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Abstract

6D object pose estimation is one of the fundamental problems in computer vision
and robotics research. While a lot of recent efforts have been made on generalizing
pose estimation to novel object instances within the same category, namely category-
level 6D pose estimation, it is still restricted in constrained environments given
the limited number of annotated data. In this paper, we collect Wild6D, a new
unlabeled RGBD object video dataset with diverse instances and backgrounds. We
utilize this data to generalize category-level 6D object pose estimation in the wild
with semi-supervised learning. We propose a new model, called Rendering for
Pose estimation network (RePoNet), that is jointly trained using the free ground-
truths with the synthetic data, and a silhouette matching objective function on
the real-world data. Without using any 3D annotations on real data, our method
outperforms state-of-the-art methods on the previous dataset and our Wild6D test
set (with manual annotations for evaluation) by a large margin. Project page with
Wild6D data: https://oasisyang.github.io/semi-pose/.

1 Introduction
Estimating the 6D object pose is one of the core problems in computer vision and robotics. It
predicts the full configurations of rotation, translation and size of a given object, which has wide
applications including Virtual Reality (VR) [2], scene understanding [30], and [42, 57, 31, 49].
There are two directions in 6D object pose estimation. One is performing instance-level 6D pose
estimation, where a model is trained to estimate the pose of one exact instance with an existing 3D
model [13, 34, 22, 50, 32, 5, 14]. However, learning instance-level model restricts its generalization
ability to unseen objects. To achieve generalization to unseen instance, another direction is recently
proposed to perform category-level 6D pose estimation using one model [48, 3, 41, 29, 6]. However,
the large appearance and shape variance across instances largely increase the difficulty in learning.

To overcome this limitation, Wang et al. [48] take the initial step to collect real-world dataset and
annotations for category-level 6D pose estimation. Combining synthetic data with free ground-truth
annotations, they show the learned model can be generalized to unseen objects within the same
category. While this result is encouraging, the generalization ability of the model is still limited by the
number and the diversity of the data due to the challenges in annotating 6D object poses. Specifically,
only 8,000 images across 13 scenes are collected and annotated from the dataset proposed in [48].
Thus it is still very challenging to generalize 6D pose estimation on diverse objects in complex scenes.

In this paper, we propose to generalize category-level 6D object pose estimation in the wild. To
achieve this goal, we introduce a new dataset and a new semi-supervised learning approach. Our key
insight is that, while annotating the 6D object pose is challenging, collecting the RGBD videos for
these objects without labels is much easier and more affordable. On the other hand, there are infinite
ground-truth annotations for synthetic data which come for free. We propose to leverage the benefits
from both sides. We first collect a rich object-centric video dataset with diverse backgrounds and
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Figure 1: Left: we train our model with both synthetic data and real-world data under our proposed
semi-supervised setting. Right: during inference, given the RGBD images, the object pose can be
estimated precisely. Green bounding boxes show the 3D bounding boxes projection results on 2D
images.

object instances using an RGBD camera. We train our model jointly using synthetic data with the
free ground-truth 6D pose annotations and the unlabeled real-world RGBD videos via a silhouette
matching objective. In this way, our pose estimation model can be generalized to in-the-wild data
with minimum human labor. We collect an RGBD video dataset for 6D object pose estimation in the
wild, namely Wild6D. Each video in the dataset shows multiple views of one or multiple objects (see
examples in Fig. 1). In total, there are 5166 videos (> 1.1 million images) over 1722 object instances
and 5 categories, which is significantly (300x) larger than the previous 6D object pose estimation
dataset [48]. For evaluation, we annotate 486 videos over 162 objects.

Given this dataset, we design a novel model for semi-supervised learning, called Rendering for
Pose estimation Network (RePoNet). The RePoNet is composed of two branches of networks with
a Pose Network to estimate the 6D object pose and a Shape Network to estimate the 3D object
shape. Given an RGBD image of an object, our Pose Network first estimates the Normalized Object
Coordinate Space (NOCS) map [48], which will be integrated with lower-layer features to regress the
object 9D pose (rotation, translation, and size parameters). Meanwhile, the Shape Network takes a
category-level 3D shape prior as an input, and estimates the object shape for the current input instance.
During training, we utilize both the synthetic data with the full ground-truths and the real-world data
from Wild6D with foreground segmentation masks (obtained by Mask R-CNN [12]). Given the inputs
with synthetic data, we apply the regression losses on both the NOCS map, 6D pose parameters, and
object shape. Additionally, given the estimated pose and object shape, we perform differentiable
rendering to obtain an object mask projected in 2D. A silhouette matching objective is proposed to
compare the difference between the projected mask and the ground-truth mask. With the real RGBD
data, although we do not have the 3D ground-truths, we can still learn with the silhouette matching
objective by comparing the projected mask against the foreground segmentation. In this way, the
gradients are back-propagated through the 6D pose and object shape to adjust both Pose Network and
Shape Network for real RGBD data. During inference, we first apply our Pose Network to estimate
the NOCS map with a given image. With the NOCS map output, the object pose can be computed by
solving the Umeyama algorithm [43]. Some estimation results on Wild6D can be found in Fig. 1.

In our experiments, we first evaluate our approach with the dataset proposed in [48]. Our RePoNet
shows a improvement over state-of-the-art approaches when trained in a fully-supervised setting
(using 3D ground-truths from both real and synthetic data). By using the real-world data without its
3D ground-truth with semi-supervised learning, our performance can still be on par with previous
approaches using full annotations. We then experiment with our Wild6D dataset and consistently
show a large performance gain over the baselines on in-the-wild objects. We highlight our main
contributions as follows:

• A new large-scale dataset Wild6D of object-centric RGBD videos in-the-wild for category-
level 6D object pose estimation.

• A semi-supervised approach with RePoNet which leverages both synthetic data and real-
world data without 3D ground-truths for category-level 6D object pose estimation.
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• Our approach outperforms baselines by a large margin, especially when deployed on in-the-
wild objects. We commit to release our dataset, annotation and code for benchmarking
future research.

2 Related Work
Category-level 6D Object Pose Estimation. Recently, researchers have proposed to learn a single
model for one category of objects instead of just one instance on pose estimation. For example,
Wang et al. [48] propose a canonical shape representation of different objects called Normalized
Object Coordinate Space (NOCS) to handle the instance variations. The object pose and size are
calculated by the Umeyama algorithm [43] with predicted NOCS map and the observed points.
Follow-up work using the NOCS representation has focused on improving the shape priors [41] and
incorporating direct regression of object pose and size [3, 25, 6]. While these approaches can be
deployed on unseen object instances, the generalization ability of these models is still limited by the
scale and the diversity of real-world annotated data in the REAL275 dataset [48]. Only 13 scenes with
18 real objects in total are presented in REAL275. In contrast, we propose a semi-supervised learning
approach with RePoNet, which leverages a new large-scale unlabeled dataset Wild6D for training.
Both our method and the new dataset are the key components that lead to our goal of generalizing
category-level 6D pose estimation in the wild.

Large-scale 3D Object Datasets. Various large-scale 3D datasets have been proposed for different
tasks including reconstruction and pose estimation. For example, the Objectron dataset are collected
and studied with large-scale object-centric videos and 3D annotations [1, 15, 26]. However, there are
no depth images provided in Objectron, which might lead to ambiguities in 6D object pose estimation.
Similarly, the recent proposed CO3D [37] dataset with diverse instances in different categories is
also collected without recording the depth. While we can perform 3D reconstruction or generate
the depth map using COLMAP [38], the error in predicted depth makes it difficult to be used for
6D pose estimation. Different from these datasets, the 3DScan [9] dataset records RGBD videos of
different categories of objects. However, most objects are heavily occluded by hands or only partially
visible with large objects like cars. The diversity of objects and scenes is also relatively low given
limited human labor. Thus 3DScan is not suitable for pose estimation tasks. In this paper, we propose
Wild6D, a dataset with RGBD videos containing diverse objects taken with diverse backgrounds.
While the training set is not labeled, we provide 6D pose annotations for the test videos. To the best
of our knowledge, Wild6D is the largest RGBD dataset for 6D object pose estimation in the wild.

Rendering in Object Pose Estimation. One effective refinement method for 6D object pose
estimation is via rendering [24, 55, 20, 16]. For instance, Iwase et al. [16] propose to utilize
differentiable rendering and learn the texture of a 3D model. However, it still depends on a pre-defined
CAD model with a high-quality texture map for instance-level pose estimation and it is not feasible for
category-level. Additionally, object pose estimation can be conducted via Analysis-by-Synthesis [44,
8, 52, 46, 40], but they usually require gradient descent for optimization leading to relatively slower
inference speed. Critically, these works only focus on the instance-level setting and none of them
can generalize to different instances. Inspired by recent work on 3D reconstruction [17, 23, 7, 18],
our RePoNet learns the object shape and pose (including both NOCS map and R/T/S parameters)
simultaneously using differentiable rendering to provide a loss function during learning [28], which
allows the gradients to backprop through the whole network for training. While Manhardt et al. [29]
also utilize differentiable rendering to improve category-level 6D pose, it is only applied in test time
to adjust the pose, instead of training the network end-to-end. We show substantial improvement over
all baselines training with RePoNet.

3 Wild6D Dataset

Existing Category-level 6D Object Pose Datasets. NOCS [48] is the most common dataset for
category-level 6D object pose estimation, which consists of the synthetic CAMERA25 dataset and
the real-world REAL275 dataset. The synthetic CAMERA25 dataset contains 300,000 RGBD images
of 1,085 object instances from 6 categories for training and evaluation. The REAL275 dataset shares
the same categories with CAMERA25 but is more challenging under the real-world background. It
contains 4,300 RGBD images of 7 scenes for training and 2,750 images of 6 scenes for testing. Due to
the limited scale and diversity of real data, the learned models from this dataset cannot generalize to
in-the-wild scenarios. Objectron [1] is a large-scale dataset for object pose estimation and tracking.
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Figure 2: Our semi-supervised approach. For the synthetic data, we supervise it with all the annotations. While
for the real-world data, we train it by comparing the binary mask generated by the rendering module with the
object foreground segmentation.

Datasets RGBD Real #Categories #instances #images
Objectron [1] ✓ 9 18K 4M

CAMERA25 [48] ✓ 6 184 300K
REAL275 [48] ✓ ✓ 6 24 8k

Wild6D ✓ ✓ 5 1.8K 1M
Table 1: Comparison between Wild6D and existing datasets. Wild6D significantly scale up the number of
images, object instances, complexity of the scenes compared to previous RGBD datasets.

Different from NOCS [48], it consists of a collection of short object-centric video clips captured in
the real world. However, no depth maps are provided in Objectron, which might lead to ambiguities
in pose estimation.

Wild6D Collection. To achieve a categorical 6D pose for real objects, we collect a new large-scale
RGBD dataset, named Wild6D. Each video in the Wild6D is recorded via the iPhone front camera
showing multiple views of objects where RGB images and the corresponding depth images and
point cloud are captured simultaneously. The videos are captured by different turkers with their own
iPhones to guarantee the diversity of instances and background scenes. Three videos are taken for
each object under different scenes. In total, Wild6D consists of 5,166 videos (>1.1 million images)
over 1722 different object instances and 5 categories , i.e., bottle, bowl, camera, laptop, and mug.
Among this data, we split 486 videos of 162 instances to use them as the test set. Table 1 summarizes
the statistics of Wild6D comparing previous datasets: Wild6D significantly improves the number of
images, object instances, and scene complexity.

Wild6D Annotation. To annotate more than 10,000 images in the testing set efficiently, we propose
a tracking-based annotation pipeline. Inside a video, we manually annotate the 6D object poses every
50 frames as keyframes. Given the annotation of the keyframe, we implement TEASER++ [51]
together with colored ICP [33] to achieve the registration between the keyframe and the following
frame and compute the transformation matrix. The ground-truth object pose of the following frame
can be obtained by applying the transformation matrix to the keyframe annotation. Following this
pipeline, we can obtain accurate ground-truths by only labeling around 5 keyframes per video.

4 Proposed Method
We propose the Rendering for Pose estimation network (RePoNet) using both synthetic data and
large-scale unlabeled real-world data in a semi-supervised manner.

RePoNet overview. The RePoNet is composed of two networks including the Pose Network to directly
estimate the object 6D pose parameters (with the NOCS map as an intermediate representation) and
the Shape Network to reconstruct the object shape. The outputs from both networks can go through a
differentiable rendering [28] module which outputs a segmentation mask.

Semi-supervised learning setting. As shown in Fig. 2, we utilize two sets of data for semi-supervised
learning: (i) synthetic data with full annotations including NOCS maps, CAD models, foreground
segmentation, and 6D pose parameters, denoted as Dsyn; and (ii) a large-scale real-world RGBD
dataset Wild6D with estimated foreground masks (using pre-trained Mask R-CNN [12]), denoted
as Dreal. Both the synthetic data and the real-world data are utilized to train our RePoNet jointly.
For the synthetic data, all the ground-truths are used as supervision signals for the Pose Network
and the Shape Network. While for the real-world data, we directly feed the outputs from the Pose
Network and the Shape Network into the differentiable rendering module to generate the binary mask,
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then train the whole RePoNet by comparing the rendered mask with the object foreground mask
(silhouette matching loss). While there can be a more delicate way to deal with the domain gap
between simulation and real, we find the direct sharing of parameters during training already provides
a simple yet effective solution for generalization.

One important contribution of this framework is to make the whole procedure with RePoNet differen-
tiable, using the Shape Network, and a ConvNet to connect NOCS map to 6D pose parameters in
the Pose Network. This allows the gradients to backprop through the network end-to-end. We will
explain the architecture and objective details in the following subsections.

4.1 Framework Details
Input data pre-processing. Given an RGBD image, we first utilize the off-the-shelf Mask R-
CNN [12] model to infer the segmentation mask for each object instance (See supplementary material
for segmentation examples). We crop an object of interest from the RGB image and the corresponding
depth map. The pixels in the depth map are back-projected as an observed point cloud. We denote
the observation of an object instance as X ∈ R𝐻×𝑊×3 for RGB channels and P ∈ R𝑁p×3 for the point
clouds, where𝑊, 𝐻 stands for cropped image resolution and 𝑁p is the number of sampled points.

Feature extraction. We employ the PSPNet [56] to extract the image feature as 𝑓x (Fig. 3 green box),
and a PointNet [36] to extract the point cloud geometry feature as 𝑓p (Fig. 3 blue box). Meanwhile,
for each category, we first define a category-level mesh prior M ∈ R𝑁v×3 to represent objects belong
to a specific category, where 𝑁v is the number of vertices of the pre-defined mesh. We also use the
PointNet to extract the shape prior feature as 𝑓cate (Fig. 3 purple box).

4.1.1 Pose Network.

Unlike instance-level 6D object pose estimation, where the CAD model of a specific instance is
always given as the reference, the Pose Network is excepted to work well even without any instance
models. To achieve this goal, we leverage the NOCS representation proposed in [48]. The architecture
of the Pose Network is shown as the bottom part of Fig. 3. The Pose Network takes the RGB features
𝑓x extracted using PSPNet and the point cloud features 𝑓p extracted using PointNet as inputs. The
two different modalities are combined as RGBD features using the dense fusion approach proposed
in [45]. Specifically, the geometry feature 𝑓 𝑖p of the 𝑖 th point is concatenated with its corresponding
color feature 𝑓 𝑖x and it is fed into a Graph Convolution Network (GCN) [27] (Fig. 3 yellow box) to
obtain the point-wise RGBD feature, denote as 𝑓 𝑖rgbd.

Meanwhile, recall that we utilize a PointNet to obtain the point-wise geometry feature of the category-
level shape prior 𝑓cate (on the Shape Network branch). The shape prior contains the prior knowledge
of the category, i.e.coarse canonical shape and pose, but it does not align with the RGBD feature
perfectly. To use the information of categorical shape prior and address the misalignment, we first
apply a max-pooling operation on point dimension to obtain a global representation, then concatenate
it with every point-wise RGBD feature, denoted as 𝑓 𝑖nocs, which can be used to estimate the NOCS
coordinate. As the size and geometry of real-world object can be quite diverse, we introduce an
implicit function Φnocs (·) to deal with objects of the arbitrary shape (Fig. 3 gray box with MLP).
Specifically, the Φnocs (·) is implemented as a MLP with the point position and the corresponding
feature as inputs, and predicts its NOCS coordinate as,

Φnocs ( 𝑓 𝑖nocs, p𝑖 ∈ P) = p𝑖nocs, ∀𝑖 := 1 . . . 𝑁p, (1)
where P is the set of input point clouds and 𝑁p is the number of point clouds. The output is the NOCS
coordinate P𝑖

nocs for each point.

The NOCS map also explicitly reflects the geometric shape information of objects, similar properties
are also shown with representations in [47]. Thus, the 6D pose, i.e., rotation (R), translation (T), and
scale (S) can be inferred from the NOCS map via a simple neural network. In detail, we directly take
the RGBD feature 𝑓rgbd and concatenate it with the intermediate results of NOCS coordinates. This
concatenated feature 𝑓pose will be used to predict the object pose R,T and S by a 3-layer ConvNet
(Fig. 3 gray box with CNN). Using a neural network to connect the NOCS map and the 6D pose
parameters makes the whole process differentiable, which is essential for training with the silhouette
matching loss. More details of the network architecture can be found in the supplementary materials.

Inference for 6D pose. For 6D object pose estimation, only the NOCS map output of Pose Network
is required for inference. The object pose can be computed by solving the Umeyama algorithm [43]
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Figure 3: Overview of the proposed method. Given the input image and depth map, RePoNet estimates the
object pose, NOCS map, and shape simultaneously via Pose Network and Shape Network. These two networks
are bridged via the differentiable rendering module. By comparing the predicted binary mask with the input
foreground mask, RePoNet can effectively leverage the real-world data without any annotations.

with the NOCS map. The 6D pose parameters R,T and S are only used to perform differentiable
rendering during training. The reason is that the directly estimated pose parameters from conv module
is accurate when fitting the training data, but not as accurate as using NOCS map when generalizing
to novel test instances.

4.1.2 Shape Network.
The Shape Network (top part of Fig. 3) aims to reconstruct the 3D shape of the input object from
the given shape prior via mesh deformation. The major usage of this network is for performing
differentiable rendering to provide training signals. The Shape Network is only used to estimate the
object scale during inference time.

Given the categorical shape prior representation 𝑓cate, the Shape Network borrows the point-wise
RGBD feature of the input object 𝑓rgbd from Pose Network and concatenate them together, denoted
as 𝑓shape. Specifically, we max-pool the features 𝑓rgbd on point dimension and repeat it back with
the number of shape prior points for concatenation with 𝑓cate. We then predict the per-vertices
deformation for the input mesh given 𝑓shape. The deformation prediction network Φdeform (·) is also
an implicit function taking 𝑓shape and mesh vertices positions M as the inputs, and outputs the 3D
deformation as,

Φdeform ( 𝑓 𝑖shape,m
𝑖 ∈ M) = m𝑖

delta, ∀𝑖 := 1 . . . 𝑁v, (2)

where m𝑖
delta represents the deformation for each vertex, 𝑁v is the number of the vertices, and

Mdelta = {m𝑖
delta}

𝑁v
𝑖=1. Then the estimated mesh vertices of the given object is Mdeform = M + Mdelta.

4.1.3 Differentiable rendering.

To obtain the supervision from 2D segmentation, we perform differentiable rendering using the
outputs from the Shape Network and the Pose Network. Specifically, we feed the estimated object
shape Mdeform and estimated object pose (R,T, S) into a differentiable rendering module [28] to
generate the binary mask of the given object, as shown in Fig. 3. Given the rendering output binary
mask, we can compare it against the Mask R-CNN segmentations and supervise the training of both
pose network and shape network without additional 3D annotations.

4.2 Learning Objectives
We define multiple objectives for training the RePoNet, including the loss for 6D pose parameters,
NOCS regression loss, shape reconstruction loss using synthetic ground-truths for supervision, and a
silhouette matching loss which can be applied to both synthetic data and real data without 6D pose
annotations. We introduce each loss as the following.

Disentangled 6D Pose Loss. Inspired by [24, 47, 39], we implement disentangled pose loss via
individually supervising the rotation R, translation T and scale S. Instead of directly computing
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parametric distances based on rotation matrix, we employ the variant of Point-Matching loss1 [24, 20].
Additionally, we decouple the translation into the 2D location (𝑜𝑥 , 𝑜𝑦) of the 3D centroid projection
on the image plane and the object’s distance to camera 𝑡𝑧 . (𝑜𝑥 , 𝑜𝑦) can be approximated as the
bounding box center of the given object (𝑐𝑥 , 𝑐𝑦). Given the camera intrinsics 𝐾 , the translation can
be calculated via Eq. 3,

T = 𝐾−1𝑡𝑧 [𝑜𝑥 , 𝑜𝑦 , 1]𝑇 (3)
Therefore, given the ground-truth pose annotations (R∗,T∗, S∗), the objective function of 6D pose is
formulated as Eq. 4,

Lpose = LR + Lcenter + L𝑧 + LS (4)
Thereby,
LR = avg

x∈MCAD

∥Rx−R∗x∥2 Lcenter = ∥𝑜𝑥−𝑜∗𝑥 , 𝑜𝑦−𝑜∗𝑦 ∗∥1 L𝑧 = ∥𝑡𝑧−𝑡∗𝑧 ∥1 LS = ∥S−S∗∥1 (5)

where MCAD is the ground-truth CAD model of the given object and 𝑜∗𝑥 , 𝑜
∗
𝑦 , 𝑡

∗
𝑧 can be computed via

Eq. 3.

NOCS Regression Loss. To guarantee the pose estimation accuracy, we enforce the predicted NOCS
coordinates Pnocs to be closer to the ground-truth ones P∗

nocs. We use smooth-L1 loss [11],

Lnocs =
∑︁
𝑥,𝑦

{
0.5(𝑥 − 𝑦)2/𝛽, if |𝑥 − 𝑦 | < 𝛽
|𝑥 − 𝑦 | − 0.5 ∗ 𝛽, otherwise

(6)

where 𝑥 ∈ P∗
nocs, 𝑦 ∈ Pnocs

Reconstruction Loss. Given the ground-truth CAD model MCAD, the shape estimation is supervised
by minimizing Chamfer Distance(CD) between Mdeform and MCAD via Eq. 7,

Lrecon =
∑︁

𝑥∈Mdeform

min
𝑦∈MCAD

∥𝑥 − 𝑦∥2
2 +

∑︁
𝑦∈MCAD

min
𝑥∈Mdeform

∥𝑥 − 𝑦∥2
2 (7)

Silhouette Matching Loss. The above three objective functions, Lpose,Lnocs and Lrecon, require the
ground-truth information and cannot work with the real-world data without annotations. Thus, we
further implement a silhouette matching objective function based on input foreground segmentation
and the rendering results. We employ the negative IOU loss [54] to measure the difference between
two masks and denote it as Lmask.

Therefore, for the fully-supervised training with annotated synthetic data, the total loss function is
described in Eq. 8, where the 𝜆s are balance parameters.

Lsup = 𝜆1Lpose + 𝜆2Lnocs + 𝜆3Lrecon + 𝜆4Lmask (8)

Meanwhile, under the semi-supervised setting with both annotated synthetic data and unlabeled
data, the total loss function is then formulated as:

Lsemi = 1𝑑∈Dsyn (𝜆1Lpose + 𝜆2Lnocs + 𝜆3Lrecon) + 𝜆4Lmask (9)
where 1𝑑∈Dsyn is the indicator function.

5 Experiments
5.1 Implementation Details

Semi-supervised setting. We use the training data of CAMERA25 [48] along with the corresponding
annotations and jointly train the model with images of REAL275 [48] or Wild6D without any 6D
pose annotations. After cropping the object from the RGBD image, we first resize it to 192× 192 and
then randomly sample 1,024 points from both color image and depth map. To obtain the categorical
shape prior, we choose a CAD model per category from the CAMERA25 training set manually and
reduce its number of vertices to 1,024 as well. More configurations of RePoNet have been specified
in supplementary materials. We adopt Adam [19] to optimize our model with the initial learning rate
of 0.0001. The learning rate is halved every 10 epochs until convergence. We empirically set the
balance parameters 𝜆1, 𝜆2, 𝜆3 and 𝜆4 to 0.2, 2.0, 5.0 and 0.2, respectively.

Fully-supervised setting. We share the same architecture and configurations with semi-supervised
training but utilize all annotations of CAMERA25 [48] and REAL275 [48].

1We predict the quaternion representation of rotation matrix and follow the strategy in [50, 47] to deal with
the symmetry of the object.

7



NOCS Implicit IOU0.5 IOU0.75
5 degree 10 degree IOU0.5 IOU0.75

5 degree 10 degree
map function 5cm 5cm 5cm 5cm

Fully supervised Semi-supervised
77.0 55.7 35.4 63.2 71.7 47.9 22.1 47.5

✓ 79.1 59.1 36.9 65.3 74.6 49.9 29.7 57.1
✓ 79.2 60.0 39.8 66.6 72.2 47.7 24.3 51.6

✓ ✓ 81.1 63.7 40.4 68.8 76.0 52.2 33.9 63.0
Table 2: Ablation on Implicit function and intermediate NOCS map. We evaluate on REAL275 and the best
results are highlighted in bold. w./w.o the nocs map refers to whether using the NOCS map as an intermediate
result for pose regression. w./w.o. the implicit function stands for whether including the point/mesh coordinates
in NOCS regression and shape reconstruction.

silhouette pose IOU0.5 IOU0.75
5 degree 10 degree IOU0.5 IOU0.75

5 degree 10 degree
loss loss 5cm 5cm 5cm 5cm

Fully supervised Semi-supervised
✓ 78.1 61.9 39.7 65.2 74.8 47.1 27.9 59.7

✓ 76.7 58.2 30.7 59.7 73.1 46.0 18.7 47.9
✓ ✓ 81.1 63.7 40.4 68.8 76.0 52.2 33.9 63.0

Table 3: Ablation study on pose regression loss and silhouette matching loss. We evaluate on REAL275 and
the best results are highlighted in bold.

5.2 Ablation Study
Implicit function and NOCS map. We first validate the effectiveness of two components in our
approach: implicit function and intermediate NOCS map as described in Sec. 4.1.1. We evaluate
the performance under fully-supervised setting and semi-supervised setting on REAL275 [48] and
report the results in Table 2. Under the fully-supervised setting, by using the implicit function,
the performance on IOU0.5 and 5 degree, 5cm is improved by 2.2% and 4.4%, respectively. A
similar improvement can also be observed for the model with an intermediate NOCS map. The best
performance is achieved when combining the implicit function and NOCS map together. And the
same conclusion can also be obtained under the semi-supervised setting as shown in Table 2.

Pose Loss and Silhouette Matching Loss. Besides the network architecture, we also show the
effectiveness of the disentangled 6D pose loss and silhouette matching loss. The performance of
the model w./w.o. the pose regression loss and w./w.o. the silhouette matching loss are listed in
Table 3. Clearly, both pose loss and silhouette matching loss can enhance the object pose estimation
performance under both fully-supervised and semi-supervised settings. For instance, the silhouette
matching loss improves the IOU0.75 and 10 degree 5cm by 5.5% and 9.1% compared with the model
without it under the fully-supervised setting. This significant improvement shows the rendering
module can effectively encourage communication between two networks, thereby boosting the pose
estimation performance.

Leveraging unlabeled real data. Additionally, we report the performance of the proposed semi-
supervised approach with training data from different sources in Table 4. As the baseline model, we
first train it only with the synthetic data from CAMERA25 in a fully-supervised manner. Then, by
using the unlabeled Wild3D RGBD videos, the performance is significantly improved by 6.8% and
5.4% on IOU0.75 and 5 degree, 2cm. Similarly, the performance gains can be observed when adopting
the REAL275 data without its annotations. Furthermore, with both REAL275 and Wild3D data,
our model outperforms the baseline model by a large margin and approaches the fully-supervised
model trained on REAL275 which can be served as the upper bound. More ablation studies about the
amount of unlabeled real data used can be found in the supplementary materials.

Amount of unlabeled real data. We analyze the effect of using different fractions of unlabeled real
data used during semi-supervised learning. We uniformly sample every 10% fraction of collected
Wild6D training data for semi-supervised learning and evaluate the performance on REAL275 and
Wild6D testing sets. As shown in Fig. 4, with more real data used during training, the object pose
estimation performance is getting better.

5.3 Comparison with State-of-the-art Methods
Performance on REAL275. We split all existing methods into two groups by whether using full
annotations of real data and compare their performance with RePoNet under both fully-supervised
setting and semi-supervised setting, denoted as “RePoNet-sup" and “RePoNet-semi" respectively. As
listed in Table 5, RePoNet-sup can achieve competitive results among all existing approaches under
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Methods Training Data IOU0.25 IOU0.5 IOU0.75
5 degree 5 degree 10 degree 10 degree

CAMERA25 REAL275 Wild6D 2cm 5cm 2cm 5cm

RePoNet-semi

✓ 83.8 73.5 45.7 18.2 21.8 35.6 47.9
✓ ✓ 85.0 74.3 52.5 23.6 26.1 45.2 53.8
✓ ✓ 85.8 76.9 49.2 29.1 31.3 48.5 56.8
✓ ✓ ✓ 86.0 78.5 51.8 30.8 36.0 48.7 59.7

RePoNet-sup ✓ ✓ 86.6 83.0 63.2 31.1 37.0 51.6 64.6

Table 4: Ablation study of proposed semi-supervised method with different training data. We evaluate the
performance on REAL275 test set. “RePoNet-semi" and “RePoNet-sup" represent for the model trained w./w.o
the 3D annotations of NOCS REAL275 respectively. Here we conduct experiments on five categories sharing by
both REAL275 and Wild6D, i.e.bottle, bowl, mug, laptop and camera.

Methods IOU0.5
5 degree 5 degree 10 degree

2cm 5cm 5cm
NOCS [48] 78.0 7.2 10.0 25.2
CASS [3] 77.7 – 23.5 58.0
Shape-Prior [41] 77.3 19.3 21.4 54.1
FS-Net [6] 92.2 – 28.2 60.8
DualPoseNet [25] 79.8 29.3 35.9 66.8
SGPA [4] 80.1 35.9 39.6 70.7
GPV-Pose [10] 83.0 32.0 42.9 73.3
RePoNet-sup 81.1 35.1 40.4 68.8
CPS++ [29] w/ ICP 72.8 – 25.2 ≤ 58.6
SSC-6D [35] w/ ICP 72.7 28.6 33.4 62.9
CPPF [53] 26.4 – 16.9 44.9
UDA-COPE [21] 82.6 30.4 34.8 66.0
RePoNet-semi 76.0 30.7 33.9 63.0

Table 5: Comparison of our approach with the SOTA methods on REAL275. Note that all SOTA methods
listed in the top part are trained with full annotations of NOCS dataset including CAMERA25 and REAL275,
while the bottom part is methods without using any real annotations. The best results are highlighted in bold.

the fully-supervised setting. Note our method is complimentary to the techniques proposed in SGPA,
and our key contribution and focus lies on the semi-supervised counterpart for generalization. As
shown in the bottom part of Table 5, the RePoNet-semi outperforms CPS++ [29] by a large margin
under the semi-supervised setting 2. Moreover, compared with the existing fully-supervised methods3,
RePoNet-semi achieves a comparable or even better performance without any 6D pose annotations.
Additionally, our approach can perform shape reconstruction, but it’s not our goal and we report its
performance in the supplementary material.

Methods IOU0.5
5 degree 5 degree 10 degree

2cm 5cm 5cm
CASS [3] 1.04 0 0 0
Shape-Prior [41] 32.5 2.6 3.5 13.9
DualPoseNet [25] 70.0 17.8 22.8 36.5
GPV-Pose [10] 67.8 14.1 21.5 41.1
RePoNet-syn 66.7 26.0 30.8 40.3
RePoNet-semi 70.3 29.5 34.4 42.5

Table 6: Comparison of our approach with the SOTA
methods on Wild6D. “RePoNet-syn" is the model
trained only on CAMERA75, while “RePoNet-semi"
stands for the RePoNet trained on CAMERA75 and
Wild6D. The best results are highlighed in bold.

Performance on Wild6D. Finally, we evaluate
the performance of RePoNet on the Wild6D test-
ing set as reported in Table 6. For some existing
works, we directly test their pre-trained models
trained on CAMERA75 along with REAL275.
Since FS-Net [6] does not release the model,
we cannot experiment on it. It can be observed
that the pre-trained models cannot generalize to
Wild6D due to the limited diversity of real data
during training. For example, the performance
of Shape-Prior [41] on three pose estimation
metrics are all lower than 15%. On the other
hand, the RePoNet with semi-supervised learn-
ing on Wild6D achieves 29.5% and 34.4% on 5 degree, 2cm and 5 degree, 5cm, which is 10×
better than Shape-Prior [41]. This significant improvement shows the better generalization ability of
RePoNet. Also, the superior performance of RePoNet-semi over RePoNet-syn shows our proposed
semi-supervised training can effectively leverage the in-the-wild data. We also show the qualitative
results on Wild6D test set in Fig. 5.

2In Table 5, CPS++ only reports the performance under 10 degree, 10 cm.
3FS-Net and GPV-Pose are treated as the fully-supervised one, since it requires all real data and annotations.
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Figure 4: Ablation study on semi-supervised training with different number of unlabeled real data. Here,
we only show the performance on bottle and evaluate it on both REAL275 and Wild6D dataset.

Figure 5: Visualization Results on Wild6D test set. Red 3D bounding boxes denote the ground truth, and the
green boxes are estimation results via our proposed method.

6 Discussion
Conclusion. In this work, we consider the problem of generalizing 6D pose estimation to in-the-wild
objects. Most of existing work are restricted in constrained environments due to limited number
of annotated data. In an effort to resolve this limitation, we collect Wild6D, a new RGBD dataset
with diverse instances and backgrounds. Instead of annotating them, we also propose RePoNet, a
network that can leverage both the synthetic data and real-world RGBD data. Without using any 3D
annotations on real-world data, RePoNet outperforms state-of-the-art methods on existing datasets
and Wild6D test set by a large margin.

Limitations. Our proposed RePoNet may be hard to generalize to unseen categories. This is because
RePoNet depends on the categorical mesh prior which is pre-defined for each category leading to
the learnt deformation model fixed to a specific category. Alternative way to address this problem is
to represent object shape via a deformation of a unit sphere to remove the category-level prior. Our
dataset is currently limited to 5 categories to align with previous work for evaluation. We will extend
it to more categories in the future.
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2112665 (TILOS), NSF 1730158 CI-New: Cognitive Hardware and Software Ecosystem Community
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