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Abstract
Word representations are an important aspect of001
Natural Language Processing (NLP). Represen-002
tations are trained using large corpuses, either003
as independent static embeddings or as part of004
a deep contextualized model. While word em-005
beddings are useful, they struggle on rare and006
unknown words. As such, a large body of work007
has been done on estimating rare and unknown008
words. However, most of the methods focus009
on static embeddings, with few models focused010
on contextualized representations. In this work,011
we propose SPRUCE, a rare/unknown embed-012
ding architecture that focuses on contextualized013
representations. This architecture uses subword014
attention and embedding post-processing com-015
bined with the contextualized model to produce016
high quality embeddings. We then demonstrate017
these techniques lead to improved performance018
in most intrinsic and downstream tasks.019

1 Introduction020

Word representations are an important aspect021

of NLP. While initially, word embeddings were022

trained separately and inserted into task specific023

architectures ("static" embeddings), modern ap-024

proaches use deep architectures to generate con-025

textualized representations (Devlin et al., 2018; Pe-026

ters et al., 2018; Liu et al., 2019). A weakness027

of static representations is that they only exist for028

a trained vocabulary; there are no representations029

for unknown words. While deep contextualized030

models can theoretically produce a new representa-031

tion, (Schick and Schütze, 2020) demonstrated that032

these representations for unknown/rare words are033

of poor quality, implying that rare/unknown words034

are still a challenge for contextualized embeddings.035

In response, there have been attempts to create036

new representations for these words. While there037

has been a large body of work on static embed-038

dings, less has been focused on contextualized em-039

beddings, especially approaches that incorporate040

recent innovations enhancing static rare/unknown041

estimation. Motivated by this, we propose a new 042

architecture for rare/unknown estimation of con- 043

textualized embeddings. This model incorporates 044

subword attention and embedding post-processing 045

for higher quality estimates. We call this ap- 046

proach Subword Attention and Postprocessing for 047

Rare and Unknown Contextualized Embeddings 048

(SPRUCE). 049

2 Related Work 050

Rare/unknown word representations have been 051

well studied in static word embeddings. Early ap- 052

proaches used context sentences to estimate new 053

word embeddings (Herbelot and Baroni, 2017; 054

Lazaridou et al., 2017; Horn, 2017; Arora et al., 055

2017; Mu and Viswanath, 2018; Khodak et al., 056

2018), while other approaches use the rare words’ 057

morphemes/subwords to estimate the embedding 058

(Bojanowski et al., 2017; Sasaki et al., 2019; Pin- 059

ter et al., 2017). The most effective approaches 060

combine context sentences and subwords (Schick 061

and Schütze, 2019c,a; Hu et al., 2019; Patel and 062

Domeniconi, 2020, 2023). The combined model 063

SubAtt (Patel and Domeniconi, 2023), for instance, 064

uses transformer self attention (Vaswani et al., 065

2017) on context like other models, but also uses 066

transformer self attention on the subword represen- 067

tations, leading to strong results. Rare/unknown 068

words have also been studied on contextualized 069

embeddings, with the goal of constructing new 070

representations for use in the initial embedding 071

layer of the contextualized deep model. While less- 072

studied than static embeddings, there have been 073

attempts to effectively estimate rare/unknown con- 074

textualized embeddings. The current state-of-the- 075

art approach on contextualized models is BERTRAM 076

(Schick and Schütze, 2019b); BERTRAM constructs 077

the context representations using the BERT archi- 078

tecture. It then combines these representations us- 079

ing the attention mechanism from Attentive Mim- 080

icking (Schick and Schütze, 2019a, 2020). It uses 081
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learned subwords to estimate the rare/unknown082

embedding, and then inputs this estimate into the083

BERT model for each context sentence. BERTRAM084

has been shown to output strong rare/unknown em-085

beddings for use in a BERT architecture. How-086

ever, contextualized rare/unknown words are un-087

derstudied, and models don’t incorporate recent088

innovations found in static embedding equivalents.089

In response to this, we propose SPRUCE, a model090

that incorporates the strengths of previous static091

models like SubAtt and contextualized models like092

BERTRAM to create a new architecture that is state-093

of-the-art in most rare/unknown evaluation tasks.094

3 Model095

We now present SPRUCE1. We focus on estimat-096

ing rare and unknown embeddings with the BERT097

(Devlin et al., 2018) model, although this can be098

adapted to any deep model. We combine aspects099

of the previous state-of-the-art model BERTRAM100

(Schick and Schütze, 2019b) with attention on the101

subword input, similar to the one proposed in static102

word embeddings model SubAtt (Patel and Domeni-103

coni, 2023) but has not been previously used in con-104

textualized models. In addition, we train SPRUCE105

on post-processed embeddings, with top PCA com-106

ponents removed. A diagram of SPRUCE is shown107

in Figure 1.108

3.1 Pretrained Aspects109

Similar to BERTRAM, we start with pretraining a110

context half and a subword half of the model sepa-111

rately. We use the same architectures pretrained in112

BERTRAM for SPRUCE.113

3.2 SPRUCE Context Architecture114

Similar to BERTRAM, we extract BERT representa-115

tions for each context sentence Ci. We then use116

these to calculate our new representations using117

Attentive Mimicking (Schick and Schütze, 2019a,118

2020).119

vCi = BERT (Ci) (1)120

vctx1 =

C∑
i=1

ρ(Ci)vCi (2)121

where ρ(C) is calculated using the attention mech-122

anism used in Attentive Mimicking (see (Schick123

and Schütze, 2019a) for more details). Next, we124

calculate a second context representation, using a125

1Link to code to be added after review

transformer encoder self attention layer, denoted as 126

Encoderctx. We take the mean of this result: 127

vC2 = Encoderctx(vC , vC , vC) (3) 128

vctx2 =
1

|vC2 |
∑
i

vC2i
(4) 129

This approach yields two context representations, 130

vctx1 and vctx2 . 131

3.3 SPRUCE Subword Architecture 132

Unlike BERTRAM, which creates a subword estimate 133

and then inserts it into each context sentence, we 134

also incorporate the subword representation at the 135

end of the model. In addition, we apply attention 136

on the subwords. This was proposed in (Patel and 137

Domeniconi, 2023) for static embeddings; ours 138

is the first architecture to do this with contextual- 139

ized ones. We use two subword representations. 140

First, in an effort to match the context processing 141

of BERT, we apply transformer encoder layers to 142

the pretrained subword embeddings. We use 12 143

layers in an effort to match the BERT architecture. 144

We then take the mean of those representations: 145

vS2 = Encodersub12(vS , vS , vS) (5) 146

vsub1 =
1

|vS2 |
∑
i

vS2i
(6) 147

where VS is the set of character ngram subwords 148

that make up the target rare/unknown word. Sec- 149

ondly, to match the context half of the architecture, 150

we use another transformer self attention layer, and 151

then take the mean: 152

vS3 = Encodersub1(vS2 , vS2 , vS2) (7) 153

vsub2 =
1

|vS3 |
∑
i

vS3i
(8) 154

This yields two subword representations, vsub1 and 155

vsub2 . 156

3.4 Combining Subword and Context 157

We experimented combining the four values in var- 158

ious ways, but found that a hierarchical gating ap- 159

proach worked best. We use gate functions origi- 160

nally proposed in (Schick and Schütze, 2019c), ap- 161

plied multiple times to combine each piece. First, 162

we combine the context representations with each 163

other and the subword representations with each 164

other. We then combine the final context and final 165
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Figure 1: Model Architecture

subword representations:166

vctxfinal
= αcvctx1 + (1− αc)vctx2 (9)167

vsubfinal
= αsvsub1 + (1− αs)vsub2 (10)168

vfinal = αfvctxfinal
+ (1− αf )vsubfinal

(11)169

with weights of each α is calculated as follows:170

αj = σ(wT
j [vj1 , vj2 ] + b) (12)171

where wj ∈ R2d and b is a bias value. Our final172

representation is vfinal. During training, this is173

compared to the original embedding (we refer to174

this as vgold) using Mean Squared Error as the loss.175

3.5 Post-Processing Label Embeddings176

Word embeddings tend to share some common177

directions. These common directions carry lit-178

tle semantic content, and can distract from the179

meaningful components in embeddings. (Mu and180

Viswanath, 2018) and (Arora et al., 2017) proposed181

post-processing word embeddings in order to im-182

prove their performance in various tasks. The post-183

processing approach removes top PCA (Pearson,184

1901) components from each embedding, removing185

less meaningful aspects of the embeddings. While186

post-processing is generally studied on static word187

embeddings, (Sajjad et al., 2022) demonstrated that188

this post-processing shows improvement in contex-189

tualized embeddings as well. Motivated by this, we190

propose training SPRUCE on post-processed BERT191

embeddings. The goal is to train the model to192

output embeddings that carry meaningful content.193

Training on post-processed embeddings should194

force the model to focus on those instead of com-195

mon directions found in the embeddings. To this196

end, we remove the top seven components from197

the BERT embeddings before using them to super-198

vise training. We note that this is only done when199

Rare Medium
BERTRAM 0.2852 0.3580

BERTRAM + PCA 0.2902 0.3721
SPRUCE 0.2952 0.3483

SPRUCE + PCA 0.2994 0.3599

Table 1: WNLaMPro (MRR)

training SPRUCE; when inserting the estimated em- 200

beddings into the BERT architecture, we do not 201

post-process the common embeddings. The goal 202

is to estimate embeddings that work well in a stan- 203

dard BERT model, and as a result, we do not post- 204

process there. 205

4 Experiments 206

4.1 Model Training 207

We extract gold standard embeddings of frequent 208

words from the embedding layer of the BERT 209

model for use as labels. However, as discussed 210

in (Schick and Schütze, 2020), most embeddings 211

use subword tokenization, and as such, an embed- 212

ding doesn’t exist for all words in the vocabulary. 213

In order to get gold standard embeddings for these 214

words, we use One Token Approximation (Schick 215

and Schütze, 2020) to get the equivalent embed- 216

ding. We extract context sentences from the West- 217

bury Wikipedia Corpus (WWC) (Shaoul, 2010) for 218

each gold standard word. 219

4.2 Baselines and Hyperparameters 220

We compare our approach to BERTRAM (Schick and 221

Schütze, 2019b), the current state-of-the-art. For 222

both models, we pretrain a context only and sub- 223

word only model, using the same parameters used 224

in (Schick and Schütze, 2019b) with one difference; 225

we increase the subword dropout from 0.1 to 0.3, 226

which we found improved results in both models. 227
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AnEM Bio-NER CoNLL 2003 MovieMIT POS Rare-NER
BERTRAM 0.3652 0.7241 0.6617 0.6295 0.2449 0.2592
BERTRAM + PCA 0.3579 0.7252 0.6633 0.6657 0.2346 0.2652
SPRUCE 0.3867 0.7399 0.6963 0.6801 0.4761 0.2874
SPRUCE + PCA 0.3793 0.7409 0.6974 0.6895 0.4570 0.2819

Table 2: Downstream Tasks - Macro F1 of Rare/Unknown Words

We train each model for 10 epochs with a learning228

rate of 1e-6 (which we found to be best out of 1e-6,229

1e-5, and 1e-4). For each model, we train a version230

based on the standard embeddings, and one trained231

on post-processed embeddings (denoted "+ PCA").232

10 trials of each model were trained. As we don’t233

have an evaluation set, we test the model saved234

at each epoch in the evaluation task, and take the235

best performance. We conduct significance test-236

ing using one-way ANOVA with a post-hoc Tukey237

HSD test. We use a p-value threshold equal to 0.05.238

We present the best result and any result not sig-239

nificantly different in bold. We also compare each240

model with its PCA post-processed version, where241

we present the significant best with an underline.242

4.3 Evaluation Tasks243

Intrinsic Tasks First, we conduct intrinsic evalua-244

tion of our estimated embeddings. The first task we245

study is the WNLaMPRo task, proposed in (Schick246

and Schütze, 2020). This task contains various247

patterns containing vocabulary split by frequency248

(frequent, medium, and rare). This task then uses249

simple prompts to measure performance. For exam-250

ple, a frequent pattern may evaluate the word pre-251

dicted in "A lime is a ", while a similar rare pattern252

may evaluate the word predicted in "A kumquat253

is a ". The performance is based on where the254

real word ranks in the predicted probabilities, mea-255

sured with Mean Reciprocal Rank (MRR). In our256

evaluation, we use the models to estimate on rare257

and medium words, and judge the performance258

on the new embeddings. We present the results259

of WNLaMPro in Table 1. As shown in the re-260

sults, SPRUCE outperforms BERTRAM in rare word261

performance, but has a weaker performance with262

medium frequency words. Additionally, we find263

that PCA post-processing improves both BERTRAM264

and SPRUCE in both rare and medium words. These265

results demonstrate SPRUCE’s strength at estimat-266

ing strong rare word representations, along with267

post-processing label effectiveness at improving268

embedding performance in both rare and medium269

words.270

Downstream Evaluation While intrinsic eval- 271

uation of estimated embeddings is important, the 272

main motivation of using deep contextualized mod- 273

els like BERT is for finetuning on downstream 274

tasks. To this end, we evaluate rare/unknown word 275

performance on various downstream tasks, simi- 276

lar to the procedure done in (Patel and Domeni- 277

coni, 2023). However, here we insert the estimated 278

embeddings into a standard BERT model, then 279

finetune the model2 on the training set (with the 280

best model picked by the validation set). We then 281

evaluate the performance on the test set for that 282

task. Each task presented here is a word level 283

task, which allows us to focus analysis on the 284

rare/unknown words. We focus on six downstream 285

tasks; five NER tasks: AnEM, (Ohta et al., 2012), 286

Bio-NER (Kim et al., 2004), CoNLL 2003 (Sang 287

and De Meulder, 2003), MovieMIT (Liu et al., 288

2013), and Rare-NER (Derczynski et al., 2017) 289

and one parts-of-speech task POS (Ritter et al., 290

2011). We present the results in Table 2. We find 291

that SPRUCE significantly outperforms BERTRAM in 292

all tasks. This demonstrates SPRUCE’s high per- 293

formance at estimating rare and unknown words. 294

Interestingly, PCA post-processing does not seem 295

to affect results here in most cases, except for an im- 296

provement in BERTRAM in the MovieMIT task and 297

weaker performance in SPRUCE in the POS task. 298

We posit that this lack of impact is due to the fact 299

that post-processing improves estimated embed- 300

dings on a finer grained basis. For the downstream 301

tasks, which care more about general features, the 302

improvement gained by post-processing may not 303

have as much impact. 304

5 Conclusion 305

We propose SPRUCE, an architecture that uses 306

deep contextualized models to estimate new repre- 307

sentations of rare/unknown words for use in those 308

models. We show the strength of SPRUCE in intrin- 309

sic and downstream tasks. 310

2We freeze the embedding layer so we can evaluate the
quality of embeddings, not finetuning.
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Limitations311

This work has some limitations. Similar to pre-312

vious work, task diversity of downstream tasks is313

limited. Due to ability to focus on rare/unknown314

words, word level tasks are desirable for analysis,315

and therefore five out of the six tasks are named316

entity recognition tasks.317
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