

000 001 STAQ: A FINITE MEMORY APPROACH TO DISCRETE 002 ACTION POLICY MIRROR DESCENT 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 In Reinforcement Learning (RL), regularization with a Kullback-Leibler diver-
012 gence that penalizes large deviations between successive policies has emerged
013 as a popular tool both in theory and practice. This family of algorithms, often
014 referred to as Policy Mirror Descent (PMD), has the property of averaging out
015 policy evaluation errors which are bound to occur when using function approxi-
016 mators. However, exact PMD has remained a mostly theoretical framework, as its
017 closed-form solution involves the sum of all past Q-functions which is generally
018 intractable. A common practical approximation of PMD is to follow the natural
019 policy gradient, but this potentially introduces errors in the policy update. In this
020 paper, we propose and analyze PMD-like algorithms for discrete action spaces
021 that only keep the last M Q-functions in memory. We show theoretically that for
022 a finite and large enough M , an RL algorithm can be derived that introduces no
023 errors from the policy update, yet keeps the desirable PMD property of averag-
024 ing out policy evaluation errors. Using an efficient GPU implementation, we then
025 show empirically on several medium-scale RL benchmarks such as MuJoCo and
026 MinAtar that increasing M improves performance up to a certain threshold after
027 which the performance becomes indistinguishable with exact PMD, reinforcing
028 the theoretical findings that using an infinite sum might be unnecessary and that
029 keeping in memory the last M Q-functions is a practical alternative to the natural
030 policy gradient instantiation of PMD.

031 1 INTRODUCTION 032

033 Deep RL has seen rapid development in the past decade, achieving super-human results on several
034 decision making tasks (Mnih et al., 2015; Silver et al., 2016; Wurman et al., 2022). However, the
035 use of neural networks as function approximators exacerbates many challenges of RL, such as the
036 brittleness to hyperparameters (Henderson, 2018) and the poor alignment between empirical behav-
037 ior often and theoretical understandings (Ilyas et al., 2020; Kumar et al., 2020; van Hasselt et al.,
038 2018). To address these issues, many deep RL algorithms consider adding regularization terms, one
039 of which being to penalize the Kullback-Leibler divergence (labeled D_{KL} in the following) between
040 successive policies (Schulman et al., 2015; Wu et al., 2017; Wang et al., 2017; Vieillard et al.,
041 2020b). This family of algorithms is often called Policy Mirror Descent (PMD, Abbasi-Yadkori
042 et al. (2019); Lazic et al. (2021); Zhan et al. (2023)) for its connection—made more explicit in
043 Sec. 4—to the first-order convex optimization method Mirror Descent (Nemirovsky & Yudin, 1983;
044 Beck & Teboulle, 2003). One known property of PMD algorithms, at least in the context of value
045 iteration, is that it averages out policy evaluation errors (Vieillard et al., 2020a). This property can
046 be intuited from the nature of the policy π_k at iteration k , which is a Boltzmann distribution and its
047 (unnormalized) log-probabilities are a weighted average of past Q-function estimates $\{q_i\}_{i=0}^{k-1}$

$$048 \quad \pi_k \propto \exp \left(\alpha \sum_{i=0}^{k-1} \beta^i q_{k-i} \right), \quad (1)$$

049 for temperature $\alpha > 0$ and weight $\beta \in (0, 1]$. In contrast, unregularized RL would pick actions ac-
050 cording to $\arg \max_a q_{k-1}(\cdot, a)$, which would be very sensitive to the unavoidable policy evalua-
051 tion errors introduced by the use of function approximators, that can be in the context of deep RL very
052 large (Ilyas et al., 2020).

054 While averaging Q-function estimates might cancel out their errors, implementing Eq. 1 exactly
 055 might quickly become intractable due to the infinite nature of the sum. This is especially true when a
 056 non-linear function approximator is used for $\{q_i\}_{i=0}^{k-1}$, precluding the existence of a compact closed-
 057 form expression for the policy. As such, prior work considered several type of approximations to
 058 PMD, such as following the natural gradient (Kakade, 2001; Peters & Schaal, 2006; Schulman et al.,
 059 2015) or performing a few gradient steps over the regularized policy update loss (Schulman et al.,
 060 2017; Tomar et al., 2022). Instead, in this paper we consider a different direction and perform a
 061 rigorous study, both theoretically and empirically, of an algorithm—that we call StaQ—that is a
 062 weighted average of at most the last $M < \infty$ Q-function estimates, i.e. where the policy is

$$\pi_k \propto \exp \left(\frac{\alpha}{1 - \beta^M} \sum_{i=0}^{M-1} \beta^i q_{k-i} \right). \quad (2)$$

063 From a theoretical point of view, we show that for M large enough, such a truncation does not
 064 introduce a policy update error, i.e. that in the absence of policy evaluation errors, StaQ will converge
 065 exactly to the optimal policy. Moreover, StaQ has a similar averaging of error property as PMD, up
 066 to some extra terms that decay exponentially fast w.r.t. M ; suggesting that as we increase M , we
 067 can quickly recover the behavior of exact PMD. From a practical point of view, the study of a such
 068 an algorithm is timely in the age of batched GPU computations: indeed we show that for medium-
 069 sized problems such as the continuous state MuJoCo (Todorov et al., 2012) tasks or the image-based
 070 MinAtar (Young & Tian, 2019) tasks, increasing M has little to no impact on the run-time, making
 071 Eq. 2 a practical alternative policy update to natural policy gradient. This is especially true since the
 072 policy update in the discrete action case, to which the scope of this paper is limited to, is optimization
 073 free. To summarize, the contributions in this paper are as follow:

- 077 1. We extend the PMD analysis of (Vieillard et al., 2020a) in two ways: i) we show that the
 078 averaging effect can be obtained by introducing a D_{KL} penalization only during policy
 079 update—instead of during policy evaluation and update, and ii) we extend the analysis to
 080 the policy iteration setting, which was analyzed by (Cen et al., 2022; Zhan et al., 2023)
 081 without showing the averaging effect of the D_{KL} regularization.
- 082 2. We extend the above analysis to the case of a finite M , showing that for M large enough,
 083 the policy update is error free, and that the averaging of policy evaluation errors is similar
 084 to that of exact PMD up to some extra terms that decay exponentially fast w.r.t. M .
- 085 3. We perform an efficient batched implementation of the above algorithm and show that
 086 increasing M has beneficial effects on performance, with diminishing returns, to the point
 087 that StaQ with a high enough M can become indistinguishable from exact PMD.

089 2 RELATED WORK

091 **Regularization in RL.** Regularization has seen widespread usage in RL. It was used with (natural)
 092 policy gradient (Kakade, 2001; Schulman et al., 2015; Yuan et al., 2022), policy search (Deisenroth
 093 et al., 2013), policy iteration (Abbasi-Yadkori et al., 2019; Zhan et al., 2023) and value iteration
 094 methods (Fox et al., 2016; Vieillard et al., 2020b). Common choices of regularizers include mini-
 095 mizing the D_{KL} between the current and previous policy (Azar et al., 2012; Schulman et al., 2015)
 096 or encouraging high Shannon entropy (Fox et al., 2016; Haarnoja et al., 2018), but other regularizers
 097 exist (Lee et al., 2019; Alfano et al., 2023). We refer the reader to Neu et al. (2017); Geist et al.
 098 (2019) for a broader categorization of entropy regularizers and their relation to existing deep RL
 099 methods. In this paper, we use both a D_{KL} penalization w.r.t. the previous policy and a Shannon en-
 100 tropy bonus in a policy iteration context. In Vieillard et al. (2020b), both types of regularizers were
 101 used but in a value iteration context. Abbasi-Yadkori et al. (2019); Lazic et al. (2021) are policy
 102 iteration methods but only use D_{KL} penalization.

103 **Policy Mirror Descent.** Prior works on PMD focus mostly on performing a theoretical analysis of
 104 convergence speeds or sample complexity for different choices of regularizers (Li et al., 2022; John-
 105 son et al., 2023; Alfano et al., 2023; Zhan et al., 2023; Lan, 2022; Protopapas & Barakat, 2024). As
 106 PMD provides a general framework for many regularized RL algorithms, PMD theoretical results
 107 can be naturally extended to many policy gradient algorithms like natural policy gradient (Khodada-
 108 dian et al., 2021) and TRPO (Schulman et al., 2015) as shown in Neu et al. (2017); Geist et al.

(2019). However, the deep RL algorithms from the PMD family generally perform inexact policy updates, adding a source of error from the theoretical perspective. For example, TRPO and the more recent MDPO (Tomar et al., 2022) rely on approximate policy updates using policy gradients. It was shown in Zhan et al. (2023), that an inexact policy update will add an additional error floor independent of the policy evaluation error. By proposing a finite-memory policy update, we provide new convergence results that offer a new deep RL algorithm policy update step that does not introduce any additional policy update error, in contrast to prior works.

Ensemble methods and growing neural architectures in RL. Saving past Q-functions has previously been investigated in the context of policy evaluation. In Tosatto et al. (2017), a first Q-function is learned, then frozen and a new network is added, learning the residual error. Shi et al. (2019) uses past Q-functions to apply Anderson acceleration for a value iteration type of algorithm. Anschel et al. (2017) extend DQN by saving the past 10 Q-functions, and using them to compute lower variance target values. Instead of past Q-functions, Chen et al. (2021); Lee et al. (2021); Agarwal et al. (2020); Lan et al. (2020) use an ensemble of independent Q -network functions to stabilize Q -function learning in DQN type of algorithms. The aforementioned works are orthogonal to ours, as they are concerned with learning one Q , which can all be integrated into StaQ. Conversely, both Girgin & Preux (2008) and Della Vecchia et al. (2022) use a special neural architecture called the cascade-correlation network (Fahlman & Lebiere, 1989) to grow neural policies. The former work studies such policies in combination with LSPI (Lagoudakis & Parr, 2003), without entropy regularization. The latter work is closer to ours, using a D_{KL} -regularizer but without a deletion mechanism. As such the policy grows indefinitely, limiting the scaling of the method. Finally, Abbasi-Yadkori et al. (2019) save the past 10 Q-functions to compute the policy in Eq. 1 for the specific case of $\beta = 1$, but do not study the impact of deleting older Q-functions as we do in this paper. Growing neural architectures are more common in the neuroevolution community (Stanley & Miikkulainen, 2002), and have been used for RL, but are beyond the scope of this paper.

Parallels with Continual Learning. Continual Learning (CL) moves from the usual i.i.d assumption of supervised learning towards a more general assumption that data distributions change through time (Parisi et al., 2019; Lesort et al., 2020; De Lange et al., 2021; Wang et al., 2024). This problem is closely related to that of incrementally updating the policy π_k , due to the changing data distributions that each Q-function is trained on, and our approach of using a growing neural architecture to implement a D_{KL} -regularized policy update can be seen as a form of parameter isolation method in the CL literature, which offer some of the best stability-performance trade-offs (see Sec. 6 in De Lange et al. (2021)). Parameter isolation methods were explored in the context of continual RL (Rusu et al., 2016), yet remain understudied in a standard *single-task* RL setting.

3 PRELIMINARIES

Let a Markov Decision Problem (MDP) be defined by the tuple (S, A, R, P, γ) , such that S and A are finite state and action spaces, R is a bounded reward function $R : S \times A \mapsto [-R_x, R_x]$ for some positive constant R_x , P defines the (Markovian) transition probabilities of the decision process and γ is a discount factor. The algorithms presented in this paper can be extended to more general state spaces. However, we limit ourselves to studying finite action spaces, to simplify the sampling from the Boltzmann distribution for the policy (Eq. 2), which would require deeper algorithmic changes for continuous actions spaces.

Let $\Delta(A)$ be the space of probability distributions over A , and h be the negative entropy given by $h : \Delta(A) \mapsto \mathbb{R}$, $h(p) = p \cdot \log p$, where \cdot is the dot product and the log is applied element-wise to the vector p . Let $\pi : S \mapsto \Delta(A)$ be a stationary stochastic policy mapping states to distributions over actions. We denote the entropy regularized V-function for policy π and regularization weight $\tau > 0$ as $V_\tau^\pi : S \mapsto \mathbb{R}$, which is defined by

$$V_\tau^\pi(s) = \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t \{R(s_t, a_t) - \tau h(\pi(s_t))\} \middle| s_0 = s \right]. \quad (3)$$

In turn, the entropy regularized Q-function is given by $Q_\tau^\pi(s, a) = R(s, a) + \gamma \mathbb{E}_{s'} [V_\tau^\pi(s')]$. The V-function can be written as the expectation of the Q-function plus the current state entropy, i.e. $V_\tau^\pi(s) = \mathbb{E}_a [Q_\tau^\pi(s, a)] - \tau h(\pi(s))$ which leads to the Bellman equation

$$Q_\tau^\pi(s, a) = R(s, a) + \gamma \mathbb{E}_{s', a'} [Q_\tau^\pi(s', a') - \tau h(\pi(s'))]. \quad (4)$$

162 In the following, we will write policies of the form $\pi(s) \propto \exp(Q(s, \cdot))$ for all $s \in S$ more succinctly as $\pi \propto \exp(Q)$. We define optimal V and Q functions where
 163
 164

$$165 \text{ for all } s \in S, a \in A, V_\tau^\star(s) := \max_\pi V_\tau^\pi(s) \text{ and } Q_\tau^\star(s, a) := \max_\pi Q_\tau^\pi(s, a) \quad (5)$$

166
 167 Moreover, the policy $\pi^* \propto \exp\left(\frac{Q_\tau^\star}{\tau}\right)$ satisfies $Q_\tau^{\pi^*} = Q_\tau^\star$ and $V_\tau^{\pi^*} = V_\tau^\star$ simultaneously for all
 168 $s \in S$ (Zhan et al., 2023). In the following, we will overload notations of real functions defined on
 169 $S \times A$ and allow them to only take a state input and return a vector in $\mathbb{R}^{|A|}$. For example, $Q_\tau^\pi(s)$
 170 denotes a vector for which the i^{th} entry $i \in \{1, \dots, |A|\}$ is equal to $Q_\tau^\pi(s, i)$.
 171

172 For the convergence analysis, we will make use of a matrix representation of the MDP by
 173 overloading the notations of R and P . Let $I_s : S \mapsto \{1, \dots, |S|\}$ be an arbitrary bijective function
 174 that will provide an ordering over the state space, and we let $I_{sa} : S \times A \mapsto \{1, \dots, |S||A|\}$ be an arbitrary bijective function that orders the state-action space. Using these indexing functions,
 175 we will overload the notation of the reward function by seeing R as an $|S||A| \times 1$ matrix such that row $I_{sa}(s, a)$ and column 1 of the matrix R verifies $R_{(I_{sa}(s, a), 1)} = R(s, a)$. Similarly for the
 176 transition function P which we see as an $|S||A| \times |S|$ matrix such that $P_{(I_{sa}(s, a), I_s(s'))} = P(s'|s, a)$.
 177
 178

179 A policy π will be seen as a $|S| \times |S||A|$ matrix such that $\pi_{(I_s(s'), I_{sa}(s, a))} = \pi(a|s)$ if $s' = s$ and 0
 180 otherwise. On such matrix representation of the policy we can apply the negative entropy row-wise
 181 such that $h(\pi)$ is a $|S| \times 1$ matrix where $h(\pi)_{(I_s(s), 1)} = h(\pi(s))$. Using all of the above notations,
 182 we write the Bellman operator/equation associated to policy π in matrix notation over a Q-function
 183 represented by an $|S||A| \times 1$ matrix that verifies
 184

$$185 T_\tau^\pi Q_\tau^\pi = Q_\tau^\pi = R + \gamma P [\pi Q_\tau^\pi - \tau h(\pi)]. \quad (6)$$

186 This operator can be applied to any $|S||A| \times 1$ matrix f , by simply replacing Q_τ^π by f in Eq. 6. We
 187 also write the Bellman optimality operator on matrices as
 188

$$189 T_\tau^\star f = R + \gamma P \left[\max_p p f - \tau h(p) \right], \quad (7)$$

190 where the maximization \max_p is made row-wise over probability matrices of shape $|S| \times |S||A|$
 191 encoded using the same convention as policy matrices π described above.
 192
 193

194 4 POLICY MIRROR DESCENT AND AVERAGING OF ERROR

195 To find π^* , we focus on Entropy-regularized Policy Mirror Descent (EPMD) methods (Neu et al.,
 196 2017; Abbasi-Yadkori et al., 2019; Lazić et al., 2021) and notably on those that regularize the policy
 197 update with an entropy and D_{KL} term and use an entropy regularized Bellman operator (Lan, 2022;
 198 Zhan et al., 2023). The EPMD setting discussed here is also similar to the regularized natural policy
 199 gradient algorithm on softmax policies of Cen et al. (2022). We will put special emphasis in this
 200 section on policy evaluation errors and show how convergence of EPMD depends on this error.
 201

202 4.1 ENTROPY REGULARIZED VALUE ITERATION

203 To ease the discussion, let us first consider an approximate value iteration algorithm. Let $\xi_k : S \times A \mapsto \mathbb{R}$ be the unnormalized log-probability (which we refer to as logits for short) of π_k , i.e.
 204

$$210 \pi_k \propto \exp(\xi_k). \quad (8)$$

211 We define entropy regularized value iteration by the following two steps.
 212

213 **Evaluation step:** let $q_k : S \times A \mapsto \mathbb{R}$ be a sequence of functions such that $q_0 = 0$ and for all $k \geq 0$,
 214 $q_{k+1} = T_\tau^{k+1} q_k + \epsilon_{k+1}$, where $T_\tau^{k+1} = T_\tau^{\pi_{k+1}}$ is the Bellman operator associated to policy π_{k+1}
 215 and ϵ_{k+1} represents the evaluation error due to, e.g., knowing only a sample estimate of the Bellman
 operator or knowing it only on a sub-set of the state-action space.

216 **Policy update step:** letting $\xi_k = 0$, i.e. the first policy is uniform over the action space, for each q_k
 217 we update the policy in EPMD by solving the following optimization problem

$$219 \quad \forall s \in S, \quad \pi_{k+1}(s) = \arg \max_{p \in \Delta(A)} \{q_k(s) \cdot p - \tau h(p) - \eta D_{\text{KL}}(p; \pi_k(s))\} \quad (9)$$

220 where $D_{\text{KL}}(p; p') = p \cdot (\log p - \log p')$ and $\eta > 0$ is the D_{KL} regularization weight. This update
 221 admits the well known closed-form solution given by

$$223 \quad \xi_{k+1} = \beta \xi_k + \alpha q_k, \quad (10)$$

224 where $\alpha = \frac{1}{\eta + \tau}$ and $\beta = \frac{\eta}{\eta + \tau}$. Let us characterize the convergence of such an algorithm. In the
 225 remainder of this paper, we will be interested in bounding the norm $\|Q_{\tau}^* - \tau \xi_k\|_{\infty}$ which we want
 226 as small as possible since the logits of the optimal policy are $\frac{Q_{\tau}^*}{\tau}$. Moreover, from a bound over
 227 $\|Q_{\tau}^* - \tau \xi_k\|_{\infty}$ we can derive the more common bound over Q-functions since

229 **Lemma 4.1.** *Let policy $\pi_k \propto \exp(\xi_k)$ and Q_{τ}^k its Q-function; then $\|Q_{\tau}^* - Q_{\tau}^k\|_{\infty} \leq \frac{2\|Q_{\tau}^* - \tau \xi_k\|_{\infty}}{1-\gamma}$.*

231 The proof for all theoretical statements are given in the appendix. The convergence of entropy
 232 regularized value iteration is given by the following theorem

233 **Theorem 4.2.** *(Convergence of entropy regularized value iteration) Letting $E_j = (1 -$
 234 $\beta) \sum_{i=1}^j \beta^{j-i} \epsilon_i$ and $R_m = R_x + \gamma \tau \log |A|$, we have at iteration $k + 1$ that $\|Q_{\tau}^* - \tau \xi_{k+1}\|_{\infty} \leq$
 235 $\gamma^{k+1} \|Q_{\tau}^*\|_{\infty} + R_m \sum_{i=0}^k \gamma^i \beta^{k-i} + \sum_{i=0}^k \gamma^i \|E_{k-i}\|_{\infty}$.*

237 The first term of the upper bound goes to zero as $k \rightarrow \infty$. This term is also found in unregularized
 238 value iteration (see, e.g. Theorem 1.12 of Agarwal et al. (2021a)) and is due to the contraction
 239 property of the Bellman operators. The second term is a constant multiplied by $\sum_{i=0}^k \gamma^i \beta^{k-i}$. It can
 240 be shown that this sum satisfies

$$241 \quad \sum_{i=0}^k \gamma^i \beta^{k-i} \leq \max\{\gamma, \beta\}^k (k+1), \quad (11)$$

244 which goes to zero as $k \rightarrow \infty$. In the limit of $\eta \rightarrow 0$, where we would drop the D_{KL} regularization,
 245 $\beta \rightarrow 0$ and $\sum_{i=0}^k \gamma^i \beta^{k-i} \rightarrow \gamma^k$, yielding an error term that goes to zero at the same rate as
 246 $\gamma^{k+1} \|Q_{\tau}^*\|_{\infty}$. However, as we increase the D_{KL} regularization, β approaches 1 and this second
 247 term becomes whenever $\beta > \gamma$

$$249 \quad \sum_{i=0}^k \gamma^i \beta^{k-i} = \beta^k \sum_{i=0}^k \left(\frac{\gamma}{\beta}\right)^i \leq \frac{\beta^{k+1}}{\beta - \gamma}. \quad (12)$$

251 While this term still goes to zero as $k \rightarrow \infty$, by increasing the D_{KL} regularization we pay the price
 252 of a slower convergence when $\beta > \gamma$. Finally, the term $\sum_{i=0}^k \gamma^i \|E_{k-i}\|_{\infty}$ constitutes the error floor
 253 of entropy regularized value iteration stemming from the evaluation errors ϵ_i . This error floor might
 254 remain above zero even as $k \rightarrow \infty$. In the limit of $\eta \rightarrow 0$, $\|E_j\|_{\infty} \rightarrow \|\epsilon_j\|_{\infty}$ and the error floor
 255 will tend to $\sum_{i=0}^k \gamma^i \|\epsilon_j\|_{\infty}$, i.e. a weighted sum of the norms of the evaluation errors. However, as
 256 we increase the D_{KL} penalization, there is a hope that the evaluation errors will cancel each other
 257 in $(1 - \beta) \sum_{i=1}^j \beta^{j-i} \epsilon_i$, leading to a lower value of $\|E_j\|_{\infty}$ than if we would only consider the
 258 norm of the last error $\|\epsilon_j\|_{\infty}$. As such, by increasing η we might slow down the convergence rate
 259 but potentially lower the error floor $\sum_{i=0}^k \gamma^i \|E_{k-i}\|_{\infty}$ and return a better final policy. This result is
 260 similar to that of Vieillard et al. (2020a), except that our algorithm uses a Bellman operator that only
 261 applies entropy regularization (as used for example in the learning of Q-functions in SAC (Haarnoja
 262 et al., 2018)), whereas Vieillard et al. (2020a) considered the Bellman operator that applies both an
 263 entropy and a D_{KL} regularization. Moreover, the latter work was restricted to the analysis of value
 264 iteration, but before discussing StaQ we need first to extend the above analysis to policy iteration as
 265 StaQ is a policy iteration algorithm.

266 4.2 ENTROPY REGULARIZED POLICY ITERATION

269 The policy iteration version of EPMD is quite similar to value iteration except that in the evaluation
 step, $q_k = Q_{\tau}^k + \epsilon_k$, where $Q_{\tau}^k = Q_{\tau}^{\pi_k}$ is the Q-function associated to π_k . The approximation q_k of

Q_τ^k can be obtained for instance by applying the Bellman operator T_τ^k (or a noisy version thereof) several times on q_{k-1} —instead of a single time in value iteration. As value and policy iteration algorithms are quite similar, the analysis of the latter follows the same general template, except that the error propagates in slightly more complex ways. In the case of policy iteration, we need a way to relate q_k and q_{k+1} as this relation is not as direct as in value iteration. To do so, we will make use of the policy improvement lemma (Section 4.2 of Sutton & Barto (2018)). In the unregularized RL case, the lemma states that a policy greedy w.r.t. a Q-function will have a greater or equal Q-function at every state-action pair. A similar property holds in the entropy regularized case. However, in the presence of policy evaluation errors, the new policy π_{k+1} —obtained by maximizing Eq. 9—might increase the probability of sub-par actions and improvement is only guaranteed up to some policy improvement error characterized by the following lemma

Lemma 4.3 (Approximate policy improvement). *Let $\mu_k = (I - \gamma P\pi_k)^{-1}$ be the (unnormalized) state distribution associated to policy π_k . At any iteration $k \geq 0$ of entropy regularized policy iteration, we have that $Q_\tau^{k+1} \geq Q_\tau^k - \epsilon_{\Delta_k}$, with $\epsilon_{\Delta_k} := \gamma\mu_{k+1}P(\pi_k - \pi_{k+1})\epsilon_k$.*

The policy improvement error ϵ_{Δ_k} is invariant to a constant shift in the evaluation error ϵ_k . Indeed, we have that for any real value c , $(\pi_k - \pi_{k+1})(\epsilon_k + c\mathbf{1}) = (\pi_k - \pi_{k+1})\epsilon_k$, where $\mathbf{1}$ is a vector of ones. Additionally, if $\epsilon_k = 0$ or any other constant vector then policy improvement is guaranteed. However, we might not improve over the previous Q-function if we overestimate a bad action or underestimate a good one. The overall convergence of entropy regularized policy iteration is characterized by the following theorem

Theorem 4.4. (Convergence of entropy regularized policy iteration) *Letting $\epsilon_{-1} = 0$ and $E_j := (1 - \beta) \sum_{i=0}^j \beta^{j-i}(\epsilon_i - \gamma P\pi_i(\epsilon_{i-1} + \epsilon_{\Delta_i}))$, we have at iteration $k + 1$ that $\|Q_\tau^* - \tau\xi_{k+1}\|_\infty \leq \gamma^{k+1} \|Q_\tau^*\|_\infty + \frac{2-\gamma-\beta}{1-\gamma} R_m \sum_{i=0}^k \gamma^i \beta^{k-i} + \sum_{i=0}^k \gamma^i \|E_{k-i}\|_\infty$.*

As can be seen, the upper bound of Theorem 4.4 follows a very similar structure to that of value iteration, with the main difference being in the error floor $\sum_{i=0}^k \gamma^i \|E_{k-i}\|_\infty$ that now notably depends on the policy improvement error discussed above. While this error floor involves more quantities, the general scheme remains the same and one hopes that there are values of η such that a cancellation of terms leads to a lower error floor compared to the unregularized case while not slowing policy iteration too much. This analysis improves over that of Zhan et al. (2023), that only considered a uniform worst case error, leading to a less interesting upper bound where the smallest error floor—and the fastest convergence rate—is always obtained by choosing $\eta = 0$, using no D_{KL} regularization.

4.3 APPROXIMATE POLICY UPDATE

We have analyzed so far the convergence of EPMD algorithms, considering only evaluation errors. In practice, the policy update step that consists in solving the optimization problem in Eq. 9 might prove challenging to solve without approximations. Indeed, while this policy update leads to a closed form solution in the space of policy logits (Eq. 10), it might not be possible to implement exactly if the state-action space is too large. In this case, one could use a function approximator to represent these logits but that would likely introduce a new type of error and raises the question of what loss to use to update the policy’s parameters.

Let Θ_Q and Θ_π respectively be the parameter spaces of Q-functions and policy logits; these parameter spaces can for instance be subsets of \mathbb{R}^d for some integer d . Let $\xi_\theta : S \times A \mapsto \mathbb{R}$, with $\theta \in \Theta_\pi$ be a function that provides the logits of a policy $\pi_\theta \propto \exp(\xi_\theta)$ and let $q_{\theta'} : S \times A \mapsto \mathbb{R}$, with $\theta' \in \Theta_\pi$, be the (approximate) Q-function associated to π_θ . We want to find $\xi_{\theta''}$ as the solution to the entropy regularized policy update in Eq. 9. We know that ideally we would have $\xi_{\theta''} = \beta\xi_\theta + \alpha q_{\theta'}$, but this does not give an expression for θ'' since in general the policy maximizing Eq. 9 is not necessarily parameterized by $\beta\theta + \alpha\theta'$.

One exception to the above claim is when the Q-function and the logits function are linear w.r.t. some predefined feature function, in which case $\xi_{\beta\theta+\alpha\theta'} = \beta\xi_\theta + \alpha q_{\theta'}$. This is the so-called compatible feature setting of policy gradient (Sutton et al., 1999; Geist & Pietquin, 2010; Pajarinen et al., 2019) where the Q-function and the logits share the same linear-in-feature function approximation class and in which case, policy gradient and natural policy gradient become equivalent (Peters & Schaal, 2008). However, beyond the linear-in-feature case, the closed form solution of the entropy

324 regularized policy update in the space of logits does not yield a trivial update in parameter space.
 325

326 One approach to policy update in parameter space is to solve the following optimization problem
 327

$$\arg \max_{\theta'' \in \Theta_\pi} \theta'' \cdot \nabla_\theta J_\tau(\pi_\theta) - \eta \mathbb{E}_{s \sim \mu_{\pi_\theta}} D_{\text{KL}}(\pi_{\theta''}(s); \pi_\theta(s)), \quad (13)$$

330 where $J_\tau(\pi_\theta)$ is the policy return π_θ , i.e. the expectation of the V^{π_θ} over states sampled from
 331 a predefined initial state distribution. Interestingly, Cen et al. (2022) showed that in the tabular
 332 case (i.e. when optimizing directly over the logit space), the above problem is equivalent to the
 333 maximization in Eq. 9 over each state independently. In the general case however, because of the
 334 approximation in the optimization of Eq. 13 or because of the use of a restricted policy class, we are
 335 likely to obtain a new policy $\pi_{\theta''}$ that is worse than π_{k+1} in the sense of the policy update objective
 336 defined in Eq. 9.

337 In Zhan et al. (2023), the authors analyzed an approximate EPMD scheme such that the policy
 338 update objective in Eq. 9 is optimized up to some error ϵ_{opt} for all states and all iterations. They
 339 showed that the resulting algorithm would converge at the same rate as its exact counterpart but
 340 would reach an error floor that depends on ϵ_{opt} , independently of the existence of policy evaluation
 341 errors. In this paper, we investigate an alternative policy update, that truncates the infinite sum of
 342 EPMD to result in a practical algorithm that does not introduce errors from the policy update yet
 343 keeps the appealing property of averaging policy evaluation errors.

345 5 FINITE-MEMORY POLICY MIRROR DESCENT

346 Let us now consider a PMD-like algorithm that keeps in memory at most M —with M being a finite
 347 and strictly positive integer—Q-function estimates. The policy at iteration k is now given by Eq. 2,
 348 which can be written as a recursive update in the logits space in the following way

$$\xi_{k+1} = \beta \xi_k + \alpha q_k + \frac{\alpha \beta^M}{1 - \beta^M} (q_k - q_{k-M}), \quad (14)$$

349 where $q_{k-M} := 0$ whenever $k - M < 0$, and $q_k = Q_\tau^k + \epsilon_k$ otherwise. In contrast to vanilla EPMD
 350 in Eq. 10, we now ‘delete’ at each update the oldest Q-function estimate q_{k-M} and also slightly
 351 overweight the most recent Q-function estimate to ensure that the Q-function weights sum to 1.
 352 This weight correction in Eq. 2—the extra multiplication by $\frac{1}{1 - \beta^M}$ compared to the vanilla sum in
 353 Eq. 1—is important as otherwise, the logits might never converge to $\frac{Q_\tau^*}{\tau}$ even when the last M Q-
 354 function estimates are all equal to Q_τ^* . Indeed, without the weight correction and since $\tau \alpha = 1 - \beta$,
 355 we would have $\tau \xi_k = (1 - \beta) \sum_{i=0}^{M-1} \beta^i Q_\tau^* = (1 - \beta^M) Q_\tau^*$.

356 The logits update in Eq. 14 can be interpreted as the result of the following optimization problem
 357

$$\forall s \in S, \pi_{k+1}(s) = \arg \max_{p \in \Delta(A)} p \cdot [q_k + \frac{\beta^M}{1 - \beta^M} (q_k - q_{k-M})](s) - \tau h(p) - \eta D_{\text{KL}}(p; \pi_k(s)) \quad (15)$$

358 Now instead of maximizing the latest Q-function estimate, the policy also maximizes the difference
 359 between the latest and oldest estimate out of the last M Q-functions. This introduces an additional
 360 source of policy improvement error, but in our theoretical analysis, we show that for a finite but
 361 large enough M , this error will vanish as $k \rightarrow \infty$, leaving us with an error floor that only depends
 362 on the evaluation errors. Specifically, the algorithm given by Eq. 14 has the following convergence
 363 properties

364 **Theorem 5.1** (Convergence of finite memory EPMD). *Let M such that $M >$
 365 $\log \frac{(1-\gamma)^3}{(1+\gamma)(1-\gamma)^2 + 4(\gamma+\gamma^2)} / \log \beta$, $\gamma_M = \frac{\gamma}{1 - \beta^M}$, $c = \frac{\beta^M}{1 - \beta^M} \left(\frac{4(\gamma+\gamma^2)}{(1-\gamma)^2} + \gamma \right)$, let d_0 be the
 366 unique root of $d^{2M+1} - \gamma_M d^{2M} - c$ in the interval $(\gamma_M, 1)$, define the matrix $A_{k+1} =$
 367 $\gamma P \pi_{k+1} (I + \gamma \mu_{k+1} P (\pi_{k+1} - \pi_k))$, and error terms $E_j = \frac{1-\beta}{1-\beta^M} \sum_{i=0}^{M-1} \beta^i (\epsilon_{k-i} - A_{k-i} \epsilon_{k-i-1})$,
 368 and $T_k = \|E_k\|_\infty + \frac{\beta^M (1-\beta)}{(1-\beta^M)^2} \left\| \sum_{i=0}^{M-1} \beta^i A_{k-i} (\epsilon_{k-i-1} - \epsilon_{k-i-1-M}) \right\|_\infty$ and worst error term
 369 $\bar{T} = \max_{0 \leq i \leq k} T_i$, then $\|Q_\tau^* - \xi_{k+1}\|_\infty \leq d_0^{k+1} \|Q_\tau^*\|_\infty + \sum_{i=0}^k \gamma_M^i \left(T_{k-i} + c \frac{\bar{T}}{1 - \gamma_M - c} \right)$.*

Figure 1: Overview of StaQ, showing the continual training of a Q-function (left), from which we periodically “stack” frozen weight snapshots to form the policy (right). See Sec. 5.1 for more details. At each iteration k , two steps are performed. i) Policy evaluation, where we generate a dataset \mathcal{D}_k of transitions that are gathered by a behavior policy π_k^b , typically derived from π_k , and then learn Q^{π_k} from \mathcal{D}_k . ii) Policy update, performed by “stacking” the NN of Q^{π_k} into the current policy. The policy update is optimization-free and theoretically grounded (Sec. 5), thus only the choice of π_k^b and the policy evaluation algorithm can remain sources of instabilities in this deep RL setting.

In finite memory EPMD we no longer have an explicit expression for the convergence rate, but provided M is large enough, we know that it exists as the unique root of a function in the range $(\gamma_M, 1)$. Moreover, as $M \rightarrow \infty$, the convergence rate goes to γ , and as in exact EPMD, we note that in the absence of evaluation errors, the algorithm converges to the optimal policy. In terms of error floor, we find a similar expression of E_j as in Sec. 4.2 up to the truncation to the latest M errors. However, the error floor does not depend only on E_j but on an additional term in T_j that depends on older evaluation error terms. This additional term is weighted by $\frac{\beta^M (1-\beta)}{(1-\beta^M)^2}$ which decreases exponentially fast towards zero as we increase M . Finally, the error floor is not just a weighted sum of average evaluation errors but also depends on the worst average evaluation error \bar{T} . Fortunately, this term is weighted again by a constant that decreases exponentially fast towards zero as M increases. Thus the theoretical analysis indicates in terms of averaging of policy evaluation errors, we approach the desirable behavior of an exact EPMD policy update exponentially fast by increasing M .

The remainder of the paper is devoted to exploring the practical implications of such a result: what are the tangible benefits of EPMD and how fast—in terms of memory size M —can a finite memory variant approach the behavior of EPMD with an exact policy update. To perform such a study we need an efficient implementation of EPMD that allows us to examine exact EPMD, at least for a few million timesteps, and support a high memory size M .

5.1 PRACTICAL IMPLEMENTATION

We implement an efficient version of the policy in Eq. 2 using a stacked neural networks (SNN, illustrated in Fig. 1). By using batched operations we make efficient use of GPUs and compute multiple Q-values in parallel. We call the resulting algorithm StaQ. After each policy evaluation, we push the weights corresponding to this new Q-function onto the stack. If the stacked NN contains more than M NNs, the oldest NN is deleted in a “first in first out” fashion. If implementing exact EPMD, then we never delete older Q-functions.

To further reduce the impact of a large M , we pre-compute ξ_k for all entries in the replay buffer¹ at the start of policy evaluation. The logits ξ_k are used to sample on-policy actions when computing the targets for Q_τ^k . As a result of the pre-computation, during policy evaluation, forward and backward passes only operate on the current Q-function and hence the impact of large M is minimized. However rolling out the current behavioural policy π_k^b still requires a full forward pass. Conversely, the policy update consists only of adding the new weights to the stack, and thus, is optimization free and (almost) instantaneous. Table 1 shows the training time of StaQ as a function of M for two environments. Varying M or the state space size has little impact on the runtime of StaQ on GPU, at least for these medium-sized environments.

¹Since we use small replay buffer sizes of 50K transitions, we are likely to process each transition multiple times (25.6 times in expectation in our experiments) making this optimization worthwhile.

432 Table 1: Training times for StaQ (5 million steps), as a function of M , on Hopper-v4 (state dim.=11)
 433 and Ant-v4 (state dim. = 105), computed on an NVIDIA Tesla V100 and averaged over 3 seeds.
 434

	Memory size M	1	50	100	300	500
Hopper-v4	Training time (hrs)	9.8	10.1	10.3	10.3	10.9
Ant-v4	Training time (hrs)	10.4	10.7	10.3	11	10.5

441 6 EXPERIMENTS

442
 443 **Environments.** We use all 9 environments suggested by Ceron & Castro (2021) for comparing
 444 deep RL algorithms with finite action spaces, comprising 4 classic control tasks from Gymna-
 445 sium (Towers et al., 2023), and all MinAtar tasks (Young & Tian, 2019). To that we add 5 MuJoCo
 446 tasks (Todorov et al., 2012), adapted to discrete action spaces by considering only extreme actions
 447 similarly to (Seyde et al., 2021). To illustrate, the discrete version of a MuJoCo task with action
 448 space $A = [-1, 1]^d$ consists in several $2d$ dimensional vectors that have zeroes everywhere except
 449 at entry $i \in \{1, \dots, d\}$ that can either take a value of 1 or -1 ; to that we add the zero action, for a
 450 total of $2d + 1$ actions.

451 **Algorithms.** In our main set of experiments, we compare finite memory EPMD for several values
 452 of M on up to 5 million timesteps. We notably consider the two extremes of $M = 1$, using no
 453 D_{KL} regularization and $M = 1000$ that never deletes a Q-function within the 5 million timesteps
 454 window (labeled “Exact PMD” in figures). As lower values of M such as $M = 1$ might decrease en-
 455 tropy too quickly because of too aggressive a D_{KL} between successive iterations, we add a constant
 456 probability $\epsilon = 0.05$ of sampling a random action throughout the learning phase for all algorithms.
 457 This reduces the differences between the algorithms on components outside of the error floor which
 458 is the main purpose of this experiment. To variants of StaQ, we consider another baseline that
 459 implements a policy update by approximately solving Eq. 13 using TRPO’s conjugate gradient im-
 460 plementation. This baseline, labeled “NatGrad” uses the exact same policy evaluation procedure
 461 and hyperparameters (including regularization weights τ and η) as StaQ variants and differs only in
 462 the policy update.

463 Following common practices in natural gradient descent implementations, we also consider adding
 464 a post-update line search step that constrains the D_{KL} between successive policies to be under
 465 an ϵ_{KL} threshold. To select an appropriate value for ϵ_{KL} , we performed a preliminary study in
 466 App. B.2, comparing the default value $\epsilon_{KL} = 0.01$ used in many of TRPO’s implementation—e.g.
 467 in `stable-baselines3` (Raffin et al., 2021)—with a smaller value of $\epsilon_{KL} = 0.001$ which we
 468 found to work better in most of the tasks. This second baseline is labeled “NatGrad + LS” and
 469 has subtle differences with TRPO: for instance even when an entropy bonus is used, TRPO does
 470 not learn soft value functions and only regularizes the policy update with an additional entropy
 471 term. We found that by matching StaQ’s setting, “NatGrad + LS” is comparable in performance
 472 to `stable-baselines3`’s TRPO on most of the tasks but can largely outperform it on others,
 473 especially on MinAtar tasks, as seen from the results in App. B.3.

474 In the appendix, we complement this experiment that isolates the policy update from the rest of
 475 the deep RL components, with a secondary set of comparisons to existing deep RL baselines such
 476 as the value iteration algorithm DQN (Mnih et al., 2015) and its entropy-regularized variant M-
 477 DQN (Vieillard et al., 2020b), the policy gradient algorithm TRPO (Schulman et al., 2015) and
 478 PPO (Schulman et al., 2017). StaQ performs entropy regularization on top of a Fitted-Q Iteration
 479 (FQI) approach. DQN only uses FQI and is a good baseline to measure the impact of entropy regu-
 480 larization over vanilla FQI, while the other baselines cover a wide range of alternative approaches to
 481 regularization in deep RL: through a bonus term (M-DQN), following the natural gradient (TRPO)
 482 or with a clipping loss (PPO). These baselines differ more widely and in ways orthogonal (policy
 483 evaluation, exploration, replay buffer management) to the main focus of this paper which is the pol-
 484 icy update of EPMD. These results are thus harder to interpret and are only provided for reference.

485 **Metrics.** We launch 20 independent runs for each algorithm and each task and report normalized
 486 aggregated performance metrics. Normalization is performed by dividing final policy performance
 487 by the highest final policy evaluation across all algorithms and seeds. Final policy performance—and

Figure 2: Normalized aggregate policy performance on 5 MuJoCo and 5 MinAtar tasks with 20 independent runs for each algorithm and task, showing mean and interquartile mean with 95% stratified bootstrap confidence interval. There is an almost monotonic increase in performance as a function of M , with $M \geq 100$ matching the mean performance of exact PMD on MuJoCo tasks, and $M \geq 300$ matching the mean performance of exact PMD on MinAtar tasks. Per task learning curves and box plots of final performances can be found in App. B.1.

intermediary policy evaluations reported in the appendix—are obtained by averaging the cumulative undiscounted rewards over 25 rollouts. Once normalized, policy performance is aggregated using the mean or interquantile mean with 95% stratified bootstrap confidence intervals as recommended by (Agarwal et al., 2021b). In the appendix, we provide training curves showing mean and 95% confidence intervals of the current policy evaluated every 200K environment steps, as well as per-task box plots of the final policy performance for each of the 20 runs of each algorithm.

Results. Fig 2 shows an almost monotonic improvement in performance on the aggregate plot, which is especially true for MinAtar tasks (both mean and IQM metrics) and for the mean performance on MuJoCo. Looking at per task performance in App. B.1, we find that for almost all environments, a sufficiently large M matches the performance of exact EPMD, with $M \geq 300$ being virtually indistinguishable from exact EPMD on all tasks. These results reinforce the theoretical insights that StaQ can match the behavior of exact EPMD. Compared to natural policy gradient, the performance is generally improved across all tasks, indicating that StaQ is potentially a better alternative to the latter PMD approximate scheme, at least on environments where Q-function computations can be efficiently batched. When compared to deep RL baselines Fig. 6, we also noted lower inter-seed oscillations in StaQ, which we demonstrate explicitly in App. B.4.

7 CONCLUSION

In this paper, we proposed a policy update rule based on policy mirror descent, that keeps in memory at most M Q-functions. We showed that by increasing M we can quickly mimic exact EPMD both from a theoretical and empirical perspective. Surprisingly, even when M is large, the final computational burden is small on modern hardware, due to the stacking of the Q-functions. The resulting policy update has a solid theoretical foundation and clear empirical benefits as it improves performance and reduces learning instability compared to other entropy regularization methods in the literature, making it a valid alternative to existing EPMD schemes, at least for medium-sized tasks such as MuJoCo or MinAtar. Due to its exact policy update, and the absence of gap between the theoretical algorithm and the practical implementation, StaQ provides a promising setting for testing other components of RL such as policy evaluation, for instance, the recent methods that use normalization techniques to reduce policy evaluation error (Gallici et al., 2025; Bhatt et al., 2024).

540 REFERENCES
541

542 Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellert
543 Weisz. POLITEX: Regret bounds for policy iteration using expert prediction. In *International
544 Conference on Machine Learning*, 2019.

545 Alekh Agarwal, Nan Jiang, Sham M. Kakade, and Wen Sun. *Reinforcement Learning: Theory and
546 Algorithms*. 2021a.

547 Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
548 reinforcement learning. In *International conference on machine learning*, pp. 104–114. PMLR,
549 2020.

550 Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
551 Deep reinforcement learning at the edge of the statistical precipice. In *Advances in Neural Infor-
552 mation Processing Systems*, 2021b.

553 Carlo Alfano, Rui Yuan, and Patrick Rebeschini. A novel framework for policy mirror descent with
554 general parameterization and linear convergence. In *Advances in Neural Information Processing
555 Systems*, 2023.

556 Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-DQN: Variance reduction and stabiliza-
557 tion for deep reinforcement learning. In *International Conference on Machine Learning*, 2017.

558 Mohammad Gheshlaghi Azar, Vicenç Gómez, and Hilbert J. Kappen. Dynamic policy programming.
559 *Journal of Machine Learning Research*, 2012.

560 Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
561 convex optimization. *Operations Research Letters*, 31(3):167–175, May 2003. ISSN 0167-6377.
562 doi: 10.1016/S0167-6377(02)00231-6.

563 Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox,
564 and Jan Peters. CrossQ: Batch Normalization in Deep Reinforcement Learning for Greater Sam-
565 ple Efficiency and Simplicity, March 2024.

566 Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence of
567 natural policy gradient methods with entropy regularization. *Operations Research*, 2022.

568 Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insight-
569 ful and inclusive deep reinforcement learning research. In *International Conference on Machine
570 Learning*, 2021.

571 Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double q-learning:
572 Learning fast without a model. *arXiv preprint arXiv:2101.05982*, 2021.

573 Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
574 Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
575 tasks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2021.

576 M. P. Deisenroth, G. Neumann, and J. Peters. A Survey on Policy Search for Robotics. *Foundations
577 and Trends in Robotics*, 2013.

578 Riccardo Della Vecchia, Alena Shilova, Philippe Preux, and Riad Akour. Entropy regularized
579 reinforcement learning with cascading networks. *arXiv*, 2022.

580 Scott Fahlman and Christian Lebiere. The cascade-correlation learning architecture. *Advances in
581 neural information processing systems*, 2, 1989.

582 Roy Fox, Ari Pakman, and Naftali Tishby. G-learning: Taming the noise in reinforcement learning
583 via soft updates. In *Conference on Uncertainty in Artificial Intelligence*, 2016.

584 Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
585 Foerster, and Mario Martin. Simplifying Deep Temporal Difference Learning, March 2025.

594 Jonas Gehring, Gabriel Synnaeve, Andreas Krause, and Nicolas Usunier. Hierarchical skills for
 595 efficient exploration. In *Advances in Neural Information Processing Systems*, 2021.
 596

597 Matthieu Geist and Olivier Pietquin. Revisiting natural actor-critics with value function approxima-
 598 tion. In *International Conference on Modeling Decisions for Artificial Intelligence*, 2010.
 599

600 Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized Markov decision
 601 processes. In *Proceedings of the 36th International Conference on Machine Learning (ICML)*,
 602 2019.
 603

604 Sertan Girgin and Philippe Preux. Basis function construction in reinforcement learning using
 605 cascade-correlation learning architecture. In *IEEE International Conference on Machine Learn-
 606 ing and Applications*, 2008.
 607

608 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
 609 Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic Algo-
 610 rithms and Applications. In *International Conference on Machine Learning (ICML)*, 2018.
 611

612 Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning from
 613 pixels. In *Advances in Neural Information Processing Systems*, 2022.
 614

615 Peter Henderson. Reproducibility and reusability in deep reinforcement learning. Master's thesis,
 616 McGill University, 2018.
 617

618 Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
 619 Rudolph, and Aleksander Madry. A closer look at deep policy gradients. In *International Con-
 620 ference on Learning Representations*, 2020.
 621

622 Emmeran Johnson, Ciara Pike-Burke, and Patrick Rebeschini. Optimal convergence rate for exact
 623 policy mirror descent in discounted markov decision processes. *Advances in Neural Information
 624 Processing Systems*, 36:76496–76524, 2023.
 625

626 Sham M Kakade. A natural policy gradient. In *Advances in Neural Information Processing Systems*,
 627 2001.
 628

629 Sajad Khodadadian, Prakirt Raj Jhunjhunwala, Sushil Mahavir Varma, and Siva Theja Maguluri. On
 630 the linear convergence of natural policy gradient algorithm. In *2021 60th IEEE Conference on
 631 Decision and Control (CDC)*, pp. 3794–3799. IEEE, 2021.
 632

633 Kalimuthu Krishnamoorthy and Thomas Mathew. *Statistical Tolerance Regions: Theory, Applica-
 634 tions, and Computation*. John Wiley & Sons, May 2009. ISBN 978-0-470-47389-4.
 635

636 Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback in reinforcement
 637 learning via distribution correction. In *Advances in Neural Information Processing Systems*, 2020.
 638

639 Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. *Journal of Machine Learn-
 640 ing Research*, 2003.
 641

642 Guanghui Lan. Policy mirror descent for reinforcement learning: linear convergence, new sampling
 643 complexity, and generalized problem classes. *Mathematical Programming*, 2022.
 644

645 Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin q-learning: Controlling
 646 the estimation bias of q-learning. *arXiv preprint arXiv:2002.06487*, 2020.
 647

648 Nevena Lazic, Dong Yin, Yasin Abbasi-Yadkori, and Csaba Szepesvari. Improved regret bound
 649 and experience replay in regularized policy iteration. In *International Conference on Machine
 650 Learning*, 2021.
 651

652 Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified frame-
 653 work for ensemble learning in deep reinforcement learning. In *International Conference on Ma-
 654 chine Learning*, pp. 6131–6141. PMLR, 2021.
 655

656 Kyungjae Lee, Sungyub Kim, Sungbin Lim, Sungjoon Choi, and Songhwai Oh. Tsallis reinfor-
 657 cements learning: A unified framework for maximum entropy reinforcement learning. *arXive*, 2019.
 658

648 Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat, and Natalia
 649 Díaz-Rodríguez. Continual learning for robotics: Definition, framework, learning strategies, op-
 650 portunities and challenges. *Information Fusion*, 2020.

651 Yan Li, Guanghui Lan, and Tuo Zhao. Homotopic policy mirror descent: Policy convergence,
 652 implicit regularization, and improved sample complexity. *arXiv preprint arXiv:2201.09457*, 2022.

653 Jincheng Mei, Chenjun Xiao, Ruitong Huang, Dale Schuurmans, and Martin Müller. On principled
 654 entropy exploration in policy optimization. International Joint Conferences on Artificial Intelli-
 655 gence Organization, 2019.

656 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
 657 mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
 658 control through deep reinforcement learning. *Nature*, 2015.

659 A. S. Nemirovsky and D. B. Yudin. *Problem Complexity and Method Efficiency in Optimization*.
 660 Wiley-Interscience Series in Discrete Mathematics. John Wiley, 1983.

661 Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov
 662 decision processes. *arXiv*, 2017.

663 Joni Pajarinen, Hong Linh Thai, Riad Akour, Jan Peters, and Gerhard Neumann. Compatible
 664 natural gradient policy search. *Machine Learning*, 2019.

665 German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual
 666 lifelong learning with neural networks: A review. *Neural Networks*, 2019.

667 Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In *International Conference on
 668 Intelligent Robots and Systems*, 2006.

669 Jan Peters and Stefan Schaal. Natural actor-critic. *Neurocomputing*, 2008.

670 Kimon Protopapas and Anas Barakat. Policy mirror descent with lookahead. *Advances in Neural
 671 Information Processing Systems*, 37:26443–26481, 2024.

672 Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
 673 Dormann. Stable-baselines3: Reliable reinforcement learning implementations. *Journal of
 674 Machine Learning Research*, 22(268):1–8, 2021. URL <http://jmlr.org/papers/v22/20-1364.html>.

675 Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
 676 Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. *CoRR*, 2016.

677 John Schulman, Sergey Levine, Michael Jordan, and Pieter Abbeel. Trust Region Policy Optimiza-
 678 tion. *International Conference on Machine Learning*, 2015.

679 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 680 optimization algorithms. *arXiv*, 2017.

681 Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
 682 Wulfmeier, and Daniela Rus. Is bang-bang control all you need? solving continuous control with
 683 bernoulli policies. In *Advances in Neural Information Processing Systems*, 2021.

684 Wenjie Shi, Shiji Song, Hui Wu, Ya-Chu Hsu, Cheng Wu, and Gao Huang. Regularized anderson ac-
 685 celeration for off-policy deep reinforcement learning. *Advances in Neural Information Processing
 686 Systems*, 32, 2019.

687 David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
 688 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
 689 Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
 690 Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
 691 deep neural networks and tree search. *Nature*, 2016.

692 Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
 693 gies. *Evolutionary Computation*, 2002.

702 Richard S. Sutton and Andrew Barto. *Reinforcement learning: an introduction*. The MIT Press,
 703 2018.

704

705 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
 706 ods for reinforcement learning with function approximation. In *Advances in Neural Information
 707 Processing Systems*, 1999.

708 Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
 709 In *AAAI Conference on Artificial Intelligence*, 2020.

710

711 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 712 In *International Conference on Intelligent Robots and Systems (IROS)*, 2012.

713 Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy
 714 optimization. In *International Conference on Learning Representations*, 2022.

715

716 Samuele Tosatto, Matteo Pirotta, Carlo d'Eramo, and Marcello Restelli. Boosted fitted q-iteration.
 717 In *International Conference on Machine Learning*, pp. 3434–3443. PMLR, 2017.

718 Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
 719 Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
 720 drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
 721 sium, March 2023. URL <https://zenodo.org/record/8127025>.

722

723 Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Mo-
 724 dayil. Deep reinforcement learning and the deadly triad. *arXiv*, 2018.

725

726 Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Remi Munos, and Matthieu Geist.
 727 Leverage the average: an analysis of kl regularization in reinforcement learning. In *Advances in
 728 Neural Information Processing Systems*, 2020a.

729

730 Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement learning. In *Ad-
 731 vances in Neural Information Processing Systems*, 2020b.

732

733 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
 734 learning: Theory, method and application. *IEEE Transactions on Pattern Analysis and Machine
 735 Intelligence*, 2024.

736

737 Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu,
 738 and Nando de Freitas. Sample efficient actor-critic with experience replay. In *International
 739 Conference on Learning Representations*, 2017.

740

741 Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region
 742 method for deep reinforcement learning using kronecker-factored approximation. In *Advances in
 743 Neural Information Processing Systems*, 2017.

744

745 Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
 746 Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, Leilani
 747 Gilpin, Piyush Khandelwal, Varun Raj Kompella, HaoChih Lin, Patrick MacAlpine, Declan Oller,
 748 Takuma Seno, Craig Sherstan, Michael D. Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory
 749 Douglas, Dion Whitehead, Peter Dürr, Peter Stone, Michael Spranger, and Hiroaki Kitano. Out-
 750 racing champion gran turismo drivers with deep reinforcement learning. *Nature*, 2022.

751

752 Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
 753 reinforcement learning experiments. *arXiv preprint arXiv:1903.03176*, 2019.

754

755 Rui Yuan, Simon S Du, Robert M Gower, Alessandro Lazaric, and Lin Xiao. Linear convergence of
 756 natural policy gradient methods with log-linear policies. *arXiv preprint arXiv:2210.01400*, 2022.

757

758 Wenhao Zhan, Shicong Cen, Baihe Huang, Yuxin Chen, Jason D. Lee, and Yuejie Chi. Policy
 759 mirror descent for regularized reinforcement learning: A generalized framework with linear con-
 760 vergence. *SIAM Journal on Optimization*, 2023.

APPENDIX

A PROOFS

This section includes proofs of the lemmas and theorems of the main paper.

A.1 PROPERTIES OF ENTROPY REGULARIZED BELLMAN OPERATORS

We first start with a reminder of some basic properties of the (entropy regularized) Bellman operators, as presented in (Geist et al., 2019; Zhan et al., 2023). Within the MDP setting defined in Sec. 3, let T_τ^π be the operator defined for any map $f : S \times A \mapsto \mathbb{R}$ by

$$(T_\tau^\pi f)(s, a) = R(s, a) + \gamma \mathbb{E}_{s', a'}[f(s', a') - \tau h(\pi(s'))], \quad (16)$$

This operator has the following three properties.

Proposition A.1 (Contraction). T_τ^π is a γ -contraction w.r.t. the $\|\cdot\|_\infty$ norm, i.e. $\|T_\tau^\pi f - T_\tau^\pi g\|_\infty \leq \gamma \|f - g\|_\infty$ for any real functions f and g of $S \times A$.

Proposition A.2 (Fixed point). Q_τ^π is the unique fixed point of the operator T_τ^π , i.e. $T_\tau^\pi Q_\tau^\pi = Q_\tau^\pi$.

Let f, g be two real functions of $S \times A$. We say that $f \geq g$ iff $f(s, a) \geq g(s, a)$ for all $(s, a) \in S \times A$.

Proposition A.3 (Monotonicity). T_τ^π is monotonous, i.e. if $f \geq g$ then $T_\tau^\pi f \geq T_\tau^\pi g$.

Let the Bellman optimality T_τ^* operator be defined by

$$(T_\tau^* f)(s, a) = R(s, a) + \gamma \mathbb{E}_{s'} \left[\max_{p \in \Delta(A)} f(s') \cdot p - \tau h(p) \right]. \quad (17)$$

For the Bellman optimality operator we need the following two properties.

Proposition A.4 (Contraction). T_τ^* is a γ -contraction w.r.t. the $\|\cdot\|_\infty$ norm, i.e. $\|T_\tau^* f - T_\tau^* g\|_\infty \leq \gamma \|f - g\|_\infty$ for any real functions f and g of $S \times A$.

Proposition A.5 (Optimal fixed point). T_τ^* admits Q_τ^* as a unique fixed point, satisfying $T_\tau^* Q_\tau^* = Q_\tau^*$.

Finally, we will make use of the well known property that the softmax distribution is entropy maximizing (Geist et al., 2019). Specifically, we know that the policy $\pi_k \propto \exp(\xi_k)$ satisfies the following property

$$\text{for all } s \in S, \quad \pi_k(s) = \arg \max_{p \in \Delta(A)} \xi_k(s) \cdot p - h(p). \quad (18)$$

A.2 PROOF OF LEMMA 4.1

Proof. We first observe from the definition of π_k that

$$T_\tau^k \tau \xi_k = R + \gamma P(\pi_k \tau \xi_k - \tau h(\pi_k)), \quad (19)$$

$$\stackrel{(i)}{=} R + \gamma P(\max_p p \tau \xi_k - \tau h(p)), \quad (20)$$

$$= T_\tau^* \tau \xi_k, \quad (21)$$

810 with (i) due to Eq. 18. Then
811

$$812 \quad Q_\tau^k - \tau\xi_k = (T_\tau^k Q_\tau^k - T_\tau^k \tau\xi_k) + (T_\tau^k \tau\xi_k - \tau\xi_k) \quad (22)$$

$$813 \quad = \gamma P_k (Q_\tau^k - \tau\xi_k) + (T_\tau^k \tau\xi_k - \tau\xi_k), \quad (23)$$

$$814 \quad = (I - \gamma P_k)^{-1} (T_\tau^k \tau\xi_k - \tau\xi_k), \quad (24)$$

$$815 \quad = (I - \gamma P_k)^{-1} (T_\tau^* \tau\xi_k - \tau\xi_k), \quad (25)$$

$$816 \quad \Rightarrow \|Q_\tau^k - \tau\xi_k\|_\infty \leq \frac{1}{1 - \gamma} \|T_\tau^* \tau\xi_k - \tau\xi_k\|_\infty, \quad (26)$$

$$817 \quad = \frac{1}{1 - \gamma} \|T_\tau^* \tau\xi_k - Q_\tau^* + Q_\tau^* - \tau\xi_k\|_\infty, \quad (27)$$

$$818 \quad \leq \frac{1}{1 - \gamma} (\|T_\tau^* Q_\tau^* - T_\tau^* \tau\xi_k\|_\infty + \|Q_\tau^* - \tau\xi_k\|_\infty), \quad (28)$$

$$819 \quad \leq \frac{1 + \gamma}{1 - \gamma} \|Q_\tau^* - \tau\xi_k\|_\infty. \quad (29)$$

820 Finally,
821

$$822 \quad \|Q_\tau^* - Q_\tau^k\|_\infty \leq \|Q_\tau^* - \tau\xi_k\|_\infty + \|Q_\tau^k - \tau\xi_k\|_\infty, \quad (30)$$

$$823 \quad \leq \|Q_\tau^* - \tau\xi_k\|_\infty + \frac{1 + \gamma}{1 - \gamma} \|Q_\tau^* - \tau\xi_k\|_\infty, \quad (31)$$

$$824 \quad = \frac{2 \|Q_\tau^* - \tau\xi_k\|_\infty}{1 - \gamma}. \quad (32)$$

825 \square
826

836 A.3 PROOF OF THEOREM 4.2

837 *Proof.* Looking at the value function, we have

$$838 \quad \pi_{k+1} q_k - \tau h(\pi_{k+1}) = \pi_{k+1} \left(\frac{1}{1 - \beta} (\tau\xi_{k+1} - \beta\tau\xi_k) \right) - \tau h(\pi_{k+1}), \quad (33)$$

$$839 \quad = \pi_{k+1} \left(\frac{1}{1 - \beta} (\tau\xi_{k+1} - \beta\tau\xi_k) \right) - \frac{1}{1 - \beta} (\tau h(\pi_{k+1}) - \beta\tau h(\pi_{k+1})), \quad (34)$$

$$840 \quad = \pi_{k+1} \left(\frac{1}{1 - \beta} [\tau\xi_{k+1} - \tau h(\pi_{k+1}) - \beta(\tau\xi_k - \tau h(\pi_{k+1}))] \right), \quad (35)$$

$$841 \quad \stackrel{(i)}{\geq} \left(\frac{1}{1 - \beta} [\pi_{k+1} \tau\xi_{k+1} - \tau h(\pi_{k+1}) - \beta(\pi_k \tau\xi_k - \tau h(\pi_k))] \right), \quad (36)$$

842 with (i) due to $\pi_k \tau\xi_k - \tau h(\pi_k) = \max_p p \tau\xi_k - \tau h(p) \geq \pi_{k+1} \tau\xi_{k+1} - \tau h(\pi_{k+1})$. Using this
843 inequality in q_{k+1} yields

$$844 \quad q_{k+1} = T_\tau^{k+1} q_k + \epsilon_{k+1}, \quad (37)$$

$$845 \quad = R + \gamma P(\pi_{k+1} q_k - \tau h(\pi_{k+1})) + \epsilon_{k+1}, \quad (38)$$

$$846 \quad \geq R + \gamma P \left(\frac{1}{1 - \beta} [\pi_{k+1} \tau\xi_{k+1} - \tau h(\pi_{k+1}) - \beta(\pi_k \tau\xi_k - \tau h(\pi_k))] \right) + \epsilon_{k+1}, \quad (39)$$

$$847 \quad = \frac{1}{1 - \beta} (R - \beta R) + \gamma P \left(\frac{1}{1 - \beta} [\pi_{k+1} \tau\xi_{k+1} - \tau h(\pi_{k+1}) - \beta(\pi_k \tau\xi_k - \tau h(\pi_k))] \right) + \epsilon_{k+1}, \quad (40)$$

$$848 \quad = \frac{1}{1 - \beta} (T_\tau^{k+1} \tau\xi_{k+1} - \beta T_\tau^k \tau\xi_k) + \epsilon_{k+1}, \quad (41)$$

$$849 \quad = \frac{1}{1 - \beta} (T_\tau^* \tau\xi_{k+1} - \beta T_\tau^* \tau\xi_k) + \epsilon_{k+1}, \quad (42)$$

864 where the last step is again due to Eq. 18. Now using this inequality in the definition of ξ_{k+1} gives
865

$$866 \quad \tau\xi_{k+1} = (1 - \beta) \sum_{i=0}^k \beta^{k-i} q_i, \quad (43)$$

$$867 \quad \stackrel{(i)}{=} (1 - \beta) \sum_{i=1}^k \beta^{k-i} q_i, \quad (44)$$

$$868 \quad \geq (1 - \beta) \sum_{i=1}^k \beta^{k-i} \left(\frac{1}{1 - \beta} (T_\tau^* \tau \xi_i - \beta T_\tau^* \tau \xi_{i-1}) + \epsilon_i \right), \quad (45)$$

$$869 \quad = T_\tau^* \tau \xi_k - \beta^k T_\tau^* \tau \xi_0 + (1 - \beta) \sum_{i=1}^k \beta^{k-i} \epsilon_i, \quad (46)$$

870 with (i) due to $q_0 = 0$. Letting $E_j = (1 - \beta) \sum_{i=1}^j \beta^{j-i} \epsilon_i$ and $R_m = R_x + \gamma \tau \log |A|$ be an upper
871 bound to $\|T_\tau^* \tau \xi_0\|_\infty$, we finally obtain
872

$$873 \quad Q_\tau^* - \tau \xi_{k+1} \leq Q_\tau^* - T_\tau^* \tau \xi_k + \beta^k T_\tau^* \tau \xi_0 - E_k, \quad (47)$$

$$874 \quad \Rightarrow \|Q_\tau^* - \tau \xi_{k+1}\|_\infty \leq \|Q_\tau^* - T_\tau^* \tau \xi_k\|_\infty + \beta^k \|T_\tau^* \tau \xi_0\|_\infty + \|E_k\|_\infty, \quad (48)$$

$$875 \quad \leq \gamma \|Q_\tau^* - \tau \xi_k\|_\infty + \beta^k R_m + \|E_k\|_\infty, \quad (49)$$

$$876 \quad \leq \gamma^{k+1} \|Q_\tau^*\|_\infty + R_m \sum_{i=0}^k \gamma^i \beta^{k-i} + \sum_{i=0}^k \gamma^i \|E_{k-i}\|_\infty. \quad (50)$$

877 if $\beta > \gamma$

$$878 \quad \sum_{i=0}^k \gamma^i \beta^{k-i} = \beta^k \sum_{i=0}^k \left(\frac{\gamma}{\beta} \right)^i, \quad (51)$$

$$879 \quad = \frac{\beta^{k+1} - \gamma^{k+1}}{\beta - \gamma}. \quad (52)$$

880 if $\beta < \gamma$

$$881 \quad \sum_{i=0}^k \gamma^i \beta^{k-i} = \sum_{i=0}^k \gamma^{k-i} \beta^i, \quad (53)$$

$$882 \quad = \frac{\gamma^{k+1} - \beta^{k+1}}{\gamma - \beta}. \quad (54)$$

883 if $\beta = \gamma$

$$884 \quad \sum_{i=0}^k \gamma^i \beta^{k-i} = \gamma^k (k+1). \quad (55)$$

885 In all cases

$$886 \quad \sum_{i=0}^k \gamma^i \beta^{k-i} \leq \max\{\gamma, \beta\}^k (k+1). \quad (56)$$

887 \square

911 A.4 PROOF OF LEMMA 4.3

912 *Proof.* As π_{k+1} maximizes the policy update Eq. 9, and from the non-negativity of the D_{KL} and the
913 fact that $D_{\text{KL}}(\pi_k; \pi_k) = 0$ we have
914

$$915 \quad \pi_k q_k - \tau h(\pi_k) \leq \pi_{k+1} q_k - \tau h(\pi_{k+1}) - \eta D_{\text{KL}}(\pi_{k+1}; \pi_k), \quad (57)$$

$$916 \quad \leq \pi_{k+1} q_k - \tau h(\pi_{k+1}), \quad (58)$$

$$917 \quad \Leftrightarrow \pi_k Q_\tau^k - \tau h(\pi_k) \leq \pi_{k+1} Q_\tau^k - \tau h(\pi_{k+1}) + (\pi_{k+1} - \pi_k) \epsilon_k. \quad (59)$$

$$\begin{aligned}
918 \quad Q_\tau^{k+1} - Q_\tau^k &= \gamma P(\pi_{k+1} Q_\tau^{k+1} - \tau h(\pi_{k+1})) - \gamma P(\pi_k Q_\tau^k - \tau h(\pi_k)), \quad (60) \\
919 \\
920 \quad &\stackrel{(i)}{\geq} \gamma P(\pi_{k+1} Q_\tau^{k+1} - \tau h(\pi_{k+1})) - \gamma P(\pi_{k+1} Q_\tau^k - \tau h(\pi_{k+1}) + (\pi_{k+1} - \pi_k) \epsilon_k), \quad (61) \\
921 \\
922 \quad &= \gamma P \pi_{k+1} (Q_\tau^{k+1} - Q_\tau^k) + \gamma P(\pi_k - \pi_{k+1}) \epsilon_k, \quad (62) \\
923 \\
924 \quad \Leftrightarrow (I - \gamma P \pi_{k+1})(Q_\tau^{k+1} - Q_\tau^k) &\geq \gamma P(\pi_k - \pi_{k+1}) \epsilon_k, \quad (63) \\
925 \\
926 \quad \Leftrightarrow Q_\tau^{k+1} - Q_\tau^k &\stackrel{(ii)}{\geq} \gamma (I - \gamma P \pi_{k+1})^{-1} P(\pi_k - \pi_{k+1}) \epsilon_k. \quad (64)
\end{aligned}$$

928 where in (i) we have used the fact that P is a probability matrix with only positive entries, and
929 similarly in (ii) for the matrix $(I - \gamma P \pi_{k+1})^{-1} = \sum_{i=0}^{\infty} (\gamma P \pi_{k+1})^i$. \square

932 A.5 PROOF OF THEOREM 4.4

934 *Proof.* The beginning of the proof is the same as in value iteration and we can show using the same
935 arguments that

$$937 \quad \pi_{k+1} q_k - \tau h(\pi_{k+1}) \geq \left(\frac{1}{1-\beta} [\pi_{k+1} \tau \xi_{k+1} - \tau h(\pi_{k+1}) - \beta(\pi_k \tau \xi_k - \tau h(\pi_k))] \right). \quad (65)$$

940 Using this inequality in q_{k+1} yields

$$943 \quad q_{k+1} = Q_\tau^{k+1} + \epsilon_{k+1}, \quad (66)$$

$$944 \quad = R + \gamma P(\pi_{k+1} Q_\tau^{k+1} - \tau h(\pi_{k+1})) + \epsilon_{k+1}, \quad (67)$$

$$946 \quad \stackrel{(i)}{\geq} R + \gamma P(\pi_{k+1} (q_k - \epsilon_k - \epsilon_{\Delta_k}) - \tau h(\pi_{k+1})) + \epsilon_{k+1}, \quad (68)$$

$$948 \quad \geq R + \gamma P \left(\frac{1}{1-\beta} [\pi_{k+1} \tau \xi_{k+1} - \tau h(\pi_{k+1}) - \beta(\pi_k \tau \xi_k - \tau h(\pi_k))] \right) + \epsilon_{k+1} - \gamma P_{k+1}(\epsilon_k + \epsilon_{\Delta_k}), \quad (69)$$

$$951 \quad = \frac{1}{1-\beta} (T_\tau^{k+1} \tau \xi_{k+1} - \beta T_\tau^k \tau \xi_k) + \epsilon_{k+1} - \gamma P_{k+1}(\epsilon_k + \epsilon_{\Delta_k}), \quad (70)$$

$$953 \quad = \frac{1}{1-\beta} (T_\tau^* \tau \xi_{k+1} - \beta T_\tau^* \tau \xi_k) + \epsilon_{k+1} - \gamma P_{k+1}(\epsilon_k + \epsilon_{\Delta_k}), \quad (71)$$

956 where for (i) we used Lemma 4.3 and the definition of q_k . Now using this inequality in the definition
957 of ξ_{k+1} gives

$$960 \quad \tau \xi_{k+1} = (1-\beta) \sum_{i=0}^k \beta^{k-i} q_i, \quad (72)$$

$$963 \quad \geq (1-\beta) \beta^k q_0 + (1-\beta) \sum_{i=1}^k \beta^{k-i} \left(\frac{1}{1-\beta} (T_\tau^* \tau \xi_i - \beta T_\tau^* \tau \xi_{i-1}) + \epsilon_i - \gamma P_i(\epsilon_{i-1} + \epsilon_{\Delta_{i-1}}) \right), \quad (73)$$

$$967 \quad = T_\tau^* \tau \xi_k - \beta^k T_\tau^* \xi_0 + (1-\beta) \sum_{i=0}^k \beta^{k-i} (\epsilon_i - \epsilon'_i) + (1-\beta) \beta^k Q_\tau^0, \quad (74)$$

970 with $\epsilon'_0 = 0$ and $\forall i > 0 : \epsilon'_i = \gamma P_i(I + \gamma P(I - \gamma P_i)^{-1}(\pi_{i-1} - \pi_i))\epsilon_{i-1}$. Letting $E_j :=$
971 $(1-\beta) \sum_{i=0}^j \beta^{j-i} (\epsilon_i - \epsilon'_i)$, $R_m := R_x + \gamma \tau \log |A|$ be an upper bound to $\|T_\tau^* \xi_0\|_\infty$ and $\bar{R} = \frac{R_m}{1-\gamma}$

972 be an upper bound to $\|Q_\tau^0\|_\infty$, we finally obtain
 973

$$974 \quad Q_\tau^* - \tau\xi_{k+1} \leq Q_\tau^* - T_\tau^*\tau\xi_k + \beta^k T_\tau^*\xi_0 - E_k + (1-\beta)\beta^k Q_\tau^0, \quad (75)$$

$$975 \quad \Rightarrow \|Q_\tau^* - \tau\xi_{k+1}\|_\infty \leq \|Q_\tau^* - T_\tau^*\tau\xi_k\|_\infty + \beta^k \|T_\tau^*\xi_0\|_\infty + \|E_k\|_\infty + (1-\beta)\beta^k \|Q_\tau^0\|_\infty, \quad (76)$$

$$977 \quad \leq \gamma \|Q_\tau^* - \tau\xi_k\|_\infty + \beta^k R_m + (1-\beta)\beta^k \bar{R} + \|E_k\|_\infty, \quad (77)$$

$$979 \quad \leq \gamma^{k+1} \|Q_\tau^*\|_\infty + (R_m + (1-\beta)\bar{R}) \sum_{i=0}^k \gamma^i \beta^{k-i} + \sum_{i=0}^k \gamma^i \|E_{k-i}\|_\infty, \quad (78)$$

$$982 \quad = \gamma^{k+1} \|Q_\tau^*\|_\infty + \frac{2-\gamma-\beta}{1-\gamma} R_m \sum_{i=0}^k \gamma^i \beta^{k-i} + \sum_{i=0}^k \gamma^i \|E_{k-i}\|_\infty \quad (79)$$

□

987 A.6 PROOF OF EQ. (14)

988 *Proof.* For $k = 0$,

$$990 \quad \xi_1 = \beta \times 0 + \alpha q_0 + \frac{\alpha \beta^M}{1 - \beta^M} (q_0 - 0), \quad (80)$$

$$993 \quad = \alpha \left(1 + \frac{\beta^M}{1 - \beta^M} \right) q_0, \quad (81)$$

$$995 \quad = \frac{\alpha}{1 - \beta^M} q_0. \quad (82)$$

997 If it is true for k , then
 998

$$999 \quad \xi_{k+1} = \beta \frac{\alpha}{1 - \beta^M} \sum_{i=0}^{M-1} \beta^i q_{k-1-i} + \alpha q_k + \frac{\alpha \beta^M}{1 - \beta^M} (q_k - q_{k-M}), \quad (83)$$

$$1002 \quad = \frac{\alpha}{1 - \beta^M} \sum_{i=0}^{M-2} \beta^{i+1} q_{k-1-i} + \frac{\alpha \beta^M}{1 - \beta^M} (q_{k-M} - q_{k-M}) + \frac{\alpha}{1 - \beta^M} q_k, \quad (84)$$

$$1005 \quad = \frac{\alpha}{1 - \beta^M} \sum_{i=0}^{M-1} \beta^i q_{k-i} \quad (85)$$

□

1010 A.7 PROOF OF THEOREM 5.1

1012 As with policy iteration, we first need a policy improvement lemma

1014 **Lemma A.1** (Approximate policy improvement of finite memory EPMD). *For any $k \geq 0$, $Q_\tau^{k+1} \geq Q_\tau^k - \gamma(I - \gamma P\pi_{k+1})^{-1}P[(\pi_{k+1} - \pi_k)(\epsilon_k + \Delta_k)]$, with $\Delta_k := \frac{\beta^M}{1 - \beta^M}(q_k - q_{k-M})$.*

1017 *Proof.* We can see the policy π_{k+1} as the maximizer of Eq. (9) if we would replace q_k with $q_k + \frac{\beta^M}{1 - \beta^M}(q_k - q_{k-M})$. From the non-negativity of the D_{KL} and the fact that $D_{\text{KL}}(\pi_k; \pi_k) = 0$ we have

$$1021 \quad \pi_k q_k - \tau h(\pi_k) \leq \pi_{k+1} q_k - \tau h(\pi_{k+1}) + \frac{\beta^M}{1 - \beta^M} (\pi_{k+1} - \pi_k) (q_k - q_{k-M}), \quad (86)$$

$$1024 \quad \Rightarrow \pi_k Q_\tau^k - \tau h(\pi_k) \leq \pi_{k+1} Q_\tau^k - \tau h(\pi_{k+1}) + \frac{\beta^M}{1 - \beta^M} (\pi_{k+1} - \pi_k) (q_k - q_{k-M}) + (\pi_{k+1} - \pi_k) \epsilon_k. \quad (87)$$

1026 Let $\Delta_k := \frac{\beta^M}{1-\beta^M} (q_k - q_{k-M})$. Writing down the (matrix) definition of Q_τ^{k+1} and Q_τ^k gives
 1027

$$1028 \quad Q_\tau^{k+1} - Q_\tau^k = \gamma P(\pi_{k+1} Q_\tau^{k+1} - \tau h(\pi_{k+1})) - \gamma P(\pi_k Q_\tau^k - \tau h(\pi_k)), \quad (88)$$

$$1029 \quad \stackrel{(i)}{\geq} \gamma P(\pi_{k+1} Q_\tau^{k+1} - \tau h(\pi_{k+1})) - \gamma P(\pi_{k+1} Q_\tau^k - \tau h(\pi_{k+1}) + (\pi_{k+1} - \pi_k)(\epsilon_k + \Delta_k)), \quad (89)$$

$$1030 \quad = \gamma P \pi_{k+1} (Q_\tau^{k+1} - Q_\tau^k) - \gamma P [(\pi_{k+1} - \pi_k)(\epsilon_k + \Delta_k)], \quad (90)$$

$$1031 \quad \Leftrightarrow Q_\tau^{k+1} - Q_\tau^k \stackrel{(ii)}{\geq} -\gamma (I - \gamma P \pi_{k+1})^{-1} P [(\pi_{k+1} - \pi_k)(\epsilon_k + \Delta_k)]. \quad (91)$$

1032 where in (i) we have used the fact that P is a probability matrix with only positive entries, and
 1033 similarly in (ii) for the matrix $(I - \gamma P \pi_{k+1})^{-1} = \sum_{i=0}^{\infty} (\gamma P \pi_{k+1})^i$. \square
 1034

1035 We are now ready to prove the main theorem

1036 *Proof.* The beginning of the proof is similar to vanilla entropy regularized policy/value iteration
 1037

$$1038 \quad \pi_{k+1} q_k - \tau h(\pi_{k+1}) = \pi_{k+1} \left(\frac{1}{1-\beta} (\tau \xi_{k+1} - \beta \tau \xi_k) \right) - \tau h(\pi_{k+1}) - \pi_{k+1} \Delta_k, \quad (92)$$

$$1039 \quad = \pi_{k+1} \left(\frac{1}{1-\beta} [\tau \xi_{k+1} - \tau h(\pi_{k+1}) - \beta (\tau \xi_k - \tau h(\pi_{k+1}))] \right) - \pi_{k+1} \Delta_k, \quad (93)$$

$$1040 \quad \stackrel{(i)}{\geq} \frac{1}{1-\beta} [\pi_{k+1} \tau \xi_{k+1} - \tau h(\pi_{k+1}) - \beta (\pi_k \tau \xi_k - \tau h(\pi_k))] - \pi_{k+1} \Delta_k. \quad (94)$$

1041 Using this inequality in q_{k+1} yields

$$1042 \quad q_{k+1} = Q_\tau^{k+1} + \epsilon_{k+1}, \quad (95)$$

$$1043 \quad = R + \gamma P(\pi_{k+1} Q_\tau^{k+1} - \tau h(\pi_{k+1})) + \epsilon_{k+1}, \quad (96)$$

$$1044 \quad \stackrel{(i)}{\geq} R + \gamma P(\pi_{k+1} (q_k - \epsilon_k - \gamma \mu_{k+1} P(\pi_{k+1} - \pi_k)(\epsilon_k + \Delta_k)) - \tau h(\pi_{k+1})) + \epsilon_{k+1}, \quad (97)$$

$$1045 \quad \geq R + \gamma P(\pi_{k+1} (q_k - \epsilon_k - \gamma \mu_{k+1} P(\pi_{k+1} - \pi_k)(\epsilon_k + \Delta_k)) - \tau h(\pi_{k+1})) + \epsilon_{k+1}. \quad (98)$$

1046 where for (i) we used Lemma 4.3 and the definition of q_k . Using Eq. (94) on the following terms
 1047 gives

$$1048 \quad R + \gamma P(\pi_{k+1} q_k - \tau h(\pi_{k+1})) \geq R + \gamma P \left(\frac{1}{1-\beta} [\pi_{k+1} \tau \xi_{k+1} - \tau h(\pi_{k+1}) - \beta (\pi_k \tau \xi_k - \tau h(\pi_k))] - \pi_{k+1} \Delta_k \right), \quad (99)$$

$$1049 \quad = \frac{1}{1-\beta} (T_\tau^{k+1} \tau \xi_{k+1} - \beta T_\tau^k \tau \xi_k) - \gamma P \pi_{k+1} \Delta_k, \quad (100)$$

$$1050 \quad = \frac{1}{1-\beta} (T_\tau^* \tau \xi_{k+1} - \beta T_\tau^* \tau \xi_k) - \gamma P \pi_{k+1} \Delta_k. \quad (101)$$

1051 Completing with the rest of the terms finally gives

$$1052 \quad q_{k+1} \geq \frac{1}{1-\beta} (T_\tau^* \tau \xi_{k+1} - \beta T_\tau^* \tau \xi_k) - \gamma P \pi_{k+1} (I + \gamma \mu_{k+1} P(\pi_{k+1} - \pi_k)) (\epsilon_k + \Delta_k) + \epsilon_{k+1}. \quad (102)$$

$$1053 \quad \geq \frac{1}{1-\beta} (T_\tau^* \tau \xi_{k+1} - \beta T_\tau^* \tau \xi_k) - \gamma P \pi_{k+1} (I + \gamma \mu_{k+1} P(\pi_{k+1} - \pi_k)) (\epsilon_k + \Delta_k) + \epsilon_{k+1}. \quad (103)$$

1080 Let $A_{k+1} = \gamma P \pi_{k+1} (I + \gamma \mu_{k+1} P (\pi_{k+1} - \pi_k))$ using this inequality in the definition of ξ_{k+1} gives
 1081

$$1082 \tau \xi_{k+1} = \frac{1-\beta}{1-\beta^M} \sum_{i=0}^{M-1} \beta^i q_{k-i}, \quad (104)$$

$$1083 \geq \frac{1-\beta}{1-\beta^M} \sum_{i=0}^{M-1} \beta^i \left(\frac{1}{1-\beta} (T_\tau^* \tau \xi_{k-i} - \beta T_\tau^* \tau \xi_{k-i-1}) - A_{k-i} (\epsilon_{k-i-1} + \Delta_{k-i-1}) + \epsilon_{k-i} \right), \\ 1084 \quad (105)$$

$$1085 = \frac{1}{1-\beta^M} T_\tau^* \tau \xi_k - \frac{\beta^M}{1-\beta^M} T_\tau^* \xi_{k-M} + \frac{1-\beta}{1-\beta^M} \sum_{i=0}^{M-1} \beta^i (\epsilon_{k-i} - A_{k-i} (\epsilon_{k-i-1} + \Delta_{k-i-1})). \\ 1086 \quad (106)$$

1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094 Letting $E_j := \frac{1-\beta}{1-\beta^M} \sum_{i=0}^{M-1} \beta^i (\epsilon_{k-i} - A_{k-i} \epsilon_{k-i-1})$, $\Delta_q^k = \frac{1-\beta}{1-\beta^M} \sum_{i=0}^{M-1} \beta^i A_{k-i} \Delta_{k-i-1}$, $R_m :=$
 1095 $R_x + \gamma \tau \log |A|$ be an upper bound to $\|T_\tau^* \xi_0\|_\infty$ and $\bar{R} = \frac{R_m}{1-\gamma}$ be an upper bound to $\|Q_\tau^0\|_\infty$, we
 1096 finally obtain
 1097

$$1098 Q_\tau^* - \tau \xi_{k+1} \leq Q_\tau^* - \frac{1}{1-\beta^M} T_\tau^* \tau \xi_k + \frac{\beta^M}{1-\beta^M} T_\tau^* \xi_{k-M} - E_k - \Delta_q^k, \quad (107)$$

$$1100 \Rightarrow \|Q_\tau^* - \tau \xi_{k+1}\|_\infty \leq \frac{\|Q_\tau^* - T_\tau^* \tau \xi_k\|_\infty + \beta^M \|Q_\tau^* - T_\tau^* \tau \xi_{k-M}\|_\infty}{1-\beta^M} + \|\Delta_q^k\|_\infty + \|E_k\|_\infty, \\ 1101 \quad (108)$$

$$1102 \leq \gamma \frac{\|Q_\tau^* - \tau \xi_k\|_\infty + \beta^M \|Q_\tau^* - \tau \xi_{k-M}\|_\infty}{1-\beta^M} + \|\Delta_q^k\|_\infty + \|E_k\|_\infty \quad (109)$$

1103
 1104 Let us now look into the term $\|\Delta_q^k\|_\infty$, and split it into policy evaluation error and distance to Q_τ^*
 1105

$$1106 \|\Delta_q^k\|_\infty = \left\| \frac{1-\beta}{1-\beta^M} \sum_{i=0}^{M-1} \beta^i A_{k-i} \Delta_{k-i-1} \right\|_\infty, \quad (110)$$

$$1107 = \left\| \frac{1-\beta}{1-\beta^M} \sum_{i=0}^{M-1} \beta^i A_{k-i} \frac{\beta^M}{1-\beta^M} (q_{k-i-1} - q_{k-i-1-M}) \right\|_\infty, \quad (111)$$

$$1108 = \left\| \frac{\beta^M (1-\beta)}{(1-\beta^M)^2} \sum_{i=0}^{M-1} \beta^i A_{k-i} (Q_{k-i-1} - Q_{k-i-1-M} + \epsilon_{k-i-1} - \epsilon_{k-i-1-M}) \right\|_\infty, \\ 1109 \quad (112)$$

$$1110 \leq \left\| \frac{\beta^M (1-\beta)}{(1-\beta^M)^2} \sum_{i=0}^{M-1} \beta^i A_{k-i} (\epsilon_{k-i-1} - \epsilon_{k-i-1-M}) \right\|_\infty \\ 1111 + \left\| \frac{\beta^M (1-\beta)}{(1-\beta^M)^2} \sum_{i=0}^{M-1} \beta^i A_{k-i} (Q_{k-i-1} - Q_{k-i-1-M}) \right\|_\infty. \quad (113)$$

1112 To bound the infinite norm of A_k , we note that $(1-\gamma)\mu_k$ is a probability matrix (the state distribution
 1113 induced by policy π_k). Using the sub-additivity of norms and the fact that the multiplication of
 1114 probability matrices is a probability matrix with infinite norm equal to 1, we have
 1115

$$1116 \|A_k\|_\infty = \left\| \gamma P \pi_{k+1} \left(I + \frac{\gamma}{1-\gamma} ((1-\gamma)\mu_{k+1}) P (\pi_{k+1} - \pi_k) \right) \right\|_\infty, \quad (114)$$

$$1117 \leq \gamma + \frac{2\gamma^2}{1-\gamma}. \quad (115)$$

1134 Looking now at the rightmost inner sum in Eq. (113) gives
 1135

$$1136 \quad \left\| \sum_{i=0}^{M-1} \beta^i A_{k-i} (Q_{k-i-1} - Q_{k-i-1-M}) \right\|_{\infty} \leq \sum_{i=0}^{M-1} \beta^i \|A_{k-i} (Q_{k-i-1} - Q_{k-i-1-M})\|_{\infty}, \quad (116)$$

$$1139 \quad \leq \left(\gamma + \frac{2\gamma^2}{1-\gamma} \right) \sum_{i=0}^{M-1} \beta^i \|Q_{k-i-1} - Q_{k-i-1-M}\|_{\infty}, \\ 1140 \quad (117)$$

$$1143 \quad \leq \left(\gamma + \frac{2\gamma^2}{1-\gamma} \right) \sum_{i=0}^{M-1} \beta^i (\|Q_{\tau}^* - Q_{k-i-1}\|_{\infty} + \|Q_{\tau}^* - Q_{k-i-1-M}\|_{\infty}), \\ 1144 \quad (118)$$

$$1147 \quad \stackrel{(i)}{\leq} \frac{2}{1-\gamma} \left(\gamma + \frac{2\gamma^2}{1-\gamma} \right) \sum_{i=0}^{M-1} \beta^i (\|Q_{\tau}^* - \tau \xi_{k-i-1}\|_{\infty} + \|Q_{\tau}^* - \tau \xi_{k-i-1-M}\|_{\infty}), \\ 1148 \quad (119)$$

1151 where (i) is due to Lemma 4.1. Let $z_k = \|Q_{\tau}^* - \tau \xi_k\|_{\infty}$ and T_k grouping all the error terms
 1152

$$1153 \quad T_k = \|E_k\|_{\infty} + \frac{\beta^M(1-\beta)}{(1-\beta^M)^2} \left\| \sum_{i=0}^{M-1} \beta^i A_{k-i} (\epsilon_{k-i-1} - \epsilon_{k-i-1-M}) \right\|_{\infty}. \quad (120)$$

1156 Putting everything together we have
 1157

$$1158 \quad z_{k+1} \leq \gamma \frac{z_k + \beta^M z_{k-M}}{1-\beta^M} + \frac{\beta^M(1-\beta)}{(1-\beta^M)^2} \frac{2(\gamma + \gamma^2)}{(1-\gamma)^2} \sum_{i=0}^{M-1} \beta^i (z_{k-i-1} + z_{k-i-1-M}) + T_k. \quad (121)$$

1161 Let us first study the sequence $\{z_k\}$ without policy evaluation errors and try to upper bound it with
 1162 a simpler sequence. We define the sequence $\{x_k\}$ for all integers k by
 1163

$$1164 \quad x_k = \|Q_{\tau}^*\|_{\infty}, \text{ for all } k \leq 0, \quad (122)$$

1165 and for $k \geq 0$ we let
 1166

$$1167 \quad x_{k+1} = \gamma \frac{x_k + \beta^M x_{k-M}}{1-\beta^M} + \frac{\beta^M(1-\beta)}{(1-\beta^M)^2} \frac{2(\gamma + \gamma^2)}{(1-\gamma)^2} \sum_{i=0}^{M-1} \beta^i (x_{k-i-1} + x_{k-i-1-M}). \quad (123)$$

1170 We first find a condition for which the sequence is strictly decreasing starting from $k \geq 0$. For $k = 0$
 1171 we have that
 1172

$$1173 \quad x_1 = \left(\gamma \frac{1+\beta^M}{1-\beta^M} + \frac{\beta^M}{1-\beta^M} \frac{4(\gamma + \gamma^2)}{(1-\gamma)^2} \right) x_0. \quad (124)$$

1175 This will be strictly decreasing if
 1176

$$1177 \quad \gamma \frac{1+\beta^M}{1-\beta^M} + \frac{\beta^M}{1-\beta^M} \frac{4(\gamma + \gamma^2)}{(1-\gamma)^2} < 1, \quad (125)$$

$$1179 \quad \Leftrightarrow \gamma(1+\beta^M) + \beta^M \frac{4(\gamma + \gamma^2)}{(1-\gamma)^2} < (1-\beta^M), \quad (126)$$

$$1182 \quad \Leftrightarrow \left(1 + \gamma + \frac{4(\gamma + \gamma^2)}{(1-\gamma)^2} \right) \beta^M < 1 - \gamma, \quad (127)$$

$$1184 \quad \Leftrightarrow \log \left(1 + \gamma + \frac{4(\gamma + \gamma^2)}{(1-\gamma)^2} \right) + M \log \beta < \log(1 - \gamma), \quad (128)$$

$$1186 \quad \Leftrightarrow M > \log \frac{(1-\gamma)^3}{(1+\gamma)(1-\gamma)^2 + 4(\gamma + \gamma^2)} / \log \beta. \quad (129)$$

As it is true for $k = 0$ and the sequence is constant for $k < 0$, assume now that the sequence is strictly decreasing from there on, up to some positive index k . Then since all the weights of past terms are positive, we can replace all terms by their predecessors and we immediately have that

$$x_{k+1} < \gamma \frac{x_{k-1} + \beta^M x_{k-M-1}}{1 - \beta^M} + \frac{\beta^M(1 - \beta)}{(1 - \beta^M)^2} \frac{2(\gamma + \gamma^2)}{(1 - \gamma)^2} \sum_{i=0}^{M-1} \beta^i (x_{k-i-2} + x_{k-i-2-M}), \quad (130)$$

$$= x_k. \quad (131)$$

Thus the sequence $\{x_k\}$ is non-increasing for all k if M satisfies the inequality in (129). For such values of M we will now find an upper bounding sequence that has a simpler geometric form. Letting $c = \frac{\beta^M}{1 - \beta^M} \left(\frac{4(\gamma + \gamma^2)}{(1 - \gamma)^2} + \gamma \right)$, and since the sequence is non-decreasing, we have for all $k \geq 0$ that

$$x_{k+1} \leq \frac{\gamma}{1 - \beta^M} x_k + c x_{k-2M}. \quad (132)$$

Let us now try to find a rate $d \in (0, 1)$ such that for all k we have

$$x_k \leq d^k x_0. \quad (133)$$

For all $k \leq 0$, the above inequality holds for any $d \in (0, 1)$. Now, if the upper bounding is true up to some index k then using Eq. (132) we have

$$x_{k+1} \leq \left(\frac{\gamma}{1 - \beta^M} d^k + c d^{k-2M} \right) x_0, \quad (134)$$

$$= d^k \left(\frac{\gamma}{1 - \beta^M} + c d^{-2M} \right) x_0. \quad (135)$$

The smallest acceptable d would be one such that

$$\frac{\gamma}{1 - \beta^M} + c d^{-2M} = d, \quad (136)$$

$$\Leftrightarrow d^{2M+1} - \frac{\gamma}{1 - \beta^M} d^{2M} - c = 0. \quad (137)$$

Let $f(d) = d^{2M+1} - \frac{\gamma}{1 - \beta^M} d^{2M} - c$, we have that $f(\frac{\gamma}{1 - \beta^M}) = -c < 0$ and that $f(1) = 1 - \frac{\gamma}{1 - \beta^M} - c > 0$ from the above condition on M . Since f is continuous and increasing between these two values it accepts a unique root $d_0 \in (\frac{\gamma}{1 - \beta^M}, 1)$ which would satisfy the sought geometric sequence upper bound for all k .

We now turn to the part of the sequence of z_k that depends on the error terms T_k . Define for $k \leq 0$

$$y_k = 0, \quad (138)$$

and for $k \geq 0$

$$y_{k+1} = \gamma \frac{y_k + \beta^M y_{k-M}}{1 - \beta^M} + \frac{\beta^M(1 - \beta)}{(1 - \beta^M)^2} \frac{2(\gamma + \gamma^2)}{(1 - \gamma)^2} \sum_{i=0}^{M-1} \beta^i (y_{k-i-1} + y_{k-i-1-M}) + T_k. \quad (139)$$

Let $\bar{T} = \max_{0 \leq i \leq k} T_i$, and $\gamma_M = \frac{\gamma}{1 - \beta^M}$. Then we have that

$$y_k \leq \frac{\bar{T}}{1 - (\gamma_M + c)}. \quad (140)$$

Indeed, it is true for $k \leq 0$, and if it is true up to k then

$$y_{k+1} \leq (\gamma_M + c) \frac{\bar{T}}{1 - (\gamma_M + c)} + T_k, \quad (141)$$

$$\leq (\gamma_M + c) \frac{\bar{T}}{1 - (\gamma_M + c)} + \bar{T}, \quad (142)$$

$$= \frac{\bar{T}}{1 - (\gamma_M + c)}. \quad (143)$$

1242 Replacing in Eq. (139), we have
 1243

$$1244 \quad y_{k+1} \leq \gamma_M y_k + c \frac{\bar{T}}{1 - (\gamma_M + c)} + T_k, \quad (144)$$

$$1246 \quad \leq \gamma_M^{k+1} y_0 + \sum_{i=0}^k \gamma_M^i \left(T_{k-i} + c \frac{\bar{T}}{1 - \gamma_M - c} \right), \quad (145)$$

$$1249 \quad = \sum_{i=0}^k \gamma_M^i \left(T_{k-i} + c \frac{\bar{T}}{1 - \gamma_M - c} \right). \quad (146)$$

1252 Finally, because the upper bound z_{k+1} in Eq. (121) has linear dependencies on previous z_i terms
 1253 ($i \leq k$), we immediately have that $z_k \leq x_k + y_k$. Indeed, it is true for $k = 0$, since $z_0 = \|Q_\tau^*\|_\infty =$
 1254 $x_0 + y_0$. And if we assume that it is true for k , using Eq. (121), we immediately have that it is true
 1255 for $k + 1$. Thus

$$1256 \quad z_{k+1} \leq x_{k+1} + y_{k+1}, \quad (147)$$

$$1258 \quad \leq d_0^{k+1} \|Q_\tau^*\|_\infty + \sum_{i=0}^k \gamma_M^i \left(T_{k-i} + c \frac{\bar{T}}{1 - \gamma_M - c} \right). \quad (148)$$

□

1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

Figure 3: Evaluation of StaQ for different memory sizes M , on MuJoCo and MinAtar environments. Results show mean and 95% confidence interval for 20 seeds.

Figure 4: Box plots of final policy performance of StaQ for different memory sizes M , on MuJoCo and MinAtar environments for 20 seeds.

B EXPERIMENTAL RESULTS

B.1 THE IMPACT OF THE MEMORY-SIZE M

Figure 3 shows the mean and 95% confidence interval of the performance of StaQ for different choices of M on MuJoCo and MinAtar tasks. Figure 4 shows the distribution of the final policy performance across seeds for each algorithm and task. These results are averaged over 20 seeds. To provide higher statistical confidence of our results, for Humanoid and Acrobot, we show the mean and 95% confidence intervals in Table 2 and 3, evaluated over 30 seeds. Setting $M = 1$ corresponds to no KL-regularization as discussed in App. C.1 and can be seen as an adaptation of SAC to discrete action spaces. $M = 1$ is unstable on both Hopper and Walker. Adding KL-regularization and averaging over at least 50 Q-functions greatly helps to stabilize performance except on the Humanoid task and some MinAtar tasks, where $M = 50$ was still unstable compared to exact EPMD. In general we note diminishing returns in increasing M , with $M = 100$ matching the performance of exact EPMD in most environments and $M = 300$ being virtually indistinguishable from exact EPMD. Compared to natural policy gradient, with and without line search, performance is generally improved across all tasks, making StaQ a potentially better alternative to natural policy gradient, at least on environments where Q-function computations can be efficiently batched.

	M=1	M=50	M=100	M=300	M=500	Exact EPMD
Humanoid-v4	4272 ± 282	4600 ± 367	4795 ± 215	5143 ± 90	5102 ± 132	5166 ± 108

Table 2: Performance on Humanoid for various values of M . Mean and 95% confidence interval, across 30 seeds.

	M=1	M=5	M=50	M=100	M=300	M=500
Acrobot-v4	-62.69 ± 0.48	-62.69 ± 0.29	-62.44 ± 0.13	-62.49 ± 0.12	-62.54 ± 0.17	-62.34 ± 0.08

Table 3: Performance on Acrobot for various values of M . Mean and 95% confidence interval, across 30 seeds.

B.2 HYPERPARAMETER OF NATGRAD + LS

The baseline “NatGrad + LS” introduces an additional hyperparameter ϵ_{KL} compared to the standard PMD setting that StaQ follows. To properly set this hyperparameter we perform a preliminary study using 3 seeds and a subset of the MuJoCo and MinAtar tasks. The results in Figure 5 show that on a few tasks, the value of the ϵ_{KL} does not impact greatly the performance, but when there are significant differences between the two algorithms, $\epsilon_{KL} = 0.001$ is often better. As such, we use $\epsilon_{KL} = 0.001$ for all experiments involving “NatGrad + LS”.

B.3 COMPARISON WITH DEEP RL BASELINES

We summarize all performance comparisons with the deep RL baselines in Fig. 6 and Table 4. We provide a discussion of the MountainCar environment and some of the challenges of exploration in an entropy-regularized setting in App. B.5.

	StaQ (M=300)	M-DQN	DQN	PPO	TRPO
CartPole-v1	500	457	411	500	500
Acrobot-v1	-62	-63	-63	-63	-64
LunarLander-v2	285	88	-317	227	222
MountainCar-v0	-200	-100	-110	-141	-118
Hopper-v4	3196	2600	2279	2411	2672
Walker2d-v4	3550	1364	1424	2799	3010
HalfCheetah-v4	3061	2098	2294	2001	1731
Ant-v4	2910	1776	1871	2277	2452
Humanoid-v4	5273	2580	2887	588	700
MinAtar/Asterix-v1	46	31	19	9	23
MinAtar/Breakout-v1	48	55	34	10	15
MinAtar/Freeway-v1	62	59	54	60	47
MinAtar/Seaquest-v1	114	51	14	5	7
MinAtar/SpaceInvaders-v1	242	116	95	92	94

Table 4: Final performance on all environments.

1420
1421 Figure 5: Mean and standard deviation of policy performance of “NatGrad + LS” baseline for two
1422 values of ϵ_{KL} averaged over 3 seeds.
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452

1453
1454 Figure 6: Policy performance of StaQ ($M = 300$) vs deep RL baselines across all environments.
1455 Results showing the mean and standard deviation across 10 seeds.
1456
1457

1458
1459

B.4 STABILITY PLOTS (VARIATION WITHIN INDIVIDUAL RUNS)

1460
1461
1462
1463
1464
1465

In this section we provide plots that demonstrate the intra seed oscillations. In Fig. 7-8 we plot the returns of the first three seeds of the full results (shown in Fig. 6). At each timestep, the returns for each individual seed are normalised by subtracting and then dividing by the mean across all seeds. In addition to the first three seeds, the shaded regions indicate one-sided tolerance intervals such that at least 95% of the population measurements are bounded by the upper or lower limit, with confidence level 95% (Krishnamoorthy & Mathew, 2009).

1466
1467
1468
1469
1470
1471
1472
1473
1474

We can see from Fig. 7-8 that Approximate Policy Iteration (API) algorithms (StaQ with $M=300$, TRPO, PPO) generally exhibit less variation within runs than Approximate Value Iteration (AVI) ones (DQN, M-DQN). In simple environments, such as CartPole, all three API algorithms have stable performance, but on higher dimensional tasks, only StaQ retains a similar level of stability while maintaining good performance. This is especially striking on Hopper, where runs show comparatively little variation within iterations while having the highest average performance, as shown in Fig. 6. We attribute this improved stability in the performance of the evaluation policy by the averaging over a very large number of Q-functions ($M = 300$) of StaQ, which reduces the infamous performance oscillation of deep RL algorithms in many cases.

1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
15041505
1506
1507
1508
1509
1510
1511

Figure 7: Stability plots for MuJoCo environments, plotting normalized performance of the first three individual runs for each algorithm. See text for more details. Figures continue on the next page.

Figure 8: Stability plots for MinAtar environments, plotting normalized performance of the first three individual runs for each algorithm. See text for more details.

Figure 9: **Left:** Frequency of non-zero rewards of a uniform policy with sticky actions for different choice of Poisson rate λ on MountainCar over 5M timesteps. **Middle:** Entropy of learned policies under different behavior policies. Entropy of the uniform (Max entropy) policy plotted for reference. **Right:** Policy returns for StaQ with different behavior policies and deep RL baselines on MountainCar. Adding sticky actions to StaQ’s behavior policy fixes its performance on this task.

B.5 ENTROPY REGULARIZATION DOES NOT SOLVE EXPLORATION

StaQ and exact EPMD achieve strong performance on all 14 environments except on MountainCar where they fail to learn. In this section, we perform additional experiments to understand the failure of StaQ on MountainCar. In short, it appears that the initial uniform policy—which has maximum entropy—acts as a strong (local) attractor for this task: StaQ starts close to the uniform policy, and exploration with this policy does not generate a reward signal in MountainCar. As StaQ does not observe a reward signal in early training, it quickly converges to the uniform policy which has maximum entropy, but also never generates a reward signal. Indeed, if we unroll a pure uniform policy on MountainCar for 5M steps, we will never observe a reward.

However, StaQ is not limited to a specific choice of behavior policy, and choosing a policy that introduces more correlation between adjacent actions, like a simple “sticky” policy allows StaQ to solve MountainCar. This policy samples an action from π_k and applies it for a few consecutive steps, where a number of steps is drawn randomly from $\text{Poisson}(\lambda)$ distribution (in our experiments with StaQ we fix the rate of Poisson distribution at $\lambda = 10$). In Fig. 9, we can see that StaQ with the same hyperparameters for classical environments (see Table 6) and a “sticky” behavior policy manages to find a good policy for MountainCar matching the best baseline. The final policy demonstrates much lower entropy compared to the default policy that fails at learning for this environment. We focused on this paper on the benefits of entropy regularization in averaging evaluation error. While it is believed that entropy might help with exploration, these observations are a good reminder that entropy regularization remains a heuristic exploration strategy that does not replace a theoretically grounded strategy, which is beyond the scope of this paper that only focuses on using entropy regularization to reduce the error floor of approximate policy iteration when using function approximators.

C ADDITIONAL ACTOR-CRITIC BASELINES

C.1 RELATION BETWEEN STAQ AND SOFT ACTOR-CRITIC

In this section, we explain the relation between Soft Actor-Critic (SAC, Haarnoja et al. (2018)) and both M-DQN (Vieillard et al., 2020b) and StaQ with $M = 1$. SAC is not directly used as a baseline because SAC is not compatible with discrete action spaces. However, M-DQN can be seen as an adaptation of SAC to discrete action spaces with an additional KL-divergence regularizer. Please see the discussion in Vieillard et al. (2020b) on page 3, between Eq. (1) and (2). Vieillard et al. (2020b) also describe Soft-DQN in Eq. (1) as a straightforward discrete-action version of SAC, that can be obtained from M-DQN by simply setting the KL-divergence regularization weight to zero. Soft-DQN was not included as a baseline because the results of Vieillard et al. (2020b) suggest that M-DQN generally outperforms Soft-DQN. **Our results already suggest that adding a D_{KL} regularizer generally improves performance, and the results in the next section further confirm this.**

We also note that by setting $M = 1$ in StaQ, we remove the KL-divergence regularization and only keep the entropy bonus. This baseline can also be seen as an adaptation of SAC to discrete action spaces: indeed, if we set $M = 1$ in Eq. (2) we recover the policy logits

$$\xi_{k+1} = \frac{\alpha}{1 - \beta^M} \sum_{i=0}^{M-1} \beta^i Q_\tau^{k-i} \quad (149)$$

$$= \frac{\alpha}{1 - \beta} Q_\tau^k \quad (150)$$

$$= \frac{Q_\tau^k}{\tau}, \quad (151)$$

where the last line is due to $\alpha\tau = 1 - \beta$. This results in a policy of the form $\pi_{k+1} \propto \exp\left(\frac{Q_\tau^k}{\tau}\right)$. Meanwhile, for SAC, the actor network is obtained by minimizing the following problem (Eq. 14 in Haarnoja et al. (2018)) for states sampled from some replay buffer \mathcal{D}

$$\pi_{k+1} = \arg \min_{\pi} \mathbb{E}_{s \sim \mathcal{D}} \left[\text{KL} \left(\pi(s) \middle| \frac{\exp\left(\frac{Q_\tau^k(s)}{\tau}\right)}{Z_{\text{norm.}}} \right) \right] \quad (152)$$

However, in the discrete action setting, we can sample directly from $\exp\left(\frac{Q_\tau^k}{\tau}\right)$ —which is the minimizer of the above KL-divergence term—and we do not need an explicit actor network. As such StaQ with $M = 1$ could be seen as an adaptation of SAC to discrete action spaces. **However, we discuss next a method with an explicit actor that is even closer to SAC.**

C.2 ACTOR-CRITIC POLICY MIRROR DESCENT METHODS

We introduce now several additional actor-critic baselines that can be derived from the entropy regularized PMD update in Eq. 9. As discussed in the previous section, in the absence of a D_{KL} regularizer, the solution of the policy update problem is $\exp\left(\frac{Q_\tau^k}{\tau}\right)$, which corresponds to StaQ with $M = 1$ in our experiments. While we can sample directly from this policy, we consider also an actor-critic version thereof that updates the actor by attempting to solve Eq. 152 via gradient descent, resulting in an even closer baseline to SAC. We label this baseline **AC-NoKL**.

Next, if we add D_{KL} regularization to the policy update, the entropy regularized PMD solution becomes $\pi_{k+1} \propto \pi_k^\beta \exp(\alpha Q_\tau^k)$. Tracking this recursive policy definition exactly results in an infinite sum, but we can approximate $\pi_k^\beta \exp(\alpha Q_\tau^k)$ with an actor network. Specifically, we consider a second baseline inspired by ECPO (Mei et al., 2019) that advocates for minimizing the M-Projection between the actor and the PMD solution

$$\pi_{k+1} = \arg \min_{\pi} \mathbb{E}_{s \sim \mathcal{D}} \left[\text{KL} \left(\frac{\pi_k^\beta \exp(\alpha Q_\tau^k)}{Z_{\text{norm.}}} \middle| \pi(s) \right) \right], \quad (153)$$

where states are again sampled from a replay buffer \mathcal{D} . The authors of ECPO argue that the M-Projection will better preserve the support of the distribution and prevent the premature elimination of actions during exploration. We will label this baseline **AC-MProj**.

Finally, we consider an actor-critic baseline inspired by MDPO (Tomar et al., 2022) that optimizes a state averaged version of the entropy regularized PMD update, i.e.

$$\pi_{k+1} = \arg \max_{\pi} \mathbb{E}_{s \sim \mathcal{D}} [Q_\tau^k(s) \cdot \pi(s) - \tau h(\pi(s)) - \eta D_{\text{KL}}(\pi(s); \pi_k(s))], \quad (154)$$

by performing a few gradient steps over the above objective. Unlike ECPO, MDPO skips the closed form solution and optimizes directly the entropy and D_{KL} regularized objective by gradient ascent. We will call this baseline **AC-DirectOpt**. An important parameter for MDPO and ECPO is m , the number of gradient steps that are used to update the actor. Before performing the full scale evaluation of AC-DirectOpt and AC-MProj—the two AC methods following the updates of MDPO and ECPO respectively, we first perform a 3 seeds hyper-parameter sensitivity analysis w.r.t. m on 4 MinAtar tasks. Results show in Fig. 10 and Fig. 11 that on some tasks, this parameter is

Figure 10: Sensitivity of AC-DirectOpt to the number of gradient steps performed to update the actors. Plots show mean and std. deviation over 3 seeds. See App. C.2 for details.

Figure 11: Sensitivity of AC-MProj to the number of gradient steps performed to update the actors. Plots show mean and std. deviation over 3 seeds. See App. C.2 for details.

actually not very crucial, but on some other tasks, using more gradient steps for the actor seems to improve performance. As such, for the remained of this section, we will use $m = 5000$ for both AC-DirectOpt and AC-MProj, which corresponds to performing one actor gradient update per time-step in the environment. This is the same setting as in SAC, and we will use the same number of actor updates for the AC-NoKL baseline.

We now perform a 20 seeds comparisons on all 5 MinAtar tasks between StaQ and the three AC baselines discussed above, isolating again as in the main experiment the policy update from the rest of the RL components that are kept identical. Fig. 12 shows the performance of the current policy evaluated every 200K time-steps using 25 rollouts, Fig. 13 shows the distribution of final policy performance, and Fig. 14 shows aggregate results on the 5 tasks. As can be seen, AC-DirectOpt and AC-MProj being approximations of Exact PMD, end-up having worse performance on several tasks. Comparing the AC methods between themselves, AC-DirectOpt and AC-MProj have close performance on the aggregate metrics, while AC-NoKL lags behind the other two and shows again the benefits of D_{KL} regularization on policy update. Compared to StaQ, the performance of the D_{KL} regularized AC methods (i.e. AC-DirectOpt and AC-MProj) is between that of StaQ with $M = 1$ and $M = 50$, while AC-NoKL performs worse than $M = 1$. The improved performance of StaQ with higher M comes at little performance cost as can be seen in Table 5, where the run time remains close to that of $M = 1$, whereas all three AC methods have to perform double the amount of gradient steps to update the actor in addition to the critic, resulting in a 35 to 45% longer run time than StaQ with $M = 1$.

D HYPERPARAMETERS

Here, we provide the full list of hyperparameters used in our experiments². StaQ’s hyperparameters are listed in Table 6, while the hyperparameters for our baselines are provided in Tables 7-9. For TRPO and PPO, we use the implementation provided in `stable-baselines3` (Raffin et al., 2021), while we used our in-house PyTorch implementation of (M)-DQN³.

To account for the different scales of the reward between environments, we apply a different reward scaling to the Classic/MuJoCo environments and MinAtar. Note that this is equivalent to inverse-scaling the entropy weight τ and KL weight η , ensuring that ξ_k is of the same order of magnitude for all environments. To account for the varying action dimension $|A|$ of the environments, we set the *scaled entropy coefficient* $\bar{\tau}$ as a hyperparameter, defined by $\bar{\tau} = \tau \log |A|$, rather than directly

²Code is provided in the supplemental zip file, and will be released to an open-source repository upon publication.

³We will add the link to the in-house library upon publication.

1728 Table 5: Runtime of StaQ and AC PMD baselines on MinAtar/SapceInvaders-v1 on an NVIDIA
 1729 Tesla V100 GPU.

Figure 12: Policy evaluations during training of StaQ with different values of M and actor-critic PMD baselines. Mean and 95% confidence interval over 20 seeds.

setting τ . Furthermore, the entropy weight is linearly annealed from its minimum and maximum values.

Policy evaluation. In all our experiments, we use an ensemble of two neural networks, similarly to e.g. SAC (Haarnoja et al., 2018), to evaluate a Q -function and therefore two SNNs for ξ -logits. In particular, we optimize the current Q -function weights θ to minimize the loss $\mathcal{L}(\theta)$,

$$\mathcal{L}(\theta) = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\frac{1}{2} \left(Q_\theta(s, a) - \hat{Q}(s, a) \right)^2 \right] \quad (155)$$

$$\hat{Q}(s, a) := R(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{D}, a \sim \pi(s')} \left[\text{agg}_{i \in \{1,2\}} Q_{\hat{\theta}_i}(s', a') - \tau h(\pi(s')) \right] \quad (156)$$

where agg computes either the \min or mean over the target Q -functions with weights $\hat{\theta}_1, \hat{\theta}_2$. We find that using the \min of the two Q -functions to compute the target values often results in more stable training. \min gives a more conservative target that is robust to overestimation bias in the Q -functions, and this allows us to reduce the KL weight. However, such a strategy may struggle when reward is not dense enough, e.g. some MinAtar and some classic control environments. Therefore we instead use the mean in Classic/MinAtar environments. Future work could use a more sophisticated approach that is both robust to overestimation bias and yet sensitive to weak reward signals.

D.1 IMPACT OF ϵ EXPLORATION

In our main experiment we use $\epsilon = 0.05$ as the probability to sample an action uniformly at random. In a set of additional experiments we evaluate the impact ϵ has on performance. To this end, we launch StaQ with $M = 300$ and Exact PMD that never deletes a Q -function within the 5 million time-step window for different values of ϵ on the 5 MinAtar tasks. We see that ϵ exploration is important for both Breakout and Seaguest, but has less of an impact on other tasks. In fact, on Asterix and SpaceInvades, increasing the epsilon decreases the performance slightly, perhaps because of the increase to the off-policiness of the data which might deteriorate policy evaluation. As such, our choice of $\epsilon = 0.05$ in the main experiment appears to provide a good trade-off between improving exploration and limiting the off-policiness of data on MinAtar tasks. In all cases, independent of the choice of ϵ , StaQ with $M = 300$ remains close to Exact PMD in performance.

Figure 13: Box plot for final policy performance of StaQ with different values of M and actor-critic PMD baselines, over 20 seeds.

Figure 14: Aggregate final performance for StaQ with different values of M and actor-critic PMD baselines, for MinAtar tasks over 20 seeds.

Hyperparameter	Classic	MuJoCo	MinAtar
Discount (γ)	0.99	0.99	0.99
Memory size (M)	300	300	300
Policy update interval	5000	5000	5000
Ensembling mode	mean	min	mean
Target type	hard	hard	hard
Target update interval	200	200	200
Epsilon	0.05	0.05	0.05
Reward scale	10	10*	100
KL weight (η)	20	10	20
Initial scaled ent. weight	2.0	2.0	2.0
Final scaled ent. weight	0.4	0.4	0.4
Ent. weight decay steps	500K	1M	1M
Architecture	256 \times 2	256 \times 2	Conv(16, 3, 3) + 128 MLP
Activation function	ReLU	ReLU	ReLU
Learning rate	0.0001	0.0001	0.0001
Optimizer	Adam	Adam	Adam
Replay capacity	50K	50K	50K
Batch size	256	256	256

Table 6: StaQ hyperparameters, with parameters which vary across environment types in bold.

*Hopper-V4 uses a reward scale of 1.

Hyperparameter	Classic	MuJoCo	MinAtar
Discount factor (γ)	0.99	0.99	0.99
Horizon	2048	2048	1024
Num. epochs	10	10	3
Learning starts	5000	20000	20000
GAE parameter	0.95	0.95	0.95
VF coefficient	0.5	0.5	1
Entropy coefficient	0	0	0.01
Clipping parameter	0.2	0.2	$0.1 \times \alpha$
Optimizer	Adam	Adam	Adam
Architecture	64×2	$64 \times 2^*$	Conv(16, 3, 3) + 128 MLP
Activation function	Tanh	Tanh	Tanh
Learning rate	3×10^{-4}	3×10^{-4}	$2.5 \times 10^{-4} \times \alpha$
Batch size	64	64	256

Table 7: PPO hyperparameters, based on (Schulman et al., 2017). In the MinAtar environments α is linearly annealed from 1 to 0 over the course of learning. *Humanoid-v4 uses a hidden layer size of 256.

Hyperparameter	Classic	MuJoCo	MinAtar
Discount factor (γ)	0.99	0.99	0.99
Horizon	2048	2048	2048
Learning starts	5000	20000	20000
GAE parameter	0.95	0.95	0.95
Stepsize	0.01	0.01	0.01
Optimizer	Adam	Adam	Adam
Architecture	64×2	$64 \times 2^*$	Conv(16, 3, 3) + 128 MLP
Activation function	Tanh	Tanh	Tanh
Learning rate	3×10^{-4}	3×10^{-4}	2.5×10^{-4}
Batch size	64	64	256

Table 8: TRPO hyperparameters, based on (Schulman et al., 2015). *Humanoid-v4 uses a hidden layer size of 256.

Hyperparameter	Classic	MuJoCo	MinAtar
Discount factor (γ)	0.99	0.99	0.99
Target update interval	100	8000	8000
Epsilon	0.1	0.1	0.1
Decay steps	20K	20K	20K
M-DQN temperature	0.03	0.03	0.03
M-DQN scaling term	1.0	0.9	0.9
M-DQN clipping value	-1	-1	-1
Architecture	512×2	128×2	Conv(16, 3, 3) + 128 MLP
Activation function	ReLU	ReLU	ReLU
Learning rate	1×10^{-3}	5×10^{-5}	2.5×10^{-4}
Optimizer	Adam	Adam	Adam
Replay capacity	50K	1M	1M
Batch size	128	32	32

Table 9: MDQN and DQN hyperparameters, based on (Vieillard et al., 2020b; Ceron & Castro, 2021)

Figure 15: Impact of the ϵ exploration parameter of StaQ on performance in MinAtar tasks. Plots showing mean and std. deviation over 5 seeds.

Figure 16: StaQ on MuJoCo with action space discretized using the independence assumption from Tang & Agrawal (2020) with 7 atoms. Plots show improvements over the discretization that only considers boundary actions on all but the Humanoid-v4 task. Results averaged over 5 seeds.

E EXTENSION TO CONTINUOUS ACTION SPACES

The main challenge of StaQ in continuous action spaces is to sample from its Boltzmann policy with logits given by Eq. 14. Straightforward extensions of StaQ to continuous action spaces can be to distill the policy into an easier to sample from actor (e.g. Gaussian neural policy), or to use the Gumbel-max trick to sample from StaQ’s policy via optimization. While applying the Gumbel-max trick might be slow, for StaQ’s theory to hold, we only need accurate samples when computing the targets for the current Q-function (and these sampled actions can be pre-computed as discussed in Sec. 5.1 for the logits). For data gathering however, the behavior policy could use less accurate samples from StaQ’s policy to speed-up inference. Nonetheless, we expect this solution as well as distilling the StaQ into a more compact actor to yield additional policy update errors compared to exact PMD and StaQ. As discussed in Sec. 4.3, Zhan et al. (2023) showed that PMD with approximate policy updates have a higher error floor (see Thm. 2 in Zhan et al.’s paper and the dependence to ϵ_{opt}) and might converge to lower quality solutions. As such, these extensions do not fit claims of the paper, which is that for some environments and thanks to the continuous advances in GPU hardware, it can become more advantageous to stack Q-functions to get an error free policy update with low computational overhead, instead of following the more traditional actor-critic approach to PMD.

To tackle continuous actions in the spirit of the contributions of our paper, one could use StaQ instead as the gating policy in a hierarchical RL framework. For instance, starting from our MuJoCo experiments, one could consider the hand discretized actions we used as sub-policies and further optimize them via gradient ascent. The sub-policies could be more complex, for instance PID controllers or neural based as in the work of Gehring et al. (2021); Hafner et al. (2022), that use a discrete set of sub-policies and would thus preserve the above properties of fast and accurate policy updates for the gating policy if optimized by truncated PMD.

Yet another direction to tackle continuous action spaces is to leverage an independence assumption in the policy following Tang & Agrawal (2020). Concretely, Tang & Agrawal discretize each action dimension into a finite number of atoms and assume that each action dimension follows an inde-

1998 pendent distribution—which is also assumed by continuous action RL algorithms using diagonal
 1999 Gaussian policies. In our setting, this translate in the logit space, which is also the space of Q-
 2000 functions, by assuming separability of the Q-function approximation i.e. that q_k , the approximation
 2001 of the Q-function Q_k , is given by

$$2002 \quad q_k(s, a) = \sum_{i=1}^{\dim(A)} q_k^{[i]}(s, a^{[i]}), \quad (157)$$

$$2003$$

$$2004$$

$$2005$$

2006 where $a^{[i]}$ is entry i of the action vector a and $\{q_k^{[i]}\}_{i=1}^{\dim(A)}$ is a set of real functions. This inde-
 2007 pendence assumption makes it possible to consider fine grained discretizations with extremely large
 2008 but finite action spaces, from which one can sample exactly and efficiently by sampling each action
 2009 dimension independently. Incidentally, this separability assumption could allow a more efficient
 2010 implementation of the Gumbel-max trick discussed above.

2011 To illustrate how this could benefit StaQ, we have implemented the discretization from Tang &
 2012 Agrawal (2020) in combination with StaQ using $K = 7$ atoms by action dimension. Concretely,
 2013 the Q-network outputs K values for each action dimension, and the Q-function for a given action is
 2014 computed using Eq. 157. We have run 5 seeds of StaQ using this Q-network architecture on the 4
 2015 MuJoCo environments shown in Fig. 16. We have kept all hyper-parameters of StaQ similar except
 2016 for the target update rate of the Q-target which we have increased to 1000 for HalfCheetah and
 2017 Walker and to 2500 for Ant and Humanoid. From the plot, we can see large improvements due to
 2018 the finer grained discretization on all but the Humanoid-v4 task. Moreover, using StaQ improves
 2019 over previous results reported by Tang & Agrawal (2020), that used PPO and TRPO as base learners
 2020 on most MuJoCo tasks, showing the impact our work could have in this line of research.

2021 In summary, beyond environments that have naturally discrete action spaces or low dimensional
 2022 continuous action spaces that can be easily discretized, we have outlined here several RL frameworks
 2023 that tackle continuous actions spaces yet leverage Boltzmann policies and that could benefit from our
 2024 work. We think interesting research questions in this direction is to investigate the improvements the
 2025 Boltzmann distribution could bring to exploration compared to the unimodal Gaussian distribution
 2026 that is commonly used in continuous action deep RL algorithms.

2027 F PSEUDOCODE OF STAQ

2028 We provide in this section the pseudocode of StaQ in Alg. 1. As an approximate policy iteration
 2029 algorithm, StaQ comprises three main steps: i) data collection, ii) policy evaluation iii) policy im-
 2030 provement. Data collection (Line 4-5) consist in interacting with the environment to collect transi-
 2031 tions of type (state, action, reward, next state) that are stored in a replay buffer. A policy evaluation
 2032 algorithm (Eq. 155) is then called to evaluate the current Q-function Q_τ^k using the replay buffer.
 2033 Finally, the policy update is optimization-free and simply consists in stacking the Q-function in the
 2034 SNN policy as discussed in Sec. 5.1. After K iterations, the last policy is returned.

2035 **Algorithm 1** StaQ (Finite-memory entropy regularized policy mirror descent)

- 2036 1: **Input:** An MDP \mathcal{M} , a memory-size M , Number of samples per iteration N , Replay buffer size
 D , Initial behavior policy π_0^b , entropy weight τ , D_{KL} weight η , ϵ -softmax exploration parameter
- 2037 2: **Output:** Policy $\pi_K \propto \exp(\xi_K)$
- 2038 3: **for** $k = 0$ **to** $K - 1$ **do**
- 2039 4: Interact with \mathcal{M} using the behavior policy π_k^b for N times steps
- 2040 5: Update replay buffer \mathcal{D}_k to contain the last D transitions
- 2041 6: Learn Q_τ^k from \mathcal{D}_k using a policy evaluation algorithm (Eq. 155)
- 2042 7: Obtain logits ξ_{k+1} by stacking the last M Q-functions (see Sec. 5.1) following the finite-
 $2043 \quad$ memory EPMD update of Eq. 14.
- 2044 8: Set $\pi_{k+1} \propto \exp(\xi_{k+1})$ and π_{k+1}^b to an ϵ -softmax policy over π_{k+1}
- 2045 9: **end for**
