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Abstract

Advancements in Large Language Models (LLMs) have
opened transformative possibilities for human-robot inter-
action, especially in collaborative environments. However,
Real-time human-AI collaboration requires agents to adapt
to unseen human behaviors while maintaining effective com-
munication dynamically. Existing benchmarks fall short in
evaluating such adaptability for embodied agents, focusing
mostly on the task performance of the agent itself. To address
this gap, we propose a novel benchmark that assesses agents’
reactive adaptability and instantaneous communication ca-
pabilities at every step. Based on this benchmark, we pro-
pose a Monitor-then-Adapt framework (MonTA), combining
strong adaptability and communication with real-time execu-
tion. MonTA contains three key LLM modules, a lightweight
Monitor for monitoring the need for adaptation in high fre-
quency, and two proficient Adapters for subtask and path
adaptation reasoning in low frequency. Our results demon-
strate that MonTA outperforms other baseline agents on our
proposed benchmark. Further user studies confirm the high
reasonability adaptation plan and consistent language instruc-
tion provided by our framework.

Introduction
Embodied agents powered by Large Language Models
(LLMs) show great potential for interpreting human in-
structions (Bubeck et al. 2023; Ouyang et al. 2022; Liu
et al. 2023a) and performing tasks through sequential ac-
tions in diverse environments (Zhang et al. 2023a; 2024;
Agashe, Fan, and Wang 2023; Liu et al. 2023a). To eval-
uate embodied agents effectively, their capabilities can be
assessed from multiple perspectives, including language in-
struction interpretation, subtask decomposition, action se-
quence generation, etc (Li et al. 2024). In highly cooperative
scenarios (Liu et al. 2023b; 2024; Carroll et al. 2019) where
agents must interact with humans at every step, real-time
adaptation on both subtask and action sequence becomes es-
pecially crucial (Weber, Mateas, and Jhala 2011).

Current LLM-powered agents (Zhang et al. 2023a; 2024;
Agashe, Fan, and Wang 2023; Liu et al. 2023a) still rely
on scripted-based policy or RL-based controller to achieve
atomic action, which makes them often struggle to achieve
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Figure 1: (A) The cooking procedure to finish one order. (B)
The game interface that we use to test agents and conduct
user studies.

reactive, real-time adaptation when collaborating with true
humans, highlighting the need to evaluate and improve this
capability for better performance in dynamic, collaborative
scenarios.

The existing benchmarks (Agashe et al. 2024; Cui et al.
2021), such as Overcooked-AI (Carroll et al. 2019), de-
signed for highly cooperative multi-agent scenarios, lack
modularity and fail to provide metrics for evaluating both
real-time adaptability and dynamic communication effi-
ciency of LLM-powered agents. Specifically, the following
limitations hinder the effectiveness.

• Lack of layouts required frequent adaptation: Cur-
rent benchmarks do not require agents to frequently adapt
strategies and coordinate sequential tasks due to conflict-
ing spaces, limiting their ability to assess dynamic team-
work scenarios.

• No explicitly real-time adaptation evaluation: The way
of accessing the performance using the overall game score



is straightforward yet not clear. The game score can be
influenced by agents’ capabilities from different perspec-
tives, such as subtask reasoning, adaptation, and human
goal integration.

• No Communication efficiency evaluation: For LLM-
based agents, communication is a critical capability and
advantage to achieve seamless human-agent collabora-
tion.

To better evaluate LLM agents in cooperative scenarios,
we introduce an enhanced Overcooked-AI (Carroll et al.
2019) benchmark, which is specifically designed to assess
the capability of both reactive adaptation and the effective
communication of LLM-based coordination agents. Further-
more, we also introduce MonTA, a framework designed to
enable embodied agents to execute real-time adaptation by
combining fast monitoring and slow adaptation.

To summarize, our key contributions include:

• We proposed a fine-grained benchmark to evaluate LLM-
powered agents’ adaptability and communication capabil-
ities, focusing on dynamic real-time interactions and co-
operative scenarios.

• We developed MonTA, a modular and adaptive frame-
work that integrates fast monitoring and deliberate adap-
tation to enable LLM agents to perform reactive, real-time
adaptations in highly cooperative environments.

• We conducted thorough experiments and user studies on
our benchmarks, using both MonTA and other frame-
works with various LLMs, which demonstrate the bench-
mark’s effectiveness in evaluating real-time agent adapt-
ability.

• Further comparison and analysis confirm MonTA’s supe-
rior adaptability and seamless collaboration in dynamic
human-agent cooperation.

Related Work
Embodied Agent Benchmark
Numerous studies have proposed benchmarks for embod-
ied multi-agent systems. (Zhang et al. 2023b; Agashe, Fan,
and Wang 2023; Chang et al. 2024; Puig et al. 2023;
Chang et al. 2024). Several language-based benchmarks,
such as (Das et al. 2018; Majumdar et al. 2024), have fo-
cused on question answering, which emphasizes informa-
tion gathering but does not consider the physical interac-
tion made by embodied agents. Notably, Li et al. (2024)
introduced the Embodied Agent Interface, a modular frame-
work for evaluating embodied decision-making processes by
considering factors beyond overall task performance. These
benchmarks usually focus on assessing overall performance,
limiting their ability to evaluate agents’ adaptability and
communication ability during collaboration. This work fo-
cuses on evaluating agents’ reactive and proactive ability in
language instruction during interaction. This work uniquely
benchmarks real-time adaptability within collaborative sce-
narios.

Real-time Human-AI Collaboration
Human-AI collaboration has been a long-standing chal-
lenge. Prior works study human-AI cooperation in games
such as Hanabi (Agashe et al. 2024; Cui et al. 2021), diplo-
macy ((FAIR)† et al. 2022), and overcooked (Carroll et al.
2019; Fontaine et al. 2021; Strouse et al. 2021). Several
studies also leverage LLMs for decision-making tasks in the
game of overcooked. For instance, Zhang et al. (2023a) use
LLMs to infer other agents’ intentions and plan subtasks,
while Zhang et al. (2024) explore long-horizon inference
for improved multi-agent cooperation. Recent work, such
as (Liu et al. 2023a), proposed an LLM-based hierarchical
framework to follow human high-level instruction, but still
lack adaptability during execution of assigned subtask. Prior
work primarily focuses on agents with high-level task plan-
ning and often lacks low-level adaptability. Our work dif-
fers by enabling agents’ real-time proactive adaptation at the
atomic action level.

An Enhanced Overcooked-AI Benchmark for
Embodied Agents

To thoroughly evaluate the real-time adaptability and per-
formance of different AI agents, we extended the origi-
nal Overcooked benchmark and designed different modular
tests. Specifically, we first constructed 22 layouts with vary-
ing complexity and coordination demands, following the
teaming fluency metrics discussed in Hoffman (2019) and
Nikolaidis (2024). Secondly, we designed a communication
panel( Figure 1B) to test the effectiveness of real-time lan-
guage instruction during human-agent collaboration. With
the designed layouts, we develop three different evaluation
modes to access the agent’s real-time adaptation on subtasks
and pathes. Details are presented in the following section.

Environments and Collaboration Process
The Overcook-AI environment (Carroll et al. 2019) is de-
signed to test the coordination skills of multiple agents or
human agents. Agents work together in a layout (Figure 1B
left) to achieve higher scores by preparing and serving soups
within a set time frame, following recipe-specific cooking
procedures (Figure 1A) to complete the available recipes.
Unlike end-to-end AI agents (e.g., behavior cloning or rein-
forcement learning), the collaboration process between hu-
man and embodied agents can generally be divided into two
key steps: determining the current subtask and executing
atomic actions to finish each subtask.

The possible subtasks in overcooked environments in-
clude: 1. Collect ingredients (e.g., onions, tomatoes) and add
to the pot. 2. Cook the ingredients and wait for the timer
to indicate the soup is ready. 3. Serve the soup in clean
dishes and deliver it to the serving location. 4. Agents can
also determine to drop the items in their hands on any empty
counter. To finish one order, agents have to infer the current
state and determine the next subtask based on the recipe.
Once the agent determined a subtask and its corresponding
position, the agent can be directed through a sequence of
atomic actions: up, down, left, right, stay, and interact to
finish the subtask. During the collaboration, adaptations of
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Figure 2: Benchmark for evaluating agent’s real-time adaptation capabilities. (A) Six representative layouts with different
teaming fluency from 85.3% to 16.7%. The red cross represents a critical point that would interfere with another agent’s
workflow. (B) Three representative path adaptation testing frames designed by human experts: self-adapt, other-adapt, and
both-ok types, viewed from the perspective of the blue agent. The subtask goal locations for the blue and green agents are
marked as blue “G” and green “G”, respectively, with their greedy paths shown as blue and green lines. The blue agent is
giving language instruction. (C) Three representative subtask adaptation testing frames where the blue agent is giving language
instructions.

both subtasks and action sequences need to happen in real-
time due to the uncertainty of humans or paired agents.

Mode 1: Overall testing
In order to better evaluate the agent’s real-time adaptation
capabilities, we adopted the teaming fluency metrics dis-
cussed in Hoffman (2019) and Nikolaidis (2024) to design
layouts for our real-time adaptation benchmark. The team-
ing fluency of a layout is defined as the percentage of non-
obstructed areas within the total free area of a layout. If one
agent stays at one position and does not adapt, the other
agent cannot finish the task independently, we then mark this
position as an obstructed area (red crosses as shown in Fig-
ure 2A). With this definition, a higher teaming fluency score
suggests an open layout where agents can operate indepen-
dently without much need to account for each other’s pres-
ence. Conversely, a lower teaming fluency indicates a more
confined and narrow layout, necessitating agents to adapt to
one another.

To generate layouts with different teaming fluency, we

adopt the following two steps: first, we use GPT-4o to gen-
erate layouts with symbolic text representation by prompt-
ing it to vary the positions of interaction points (e.g., onion,
tomato, pot) and adjust the number and positions of empty
counters to change the free space. After generating enough
layouts, we run a script to filter layouts based on whether
they are solvable and teaming fluency. Finally, we manually
review the layouts to ensure they are suitable for investigat-
ing different adaptation skills and revise them if needed.

We have selected 22 layouts with teaming fluency scores
ranging from 88.37% to 7.14%. More details are shown in
the Appendix A.2. These layouts impose constraints on con-
current motions with gradually increasing complexity, re-
quiring agents to adapt to dynamic situations in real-time.

Evaluation criteria For different layouts, we measure the
overall score achieved in a certain time threshold as a metric.
To achieve good performance in the overall evaluation, the
agent needs to show the ability to adapt subtasks as well as
low-level paths, especially when paired with non-adaptive
agents.



Mode 2: Path adaptation testing
The overall score reflects the agent’s general adaptation ca-
pability. However, it cannot independently assess path adap-
tation and subtask adaptation, providing less insight. To ex-
plicitly evaluate the path adaptation capabilities of embod-
ied agents, we carefully design short-horizon scenarios and
frames where the subtask of each agent is provided. For each
short scenario, we first select layouts where teaming fluency
is below 50%. Then, we vary the agent’s starting position
and target position for each agent to form a test. The crite-
ria are that the greedy path of the agent has to collide, and
possible adaptation plans exist. Then, we define and label
three types of adaptation situations during the execution of
subtasks: self-adapt, other-adapt, and both-ok. In the self-
adapt scenarios, as shown in the Figure 2B, the agent must
yield human trajectory to achieve better fluency or finish
both players’ subtasks. In other adapt scenarios, task success
can only be achieved by asking human teammates to yield.
In both-acceptable situations, either can yield or commu-
nicate and achieve both subtasks assigned. Finally, human
experts will determine the suitable adaptation plan and cal-
culate timesteps for each scenario, and we will set the time
limit for each scenario accordingly. In total, we designed 16
self-adaptation scenarios, 14 other-adaptation scenarios, and
13 scenarios where both agents may yield.

Evaluation criteria We provided both quantitative and
qualitative evaluations of the agent’s path adaptation capa-
bilities based on the short scenarios. For the quantitative
evaluation, we have the agent start on the designed start
frame, and the scenario is counted as successfully finished
if both agents can complete their assigned subtasks within
the limited timesteps. The success rate and stuck time on
different scenarios provide us with a direct assessment of
the agent’s ability in path adaption and spatial reasoning.
For the qualitative evaluation, we provide frame testing by
asking the agent to reason about the start frame and output
a language-based adaptation plan. The reasonableness and
consistency of the proposed adaptation plan are evaluated
by comparing it to a human-labeled adaptation plan.

Mode 3: Subtask adaptation testing
For subtask adaptation testing, we follow a similar pro-
cess by first labeling the frame where the human experts
think that the subtask adaptation is needed. Among those
frames where subtask adaptation is needed, it will be fur-
ther labeled as self-adapt, other-adapt, or both-ok. Finally, a
ground subtask adaptation is provided for each frame. Fig-
ure 2C shows three frames that require adaptation with their
labeled ground truth message.

Evaluation criteria For subtask adaptation testing, we
can directly compare the generated subtask goal location
with human-provided subtask adaptation plans.

MonTA Framework
For seamless teaming between AI agents and unpredictable
humans, the AI agent must have effective communication,

high-level reasoning, and real-time adaptive action capabili-
ties. Previous approaches using LLMs for coordination and
subtask reasoning (Liu et al. 2023a; Zhang et al. 2023a)
still rely on pre-defined scripts for atomic actions, limiting
low-level adaptability. Inspired by cognitive studies showing
that humans interchange between fast and intuitive thinking
versus slow and deliberate thinking (Kahneman 2011), We
introduce MonTA agent (Figure 3), which leverages two
LLMs for explainable, real-time adaptation. MonTA fea-
tures three key modules:

• Monitor: Continuously checks atomic actions to deter-
mine the need for adaptation or adjustments.

• Path Adapter: Adjusts paths in real-time to accommo-
date changing environments.

• Subtask Adapter: Oversees subtask execution and dy-
namically adjusts tasks as needed.

This section focuses on the design of the framework and how
the adapters and monitor enable adaptive collaboration and
communication. Detailed prompts for each module can be
found in Appendix A1.

MonTA uses a DFS planner to compute path as a sequence
of atomic actions, given a target location. These atomic ac-
tions include up, down, left, right, interact, and stay. It’s
worth noting that this planner can be replaced by any exist-
ing algorithm, highlighting the generalizability of our pro-
posed framework.

Monitor
To enable real-time reactive adaptation, latency must be im-
perceptible to ensure seamless collaboration. Inspired by
human decision-making, which involves both fast, intuitive
responses (System 1) and deliberate, analytical reasoning
(System 2), we employed an active Monitor capable of high-
frequency inference. Like System 1, the Monitor quickly
handles straightforward planning and execution, reserving
more deliberate reasoning akin to System 2 for moments
when adaptations are required. Specifically, it decides to
launch subtask-level or path-level adaptations as needed, dy-
namically switching between a greedy plan and an adaptive
plan. The chosen plan is executed by an underlying plan-
ner. For instance, subtask-level adaptation is required when
agents face conflicting task allocations (e.g., preparing du-
plicate items), while path-level adaptation is needed for re-
solving conflicts in planning paths (e.g., navigating a narrow
corridor in opposite directions). The agent reverts to its orig-
inal path once the Monitor detects further adaptation unnec-
essary. By deploying an LLM to monitor actions at atomic
level during decision-making, we achieve low inference la-
tency, enabling real-time adaptation.

Monitor model selection To meet the inference speed re-
quirements of the Monitor, we tested various models of dif-
ferent sizes to evaluate their inference speed and reason-
ing capabilities. Based on the most updated LLM bench-
mark (Beeching et al. 2023), we selected the representative
models including GPT-4o, Llama 3.1-8B-Instruct, Llama
3.2-3B-Instruct, and Llama 3.2-1B-Instruct. To further op-
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timize inference speed, we utilized SGLang (Zheng et al.
2023). Table 1 summarizes each model’s inference speed.

Subtask Adapter
The Subtask Adapter is designed to determine the next or on-
going subtask for all agents, such as picking up onions, when
prompted by the Monitor. It considers the overall task goal,
world state, and recipes to infer the current goals of other
agents and the agent’s own goal. It then identifies potential
target locations (which may include multiple options) and
passes a path to the selected target location to the Monitor
for active oversight. We leverage a proficient LLM, GPT-
4o (OpenAI et al. 2024), to implement Chain-of-Thought
reasoning (Wei et al. 2023). Based on the chosen adaptation
strategy, the Subtask Adapter generates subtask-level mes-
sages to coordinate with other agents.

Path Adapter
The Path Adapter is designed to determine the best alter-
native plan beyond the original greedy plan when prompted
by the Monitor. Using the provided alternative paths and as-
sociated costs, the Path Adapter reasons about the optimal
temporary adaptation path to avoid collisions. The agent re-
sponsible for adapting is selected based on the available al-
ternatives. Similarly, we leverage GPT-4o to perform Chain-
of-Thought reasoning, enabling the Path Adapter to deter-
mine which agent should adapt and to select the best adap-
tation path from the options provided by the planner. The
Path Adapter then generates a contextually relevant message
based on the chosen adaptation strategy. An example prompt
is provided in Appendix A1.

Experiments and quantitative results
To demonstrate the advantages of our proposed MonTA
framework, we compare our MonTA framework with two
baselines. The baseline models consist of a rule-based
greedy agent (Carroll et al. 2019) (GA) and a subtask adapter
agent (SAA). GA uses a rule-based subtask planner com-
bined with Depth First Search (Tarjan 1972) methods to
compute atomic actions (Carroll et al. 2019). It also includes
an auto-unstuck function that selects randomly from the
available actions when stuck. SAA uses use LLM to gener-
ate the next subtask when the current subtask is finished and
employs a greedy planner to execute atomic actions with-
out real-time adaptation. We then evaluate and compare our
MonTA with baselines on the proposed benchmark.

Overall performance
In multi-agent collaboration, an adaptive agent must recog-
nize when to adjust its actions based on the actions of other
agents. To evaluate this adaptability, we selected three lay-
outs — 7, 19, and 27 (Figure 2) — with teaming fluency
82.6%, 40%, and 16.7%, respectively. For each layout, we
paired our agent and baseline models with GA. We then con-
ducted experiments 3 times to get the average game score.
During the game, the target agent does not communicate
with paired GA, requiring adaptive behavior from our agent
to successfully complete tasks and get scores as the layout
complexity increases.

Effectiveness of the Benchmark The Figure 4 shows that
all three agents, including MonTA and the two baselines,
achieved their best performance on Layout 7. This is ex-
pected, as Layout 7 has high teaming fluency, minimizing



Figure 4: Overall evaluation results. The average score
comparison between different agent pairs includes MonTA
(ours) v.s. greedy, SAA v.s. greedy, and greedy v.s. greedy.

the likelihood of agents getting stuck and reducing the need
for subtasks or path adaptations. As the layout becomes
complex and has a lower teaming fluency, we note that the
GA consistently scores 0 in layouts 10 and 27 over 5 tri-
als. This potential results from the high ratios of adapta-
tion requirements to finish an order in these two layouts,
and the random action used to unstuck is less ineffective
or even impossible to succeed. Similarly, SAA also expe-
rienced a performance drop as teaming fluency decreased
but got slightly better performance than GA by leveraging a
proficient LLM to infer subtasks, providing subtask flexibil-
ity compared to the rule-based subtask transitions used by
GA. These results highlight that as team fluency metrics de-
crease, agents must exhibit higher adaptability, showcasing
the benchmark’s ability to evaluate varying levels of adapt-
ability effectively.

MonTA Agent Excels in Layouts with Lower Teaming
Fluency Our results demonstrate that the MonTA agent
outperforms the two baseline agents across all three tested
layouts, achieving scores of 156 ± 0, 53 ± 0, and 76.6 ±
26.5, as shown in Figure 4. This highlights the superior-
ity of MonTA in collaborative scenarios. Additionally, the
SAA struggles to match MonTA’s performance in Layouts
19 and 27, emphasizing the importance of path adaptation
and real-time execution of adaptive strategies. This is fur-
ther supported by the higher adaptation ratios of the MonTA
agent in Layouts 19 and 27 compared to the ratio in Layout
7.

Another interesting observation is that the MonTA agent
demonstrates significantly lower variance compared to GA
and SAA. This indicates that MonTA consistently identi-
fies potential adaptation needs and executes adaptive plans
to prevent failure rather than relying on the paired agent to
adapt. This capability is particularly crucial when pairing
with agents with unknown dynamics like human.

Path adapter evaluation
While overall performance across layouts is a useful met-
ric for evaluating an agent’s adaptability, there is significant

randomness in scores, particularly for GA and SAA. For in-
stance, SAA achieved a very high score in one trial on layout
10 due to a rare occurrence where the agents’ subtasks did
not collide, resulting in an unusually high score. Further-
more, when paired with an auto-unstuck agent, a greedy de-
cision can force the other agent with the auto-unstuck func-
tion to yield, progressing step by step at a very slow speed.
To better evaluate adaptation capabilities, we conducted ex-
periments on the path adaptation benchmark.

The agents are asked to complete two conflicting sub-
tasks within a limited timeframe. Further details about the
designed scenarios are provided in Benchmark Section and
Table 2. To balance real-time responsiveness with effective
adaptation detection, we varied the LLMs used for atomic
monitoring. For the adapter, which requires high reasoning
capabilities but does not need frequent queries, GPT-4o was
selected in this experiment. In total, we evaluated four agents
using GPT-4o, Llama-3.1-8B, Llama-3.2-3B, and Llama-
3.2-1B as monitors, alongside two greedy planners—one
with and one without an auto-unstuck function. Each of the
six agents was paired with the greedy planner featuring the
auto-unstuck function to assess their ability to handle expert-
designed scenarios. We run 5 trials for each configuration on
21 scenario evaluations. Additional details about the scenar-
ios can be found in Table 3.

In scenarios requiring the target agent to adapt, our
MonTA framework achieves an almost 100% (Figure 5A
green, red, blue bars) success rate even when utilizing a
lightweight large language model like Llama3.2-3B. In con-
trast, the two greedy planners almost always fail to complete
these scenarios, experiencing significant stuck time (Fig-
ure 5A, brown bar), whereas the MonTA agents successfully
avoids being stuck. This clearly demonstrates the superior
adaptability of our framework.

In scenarios labeled as Both-OK and Other-Adapt, the
MonTA agent using GPT-4o, Llama3.2-8B, or Llama3.2-
3B achieves performance similar to the greedy planner. In
these cases, the MonTA agent may request the paired agent
to adapt while following its original plan. This approach can
still achieve the subtask goal because the paired agent ex-
ecutes an auto-unstuck function. The standard deviation is
high here because we are averaging all scenarios which be-
long to the same type. Notably, in such cases, MonTA retains
an advantage when paired with a human or an agent capable
of interpreting language input, as it can effectively commu-
nicate and inform adaptation plans to allow the paired agent
to adapt more effectively.

Lauguage instruction study True reactive collaborators
not only adapt their behavior but also provide instructions to
others when necessary. In our framework, the adapter lever-
ages a proficient LLM, GPT-4o, to reason about adaptation
plans and generate language instructions. The adapter au-
tonomously adjusts its behavior when self-adaptation is re-
quired and sends language instructions only when another
agent needs to adapt.

To evaluate the language instructions generated by our
adapter, we queried GPT-4o to produce instructions for both
self-adaptation and other-adaptation scenarios at each spe-
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Metrics GPT-4o Llama-8B Llama-3B Llama-1B

Lm (s) 0.42 (0.07) 0.14 (0.002) 0.08 (0.0006) 0.04 (0.001)

Lsa (s) 2.09 (0.29) 2.11 (1.0) 2.62 (1.34) 2.84 (1.31)

Lpa (s) 0.79 (0.08) 0.48 (0.002) 0.26 (0.03) 0.15 (0.001)

Na (%) 9.7 (5.5) 52 (4) 84 (5) 4 (0)

Table 1: The monitor latency, Lm, subtask adapter latency,
Lsa, and path adapter latency, Lpa, as well as the ratio of
adapter queries, Na. The monitor decides on every step if
we use different LLM. The format is Mean (Standard deviation).

cific step. This process was repeated five times across 20
benchmark scenarios. Seven human experts assessed the rea-
sonableness and consistency of these instructions. Detailed
evaluation criteria are provided in Appendix A2.

The evaluation results, presented in Figure 6, reveal that
human experts found the suggestions generated by MonTA
to be reasonable and consistent in nearly 75% of scenar-
ios. This indicates that the adapter effectively identifies who
should adapt and determines the correct adaptation plan.
Such adaptability can reduce the cognitive burden on human
collaborators and facilitate seamless human-agent collabo-
ration.

An interesting observation is that in some of the frames,
our agent received evaluations with a larger variance. A
closer examination of the scenarios revealed divergent hu-
man preferences regarding costs and the choice between
self-adaptation and other-adaptation solutions. These differ-
ences indicate that the optimal solution can vary depend-
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Figure 6: Language instruction evaluation results. Blue and
yellow bars show the ratio of LLM instruction reasonability
levels and the consistency of LLM suggestions reported by
human experts.

ing on individual preferences, highlighting the importance
of considering human preferences when designing agent in-
structions. Further details of the evaluation are provided in
Table 6.

Trade-off between performance and latency To use
LLMs to aid with real-time decision-making, there is a la-
tency requirement, where high latency may influence the
human experience of collaboration. Therefore, we experi-
mented to compare the latency estimation of each query.
The reactive adaptation process includes two latency levels:
monitor latency and adapter latency. The monitor is queried
every atomic action step, which largely determines the over-
all frequency of collaboration, however, if the adapter has
to be called multiple times due to the incapability of the
monitor, it might still result in a latency issue. We selected
four language models to test, including GPT-4o, Llama3.1-
8b, Llama3.2-3b, and Llama3.1-1b. The GPT-4o is queried
using API, where the Llama is run locally through SGLang
in an RTX3090 GPU computer.

We report the average latency estimation results from
our path adapter experiments in Table 1. As expected, the
adapter latency is consistently higher than the monitor la-
tency across all LLMs, aligning with the design goal for
the monitor to prioritize speed over complex reasoning. No-
tably, as the model size decreases to 8B and 3B, the monitor
latency is reduced to approximately 0.1 seconds, enabling
a monitoring frequency of 8Hz for real-time decision-
making, and these smaller models can run locally.

Furthermore, the GPT-4o monitor only needs to query the
adapter in 9.7% of cases, demonstrating excellent perfor-
mance in identifying when adaptation is necessary. In con-
trast, the Llama models struggle to achieve efficient state
transitions for monitoring. To improve generalization to
real-world systems, fine-tuning or distilling the Llama mod-
els would be an ideal approach to enhance their performance
within this framework.

Conclusion
In this paper, we focus on leveraging LLMs to enable agents
with real-time adaptation capabilities. To achieve this, we



first create a benchmark consisting of diverse layouts, care-
fully designed scenarios that require agents to demonstrate
reactive and adaptive behaviors. We then introduce the
MonTA framework, the core idea of which is only to utilize
the LLM to monitor whether and what type of adaptation is
needed. This allows the monitor to assess the agents’ status
at a higher rate in real time. When necessary, the LLM tran-
sitions to more deliberate “slow thinking” to adapt plans or
provide user instructions. Our experiments demonstrate that
the real-time adaptation capabilities significantly enhance
performance and robustness when two agents collaborate in
low-teaming-fluency layouts and execute our designed sub-
tasks.
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Appendix
A1. Prompt Construction
We have distinct prompts for Subtask Adapter, Path Adapter,
and Monitor. There are two prompts for Monitor as it serves
different purposes depending on whether an agent is adapt-
ing or following the original greedy path.

Subtask Adapter prompt Subtask Adapter prompt con-
tains environment context, Current game state, filtered ac-
tions, and goals.

C o n t e x t :
You a r e a c h e f t h a t works wi th a n o t h e r human c h e f i n a

k i t c h e n . . .
You s h o u l d f o l l o w t h e s e r u l e s : . . .
The p r o c e d u r e t o f i n i s h one d i s h i s . . .
Rec ipe book :
Rec ipe 0 : R e q u i r e s i n g r e d i e n t s : [ i n g r e d i e n t 1 ] , [

i n g r e d i e n t 2 ] , [ i n g r e d i e n t 3 ]
=====================
K i t c h e n s t a t e :

[ K i t c h e n I t e m s i n t e x t ]
=====================
Your c u r r e n t s t a t e :

1 . You a r e a t t h e c o o r d i n a t e s ( x , y )
2 . You a r e f a c i n g [ i t em name ]
3 . You a r e h o l d i n g [ i t em name ]

The s t a t e o f t h e o t h e r human c h e f :
1 . The o t h e r c h e f i s a t t h e c o o r d i n a t e s ( x , y )
2 . They a r e f a c i n g [ i t em name ]
3 . They a r e h o l d i n g [ i t em name ]

=====================
Your a v a i l a b l e a c t i o n s :

\Opt ion 1 : [ a v a i l a b l e s u b t a s k ]
\Opt ion 2 : [ a v a i l a b l e s u b t a s k ]
. . .

Human a v a i l a b l e a c t i o n s :
\Opt ion 1 : [ a v a i l a b l e s u b t a s k ]
\Opt ion 2 : [ a v a i l a b l e s u b t a s k ]

=====================
Goal :
Your f i r s t s t e p w i l l be : a n a l y z e t h e s t a t e o f t h e

k i t c h e n and i t ems , a s w e l l a s t h e r e c i p e t o g e t
n e x t b e s t a c t i o n . s e l e c t an a c t i o n from your
a v a i a b l e a c t i o n s . and s e l e c t t h e t a r g e t p o s i t i o n
t o i n t e r a c t . choose your t a r g e t p o s i t i o n from
k i t c h e n i t e m s . do n o t s e l e c t t a r g e t p o s i t i o n n o t
l i s t e d i n k i t c h e n s t a t e l i s t .

Your second s t e p w i l l be : a n a l y z e human s t a t e , wor ld
s t a t e and human message / human p r e f e r e n c e , r e a s o n
a b o u t human i n t e n t i o n . choose a human i n t e n d e d
p o s i t i o n from D e l i v e r y l o c a t i o n , pot , d i s p e n s e r
l i s t e d i n k i t c h e n i t e m s . do n o t s e l e c t t a r g e t
p o s i t i o n n o t l i s t e d i n k i t c h e n i t em l i s t .

Re tu rn t h e f i n a l d a t a wi th human i n t e n t e d t a r g e t
p o s i t i o n , human i n t e n t e d a c t i o n id , your
f i n a l a c t i o n i d , t a r g e t p o s i t i o n ,

. . .

Path Adapter prompt Path Adapter takes information
about agents’ greedy paths, potential adaptation plans with
associated costs, and goals.

Here i s your p l a n n e d g r ee dy p a t h :
[ a g e n t g r e ed y p a t h ]

Human i s l i k e l y t o t a k e f o l l o w i n g p a t h :
[ human g re ed y p a t h ]

These two p a t h s o v e r l a p p a t h p o i n t s , which c a u s e s
c o l l i s i o n s .

Your p o t e n t i a l a d a p t p l a n s :
\Plan 1 : [ a v a i l a b l e p lan , p l a n l e n g t h ]
\Plan 2 : [ a v a i l a b l e p lan , p l a n l e n g t h ]

. . .
human p o t e n t a i l a d a p t s p l a n s :

\Plan 1 : [ a v a i l a b l e p lan , p l a n l e n g t h ]
\Plan 2 : [ a v a i l a b l e p lan , p l a n l e n g t h ]

. . .

F i r s t check t h e a d a p t a t i o n p l a n works , by c h e c k i n g i f
t h e a d a p t a t i o n p l a n o f one a g e n t w i l l s t i l l
o v e r l a p wi th t h e o t h e r agen t ’ s o r i g i n a l p a t h .

A f t e r i d e n t i f y i n g a v a l i d a d a p t a t i o n plan , choose one
wi th t h e l o w e s t c o s t and d e c i d e which a g e n t t o
a d a p t . , p l e a s e check c a r e f u l l y i f t h e a d a p t a t i o n
p l a n has c o n f l i c t w i th o t h e r agne t ’ s o r i g i n a l
p a t h

Re tu rn t h e p r o b a b i l i t y o f humans a d a p t i n g wi th 1 t o
p human adap t i f human a d a p t a t i o n has low c o s t ,
and t h e p r o b a b i l i t y o f a g e n t a d a p t i n g wi th 1 t o
p a g e n t a d a p t i f a g e n t a d a p t has l o w e r s t c o s t and

v a l i d and a d a p t i n d e x , g i v e me d e t a i l e d a n a l y s i s

Monitor prompt Monitor has two prompt. One prompt
monitoring if agents need to shift to the adaptation path, and
one prompt monitoring if agents need to switch back to the
original greedy path. We show one prompt here as they only
vary in prompt goals. Prompt contains grid layout, agent po-
sitions, target positions, agents’ greedy path to target, and
goals.

C o n t e x t :
Gr id l a y o u t :
Th i s i s a 9x7 g r i d wor ld . The t o p l e f t c o r n e r i s ( 0 ,

0 ) and t h e bot tom r i g h t c o r n e r i s ( 8 , 6 ) . Moving
down w i l l r e s u l t second pos c o o r d i n a t e s +1 , e . g .
( 0 , 0 ) −> ( 0 , 1 ) , moving r i g h t w i l l r e s u l t s t h e
f i r s t pos c o o r d i n a t e +1 , e . g ( 0 , 0 ) −>(1 ,0) The
Gr id c o n t a i n s t h e f o l l o w i n g i t e m s :

X i s o b s t a c l e , a i s your p o s i t i o n , and A i s your
t a r g e t p o s i t i o n , b i s p o s i t i o n o f human p a r t n e r
and B i s human p a r t n e r ’ s t a r g e t p o s i t i o n ( i n f e r r e d
) .

[ g r i d l a y o u t ]

You a r e a t t h e c o o r d i n a t e s : [ a g e n t p o s i t i o n ]
Your t a r g e t p o s i t i o n s : [ a g e n t t a r g e t p o s i t i o n ]

The o t h e r c h e f i s a t t h e c o o r d i n a t e s : [ o t h e r s p o s i t i o n
]

Human T a r g e t P o s i t i o n : [ o t h e r s t a r g e t p o s i t i o n ]

your p l a n n e d g re e dy p a t h :
[ a g e n t g r e ed y p a t h ]

Human i s l i k e l y t o t a k e f o l l o w i n g p a t h :



[ human g re ed y p a t h ]
You a r e c u r r e n t do ing a c l e a r t e m p e r a r y a d a p t a t i o n

p a t h f o r c o l l i s i o n a v o i d a n c e :
[ a d a p t a t i o n p a t h ]

*** Your g o a l : Only u s i n g a l l t h e i n f o r m a t i o n above ***
a n a l y z e Do you need t o a d a p t t o human b e h a v i o r ?
f o r example , you s h o u l d a d a p t t o human when you want

t o a v o i d c o l l i s i o n ( human c u r r e n t p o s i t i o n i s on
your way ) .

o t h e r w i s e , do n o t a d a p t . For example , i f you s e e t h a t
bo th a g e n t a r e s t u c k e d , t h e n i t c o u l d be good t o
a d a p t .

r e s p o n d your a n a l y s i s and i f you f o l l o w gr ee d y or n o t .
r e s p o n d t r u e i f f o l l o w greedy , f a l s e i f n o t .

A2. Additional details of benchmark
Layouts The layouts is selected based on the teaming flu-
ency metrics from high to low. Table 2 provides a visualiza-
tion of the selected 22 layouts and the corresponding ID as
well as the teaming fluency.

Frames We generated 41 frames with three types, includ-
ing self-adapt, other-adapt, and both-ok. We use 20 frames
for quantitative testing, which is shown in Table 3 and 21
frames for qualitative testing(Table 6).

A3. Additional results
Figure 7 presents the success rate of path adaptation testing
on 20 frames shown in Table 2. Figure 8 presents the detailed
evaluation of llm-generated language instructions for each
frame shown in Table 6. Table 4 and Table 5 shows detailed
success rate and stuck time for path adaptation testing.
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Figure 7: Success rate of path adaptation testing on different
frames. The blue, red, and green bars represent the success
rate of self-adapt, both-ok, and other-adapt frames.
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Figure 8: Human reported reasonability and consistency on
the llm generated suggestions on each frame.



ID Layout Collision Points Fluency ID Layout Collision Points Fluency

1 5 88.37% 2 5 85.29%

5 6 80.00% 6 5 85.71%

7 4 82.61% 8 5 77.27%

10 5 61.5% 11 5 68.75%

14 7 68.18% 15 7 22.22%

16 5 73.68% 17 9 40.00%

18 7 41.67% 19 12 40.00%

20 9 18.18% 21 8 33.33%

22 13 7.14% 23 12 40.00%

24 12 42.86% 25 14 26.32%

26 15 16.67% 27 15 16.67%

Table 2: All 22 layouts with corresponding number of collision points and team fluency scores.



ID Frame Description Adaptation type ID Frame Description Adaptation type

0 Blue: pickup onion
Green: pot ingredient Other-adapt 1 Blue: pickup onion

Green: pickup tomato Other-adapt

2 Blue: pickup tomato
Green: pickup onion Self-adapt 3 Blue: pickup dish

Green: pickup onion Both-ok

4 Blue: pickup onion
Green: pickup dish Self-adapt 5 Blue: pickup dish

Green: pickup onion Other-adapt

6 Blue: pickup onion
Green: pickup tomato Self-adapt 7 Blue: pickup tomato

Green: pickup tomato Both-ok

8 Blue: pickup onion
Green: pickup tomato Both-ok 9 Blue: pickup tomato

Green: pickup onion Both-ok

10 Blue: pickup dish
Green: pickup tomato Both-ok 11 Blue: pickup onion

Green: pot ingredient Both-ok

12 Blue: pickup tomato
Green: pot ingredient Both-ok 13 Blue: pickup tomato

Green: pickup onion Both-ok

14 Blue: pickup onion
Green: pickup tomato Self-adapt 15 Blue: pickup dish

Green: pickup onion Both-ok

16 Blue: pickup dish
Green: pot ingredient Both-ok 17 Blue: pot ingredient

Green: pickup dish Both-ok

18 Blue: pot ingredient
Green: serve soup Both-ok 19 Blue: serve soup

Green: pot ingredient Both-ok

20 Blue: pickup dish
Green: pickup tomato Other-adapt

Table 3: All 21 path adaptation testing evaluation with description and adaptation type.



Subtask id MonTA (GPT-4o) MonTA (Llama-8b) MonTA (Llama-3b) MonTA (Llama-1b) Greedy (auto unstuck) Greedy
0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.8 0.6 0.4 0.4 0.4 0.6
2 1.0 1.0 1.0 0.0 0.2 0.0
3 1.0 1.0 1.0 0.0 0.0 0.8
4 1.0 0.8 0.8 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0
6 1.0 1.0 1.0 0.0 0.0 0.0
7 0.2 1.0 1.0 0.4 0.0 1.0
8 0.4 0.8 0.4 0.0 0.0 0.4
9 0.4 0.2 0.4 0.0 0.0 0.0

10 0.0 0.0 0.2 0.2 0.0 0.0
11 0.2 0.0 0.2 0.0 0.0 0.0
12 0.8 0.8 0.8 0.2 0.0 1.0
13 0.4 1.0 0.8 0.0 0.0 1.0
14 1.0 1.0 1.0 0.0 0.0 0.0
15 0.2 0.0 0.2 0.0 0.0 0.2
16 1.0 0.8 0.6 0.0 0.0 1.0
17 1.0 0.2 0.4 0.0 0.2 0.6
18 1.0 0.4 0.4 0.0 0.0 0.8
19 1.0 0.8 0.6 0.0 0.0 1.0
20 0.8 1.0 0.6 0.4 0.0 1.0

Table 4: Success rate for greedy agent, greedy agent with built-in auto-unstuck function, and MonTA agent with varying
monitors for all 21 path adaptation evaluations.

Subtask id MonTA (GPT-4o) MonTA (Llama-8b) MonTA (Llama-3b) MonTA (Llama-1b) Greedy (auto unstuck) Greedy
0 24.0 (0) 24.0 (0) 24.0 (0) 24.0 (0) 24.0 (0) 24.0 (0)

1 4.6 (2.1) 3.6 (5.1) 4.8 (4.6) 3.6 (0.89) 2.6 (1.5) 7.2 (8.2)

2 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 4.4 (4.2) 24.0 (0)

3 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)

4 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)

5 0.6 (1.3) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 2.4 (2.2)

6 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 2.0 (3.1) 8.0 (4.1)

7 6.8 (9.3) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 1.8 (1.6)

8 0.0 (0) 0.6 (1.3) 7.4 (3.2) 0.0 (0) 0.0 (0) 10.2 (9.3)

9 1.8 (1.6) 8.8 (6.9) 8.8 (8.1) 0.0 (0) 0.0 (0) 0.0 (0)

10 8.4 (4.7) 1.8 (1.6) 7.2 (1.3) 4.4 (3.4) 5.0 (1.9) 2.6 (3.6)

11 0.0 (0) 0.0 (0) 2.6 (5.8) 0.0 (0) 0.0 (0) 0.0 (0)

12 0.0 (0) 0.0 (0) 0.8 (1.8) 0.0 (0) 0.0 (0) 0.0 (0)

13 0.0 (0) 0.0 (0) 1.8 (4) 0.0 (0) 0.0 (0) 0.0 (0)

14 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)

15 13.8 (8.1) 10.8 (10) 11.6 (8.6) 8.0 (11) 2.6 (2.6) 15.8 (8.5)

16 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)

17 0.0 (0) 5.8 (5.7) 3.0 (4.5) 0.0 (0) 2.4 (2.5) 3.0 (5.2)

18 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)

19 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)

20 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)

Table 5: Stuck time for greedy agent, greedy agent with built-in auto-unstuck function, and MonTA agent with varying monitors
for all 21 path adaptation evaluations. The format is Mean (Standard deviation).



ID Frame Language Instruction Reasonability Consistency ID Frame Language Instruction Reasonability Consistency

0

I will adapt to location [4, 3].
I will adapt to location [4, 3].
I will adapt to location [4, 3].
I will adapt to location [4, 3].
I will adapt to location [4, 3].

3.83 (0.41) 4.00 (0.00) 1

Could you adapt to location [4, 3]?
Could you adapt to location [4, 3]?
Could you adapt to location [4, 3]?
Could you adapt to location [4, 3]?
Could you adapt to location [4, 3]? Thank you!

4.00 (0.00) 3.83 (0.41)

2

I will adapt to location [4, 3].
I will adapt to location [4, 3].
I will adapt to location [4, 3].
I will adapt to location [4, 3].
I will adapt to location [4, 3].

2.67 (1.21) 4.00 (0.00) 3

Could you adapt to location [5, 2]?
Could you adapt to location [5, 2]?
Could you adapt to location [5, 2]?
Could you adapt to location [5, 2]?
Could you adapt to location (6, 2)?

3.17 (1.33) 4.00 (0.00)

4

I will adapt to location [2, 2].
I will adapt to location [2, 2].
I will adapt to location [2, 2].
I will adapt to location [2, 2].
No adaptation

0.83 (0.98) 3.50 (0.55) 5

Could you adapt to location [2, 2]? Thank you!
Could you adapt to location [2, 2]?
Could you adapt to location [2, 2]?
Could you adapt to location [2, 2]?
Could you adapt to location [2, 2]?

1.67 (1.63) 3.67 (0.52)

6

I will adapt to location [1, 3].
I will adapt to location [1, 3].
I will adapt to location [1, 3].
I will adapt to location [1, 3].
I will adapt to location [1, 3]. Thank you!

3.83 (0.41) 4.00 (0.00) 7

Could you adapt to location [1, 3]?
Could you adapt to location [1, 3]?
Could you adapt to location [1, 3]?
Could you adapt to location [1, 3]?
Could you adapt to location [1, 3]? Thank you!

4.00 (0.00) 3.83 (0.41)

8

Could you adapt to location [2, 4]?
Could you adapt to location [2, 4]? Thank you!
Could you adapt to location [1, 3]? Thank you!
Could you adapt to location [2, 4]? Thank you!
I will adapt to location [2, 2].

3.17 (0.41) 2.17 (0.75) 9

I will adapt to location [2, 4].
I will adapt to location [2, 4].
I will adapt to location [2, 4].
I will adapt to location [2, 4].
I will adapt to location [2, 4].

3.83 (0.41) 4.00 (0.00)

10

I will adapt to location [2, 4].
I will adapt to location [2, 4].
I will adapt to location [2, 4].
I will adapt to location [2, 4].
I will adapt to location [2, 4].

3.83 (0.41) 4.00 (0.00) 11

Could you adapt to location [3, 2]?
Could you adapt to location [6, 4]?
Could you adapt to location [6, 4]?
Could you adapt to location [6, 4]?
Could you adapt to location [3, 2]?

3.00 (0.89) 2.33 (0.52)

12

Could you adapt to location (1, 3)?
I will adapt to location [6, 2].
I will adapt to location [6, 2].
I will adapt to location [6, 2].
I will adapt to location [6, 2].

3.50 (0.55) 3.33 (0.52) 13

Could you adapt to [5, 5]?
Could you adapt to location [5, 5]?
Could you adapt to location [5, 5]?
Could you adapt to location [5, 5]?
Could you adapt to location [5, 5]?

0.33 (0.52) 4.00 (0.00)

14

I will adapt to location [6, 2].
I will adapt to location [6, 2].
I will adapt to location [6, 2].
I will adapt to location [6, 2].
I will adapt to location [6, 2].

3.17 (1.17) 4.00 (0.00) 15

I will adapt to location (1, 2).
No adaptation
No adaptation
No adaptation
No adaptation.

1.50 (1.64) 2.67 (0.52)

16

Could you adapt to location [1, 3]?
I will adapt to location [2, 2].
I will adapt to location [2, 2].
Could you adapt to location [1, 3]?
I will adapt to location [2, 2].

2.50 (1.05) 2.33 (0.52) 17

I will adapt to location [1, 3].
I will adapt to location [1, 3].
I will adapt to location [1, 3].
I will adapt to location [1, 3].
I will adapt to location [1, 3].

2.83 (1.60) 4.00 (0.00)

18

I will adapt to location [1, 4].
I will adapt to location [1, 4].
I will adapt to location [1, 4].
I will adapt to location [1, 4].
I will adapt to location [1, 4].

4.00 (0.00) 4.00 (0.00) 19

Could you adapt to location [1, 4]?
Could you adapt to location [1, 4]? Thank you!
Could you adapt to location [1, 4]? Thank you!
Could you adapt to location [1, 4]?
Could you adapt to location [1, 4]? Thank you!

4.00 (0.00) 3.83 (0.41)

20

I will adapt to location [4, 2].
I will adapt to location [4, 2].
I will adapt to location [4, 2].
No adaptation
I will adapt to location [4, 2].

3.50 (0.55) 3.00 (0.00) 21

No adaptation
I will adapt to location [4, 2].
I will adapt to location [4, 2].
I will adapt to location [4, 2].
I will adapt to location [4, 2].

2.83 (1.47) 3.33 (0.52)

Table 6: 22 frames user study evaluation and corresponding five agent generated responses, human rated reasonability and
consistency.


