ϵi

)
, (43)

= T ⋆
τ τξk − βkT ⋆

τ τξ0 + (1− β)

k∑
i=1

βk−iϵi, (44)

with (i) due to q0 = 0. Letting Ej = (1− β)
∑j

i=1 β
j−iϵi and Rm = Rx + γτ log |A| be an upper

bound to ∥T ⋆
τ τξ0∥∞, we finally obtain

Q⋆
τ − τξk+1 ≤ Q⋆

τ − T ⋆
τ τξk + βkT ⋆

τ τξ0 − Ek, (45)

⇒ ∥Q⋆
τ − τξk+1∥∞ ≤ ∥Q⋆

τ − T ⋆
τ τξk∥∞ + βk ∥T ⋆

τ τξ0∥∞ + ∥Ek∥∞ , (46)

≤ γ ∥Q⋆
τ − τξk∥∞ + βkRm + ∥Ek∥∞ , (47)

≤ γk+1 ∥Q⋆
τ∥∞ +Rm

k∑
i=0

γiβk−i +

k∑
i=0

γi ∥Ek−i∥∞ . (48)

if β > γ

k∑
i=0

γiβk−i = βk
k∑

i=0

(
γ

β

)i

, (49)

=
βk+1 − γk+1

β − γ
. (50)

if β < γ

k∑
i=0

γiβk−i =

k∑
i=0

γk−iβi, (51)

=
γk+1 − βk+1

γ − β
. (52)

if β = γ

k∑
i=0

γiβk−i = γk(k + 1). (53)

In all cases
k∑

i=0

γiβk−i ≤ max{γ, β}k(k + 1). (54)

A.4 PROOF OF LEMMA 4.3

Proof. As πk+1 maximizes the policy update Eq. 7, and from the non-negativity of the DKL and the
fact that DKL(πk;πk) = 0 we have

πkqk − τh(πk) ≤ πk+1qk − τh(πk+1)− ηDKL(πk+1;πk), (55)
≤ πk+1qk − τh(πk+1), (56)

⇔ πkQ
k
τ − τh(πk) ≤ πk+1Q

k
τ − τh(πk+1) + (πk+1 − πk)ϵk. (57)
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Qk+1
τ −Qk

τ = γP (πk+1Q
k+1
τ − τh(πk+1))− γP (πkQ

k
τ − τh(πk)), (58)

(i)

≥ γP (πk+1Q
k+1
τ − τh(πk+1))− γP (πk+1Q

k
τ − τh(πk+1) + (πk+1 − πk)ϵk),

(59)

= γPπk+1(Q
k+1
τ −Qk

τ ) + γP (πk − πk+1)ϵk, (60)

⇔ (I − γPπk+1)(Q
k+1
τ −Qk

τ ) ≥ γP (πk − πk+1)ϵk, (61)

⇔ Qk+1
τ −Qk

τ

(ii)

≥ γ(I − γPπk+1)
−1P (πk − πk+1)ϵk. (62)

where in (i) we have used the fact that P is a probability matrix with only positive entries, and
similarly in (ii) for the matrix (I − γPπk+1)

−1 =
∑∞

i=0(γPπk+1)
i.

A.5 PROOF OF THEOREM 4.4

Proof. The beginning of the proof is the same as in value iteration and we can show using the same
arguments that

πk+1qk − τh(πk+1) ≥
(

1

1− β
[πk+1τξk+1 − τh(πk+1)− β(πkτξk − τh(πk))]

)
. (63)

Using this inequality in qk+1 yields

qk+1 = Qk+1
τ + ϵk+1, (64)

= R+ γP (πk+1Q
k+1
τ − τh(πk+1)) + ϵk+1, (65)

(i)

≥ R+ γP (πk+1(qk − ϵk − ϵ∆k
)− τh(πk+1)) + ϵk+1, (66)

≥ R+ γP

(
1

1− β
[πk+1τξk+1 − τh(πk+1)− β(πkτξk − τh(πk))]

)
+ ϵk+1 − γPk+1(ϵk + ϵ∆k

),

(67)

=
1

1− β
(T k+1

τ τξk+1 − βT k
τ τξk) + ϵk+1 − γPk+1(ϵk + ϵ∆k

), (68)

=
1

1− β
(T ⋆

τ τξk+1 − βT ⋆
τ τξk) + ϵk+1 − γPk+1(ϵk + ϵ∆k

), (69)

where for (i) we used Lemma 4.3 and the definition of qk. Now using this inequality in the definition
of ξk+1 gives

τξk+1 = (1− β)

k∑
i=0

βk−iqi, (70)

≥ (1− β)βkq0 + (1− β)

k∑
i=1

βk−i

(
1

1− β
(T ⋆

τ τξi − βT ⋆
τ τξi−1) + ϵi − γPi(ϵi−1 + ϵ∆i−1

)

)
,

(71)

= T ⋆
τ τξk − βkT ⋆

τ ξ0 + (1− β)

k∑
i=0

βk−i(ϵi − ϵ′i) + (1− β)βkQ0
τ , (72)

with ϵ′0 = 0 and ∀i > 0 : ϵ′i = γPi(I + γP (I − γPi)
−1(πi−1 − πi))ϵi−1. Letting Ej :=

(1− β)
∑j

i=0 β
j−i(ϵi − ϵ′i), Rm := Rx + γτ log |A| be an upper bound to ∥T ⋆

τ ξ0∥∞ and R̄ = Rm

1−γ
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be an upper bound to
∥∥Q0

τ

∥∥
∞, we finally obtain

Q⋆
τ − τξk+1 ≤ Q⋆

τ − T ⋆
τ τξk + βkT ⋆

τ ξ0 − Ek + (1− β)βkQ0
τ , (73)

⇒ ∥Q⋆
τ − τξk+1∥∞ ≤ ∥Q⋆

τ − T ⋆
τ τξk∥∞ + βk ∥T ⋆

τ ξ0∥∞ + ∥Ek∥∞ + (1− β)βk
∥∥Q0

τ

∥∥
∞ , (74)

≤ γ ∥Q⋆
τ − τξk∥∞ + βkRm + (1− β)βkR̄+ ∥Ek∥∞ , (75)

≤ γk+1 ∥Q⋆
τ∥∞ + (Rm + (1− β)R̄)

k∑
i=0

γiβk−i +

k∑
i=0

γi ∥Ek−i∥∞ , (76)

= γk+1 ∥Q⋆
τ∥∞ +

2− γ − β

1− γ
Rm

k∑
i=0

γiβk−i +

k∑
i=0

γi ∥Ek−i∥∞ (77)

A.6 PROOF OF EQ. (12)

Proof. For k = 0,

ξ1 = β × 0 + αq0 +
αβM

1− βM
(q0 − 0), (78)

= α

(
1 +

βM

1− βM

)
q0, (79)

=
α

1− βM
q0. (80)

If it is true for k, then

ξk+1 = β
α

1− βM

M−1∑
i=0

βiqk−1−i + αqk +
αβM

1− βM
(qk − qk−M ), (81)

=
α

1− βM

M−2∑
i=0

βi+1qk−1−i +
αβM

1− βM
(qk−M − qk−M ) +

α

1− βM
qk, (82)

=
α

1− βM

M−1∑
i=0

βiqk−i (83)

A.7 PROOF OF THEOREM 5.1

As with policy iteration, we first need a policy improvement lemma

Lemma A.1 (Approximate policy improvement of finite memory EPMD). For any k ≥ 0, Qk+1
τ ≥

Qk
τ − γ(I − γPπk+1)

−1P [(πk+1 − πk)(ϵk +∆k)], with ∆k := βM

1−βM (qk − qk−M ).

Proof. We can see the policy πk+1 as the maximizer of Eq. (7) if we would replace qk with qk +
βM

1−βM (qk − qk−M ). From the non-negativity of the DKL and the fact that DKL(πk;πk) = 0 we
have

πkqk − τh(πk) ≤ πk+1qk − τh(πk+1) +
βM

1− βM
(πk+1 − πk)(qk − qk−M ), (84)

⇒ πkQ
k
τ − τh(πk) ≤ πk+1Q

k
τ − τh(πk+1) +

βM

1− βM
(πk+1 − πk)(qk − qk−M ) + (πk+1 − πk)ϵk.

(85)
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Let ∆k := βM

1−βM (qk − qk−M ). Writing down the (matrix) definition of Qk+1
τ and Qk

τ gives

Qk+1
τ −Qk

τ = γP (πk+1Q
k+1
τ − τh(πk+1))− γP (πkQ

k
τ − τh(πk)), (86)

(i)

≥ γP (πk+1Q
k+1
τ − τh(πk+1))− γP (πk+1Q

k
τ − τh(πk+1) + (πk+1 − πk)(ϵk +∆k)),

(87)

= γPπk+1(Q
k+1
τ −Qk

τ )− γP [(πk+1 − πk)(ϵk +∆k)], (88)

⇔ Qk+1
τ −Qk

τ

(ii)

≥ −γ(I − γPπk+1)
−1P [(πk+1 − πk)(ϵk +∆k)]. (89)

where in (i) we have used the fact that P is a probability matrix with only positive entries, and
similarly in (ii) for the matrix (I − γPπk+1)

−1 =
∑∞

i=0(γPπk+1)
i.

We are now ready to prove the main theorem

Proof. The beginning of the proof is similar to vanilla entropy regularized policy/value iteration

πk+1qk − τh(πk+1) = πk+1

(
1

1− β
(τξk+1 − βτξk)

)
− τh(πk+1)− πk+1∆k, (90)

= πk+1

(
1

1− β
[τξk+1 − τh(πk+1)− β(τξk − τh(πk+1))]

)
− πk+1∆k,

(91)
(i)

≥ 1

1− β
[πk+1τξk+1 − τh(πk+1)− β(πkτξk − τh(πk))]− πk+1∆k. (92)

Using this inequality in qk+1 yields

qk+1 = Qk+1
τ + ϵk+1, (93)

= R+ γP (πk+1Q
k+1
τ − τh(πk+1)) + ϵk+1, (94)

(i)

≥ R+ γP (πk+1(qk − ϵk − γµk+1P (πk+1 − πk)(ϵk +∆k))− τh(πk+1)) + ϵk+1, (95)
(96)

where for (i) we used Lemma 4.3 and the definition of qk. Using Eq. (92) on the following terms
gives

R+ γP (πk+1qk − τh(πk+1)) ≥ R+ γP

(
1

1− β
[πk+1τξk+1 − τh(πk+1)− β(πkτξk − τh(πk))]− πk+1∆k

)
,

(97)

=
1

1− β
(T k+1

τ τξk+1 − βT k
τ τξk)− γPπk+1∆k, (98)

=
1

1− β
(T ⋆

τ τξk+1 − βT ⋆
τ τξk)− γPπk+1∆k. (99)

Completing with the rest of the terms finally gives

qk+1 ≥ 1

1− β
(T ⋆

τ τξk+1 − βT ⋆
τ τξk)− γPπk+1(I + γµk+1P (πk+1 − πk))(ϵk +∆k) + ϵk+1.

(100)
(101)
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Let Ak+1 = γPπk+1(I+γµk+1P (πk+1−πk)) using this inequality in the definition of ξk+1 gives

τξk+1 =
1− β

1− βM

M−1∑
i=0

βiqk−i, (102)

≥ 1− β

1− βM

M−1∑
i=0

βi

(
1

1− β
(T ⋆

τ τξk−i − βT ⋆
τ τξk−i−1)−Ak−i(ϵk−i−1 +∆k−i−1) + ϵk−i

)
,

(103)

=
1

1− βM
T ⋆
τ τξk − βM

1− βM
T ⋆
τ ξk−M +

1− β

1− βM

M−1∑
i=0

βi(ϵk−i −Ak−i(ϵk−i−1 +∆k−i−1)).

(104)

Letting Ej :=
1−β

1−βM

∑M−1
i=0 βi(ϵk−i−Ak−iϵk−i−1), ∆k

q = 1−β
1−βM

∑M−1
i=0 βiAk−i∆k−i−1, Rm :=

Rx + γτ log |A| be an upper bound to ∥T ⋆
τ ξ0∥∞ and R̄ = Rm

1−γ be an upper bound to
∥∥Q0

τ

∥∥
∞, we

finally obtain

Q⋆
τ − τξk+1 ≤ Q⋆

τ − 1

1− βM
T ⋆
τ τξk +

βM

1− βM
T ⋆
τ ξk−M − Ek −∆k

q , (105)

⇒ ∥Q⋆
τ − τξk+1∥∞ ≤

∥Q⋆
τ − T ⋆

τ τξk∥∞ + βM ∥Q⋆
τ − T ⋆

τ τξk−M∥∞
1− βM

+
∥∥∆k

q

∥∥
∞ + ∥Ek∥∞ ,

(106)

≤ γ
∥Q⋆

τ − τξk∥∞ + βM ∥Q⋆
τ − τξk−M∥∞

1− βM
+
∥∥∆k

q

∥∥
∞ + ∥Ek∥∞ (107)

Let us now look into the term
∥∥∆k

q

∥∥
∞, and split it into policy evaluation error and distance to Q⋆

τ

∥∥∆k
q

∥∥
∞ =

∥∥∥∥∥ 1− β

1− βM

M−1∑
i=0

βiAk−i∆k−i−1

∥∥∥∥∥
∞

, (108)

=

∥∥∥∥∥ 1− β

1− βM

M−1∑
i=0

βiAk−i
βM

1− βM
(qk−i−1 − qk−i−1−M )

∥∥∥∥∥
∞

, (109)

=

∥∥∥∥∥βM (1− β)

(1− βM )2

M−1∑
i=0

βiAk−i(Qk−i−1 −Qk−i−1−M + ϵk−i−1 − ϵk−i−1−M )

∥∥∥∥∥
∞

,

(110)

≤

∥∥∥∥∥βM (1− β)

(1− βM )2

M−1∑
i=0

βiAk−i(ϵk−i−1 − ϵk−i−1−M )

∥∥∥∥∥
∞

+

∥∥∥∥∥βM (1− β)

(1− βM )2

M−1∑
i=0

βiAk−i(Qk−i−1 −Qk−i−1−M )

∥∥∥∥∥
∞

.

(111)

To bound the infinite norm of Ak, we note that (1−γ)µk is a probability matrix (the state distribution
induced by policy πk). Using the sub-aditivity of norms and the fact that the multiplication of
probability matrices is a probability matrix with infinite norm equal to 1, we have

∥Ak∥∞ =

∥∥∥∥γPπk+1

(
I +

γ

1− γ
((1− γ)µk+1)P (πk+1 − πk)

)∥∥∥∥
∞

, (112)

≤ γ +
2γ2

1− γ
. (113)
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Looking now at the rightmost inner sum in Eq. (111) gives∥∥∥∥∥
M−1∑
i=0

βiAk−i(Qk−i−1 −Qk−i−1−M )

∥∥∥∥∥
∞

≤
M−1∑
i=0

βi ∥Ak−i(Qk−i−1 −Qk−i−1−M )∥∞, (114)

≤
(
γ +

2γ2

1− γ

)M−1∑
i=0

βi ∥Qk−i−1 −Qk−i−1−M∥∞ ,

(115)

≤
(
γ +

2γ2

1− γ

)M−1∑
i=0

βi (∥Q⋆
τ −Qk−i−1∥∞ + ∥Q⋆

τ −Qk−i−1−M∥∞) ,

(116)

(i)

≤ 2

1− γ

(
γ +

2γ2

1− γ

)M−1∑
i=0

βi (∥Q⋆
τ − τξk−i−1∥∞ + ∥Q⋆

τ − τξk−i−1−M∥∞) ,

(117)

where (i) is due to Lemma 4.1. Let zk = ∥Q⋆
τ − τξk∥∞ and Tk grouping all the error terms

Tk = ∥Ek∥∞ +
βM (1− β)

(1− βM )2

∥∥∥∥∥
M−1∑
i=0

βiAk−i(ϵk−i−1 − ϵk−i−1−M )

∥∥∥∥∥
∞

. (118)

Putting everything together we have

zk+1 ≤ γ
zk + βMzk−M

1− βM
+

βM (1− β)

(1− βM )2
2(γ + γ2)

(1− γ)2

M−1∑
i=0

βi (zk−i−1 + zk−i−1−M ) + Tk. (119)

Let us first study the sequence {zk} without policy evaluation errors and try to upper bound it with
a simpler sequence. We define the sequence {xk} for all integers k by

xk = ∥Q⋆
τ∥∞ , for all k ≤ 0, (120)

and for k ≥ 0 we let

xk+1 = γ
xk + βMxk−M

1− βM
+

βM (1− β)

(1− βM )2
2(γ + γ2)

(1− γ)2

M−1∑
i=0

βi (xk−i−1 + xk−i−1−M ) . (121)

We first find a condition for which the sequence is strictly decreasing starting from k ≥ 0. For k = 0
we have that

x1 =

(
γ
1 + βM

1− βM
+

βM

1− βM

4(γ + γ2)

(1− γ)2

)
x0. (122)

This will be strictly decreasing if

γ
1 + βM

1− βM
+

βM

1− βM

4(γ + γ2)

(1− γ)2
< 1, (123)

⇔ γ(1 + βM ) + βM 4(γ + γ2)

(1− γ)2
< (1− βM ), (124)

⇔
(
1 + γ +

4(γ + γ2)

(1− γ)2

)
βM < 1− γ, (125)

⇔ log

(
1 + γ +

4(γ + γ2)

(1− γ)2

)
+M log β < log(1− γ), (126)

⇔ M > log
(1− γ)3

(1 + γ)(1− γ)2 + 4(γ + γ2)
/ log β. (127)
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As it is true for k = 0 and the sequence is constant for k < 0, assume now that the sequence is
strictly decreasing from there on, up to some positive index k. Then since all the weights of past
terms are positive, we can replace all terms by their predecessors and we immediately have that

xk+1 < γ
xk−1 + βMxk−M−1

1− βM
+

βM (1− β)

(1− βM )2
2(γ + γ2)

(1− γ)2

M−1∑
i=0

βi (xk−i−2 + xk−i−2−M ) , (128)

= xk. (129)

Thus the sequence {xk} is non-increasing for all k if M satisfies the inequality in (127). For such
values of M we will now find an upper bounding sequence that has a simpler geometric form.
Letting c = βM

1−βM

(
4(γ+γ2)
(1−γ)2 + γ

)
, and since the sequence is non-decreasing, we have for all k ≥ 0

that

xk+1 ≤ γ

1− βM
xk + cxk−2M . (130)

Let us now try to find a rate d ∈ (0, 1) such that for all k we have

xk ≤ dkx0. (131)

For all k ≤ 0, the above inequality holds for any d ∈ (0, 1). Now, if the upper bounding is true up
to some index k then using Eq. (130) we have

xk+1 ≤
(

γ

1− βM
dk + cdk−2M

)
x0, (132)

= dk
(

γ

1− βM
+ cd−2M

)
x0. (133)

The smallest acceptable d would be one such that
γ

1− βM
+ cd−2M = d, (134)

⇔ d2M+1 − γ

1− βM
d2M − c = 0. (135)

Let f(d) = d2M+1 − γ
1−βM d2M − c, we have that f( γ

1−βM ) = −c < 0 and that f(1) = 1 −
γ

1−βM − c > 0 from the above condition on M . Since f is continuous and increasing between
these two values it accepts a unique root d0 ∈ ( γ

1−βM , 1) which would satisfy the sought geometric
sequence upper bound for all k.

We now turn to the part of the sequence of zk that depends on the error terms Tk. Define for k ≤ 0

yk = 0, (136)

and for k ≥ 0

yk+1 = γ
yk + βMyk−M

1− βM
+

βM (1− β)

(1− βM )2
2(γ + γ2)

(1− γ)2

M−1∑
i=0

βi (yk−i−1 + yk−i−1−M ) + Tk. (137)

Let T̄ = max
0≤i≤k

Ti, and γM = γ
1−βM . Then we have that

yk ≤ T̄

1− (γM + c)
. (138)

Indeed, it is true for k ≤ 0, and if it is true up to k then

yk+1 ≤ (γM + c)
T̄

1− (γM + c)
+ Tk, (139)

≤ (γM + c)
T̄

1− (γM + c)
+ T̄ , (140)

=
T̄

1− (γM + c)
. (141)
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Replacing in Eq. (137), we have

yk+1 ≤ γMyk + c
T̄

1− (γM + c)
+ Tk, (142)

≤ γk+1
M y0 +

k∑
i=0

γi
M

(
Tk−i + c

T̄

1− γM − c

)
, (143)

=

k∑
i=0

γi
M

(
Tk−i + c

T̄

1− γM − c

)
. (144)

Finally, because the upper bound zk+1 in Eq. (119) has linear dependencies on previous zi terms
(i ≤ k), we immediately have that zk ≤ xk + yk. Indeed, it is true for k = 0, since z0 = ∥Q⋆

τ∥∞ =
x0 + y0. And if we assume that it is true for k, using Eq. (119), we immediatly have that it is true
for k + 1. Thus

zk+1 ≤ xk+1 + yk+1, (145)

≤ dk+1
0 ∥Q⋆

τ∥∞ +

k∑
i=0

γi
M

(
Tk−i + c

T̄

1− γM − c

)
. (146)
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Figure 2: Evaluation of StaQ for different memory sizes M , on Mujoco and MinAtar environments.
Results showing the mean and one standard deviation averaged over 5 seeds.

M=1 M=50 M=100 M=300 M=500 Exact PMD NatGrad TRPO

Hopper-v4 3298 3085 3259 3253 3285 3216 3098 2678
Walker2d-v4 1712 3501 3464 3381 3349 3669 882 3197
HalfCheetah-v4 2925 3099 3042 3121 3208 3059 1422 1729
Ant-v4 3209 2897 2858 3027 2878 2817 1063 2454
Humanoid-v4 4673 3057 4397 5308 4794 4978 239 700
MinAtar/Asterix-v1 25 39 44 48 46 50 40 24
MinAtar/Breakout-v1 42 36 36 73 39 37 5 19
MinAtar/Freeway-v1 57 60 62 62 61 62 60 46
MinAtar/Seaquest-v1 53 96 88 119 124 110 6 6
MinAtar/SpaceInvaders-v1 131 187 220 248 228 240 82 92

Table 2: Final performance for results in Fig. 2.

B EXPERIMENTAL RESULTS

B.1 THE IMPACT OF THE MEMORY-SIZE M

Figure 2 shows the performance of StaQ for different choices of Mon MuJoCo tasks. Setting M = 1
corresponds to no KL-regularization as discussed in App. C and can be seen as an adaptation of SAC
to discrete action spaces. M = 1 is unstable on both Hopper and Walker. These results are the mean
and standard deviation across 5 seeds. To provide higher statistical confidence of our results, for
Humanoid and Acrobot, we show the mean and 95% confidence intervals in Table 3 and 4, evaluated
over 30 seeds. Adding KL-regularization and averaging over at least 50 Q-functions greatly helps
to stabilize performance except on the Humanoid task and some MinAtar tasks, where M = 50 was
still unstable compared to exact EPMD. In general we note diminishing returns in increasing M ,
with M = 100 matching the performance of exact EPMD in all but one MinAtar envionrment and
M = 300 being virtually indistinguishable from exact EPMD. Compared to natural policy gradient
and TRPO, performance is generally improved across all tasks, making StaQ a potentially better
alternative to natural policy gradient, at least on environments where Q-function computations can
be efficiently batched.
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M=1 M=50 M=100 M=300 M=500 Exact EPMD
Humanoid-v4 4272 ± 282 4600 ± 367 4795 ± 215 5143 ± 90 5102 ± 132 5166 ± 108

Table 3: Performance on Humanoid for various values of M . Mean and 95% confidence interval,
across 30 seeds.

M=1 M=5 M=50 M=100 M=300 M=500
Acrobot-v4 -62.69 ± 0.48 -62.69 ± 0.29 -62.44 ± 0.13 -62.49 ± 0.12 -62.54 ± 0.17 -62.34 ± 0.08

Table 4: Performance on Acrobot for various values of M . Mean and 95% confidence interval,
across 30 seeds.

B.2 COMPARISON WITH DEEP RL BASELINES

We summarize all performance comparisons with the deep RL baselines in Fig. 3 and Table 5. We
provide a discussion of the MountainCar environment and some of the challenges of exploration in
an entropy-regularized setting in App. B.4.
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Figure 3: Policy performance of StaQ (M = 300) vs deep RL baselines across all environments.
Results showing the mean and standard deviation across 10 seeds.
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StaQ (M=300) M-DQN DQN PPO TRPO

CartPole-v1 500 457 411 500 500
Acrobot-v1 -62 -63 -63 -63 -64
LunarLander-v2 285 88 -317 227 222
MountainCar-v0 -200 -100 -110 -141 -118
Hopper-v4 3196 2600 2279 2411 2672
Walker2d-v4 3550 1364 1424 2799 3010
HalfCheetah-v4 3061 2098 2294 2001 1731
Ant-v4 2910 1776 1871 2277 2452
Humanoid-v4 5273 2580 2887 588 700
MinAtar/Asterix-v1 46 31 19 9 23
MinAtar/Breakout-v1 48 55 34 10 15
MinAtar/Freeway-v1 62 59 54 60 47
MinAtar/Seaquest-v1 114 51 14 5 7
MinAtar/SpaceInvaders-v1 242 116 95 92 94

Table 5: Final performance on all environments.
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B.3 STABILITY PLOTS (VARIATION WITHIN INDIVIDUAL RUNS)

In this section we provide plots that demonstrate the intra seed oscilliations. In Fig. 4-5 we plot the
returns of the first three seeds of the full results (shown in Fig. 3). At each timestep, the returns for
each individual seed are normalised by subtracting and then dividing by the mean across all seeds.
In addition to the first three seeds, the shaded regions indicate one-sided tolerance intervals such
that at least 95% of the population measurements are bounded by the upper or lower limit, with
confidence level 95% (Krishnamoorthy & Mathew, 2009).

We can see from Fig. 4-5 that Approximate Policy Iteration (API) algorithms (StaQ with M=300,
TRPO, PPO) generally exhibit less variation within runs than Approximate Value Iteration (AVI)
ones (DQN, M-DQN). In simple environments, such as CartPole, all three API algorithms have
stable performance, but on higher dimensional tasks, only StaQ retains a similar level of stability
while maintaining good performance. This is especially striking on Hopper, where runs show com-
paratively little variation within iterations while having the highest average performance, as shown
in Fig. 3. We attribute this improved stability in the performance of the evaluation policy by the
averaging over a very large number of Q-functions (M = 300) of StaQ, which reduces the infamous
performance oscillation of deep RL algorithms in many cases.
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Figure 4: Stability plots for MuJoCo environments, plotting normalized performance of the first
three individual runs for each algorithm. See text for more details. Figures continue on the next
page.
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Figure 5: Stability plots for MinAtar environments, plotting normalized performance of the first
three individual runs for each algorithm. See text for more details.
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Figure 6: Left: Frequency of non-zero rewards of a uniform policy with sticky actions for different
choice of Poisson rate λ on MountainCar over 5M timesteps. Middle: Entropy of learned policies
under different behavior policies. Entropy of the uniform (Max entropy) policy plotted for reference.
Right: Policy returns for StaQ with different behavior policies and deep RL baselines on Mountain-
Car. Adding sticky actions to StaQ’s behavior policy fixes its performance on this task.

B.4 ENTROPY REGULARIZATION DOES NOT SOLVE EXPLORATION

StaQ and exact EPMD achieve strong performance on all 14 environments except on MountainCar
where they fail to learn. In this section, we perform additional experiments to understand the failure
of StaQ on MountainCar. In short, it appears that the initial uniform policy—which has maximum
entropy—acts as a strong (local) attractor for this task: StaQ starts close to the uniform policy,
and exploration with this policy does not generate a reward signal in MountainCar. As StaQ does
not observe a reward signal in early training, it quickly converges to the uniform policy which has
maximum entropy, but also never generates a reward signal. Indeed, if we unroll a pure uniform
policy on MountainCar for 5M steps, we will never observe a reward.

However, StaQ is not limited to a specific choice of behavior policy, and choosing a policy that
introduces more correlation between adjacent actions, like a simple “sticky” policy allows StaQ to
solve MountainCar. This policy samples an action from πk and applies it for a few consecutive steps,
where a number of steps is drawn randomly from Poisson(λ) distribution (in our experiments with
StaQ we fix the rate of Poisson distribution at λ = 10). In Fig. 6, we can see that StaQ with the same
hyperparameters for classical environments (see Table 6) and a ”sticky” behavior policy manages to
find a good policy for MountainCar matching the best baseline. The final policy demonstrates much
lower entropy compared to the default policy that fails at learning for this environment. We focused
on this paper on the benefits of entropy regularization in averaging evaluation error. While it is be-
lieved that entropy might help with exploration, these observations are a good reminder that entropy
regularization remains a heuristic exploration strategy that does not replace a theoretically grounded
strategy, which is beyond the scope of this paper that only focuses on using entropy regularization
to reduce the error floor of approximate policy iteration when using function approximators.

C COMPARISON WITH SOFT ACTOR-CRITIC

In this appendix, we explain the relation between Soft Actor-Critic (SAC, Haarnoja et al. (2018)) and
both M-DQN (Vieillard et al., 2020b) and StaQ with M = 1. SAC is not directly used as a baseline
because SAC is not compatible with discrete action spaces. However, M-DQN can be seen as an
adaptation of SAC to discrete action spaces with an additional KL-divergence regularizer. Please
see the discussion in Vieillard et al. (2020b) on page 3, between Eq. (1) and (2). Vieillard et al.
(2020b) also describe Soft-DQN in Eq. (1) as a straightforward discrete-action version of SAC, that
can be obtained from M-DQN by simply setting the KL-divergence regularization weight to zero.
Soft-DQN was not included as a baseline because the results of Vieillard et al. (2020b) suggest that
M-DQN generally outperforms Soft-DQN.

We also note that by setting M = 1 in StaQ, we remove the KL-divergence regularization and only
keep the entropy bonus. This baseline can also be seen as an adaptation of SAC to discrete action
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spaces: indeed, if we set M = 1 in Eq. (2) we recover the policy logits

ξk+1 =
α

1− βM

M−1∑
i=0

βiQk−i
τ

=
α

1− β
Qk

τ

=
Qk

τ

τ
,

where the last line is due to ατ = 1 − β. This results in a policy of the form πk+1 ∝ exp
(

Qk
τ

τ

)
.

Meanwhile, for SAC, the actor network is obtained by minimizing the following problem (Eq. 14 in
Haarnoja et al. (2018))

πk+1 = argminKL

π

∣∣∣∣∣∣
exp

(
Qk

τ

τ

)
Znorm.

 .

However, in the discrete action setting, we can sample directly from exp
(

Qk
τ

τ

)
—which is the min-

imizer of the above KL-divergence term—and we do not need an explicit actor network. As such
StaQ with M = 1 could be seen as an adaptation of SAC to discrete action spaces.

D HYPERPARAMETERS

Here, we provide the full list of hyperparameters used in our experiments2. StaQ’s hyperparameters
are listed in Table 6, while the hyperparameters for our baselines are provided in Tables 7-9. For
TRPO and PPO, we use the implementation provided in stable-baselines4 (Raffin et al.,
2021), while we used our in-house PyTorch implementation of (M)-DQN3.

To account for the different scales of the reward between environments, we apply a different reward
scaling to the Classic/MuJoCo environments and MinAtar. Note that this is equivalent to inverse-
scaling the entropy weight τ and KL weight η, ensuring that ξk is of the same order of magnitude
for all environments. To account for the varying action dimension |A| of the environments, we set
the scaled entropy coefficient τ̄ as a hyperparameter, defined by τ̄ = τ log |A|, rather than directly
setting τ . Furthermore, the entropy weight is linearly annealed from its minimum and maximum
values.

Policy evaluation. In all our experiments, we use an ensemble of two neural networks, similarly to
e.g. SAC (Haarnoja et al., 2018), to evaluate a Q-function and therefore two SNNs for ξ-logits. In
particular, we optimize the current Q-function weights θ to minimize the loss L(θ),

L(θ) = E(s,a)∼D

[
1

2

(
Qθ (s, a)− Q̂ (s, a)

)2]
(147)

Q̂(s, a) := R(s, a) + γEs′∼D,a∼π(s′)

[
aggi∈{1,2} Qθ̂i

(s′, a′)− τh(π(s′))
]

(148)

where agg computes either the min or mean over the target Q-functions with weights θ̂1, θ̂2. We
find that using the min of the two Q-functions to compute the target values often results in more
stable training. min gives a more conservative target that is robust to overestimation bias in the Q-
functions, and this allows us to reduce the KL weight. However, such a strategy may struggle when
reward is not dense enough, e.g. some MinAtar and some classic control environments. Therefore
we instead use the mean in Classic/MinAtar environments. Future work could use a more sophisti-
cated approach that is both robust to overestimation bias and yet sensitive to weak reward signals.

2Code is provided in the supplemental zip file, and will be released to an open-source repository upon
publication.

3We will add the link to the in-house library upon publication.
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Hyperparameter Classic MuJoCo MinAtar

Discount (γ) 0.99 0.99 0.99
Memory size (M ) 300 300 300

Policy update interval 5000 5000 5000
Ensembling mode mean min mean

Target type hard hard hard
Target update interval 200 200 200

Epsilon 0.05 0.05 0.05
Reward scale 10 10∗ 100
KL weight (η) 20 10 20

Initial scaled ent. weight 2.0 2.0 2.0
Final scaled ent. weight 0.4 0.4 0.4
Ent. weight decay steps 500K 1M 1M

Architecture 256× 2 256× 2 Conv(16, 3, 3) + 128 MLP
Activation function ReLU ReLU ReLU

Learning rate 0.0001 0.0001 0.0001
Optimizer Adam Adam Adam

Replay capacity 50K 50K 50K
Batch size 256 256 256

Table 6: StaQ hyperparameters, with parameters which vary across environment types in bold.
∗Hopper-V4 uses a reward scale of 1.

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Horizon 2048 2048 1024

Num. epochs 10 10 3
Learning starts 5000 20000 20000

GAE parameter 0.95 0.95 0.95
VF coefficient 0.5 0.5 1

Entropy coefficient 0 0 0.01
Clipping parameter 0.2 0.2 0.1× α

Optimizer Adam Adam Adam
Architecture 64× 2 64× 2 ∗ Conv(16, 3, 3) + 128 MLP

Activation function Tanh Tanh Tanh
Learning rate 3× 10−4 3× 10−4 2.5× 10−4 × α

Batch size 64 64 256

Table 7: PPO hyperparameters, based on (Schulman et al., 2017). In the MinAtar environments α is
linearly annealed from 1 to 0 over the course of learning. ∗Humanoid-v4 uses a hidden layer size of
256.
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Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Horizon 2048 2048 2048

Learning starts 5000 20000 20000

GAE parameter 0.95 0.95 0.95
Stepsize 0.01 0.01 0.01

Optimizer Adam Adam Adam
Architecture 64× 2 64× 2 ∗ Conv(16, 3, 3) + 128 MLP

Activation function Tanh Tanh Tanh
Learning rate 3× 10−4 3× 10−4 2.5× 10−4

Batch size 64 64 256

Table 8: TRPO hyperparameters, based on (Schulman et al., 2015). ∗Humanoid-v4 uses a hidden
layer size of 256.

Hyperparameter Classic MuJoCo MinAtar

Discount factor (γ) 0.99 0.99 0.99
Target update interval 100 8000 8000

Epsilon 0.1 0.1 0.1
Decay steps 20K 20K 20K

M-DQN temperature 0.03 0.03 0.03
M-DQN scaling term 1.0 0.9 0.9

M-DQN clipping value -1 -1 -1

Architecture 512× 2 128× 2 Conv(16, 3, 3) + 128 MLP
Activation function ReLU ReLU ReLU

Learning rate 1× 10−3 5× 10−5 2.5× 10−4

Optimizer Adam Adam Adam
Replay capacity 50K 1M 1M

Batch size 128 32 32

Table 9: MDQN and DQN hyperparameters, based on (Vieillard et al., 2020b; Ceron & Castro,
2021)
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E PSEUDOCODE OF STAQ

We provide in this section the pseudocode of StaQ in Alg. 1. As an approximate policy iteration
algorithm, StaQ comprises three main steps: i) data collection, ii) policy evaluation iii) policy im-
provement. Data collection (Line 4-5) consist in interacting with the environment to collect transi-
tions of type (state, action, reward, next state) that are stored in a replay buffer. A policy evaluation
algorithm (Eq. 147) is then called to evaluate the current Q-function Qk

τ using the replay buffer.
Finally, the policy update is optimization-free and simply consists in stacking the Q-function in the
SNN policy as discussed in Sec. 5.1. After K iterations, the last policy is returned.

Algorithm 1 StaQ (Finite-memory entropy regularized policy mirror descent)

1: Input: An MDP M, a memory-size M , Number of samples per iteration N , Replay buffer size
D, Initial behavior policy πb

0, entropy weight τ , DKL weight η, ϵ-softmax exploration parameter

2: Output: Policy πK ∝ exp(ξK)
3: for k = 0 to K − 1 do
4: Interact with M using the behavior policy πb

k for N times steps
5: Update replay buffer Dk to contain the last D transitions
6: Learn Qk

τ from Dk using a policy evaluation algorithm (Eq. 147)
7: Obtain logits ξk+1 by stacking the last M Q-functions (see Sec. 5.1) following the finite-

memory EPMD update of Eq. 12.
8: Set πk+1 ∝ exp(ξk+1) and πb

k+1 to an ϵ-softmax policy over πk+1

9: end for
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