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Abstract
Large language models in the past have typi-
cally relied on some form of reinforcement learn-
ing with human feedback (RLHF) to better align
model responses with human preferences. How-
ever, because of oft-observed instabilities when
implementing these RLHF pipelines, various repa-
rameterization techniques have recently been in-
troduced to sidestep the need for separately learn-
ing an RL reward model. Instead, directly fine-
tuning for human preferences is achieved via the
minimization of a single closed-form training ob-
jective, a process originally referred to as direct
preference optimization (DPO) and followed by
several notable descendants. Although effective in
certain real-world settings, we introduce new eval-
uation criteria that serve to highlight unresolved
shortcomings in the ability of existing DPO meth-
ods to interpolate between a pre-trained reference
model and empirical measures of human prefer-
ences, as well as unavoidable trade-offs in how
low- and high-quality responses are regularized
and constraints are handled. Our insights then
motivate an alternative DPO-like loss that prov-
ably mitigates these limitations. Empirical results
serve to corroborate key aspects of our analyses.

1. Introduction
Although pre-trained large language models (LLMs) often
display remarkable capabilities (Bubeck et al., 2023; Chang
et al., 2024; OpenAI et al., 2024; Zhao et al., 2023a), it is
well-established that they are prone to responding in ways
that may be at odds with human preferences for rationale
discourse (Bai et al., 2022b; Gallegos et al., 2023). To
this end, after an initial supervised fine-tuning phase that
produces a reference model or policy πref(y|x), it is now
commonplace to apply reinforcement learning with human
feedback (RLHF) to further refine the LLM responses y to
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input prompts x (Ziegler et al., 2019; Stiennon et al., 2009;
Bai et al., 2022a; Ouyang et al., 2022). This multi-step
process involves first learning a reward model that reflects
human inclinations culled from labeled preference data, and
then subsequently training a new policy that balances reward
maximization with proximity to πref(y|x).

Because RLHF introduces additional complexity, compu-
tational overhead, and entry points for instability, clever
reparameterization techniques have recently been proposed
that sidestep the need for separately learning a reward model
altogether. Instead, increased alignment with human pref-
erences is achieved via the minimization of a single closed-
form training objective, a process originally referred to as
direct preference optimization (DPO) (Rafailov et al., 2024)
followed by several notable descendants and generalizations
(Azar et al., 2024; Tang et al., 2024; Wang et al., 2024;
Zhao et al., 2023b). These alternatives dramatically econ-
omize model development; however, with recency comes
the potential that the consequences of less obvious proper-
ties of DPO-based objectives may still be under-explored.
It is along these lines that our attention herein lies, with
the end goal of quantifying and steering model behavior in
transparently beneficial directions.

After introducing basic concepts and the details of existing
preference optimization models in Section 2, the remainder
of the paper devoted to our technical contributions can be
distilled as follows:

• We introduce new evaluation desiderata that comport
with intuition regarding how a preference model ide-
ally should behave, and yet (somewhat surprisingly)
are provably not satisfied by a broad class of existing
DPO-based approaches. In particular, we show that be-
cause of uniform regularization effects, the minimizers
of commonly-used preference optimization objectives
like DPO are at times unable to preserve performance
in regions where the reference model is strong while
simultaneously improving upon the reference model
elsewhere (Section 3.1). Moreover, we also elucidate
limitations in the ability to interpolate between ideal
endpoints as model trade-off parameters are varied
(Section 3.2).

• We prove that once inevitable learning constraints are
introduced (explicitly or implicitly, e.g., early-stopping,
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weight decay, etc.), the core reparameterizations that
underpin certain DPO models no longer strictly hold
(Section 3.3). This motivates alternative justifications
based solely on properties of the final loss functions
involved (Appendices C and D).

• Based on the above, we introduce a new preference op-
timization loss called ℓTYPO that, by design, satisfies our
evaluation desiderata while avoiding any dependency
on constraint-dependent reparameterizations (Section
4). Properties of this loss relative to its precursors
are also corroborated using Monte-Carlo simulations
(Section 5 and Appendix A.2).

2. Background
We adopt x ∼ Dx to denote an input prompt x drawn from
some distribution Dx. From here, conditioned on such
prompts we may then generate responses y using a pre-
trained reference language model/policy πref(y|x). More-
over, given a pair of such responses y1 ̸= y2, we adopt
the binary indicator variable z = I[y1 ≻ y2|y1, y2, x] to
convey that y1 is preferred over y2 by a human evaluator
when z = 1, or else z = 0 if instead y2 ≻ y1. Given a
population of such evaluators, we express the ground-truth
human preference distribution as p∗(z|y1, y2, x) = p∗(y1 ≻
y2|y1, y2, x). And finally, we define a set of human labeled
tuples drawn from a training distribution Dtr as

{yw, yl, x} ∼ Dtr ≡ {z, y1, y2, x} ∼ Dtr (1)
≡ z ∼ p∗(z|y1, y2, x), {y1, y2} ∼ πref(y|x), x ∼ Dx,

where yw ≻ yl (subscripts here stand for ‘win’ and ‘lose’).1

In other words, each training tuple is generated by drawing x
from Dx, y1 ̸= y2 from the reference policy πref, and finally
z is produced by human labelers that operate according
to p∗. Note that per convention in prior work and ease
of presentation, we will often abbreviate the preference
distribution notation as p∗(y1 ≻ y2|y1, y2, x) ≡ p∗(y1 ≻
y2|x) when the context is sufficiently clear.

2.1. Reinforcement Learning with Human Feedback
(RLHF)

Reward Function Estimation: Given two candidate re-
sponses y1 ̸= y2 sampled using prompt x, the Bradley-Terry
(BT) model (Bradley & Terry, 1952) for human preferences

1We generally assume that y1 ̸= y2; however, the y1 = y2 case
can nonetheless be handled by simply assigning p∗(z|y, y, x) =
1/2, inclusion of which does not effect the analysis that follows.
In particular, such cases merely introduce an irrelevant constant
into the human preference loss functions under consideration.

stipulates that

p∗(y1 ≻ y2|x) =
exp[r∗(y1, x)]

exp[r∗(y1, x)] + exp[r∗(y2, x)]

= σ
[
r∗(y1, x)− r∗(y2, x)

]
, (2)

where r∗(y, x) is a so-called latent reward model and σ is
the logistic function. Because r∗(y, x) is unobservable, it
is not possible to directly compute p∗(y1 ≻ y2|x); however,
we can train an approximation pϕ(y1 ≻ y2|x) (equivalent to
pϕ(y1 ≻ y2|y1, y2, x) as before) defined by a parameterized
proxy reward rϕ(y, x). Specifically, we can minimize the
loss

ℓBT(rϕ) := E{yw,yl,x}∼Dtr

[
− log pϕ(yw ≻ yl|x)

]
(3)

= E{yw,yl,x}∼Dtr

[
− log σ

[
rϕ(yw, x)− rϕ(yl, x)

]]
.

The optimized reward r̂ϕ(y, x) := argminrϕ ℓBT(rϕ) ≈
r∗(y, x) can then be applied to fine-tuning the pre-trained
reference model πref(y|x) as described next.

RL Fine-Tuning with Estimated Reward Function:
The goal here is to improve upon a given πref(y|x) using a
separate trainable model πθ(y|x), the high-level desiderata
being: (i) Maximize the previously-estimated reward func-
tion r̂ϕ(y, x) when following πθ(y|x), while (ii) Minimiz-
ing some measure of distance between πθ(y|x) and πref(y|x)
to avoid overfitting merely to preference rewards. These
objectives typically materialize through the minimization of

ℓRLHF (πθ, πref, r̂ϕ, λ) := Ey∼πθ(y|x),x∼Dx

[
− r̂ϕ(y, x)

]
+ λ Ex∼Dx

[
KL
[
πθ(y|x)||πref(y|x)

]]
, (4)

where λ > 0 is a trade-off parameter. Although not differen-
tiable, starting from an initialization such as πθ = πref, the
loss ℓRLHF (πθ, πref, r̂ϕ, λ) can be optimized over πθ using
various forms of RL (Schulman et al., 2017; Ramamurthy
et al., 2022)

2.2. Direct Preference Optimization (DPO)

Consider now the reward-dependent RLHF loss ℓRLHF from
(4) defined w.r.t. and arbitrary reward function r(y, x). DPO
(Rafailov et al., 2024) is based on the observation that, pro-
vided πθ is sufficiently flexible such that we may treat it as
an arbitrary function for optimization purposes,2 the min-
imum of ℓRLHF (πθ, πref, r, λ) w.r.t. πθ can be directly com-
puted as

πr(y|x) := argmin
πθ

ℓRLHF (πθ, πref, r, λ)

=
1

Z(x)
πref(y|x) exp

[
1

λ
r(y, x)

]
, (5)

2This is a key assumption with non-trivial consequences; Sec-
tion 3.3 will explore this issue in further detail.
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where Z(x) :=
∑

y πref(y|x) exp
[
1
λr(y, x)

]
is the partition

function ensuring that πr(y|x) forms a proper distribution
(Peng et al., 2019; Peters & Schaal, 2007). From here,
assuming πref(y|x) > 0, we can rearrange (5) to equivalently
establish that

r(y, x) = λ log
πr(y|x)
πref(y|x)

+ λ logZ(x). (6)

Because thus far r has remained unspecified, it naturally
follows that these policy/reward relationships hold even
for the ground-truth reward r∗ and the associated optimal
policy π∗∗(y|x) := argminπθ

ℓRLHF (πθ, πref, r
∗, λ). Hence

instead of approximating r∗(y, x) with rϕ(y, x) as in (2), we
may equivalently approximate π∗∗(y|x) with some πθ(y|x)
leading to the DPO loss

ℓDPO(πθ, πref, λ) := ℓBT

(
λ log

πθ(y|x)
πref(y|x)

)
= E{yw,yl,x}∼Dtr

[
− log σ

(
λ log

πθ(yw|x)
πref(yw|x)

− λ log
πθ(yl|x)
πref(yl|x)

)]
, (7)

noting that the partition function Z(x) conveniently cancels
out and can be excluded from further consideration. It is now
possible to directly optimize (7) over πθ using SGD without
the need for any challenging RLHF procedure. The basic
intuition here is that the parameterized policy πθ induces
an implicit reward λ log

[
πθ(y|x)π−1

ref (y|x)
]

that is being
optimized via the original BT preference model. Moreover
this equivalence is exact assuming data distributed as in (1).

2.3. Identity Preference Optimization (IPO)

Similar to DPO, the identity preference optimization (IPO)
formulation (Azar et al., 2024) avoids both a 2-step learning
process and cumbersome, potentially unstable RL training.
To accomplish this, IPO is predicated on minimizing the
original RLHF loss from (4) but with an alternative reward
function. Specifically, the motivating IPO objective is to
minimize ℓRLHF (πθ, πref, rIPO, λ), where

rIPO(y, x) := Ey′∼πref(y|x)
[
p∗(y ≻ y′|x, y, y′)

]
, (8)

over πθ.3 Because of the special structure of this particular
reward function, it turns out that it is possible to minimize
ℓRLHF (πθ, πref, rIPO, λ) over πθ without RL. In brief, this is
accomplished by first noting that for any pair of responses
y1 ̸= y2 the existence of an optimal IPO policy, denoted
πIPO, evaluated at these responses can be computed as a
function of the reward rIPO using (5). Combining y1 and y2

3Note that in principle the distribution used to draw samples y′

in defining rIPO need not be set to πref; however, in practice πref is
a typical choice, which we adopt throughout for simplicity.

dependent terms, after a few algebraic manipulations this
then leads to the equivalence relation

log

[
πIPO(y1|x)πref(y2|x)
πIPO(y2|x)πref(y1|x)

]
=

1

λ

[
rIPO(y1, x)− rIPO(y2, x)

]
.

(9)
However, unlike DPO where an analogous expression is in-
verted to create an implicit reward for integration within the
BT model, IPO instead attempts to approximate this equiv-
alence relation by replacing the unknown πIPO(y|x) with
some πθ(y|x). Although technically rIPO is also unknown,
given samples {yw, yl, x} ∼ Dtr, it is nicely shown in (Azar
et al., 2024) that ℓIPO(πθ, πref, λ) :=

E{y1,y2}∼πref(y|x),x∼D

[(
log

[
πθ(y1|x)πref(y2|x)
πθ(y2|x)πref(y1|x)

]
(10)

− 1

λ

[
rIPO(y1, x)− rIPO(y2, x)

])2
]

= E{yw,yl,x}∼Dtr

[(
log

[
πθ(yw|x)πref(yl|x)
πθ(yl|x)πref(yw|x)

]
− 1

2λ

)2
]

provided Dtr follows from (1). Note that this closed-form
consistency is a direct consequence of how rIPO is defined
in (8) and will not generally hold for other choices of the re-
ward function. Regardless, it is straightforward to minimize
ℓIPO(πθ, πref, λ) in its present form via SGD as with DPO.

2.4. Flexible Quasi-Convex Generalizations

From the expressions above, it is clear that both DPO and
IPO reduce to functions of log

[
πθ(yw|x)πref(yl|x)
πθ(yl|x)πref(yw|x)

]
and a

tunable hyperparameter λ. As such, it is natural to consider
extensions to broader choices in the form

ℓQPO(πθ, πref, ψ, µ, λ) := (11)

E{yw,yl,x}∼Dtr ψ

(
µ

[
πθ(yw|x)
πref(yw|x)

]
− µ

[
πθ(yl|x)
πref(yl|x)

]
, λ

)
,

where µ : R+ → R is a monotonically increasing function
(which generalizes the logarithm), and the function ψ :
R×R+ → R influences the overall loss shape. We stipulate
that ψ is a differentiable quasi-convex function (Greenberg
& Pierskalla, 1971); hence the chosen loss notation ℓQPO

for quasi-convex preference optimization. By definition of
quasi-convexity, ψ monotonically increases to the right or
left away from the minimum.

These specifications cover DPO and IPO as representative
special cases, and include essentially all reasonable choices
for a loss within this family, e.g., it is nonsensical to in-
clude multi-modal losses. The generalized preference op-
timization (GPO) (Tang et al., 2024) and f -DPO (Wang
et al., 2024) frameworks are also special cases of QPO
as defined herein. With GPO, µ is a logarithm and ψ is
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chosen as an arbitrary convex function (such as used by
SLiC (Zhao et al., 2023b)). Meanwhile f -DPO involves
ψ(·, λ) = − log σ[λ(·)] analogous to DPO but with µ = f ′,
where f ′ denotes the derivative of an f -divergence (Ruben-
stein et al., 2019); given that f must be convex, its derivative
will necessarily be monotonically increasing. In this way,
the RLHF objective from (4) is still optimized via f -DPO,
but with an f -divergence replacing the KL term.

While overall quite general, we will nonetheless later demon-
strate that any loss in the form of (11) will unavoidably be
saddled with certain limitations. See also Appendix B for
additional context w.r.t. very recent and/or concurrent DPO
enhancements that lie outside the scope of our present work.

3. Comparative Analysis of Existing
Approaches

We now turn to comparative analysis of existing approaches,
which all have ties relating back to the BT preference
model. Throughout this section we say that a policy π∗

is BT-optimal at prompt x if p∗(y1 ≻ y2|x) implies that
π∗(y1|x) > π∗(y2|x) for all response pairs {y1, y2} with
nonzero probability (as determined by the reference policy
generating the preference data). Appendix F.1 introduces
how π∗ can be formed.

3.1. Selective Preservation of Optimal Policies

Consider the following plausible scenario, variations of
which are likely to occur (at least in varying degrees) with
real-world data. Suppose the support of prompts generated
by Dx partitions as dgoodx ∪ dbadx , with dgoodx ∩ dbadx = ∅.
Furthermore, assume we have access to a reference policy
πref such that πref = π∗ for x ∈ dgoodx and dist[πref, π

∗] ≫ 0
for x ∈ dbadx , where dist[·, ·] is an arbitrary distance measure.
In other words, when evaluated w.r.t. a policy π∗ that pro-
portionally reflects human preferences, πref performs ideally
on a subset of prompts but not on others.

This dichotomy provides a useful lens for examining certain
loss function properties. In particular, we would like any
policy that minimizes a candidate loss to preserve πref for
prompts x ∈ dgoodx , while pushing away from πref towards
π∗ for prompts x ∈ dbadx . However, because of uniform
regularization effects intrinsic to the QPO loss, it is not
actually possible to achieve even this modest objective.

Theorem 3.1. (Informal version) Given the prompt par-
titioning, reference policy, and optimal policy described
above, define π̂QPO

θ := argminπθ
ℓQPO(πθ, πref, ψ, λ) for any

fixed selection of (ψ, λ). Then under relatively mild assump-
tions on the labeled responses in Dtr, if dist[π̂QPO

θ , π∗] <
dist[πref, π

∗] for x ∈ dbadx , then dist[π̂QPO
θ , π∗] > 0 for

x ∈ dgoodx .

The proof and formal version are provided in Appendix
E.1, while Figure 1(left) below provides an illustration. The
somewhat unexpected implication here is that if we min-
imize any possible QPO loss in the form of (11) and im-
prove the policy quality in areas where πref performs poorly
w.r.t. π∗, then it must also be the case that performance
becomes worse in areas where πref was originally optimal.
This phenomena represents an unavoidable trade-off when
we restrict ourselves to using a QPO loss, of which DPO
and IPO (as well as GPO and f -DPO) are special cases in-
heriting the same limitation. The core issue here is that QPO
losses unselectively apply the same regularization, starting
from the same initialization point, to both good and bad
cases relative to π∗.

3.2. Interpolation Capabilities

As the underlying goal shared by all approaches is to bal-
ance proximity to a reference policy πref with respect for
the human preference model p∗, a non-negative trade-off
parameter λ ∈ [a, b] that allows for interpolating between
these competing objectives is inevitable, where a ∈ R and
b ∈ R are lower and upper bounds respectively.4 In this
section we examine more closely the nature of loss function
minimizers as λ is varied, zooming in on their behavior
in the limit as λ → a and λ → b. To this end, we first
introduce the following definitions :

Definition 3.2. We say that an arbitrary preference opti-
mization loss ℓ(πθ, πref, λ) satisfies the strong interpolation
criteria (SIC) if the following conditions hold:

1. limλ→a argminπθ
ℓ(πθ, πref, λ) = π∗;

2. limλ→b argminπθ
ℓ(πθ, πref, λ) = πref;

3. For all other λ ∈ (a, b), the optimal policy interpolates
between the above two extremes.

Definition 3.3. For any prompt x and response y define5

πδ(y|x) := argmax
πθ

Ey∼πθ(y|x)
[
r∗(y, x)

]
=

{
1 if y = argmaxy′ π∗(y|x)
0 otherwise. (12)

In this way, πδ(y|x) assigns probability one to the mode
of π∗(y|x), i.e., akin to a delta function with no genera-
tion diversity. We then say that a loss ℓ(πθ, πref, λ) satis-
fies the weak interpolation criteria (WIC) analogously
to the SIC, only for the lower bound we instead require
limλ→a argminπθ

ℓ(πθ, πref, λ) = πδ .

4Depending on the method, if a = 0 or b = ∞ we may replace
the λ range with an open set.

5See Appendix F.1 for the derivation of the right-hand equality
in (12).
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In summary, the only difference between these interpolation
criteria is their limiting behavior w.r.t. the lower bounding
λ; for the SIC we approach the BT-optimal policy, while for
the WIC we approach a degenerate policy with all proba-
bility mass restricted to the mode of the BT-optimal policy.
We remark that both the SIC and WIC cannot be simultane-
ously satisfied unless π∗ itself is a degenerate delta function.
We now explore how these distinctions are reflected in the
behavior of DPO and IPO loss minimizers, with Figure
1(middle) illustrating the basic concepts.

Proposition 3.4. Assume preference data distributed ac-
cording to Dtr from (1), and that p∗(y1 ≻ y2|x) ∈ (0, 1)
for all responses with πref(y|x) > 0. Then the DPO loss
from (7) satisfies the WIC (but not the SIC).

In terms of practical applicability of this result, there ex-
ists one important caveat: the empirical distribution of a
finite set of labeled preference data need not actually satisfy
the conditions of Proposition 3.4. For example, suppose for
each prompt x ∈ Dx we collect only two responses {y1, y2}
along with a single preference label z, which together pro-
duce the tuple {yw, yl, x}. In this scenario, which reflects
certain publicly-available human preference datasets (Bai
et al., 2022a; Ganguli et al., 2022), the empirical distribution
of preferences will be p∗(yw ≻ yl|x) = 1 /∈ (0, 1) for all
x ∈ Dx. Notably, Proposition 3.4 will not hold, and in par-
ticular, it can be easily shown that minimizers of any valid
f -DPO loss will be completely independent of πref for all
λ ∈ (0,∞); in other words, no interpolation occurs at all;
see Appendix F.2 for the derivation. A similar observation
specific to DPO (but not f -DPO) can be found in (Ahmadian
et al., 2024). The fact that DPO-based solutions may still
reflect πref in practice, and more-so as λ increases, relates
to implicit constraints and subtle regularization effects as
discussed further in Section 3.3 and Appendix C.

Proposition 3.5. Assume preference data distributed ac-
cording to Dtr from (1). Then the IPO loss from (10) satis-
fies the WIC (but not the SIC).

Comparing Proposition 3.5 with Proposition 3.4, we observe
that IPO maintains its ability to interpolate under broader
conditions than DPO, particularly in the empirical sampling
regime involving binary probability values. That being said,
neither DPO nor IPO satisfy the SIC, which motivates con-
sideration of alternative losses that do, at least if our priority
is to actually achieve the SIC (which of course may de-
pend on the application scenario). For this purpose, it turns
out that selections beyond the family of QPO objectives
(which includes DPO, f -DPO, and IPO) are necessary per
the following:

Theorem 3.6. Assume preference data distributed accord-
ing to Dtr from (1). Then no possible QPO loss from (11)
will satisfy the SIC.

Section 4 will consider objectives outside of the QPO family
which circumvent this limitation.

3.3. Impact of Optimization Constraints

Originally in (Rafailov et al., 2024), and later supported by
follow-up analysis (Azar et al., 2024), it has been shown
that minimizing the DPO loss ℓDPO(πθ, πref, λ) is effectively
the same as minimizing the RLHF loss ℓRLHF (πθ, πref, r

∗, λ)
with optimal reward model r∗. But there is a pivotal assump-
tion underlying this association which previous analysis has
not rigorously accounted for. Specifically, the key equalities
that facilitate the DPO and IPO reparameterizations, namely
(6) and (9) (and the analogous for f -DPO), are all predicated
on the solution of an uncononstrained optimization problem
over an arbitrary policy πθ.

However, when actually training models in real-world set-
tings, constraints will always exist, whether implicitly or
explicitly. Such constraints stem from any number of fac-
tors including the model architecture/capacity limitations,
early stopping, weight decay, drop-out regularization, ma-
chine precision, and so on. Hence in reality we are never
exactly minimizing some preference loss ℓ (πθ, πref, λ) over
any possible πθ (as assumed by DPO, IPO, and f -DPO
derivations). Instead, we must consider properties of the
constrained problem minπθ∈Sπ

ℓ (πθ, πref, λ), where Sπ is a
constraint set. For example, if we restrict training to a single
epoch with a fixed learning rate, then Sπ can be viewed as
the set of all points reachable within a limited number of
SGD updates.
Theorem 3.7. Let Sπ denote a constraint set on the learn-
able policy πθ. Then we can have that

arg min
πθ∈Sπ

ℓRLHF (πθ, πref, r
∗, λ) (13)

̸= arg min
πθ∈Sπ

ℓDPO(πθ, πref, λ).

As can be observed by the proof in Appendix E.5, the dif-
ference between the two is akin to the difference between
applying a constraint to a trainable policy with respect to ei-
ther the forward or backward KL divergence, which are
generally quite distinct (Bishop, 2006); see also Figure
1(right). There are several important consequences of this
result worth considering:

• As discussed in Section 3.2, the DPO-based losses can
have degenerate unconstrained minimizers that com-
pletely ignore πref on certain real-world datasets; there-
fore counter-measures like early stopping are imposed
that effectively introduce a Sπ that dramatically alters
the estimated policy. But in doing so, the inequality
from (13) is introduced and so we can no longer say
that DPO provides an optimal implicit reward for the
original RLHF problem, i.e., the original connection is
now ambiguous.
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• As such, the value of DPO in practice (and indeed it of-
ten does work well) cannot be unreservedly attributed
to its original affiliation with an optimal RLHF solu-
tion, and instead, should be evaluated based on proper-
ties of minπθ∈Sπ

ℓDPO(πθ, πref, λ). See Appendix C for
one step in this direction.

• To further illustrate the above points, in Appendix D
we rederive the DPO loss from scratch based solely on
a Gaussian estimation perspective that is completely
unrelated to RLHF. But of course we do not actually
believe that binary human preference data are really
Gaussian. Instead, this exercise serves to highlight that
what matters are properties of the underlying loss when
deployed in practice, not necessarily the assumptions
made in deriving the loss in the first place.

• Other losses based on unconstrained RLHF-based repa-
rameterizations in the f -DPO and IPO families may be
similarly influenced by the inevitable introduction of
policy constraints.

4. New Objectives for Human Preference
Optimization

Motivated by the analysis in Section 3 and illustrated in
Figure 1, we next examine alternative objective functions
adhering to the following desiderata:

1. Perservation: Capable of selectively preserving an
optimal policy in ideal regimes, while simultaneously
improving the policy in regions of poor performance
(from Section 3.1);

2. Interpolation: Smoothly interpolates between the BT-
optimal policy and the reference policy, i.e., it achieves
the SIC (from Section 3.2);

3. Constraints: Independent of any derivation or re-
quired equivalence/reparameterization that no longer
holds upon the introduction of constraints (from Sec-
tion 3.3).

We label the our new objective ℓTYPO to highlight the po-
tential ability to “tame your preference optimization” (and
“lower typos”) by explicitly targeting these desiderata.

4.1. TYPO Objective Function

Consider a loss, composed of separable supervised and
unsupervised factors, in the general form

ℓTYPO(πθ, πref, λ) := ℓsup(πθ) + λℓunsup(πθ, πref) =

E{yw,yl,x}∼Dtr

[
dsup

[
πθ(yw|x), πθ(yl|x)

]]
(14)

+ λEy∼πref(y|x),x∼Dx

[
dunsup

[
πθ(y|x), πref(y|x),

]]
,

where dsup serves as a supervised penalty over labeled train-
ing tuples (x, yw, yl) while dunsup represents an additional
regularization term independent of labeled preferences. We
remark that objectives in the form of (14) are natural candi-
dates for SGD given that all sampling is independent of θ,
unlike the typical regularized loss adopted by RLHF, which
requires samples from πθ(y|x).

Supervised Term: After first defining

pθ(z|y1, y2, x) :=

{
πθ(y1|x)

πθ(y1|x)+πθ(y2|x) if z = 1
πθ(y2|x)

πθ(y1|x)+πθ(y2|x) if z = 0
(15)

we then consider the supervised term ℓsup(πθ) =

E{y1,y2}∼πref(y|x),x∼Dx

[
KL
[
p∗(z|y1, y2, x)||pθ(z|y1, y2, x)

]]
≡ E{yw,yl,x}∼Dtr

[
log

(
1 +

πθ(yl|x)
πθ(yw|x)

)]
. (16)

Please see Appendix F.3 for the derivation of this equiv-
alence. Importantly here, because the KL-divergence is
minimized iff p∗(z|y1, y2, x) = pθ(z|y1, y2, x), unlike an
arbitrary reward, the optimal solution to ℓsup(πθ) will nec-
essarily recover the BT-optimal distribution as will be ana-
lyzed below.

Unsupervised Term: For the unsupervised term in (14)
we simply adopt ℓunsup(πθ, πref) =

Ey∼πref(y|x),x∼Dx

[
KL
[
πref(y|x)||πθ(y|x)

]]
≡ − Ey∼πref(y|x),x∼Dx

[
log πθ(y|x)

]
, (17)

ignoring terms independent of πθ. Like (16), this expression
also does not require sampling from πθ. That being said,
(17) can exploit out-of-preference data (meaning unlabeled
responses), and prior work (Li et al., 2024) has argued for
the merits of using such data in broader RLHF contexts. (It
may also be reasonable to consider switching ℓunsup(πθ, πref)
to a reverse-KL term and optimize with REINFORCE per
general observations from (Ahmadian et al., 2024); however,
we do not pursue this direction further here.)

4.2. ℓTYPO Properties

Notable attributes of ℓTYPO(πθ, πref, λ) w.r.t. the three desider-
ata from above are as follows:

Proposition 4.1. Under the same setup as Theorem 3.1,
let π̂TYPO

θ := argminπθ
ℓTYPO(πθ, πref, λ), instantiated using

(16) and (17). Then π̂TYPO
θ = π∗ for all x ∈ dgoodx including

in cases where dist[π̂TYPO
θ , π∗] < dist[πref, π

∗] for x ∈ dbadx .

Per this result, minimizers of ℓTYPO(πθ, πref, λ) are capable
of preserving πref in regions dgoodx where performance is
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Figure 1: Desiderata visualizations, including added context w.r.t. our proposed TYPO approach.

strong relative to π∗, while concurrently improving perfor-
mance in other areas where it is not. Figure 1(left) visualizes
this unique TYPO capability.

Proposition 4.2. The loss ℓTYPO(πθ, πref, λ), when instanti-
ated using (16) and (17), satisfies the SIC.

Figure 1(middle) contrasts this property with the WIC
achieved by prior methods. We also remark that none of the
derivations used to motivate ℓTYPO(πθ, πref, λ) rely on uncon-
strained optimization to form a reparameterized objective
function as with DPO, f -DPO, and IPO. As such, the in-
evitable introduction of such constraints in practice does not
compromise the TYPO origin story. In other words, since
TYPO is not based on any implicit association with RLHF
in the first place, adding constraints that might otherwise
compromise such an association pose no issue.

5. Empirical Validation
Although more of an analysis-driven contribution, our core
insights from Sections 3 and 4 can nonetheless benefit from
empirical corroboration. To this end, we first present a series
of experiments adapted from (Azar et al., 2024) to highlight
aspects of TYPO behavior vis-à-vis our proposed desiderata.
As the most relevant published points of reference, we con-
trast with DPO, IPO, and f -DPO; for the latter we choose
the Jensen–Shannon divergence, which next to the reverse-
KL implicitly assumed by DPO, performed well in prior
experiments (Wang et al., 2024). Later we test using the
Anthropic Helpfulness and Harmlessness (HH) real-world
preference dataset (Bai et al., 2022a; Ganguli et al., 2022).
For space considerations, some experiment details, includ-
ing hyperparameters and training setups, are deferred to
Appendix A.

Interpolation Tests: As in (Azar et al., 2024) we con-
sider the bandit setting with a discrete space of three re-
sponses/actions Y = {ya, yb, yc} and create a dataset of
labeled pairs as

{
{ya, yb}, {yb, yc}, {ya, yc}

}
, i.e., a to-

tal ordering consistent with the BT model. Preferences
are assigned via p(y1 ≻ y2) computed using (55) with
π∗(ya) = 0.6, π∗(yb) = 0.3, and π∗(yc) = 0.1. Further-
more, again following (Azar et al., 2024) we form our train-
able policy as πθ(yi) = softmax[θi] with θ ∈ R3 optimized
using Adam over each different preference loss. Results
using a small λ = 10−5 are shown in Figure 2, where we
observe that TYPO closely converges to the BT-optimal
solution, while DPO and IPO converge to πδ (the mode
of π∗) consistent with Propositions 3.4 (DPO), 3.5 (IPO),
and 4.2 (TYPO), as well as Theorem 3.6 which applies to
f -DPO. Additional interpolation results traversing different
λ towards the upper limit are presented in Appendix A.2.

Preservation Tests: We next modify the setting from
above to include two input prompts {xg, xb} chosen such
that xg ∈ dgoodx and xb ∈ dbadx sampled with equal proba-
bility. We then specify the corresponding response space
Y(xg) = {yga, ygb, ygc}; Y(xb) = {yba, ybb, ybc} and
prompt-dependent probabilities (see Appendix A.1). For
the reference policy we set πref(y|xg) = π∗(y|xg) and
πref(y|xb) ̸= π∗(y|xb). We generate pair-wise preference
data as before, only now with prompt-dependent responses.
Results shown in Figure 3(left & middle) are in direct ac-
cordance with Theorem 3.1 and Proposition 4.1, whereby
TYPO is the only approach that preserves a strong policy
with prompt xg ∈ dgoodx while at the same time improving
performance relative to πref for xb ∈ dbadx over all λ.

Constraint Tests: We probe the extent to which learning
constraints can interfere with the equivalence between DPO
and RLHF implemented with an optimal reward function.
To this end, we adopted the same data generation setup
as in the interpolation experiments from above. We then
train policies to separately minimize the right- and left-hand
sides of (13), but with one key modification: we added
an identical penalty function α∥πθ∥22 to both models to
instantiate weight decay (a typical form of constraint used in
practice), where α ≥ 0 is a tunable hyperparameter. Figure
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Figure 2: Support for Sections 3.2 and 4.2 interpolation analysis. Dashed lines represent BT-optimal preference probabilities
π∗, while solid lines are model learning curves for λ = 10−5 (small). Only TYPO converges to π∗, others converge to πδ .

Figure 3: Preservation tests varying λ (left and middle plots); unlike TYPO, existing approaches are unable to both retain
negligible error on the good cases while improving performance (over the dashed line representing the reference model) on
the bad cases. Constraint test varying α and plotting dist[π̂DPO

θ , π̂RLHF
θ ] (right plot); DPO is no longer equivalent to RLHF

with an optimal reward once an additional constraint/regularization factor is introduced.
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Figure 4: Real-world example.

3(right) plots the distance (y-axis) between learned policies
from RLHF and DPO as α is varied. Consistent with the
original DPO derivations and analysis from (Rafailov et al.,
2024), we observe negligible error when α = 0 given that
unconstrained DPO is explicitly designed to mimic RLHF
with an optimal reward r∗. However, in accordance with
our Theorem 3.7, as α > 0 increases, the distance between
RLHF and DPO grows considerably, and their relationship
is no longer clear-cut.

Testing on Anthropic HH Preference Data: Finally, to
explore TYPO capabilities in a real-world scenario, we
train a Pythia 2.8B model (Biderman et al., 2023) on the
Anthropic Helpfulness and Harmlessness (HH) preference
dataset (Bai et al., 2022a; Ganguli et al., 2022) as previously
used in (Rafailov et al., 2024). Following their settings,
we first execute supervised fine-tuning (SFT) on the Pythia
model using yw values as the target response. We then use
this SFT model as πref for training DPO, IPO and TYPO.
Given that alignment results (our focus) from (Wang et al.,
2024) already show that reverse KL (i.e., DPO) works best
among f -divergences, we do not compare with other f -
DPO selections here. We use GPT-4 to evaluate the win
rate of the generated responses from each model against
the chosen yw on the test set for single turn dialogues. We
emphasize that our comparisons cover both helpfulness and
harmlessness (see Appendix A.3), whereas the original DPO
paper (Rafailov et al., 2024) only tests the former.

6. Conclusions
In this work we have proposed multiple desiderata that
existing methodology for human preference optimization
does not satisfy and yet our proposed TYPO approach does.
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A. Additional Experimental Details and Results
This section describes experiment details/settings and additional results.

A.1. Details of the Tests with Synthetic Data

• For the tests of interpolation, preservation and constraints, we train the models with Adam optimizer (Kingma & Ba,
2014) and clip the gradients via a max norm of 10. And we run the experiments of the tests on a single A10 GPU.
Unless otherwise mentioned, we use batch size of 1.

• For the interpolation tests, we use batch size of 20 and choose πref(ya) = 0.4, πref(yb) = 0.4, and πref(yc) = 0.2. We
use learning rate of 1× 10−3 for DPO, IPO and f -DPO and 5× 10−4 for TYPO; we train DPO, IPO and TYPO for
1,000 epochs and f -DPO for 3,000 epochs as it converges slower.

• For the preservation test, we choose

Y(xg) = {yga, ygb, ygc}; Y(xb) = {yba, ybb, ybc}
π∗(yga|xg) = 0.6; π∗(ygb|xg) = 0.3; π∗(ygc|xg) = 0.1; (18)
π∗(yba|xb) = 0.4; π∗(ybb|xb) = 0.2; π∗(ybc|xb) = 0.4.

And for the reference model we select πref(yba|xb) = 0.6, πref(ybb|xb) = 0.2 and πref(ybc|xb) = 0.2. We randomly
sample examples for good and bad prompts respectively. The model parameters are θ ∈ R2×3 and we set the values of
xg and xb as vectors of [1, 0] and [0, 1].

• In the constraint test, we use the same setting and data as the interpolation test. We use β = 0.1 for both RLHF and
DPO and train them for 100 epochs for all the values of α.

A.2. Additional Results with Synthetic Data

We conduct additional experiments for the interpolation test by varying λ from very small to very large values as shown in
Figure 5 and Figure 6.

0 5000 10000
Training Steps

0.2

0.4

0.6
DPO

0 5000 10000
Training Steps

IPO

0 100002000030000
Training Steps

f-DPO

0 5000 10000
Training Steps

TYPO
* (ya)
* (yb)
* (yc)
(ya)
(yb)
(yc)

Interpolation Test with =100

Figure 5: Converged probability distributions of πθ(y) for DPO, IPO, f -DPO and TYPO with large λ. All methods stabilize
around πref as expected.

A.3. Details of Experiments on Anthropic HH Dataset

We train the SFT model with 2 epochs and 1 epoch for all the other models with a learning rate of 1 × 10−6 and batch
size of 40. We set β = 0.1 for DPO, τ = 0.1 for IPO and λ = 0.05 for TYPO. We evaluate the win rate on the single turn
dialogues in the test set with GPT-4 using modified version used in the DPO paper to cover harmlessness examples as shown
in Figure 7. All the experiments are conducted in a 8×A100 40G GPU instance.

For the training of TYPO, we first sample responses from the reference model, i.e. the SFT model, for the unsupervised term.
We apply vLLM (Kwon et al., 2023) to randomly sample responses from the Anthropic HH dataset by setting temperature=1,
top_k=60, top_p=0.8, max_tokens=256 and repetition_penalty=1.1. During the training, we use one sampled response for
each prompt in the unsupervised term.
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Figure 6: Interpolation of converged probability distributions πθ(y) for DPO, IPO and TYPO across varying λ. As λ
becomes small, only TYPO converges to the BT-optimal policy π∗. The others converge to the mode of the optimal policy
consistent with expectations. Meanwhile, as λ grows all methods converge to πref.

B. Extended Related Work
There has been a flurry of interesting recent work on DPO-related topics, with numerous papers appearing on arXiv not long
before the NeurIPS deadline. In this section we call attention to several notable examples that propose modifications of the
original DPO paradigm, or else provide relevant analysis of its properties. We believe these efforts to be complementary to
our contribution, as well as the existing DPO-like extensions by others discussed in the main body of paper.

Algorithmic Enhancements to DPO: There exist multiple DPO extensions that involving supplementing the original loss
from (7) with additional penalty factors targeting potential failure modes. For example, based on the observation that DPO
may exhibit a decrease in accuracy when applied to preference data with small edit distances between responses, the Smaug
framework (Pal et al., 2024) augments the DPO loss with an additional factor designed to maintain high log-likelihoods in
such cases. Meanwhile, sensitivity to response lengths are investigated in (Park et al., 2024), where as a counter-measure,
the DPO loss is supplemented with a penalty on length differences between winning and losing responses. It has also been
observed that not all preference pairs in a training data set are equal, with some preference gaps larger than others. As a
mitigation strategy for this discrepancy, the ODPO approach (Amini et al., 2024) introduces a preference offset term during
model training. While all of these methods have their merit, they each require an additional key hyperparameter that must be
tuned.

Somewhat differently, the ORPO algorithm (Hong et al., 2024) proposes an alternative to DPO that combines an odds
ratio-based penalty with a conventional negative log-likelihood SFT (i.e., supervised fine-tuning) loss. The appeal here is
that separate SFT and preference alignment phases are no longer required. Another deviation from DPO is proposed in
(Gorbatovski et al., 2024), whereby the reference policy itself is no longer fixed, but iteratively updated during training.

Analysis of DPO: Topics addressed by recent work include analysis of DPO learning dynamics (Im & Li, 2024), the
impact of out-of-preference data on estimation errors (Li et al., 2024), and the disproportionate rates with which the DPO loss
gradients favor reducing the probability of dispreferred responses relative to increasing the probability of desired responses
(Feng et al., 2024). Broader consideration of preference optimization spanning various DPO-based and RLHF-based
approaches is presented in (Tajwar et al., 2024)

C. DPO Loss Induces Noise Adaptive Regularization
Using several straightforward algebraic manipulations, the DPO loss from (7) can be modified as

ℓDPO(πθ, πref, λ) = E{yw,yl,x}∼Dtr

[
− log σ

(
λ log

πθ(yw|x)
πref(yw|x)

− λ log
πθ(yl|x)
πref(yl|x)

)]
≡ E{yw,yl,x}∼Dtr

[
log

([
πref(yl|x)
πref(yw|x)

]λ
+

[
πθ(yl|x)
πθ(yw|x)

]λ)]
, (19)
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I have a question and two responses from different AI models. Please analyze the 
responses and provide your assessment of which response is more helpful and harmless 
overall. Consider factors such as:

- How well each response answers the original question
- The accuracy and truthfulness of the information provided
- Potential biases, stereotyping, or controversial views expressed
- Any potential for harm or dangerous suggestions
- Clarity, coherence and usefulness of the response

Evaluate the responses on their own merits, ignoring superficial features like length 
or writing style. After analyzing both, please explain which response you believe is 
better and why.

The original question was:
{query}

Response A:
{a}

Response B:
{b}

FIRST provide a one-sentence comparison of the two responses and explain which you 
feel is more helpful and harmless. SECOND, on a new line, state only "A" or "B" to 
indicate which response is more helpful and harmless. Your response should use the 
format:
Comparison: <one-sentence comparison and explanation>
More helpful and harmless: <"A" or "B">

Figure 7: Prompt used for evaluate win rate of the generated responses against the chosen responses for single turn dialogues
on the test set of Anthropic HH dataset.
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excluding constants independent of πθ. This expression represents an expectation over a regularization factor in the form

log(γ + u), where γ corresponding to
[

πref(yl|x)
πref(yw|x)

]λ
is fixed, and u corresponding to

[
πθ(yl|x)
πθ(yw|x)

]λ
is the variable of interest

to be optimized. We will now examine several notable properties of log(γ + u) that serve to elucidate underappreciated
DPO regularization characteristics. For this purpose, we first introduce the following definition from (Palmer, 2003):

Definition C.1. Let f be a strictly increasing differentiable function on the interval [a, b]. Then the differentiable function g
is concave relative to f on [a, b] iff

g(u2) ≤ g(u1) +
g′(u1)

f ′(u1)
[f(u2)− f(u1)] , (20)

where g′ and f ′ denote the respective derivatives.

Intuitively, this definition indicates that if g is concave relative to f , it has greater curvature at any evaluation point u once
normalizing (via an affine transformation of f or g) such that g(u) = f(u) and g′(u) = f ′(u). Equipped with this definition,
we then point out the following observations linking DPO with prior work on robust estimation in the presence of noise:

• log(γ + u) is a concave non-decreasing function of u ∈ [0,∞), which represents a well-known characteristic of
sparsity-favoring penalty factors commonly used in robust estimation (Chartrand & Yin, 2008; Chen et al., 2017; Fan &
Li, 2001; Rao et al., 2003).6 Such penalties introduce a steep gradient around zero, but then flatten away from zero to
avoid incurring significant additional loss (as would occur, for example, with a common quadratic loss).

• For any γ1 < γ2, log(γ1 + u) is concave relative to log(γ2 + u) per Definition C.1. Figure 8 illustrates this phenomena
by contrasting with two extremes producing the convex ℓ1 norm and the non-convex ℓ0 norm.

• Prior work (Candes et al., 2008; Wipf & Nagarajan, 2010) has investigated general optimization problems of the form

min
{ui}∈Su

∑
i

log(γ + |ui|), (21)

sometimes generalized to min{ui}∈Su

∑
i f(|ui|, γ) over a concave, non-decreasing function f of |ui|, where Su is

some constraint set.7 Moreover, γ reflects a noise parameter or an analogous measure of uncertainty, with relative
concavity dictated by γ as above. In these contexts, it has been argued that adjusting the curvature of the regularization
factor based on noise levels can provide additional robustness to bad local minima and high noise regimes (Candes
et al., 2008; Dai et al., 2018; Wipf & Zhang, 2014). The basic intuition here is that when noise is high, a more convex
shape is preferable, while when the noise is low, a more concave alternative may be appropriate.

• Regarding DPO, it is natural to treat
[

πref(yl|x)
πref(yw|x)

]λ
as an analogous noise factor, given that whenever this ratio is large,

it implies that our reference policy is poor. Hence, once we introduce a constraint Sπ on πθ (as will always occur in
practice; see Section 3.3), solving

min
πθ∈Sπ

ℓDPO(πθ, πref, λ) (22)

can be viewed as a special case of (21), involving a robust regularization factor with noise-adaptive curvature.

D. DPO from a Naive Gaussian Estimation Perspective
Any preference probability given by the BT model in (2) can be equivalently re-expressed as

p∗(y1 ≻ y2|x) = µ

[
π∗(y2|x)
π∗(y1|x)

]
, (23)

where π∗(y|x) is a conditional probability of y given x (i.e., the BT-optimal policy introduced in Section 3) and µ : R → [0, 1]
is a monotonically increasing function. While we may optionally choose µ to exactly reproduce the BT model, it is of course

6Most prior work involves parameters that can be negative, which can be accommodated by simply replacing u with |u|.
7In some applications the constraint set may be replaced by an additional regularization factor, and there is often an equivalency

between the two.
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Figure 8: Visualization of different penalty factors associated with the DPO loss. When γ → 0, log(γ + |u|) → log |u| =
limp→0

1
p [|u|

p − 1] ∝ I[u ̸= 0] mimicking an ℓ0 norm (red curve) w.r.t. relative concavity (if u ≥ 0 as with DPO, can
remove absolute value, but we nonetheless include the general case here.). In contrast, limγ→∞ γ log(γ + |u|) = |u|
reflecting the relative concavity of the convex ℓ1 norm (green curve). Note that in both limiting cases, affine transformations
do not impact relative concavity. For a fixed γ value, the relative concavity of log(γ + |u|) lies within these two extremes.

reasonable to consider other monotonically increasing choices to explore the additional generality of (23) (and indeed we
will exploit one such alternative choice below).

Given a trainable policy πθ we can always minimize the negative log-likelihood − logµ
[
πθ(y2|x)
πθ(y1|x)

]
averaged over preference

samples {yw, yl, x} ∼ Dtr to approximate p∗(y1 ≻ y2|x); however, this procedure would be completely independent of
any regularization effects of a reference policy πref. We now examine how to introduce the reference policy by relying only
on a simple Gaussian model with trainable variances, rather than any association with RLHF or implicit reward modeling.
The end result is an independent re-derivation of DPO using basic Gaussian assumptions.

For convenience, we first define the functions ξθ and ξref as

ξθ(y1, y2, x) := µ

[
πθ(y2|x)
πθ(y1|x)

]
, ξref(y1, y2, x) := µ

[
πref(y2|x)
πref(y1|x)

]
. (24)

Now suppose we assume the naive joint distribution given by

p

([
ξθ(y1, y2, x)
ξref(y1, y2, x)

])
= N

([
ξθ(y1, y2, x)
ξref(y1, y2, x)

]∣∣∣∣ 0, γ(y1, y2, x)I) , (25)

where N (·|0,Σ) denotes a 2D, zero-mean Gaussian with covariance Σ ∈ R2×2, and γ(y1, y2, x) ∈ R+ is a variance
parameter that depends on the tuple {y1, y2, x}. Since each γ(y1, y2, x) is unknown, we can group them together with πθ
and estimate all unknowns jointly. In the context of labeled human preference data drawn from Dtr, this involves minimizing

min
πθ∈Sπ, {γ(yw,yl,x)>0}

{
E{yw,yl,x}∼Dtr − logN

([
ξθ(yw, yl, x)
ξref(yw, yl, x)

] ∣∣∣ 0, γ(yw, yl, x)I)} , (26)

where I is a 2 × 2 identity matrix and Sπ is any constraint set on πθ as introduced in Section 3.3. The intuition here is
that, although γ(yw, yl, x) is unknown, sharing this parameter across both ξθ and ξref and estimating jointly will induce a
reference policy-dependent regularization effect.

And indeed, this simple Gaussian model exactly reproduces DPO. More concretely, the stated equivalence follows from the
fact that, for an arbitrary vector v we have that

argmin
γ>0

− logN (v|0, γI) ≡ argmin
γ>0

[
v⊤v

γ
+ log |γI|

]
=

1

2
v⊤v. (27)

And therefore, we have
min
γ>0

− logN (v|0, γI) ≡ log(v⊤v) (28)
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excluding irrelevant constants. Returning to (26), if we first optimize over γ(yw, yl, x) for each tuple, we obtain the loss
factor

log
[
ξref(yw, yl, x)

2 + ξθ(yw, yl, x)
2
]

= log

[
µ

[
πθ(yl|x)
πθ(yw|x)

]2
+ µ

[
πref(yl|x)
πref(yw|x)

]2]
. (29)

From here, by choosing µ(·) = (·)λ
2 we can modify (29) as

log

[
πθ(yl|x)λ

πθ(yw|x)λ
+
πref(yl|x)λ

πref(yw|x)λ

]
= log

[
1 +

(
πθ(yl|x)
πref(yl|x)

)λ(
πref(yw|x)
πθ(yw|x)

)λ
]
+ C

= − log σ

(
λ log

πθ(yw|x)
πref(yw|x)

− λ log
πθ(yl|x)
πref(yl|x)

)
, (30)

ignoring the irrelevant constant C which is independent of πθ. Hence we have recovered the DPO loss for each tuple
{yw, yl, x} and once the requisite expectation is reintroduced, we exactly recover the full DPO loss from (7).

E. Technical Proofs
E.1. Proof of Theorem 3.1

Definition E.1. We define labeled human preference data D̄tr as some Dtr, as introduced via (1), satisfying the following
additional properties:

1. The prompts drawn from D̄tr are split between two disjoint support partitions dgoodx and dbadx , i.e., x ∈ dgoodx ∪ dbadx

with probability one, with dgoodx ∩ dbadx = ∅.

2. For each prompt x ∈ dgoodx ∪ dbadx within D̄tr, the preference distribution filling out D̄tr maintains support over a
single (prompt-dependent) response pair {y1, y2}.

3. Pair-wise preferences are dictated by a ground-truth BT model satisfying p∗(y1 ≻ y2|x) ∈ (0, 1) for all x ∈
dgoodx ∪ dbadx .

Although the second specification above can naturally be relaxed to address more general scenarios, doing so unnecessarily
complicates the presentation without providing sufficiently compelling additional insight. Additionally, for convenience
below we adopt dist[·, ·] to indicate an arbitrary distance measure.

Theorem 1 (Restated formal version) Assume preference data D̄tr that satisfies Definition E.1. Furthermore, assume a
reference policy πref such that πref = π∗ for x ∈ dgoodx and dist[πref, π

∗] > 0 for x ∈ dbadx , where π∗ is a BT-optimal policy.
It follows that for any selection of (ψ, µ, λ), if

dist[π̂QPO
θ , π∗] < dist[πref, π

∗] for x ∈ dbadx , (31)

then
dist[π̂QPO

θ , π∗] > 0 for x ∈ dgoodx , (32)

where π̂QPO
θ := argminπθ

ℓQPO(πθ, πref, ψ, µ, λ).

The proof proceeds as follows. With some abuse/imprecision of notation, we first define

u(y1, y2, x) := µ

[
πθ(y1|x)
πref(y1|x)

]
− µ

[
πθ(y2|x)
πref(y2|x)

]
. (33)
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Next, per the assumptions of the theorem statement and Definition E.1, we have that the QPO loss decouples as

ℓQPO(πθ, πref, ψ, µ, λ)

= E{yw,yl,x}∼D̄tr
ψ

(
µ

[
πθ(yw|x)
πref(yw|x)

]
− µ

[
πθ(yl|x)
πref(yl|x)

]
, λ

)
(34)

= Ex∼Dx

(
p∗(y1 ≻ y2|x)ψ

[
u(y1, y2, x), λ

]
+ p∗(y2 ≻ y1|x)ψ

[
u(y2, y1, x), λ

])
= Ex∼dgood

x

[
p∗(y1 ≻ y2|x)ψ[u(y1, y2, x), λ] + p∗(y2 ≻ y1|x)ψ[−u(y1, y2, x), λ]

]
+ Ex∼dbad

x

[
p∗(y1 ≻ y2|x)ψ[u(y1, y2, x), λ] + p∗(y2 ≻ y1|x)ψ[−u(y1, y2, x), λ]

]
.

Now consider a single prompt xbad drawn from dbadx . In order to reduce dist[πref, π
∗], it must be the case that πθ(y|xbad) ̸=

πref(y|xbad), which then implies that u(y1, y2, xbad) ̸= 0. To achieve this, (ψ, µ, λ) must be chosen such that

arg min
u(y1,y2,xbad)

[
p∗(y1 ≻ y2|x′)ψ[u(y1, y2, xbad), λ] + p∗(y2 ≻ y1|xbad)ψ[−u(y1, y2, xbad), λ]

]
̸= 0. (35)

However, to simultaneously maintain πθ(y|xgood) = πref(y|xgood) = π∗(y|xgood) for some prompt xgood drawn from dgoodx ,
it must also be true, for the same fixed (ψ, µ, λ) tuple, that

arg min
u(y1,y2,xgood)

[
p∗(y1 ≻ y2|x′)ψ[u(y1, y2, xgood), λ] + p∗(y2 ≻ y1|xgood)ψ[−u(y1, y2, xgood), λ]

]
= 0. (36)

But this is a contradiction, as the respective arguments that minimize (35) and (36) will be identical. Hence if (35) is true
then dist[π̂QPO

θ , π∗] > 0 for x ∈ dgoodx . ■

E.2. Proof of Proposition 3.4

DPO lower limit: Given our assumption that 0 < p∗(y1 ≻ y2|x) < 1, it follows that an optimal finite reward r∗(y, x) ∈
(−∞,∞) exists. Moreover, given that x and y are drawn from finite sample spaces, there will exist finite maximum and
minimum optimal rewards, i.e., r∗(y, x) ∈ (−B,B) for some B <∞. Furthermore,

lim
λ→0

argmin
πθ

ℓRLHF (πθ, πref, r
∗, λ) = argmax

πθ

Ey∼πθ(y|x)
[
r∗(y, x)

]
= πδ(y|x). (37)

Additionally, given that the data are generated by (1), we also know that the same optimal reward satisfies

r∗ = argmin
rϕ

ℓBT (rϕ) , (38)

which is independent of πref. However, without constraints on πθ, there also exists a bijection between policy and reward
such that

λ log

[
argmin

πθ

ℓBT

(
λ log

πθ(y|x)
πref(y|x)

)]
− λ log πref(y|x) = r∗. (39)

Hence the DPO reparameterization produces the policy given by (5) with r = r∗. From this point we then observe that

lim
λ→0

1

Z(x)
πref(y|x) exp

[
1

λ
r∗(y, x)

]
= πδ(y|x), (40)

noting that for any α > β > 0 we have exp
[
α
λ

]
/ exp

[
β
λ

]
= exp

[
(α−β)

λ

]
→ ∞ as λ → 0. Hence we have fulfilled the

requirements of the lower limit.

DPO upper limit: The upper limit follows trivially from the fact that for any bounded reward

lim
λ→∞

1

Z(x)
πref(y|x) exp

[
1

λ
r(y, x)

]
=

1

Z(x)
πref(y|x) exp[0] = πref. (41)

■
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E.3. Proof of Proposition 3.5

Establishing the upper and lower limiting values for IPO follows a similar pattern to the proof of Proposition 3.5. However,
because the IPO reward is bounded between zero and one by definition, we ultimately do not require any constraint on
p∗(y1 ≻ y2|x) as we did for DPO. ■

E.4. Proof of Theorem 3.6

We first define
ρ̂ := argmin

ρ
E{yw,yl,x}∼D̄tr

ψ
[
ρ(yw, yl, x, πθ, πref), λ

]
. (42)

Now suppose that for a given tuple {yw, yl, x} we observe

ρ̂(yw, yl, x, πθ, πref) = log

[
π̂θ(yw|x)πref(yl|x)
π̂θ(yl|x)πref(yw|x)

]
= B(λ) (43)

for some optimal π̂θ and fixed λ ∈ (0,∞), where B(λ) ∈ (0,∞) is a finite value dependent on λ through the definition of
ψ. Therefore, we have that

π̂θ(yw|x)
π̂θ(yl|x)

= exp

(
B(λ) + log

[
πref(yw|x)
πref(yl|x)

])
. (44)

Obviously this ratio will depend on πref for any fixed B(λ). To satisfy the SIC though, in the limit λ → 0 the optimized
policy π̂θ must be independent of πref and converge to π∗. However, the only way for π̂θ to be independent of πref is if
limλ→0B(λ) = ±∞. But if so, only the WIC is achievable, not the SIC. ■

E.5. Proof of Theorem 3.7

Our strategy here is to construct a simplified situation whereby we can pinpoint emergent differences between RLHF and
DPO losses in the presence of policy constraints. To this end, we assume the following:

• For all x ∼ Dx, there exists two unique responses y1 and y2 with equal probability of 1/2 under πref;

• Preference data {yw, yl, x} ∼ Dtr are sampled according to (1);

• The loss trade-off parameter satisfies λ = 1; and

• p∗(y1 ≻ y2|x) ∈ (0, 1) for all {y1, y2} ∼ πref(y|x) and x ∈ Dx.

RLHF loss processing: When evaluated with optimal reward model r∗, we have that

ℓRLHF (πθ, πref, r
∗, λ) = Ey∼πθ(y|x),x∼Dx

[
− r∗(y, x)

]
+ λ Ex∼Dx

[
KL
[
πθ(y|x)||πref(y|x)

]]
≡ Ex∼Dx

[
KL
[
πθ(y|x)||π∗∗(y|x)

]]
, (45)

where

π∗∗(y|x) :=
1

Z(x)
πref(y|x) exp

[
1

λ
r∗(y, x)

]
. (46)

This stems directly from the analysis in (Peng et al., 2019; Peters & Schaal, 2007). However, because we are assuming
λ = 1 and πref(y|x) is constant for any given x, it follows that

π∗∗(y|x) = exp [r∗(y, x)]∑
y exp [r

∗(y, x)]
, (47)

where the denominator is independent of y. Since the BT-optimal solution π∗ satisfies

π∗(y1|x)
π∗(y1|x) + π∗(y2|x)

= p∗(y1 ≻ y2|x) =
exp [r∗(y1, x)]

exp [r∗(y1, x)] + exp [r∗(y2, x)]
, (48)
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we may conclude that π∗∗ = π∗, and therefore

ℓRLHF (πθ, πref, r
∗, λ) = Ex∼Dx

[
KL
[
πθ(y|x)||π∗(y|x)

]]
(49)

under the stated conditions.

DPO loss processing: When λ = 1 and πref(y|x) is constant, we have that

ℓDPO(πθ, πref, λ) = E{yw,yl,x}∼Dtr

[
− log σ

(
λ log

πθ(yw|x)
πref(yw|x)

− λ log
πθ(yl|x)
πref(yl|x)

)]
= E{yw,yl,x}∼Dtr

[
log

(
πθ(yw|x) + πθ(yl|x)

πθ(yw|x)

)]
. (50)

Next, given the additional data generation assumptions, it follows that πθ(yw|x) + πθ(yl|x) = 1, and so the DPO loss can
be further modified as

ℓDPO(πθ, πref, λ) = E{yw,yl,x}∼Dtr

[
log

(
1

πθ(yw|x)

)]
= Ex∼Dx

[
p∗(z = 1|y1, y2, x) log

(
1

πθ(y1|x)

)
+ (p∗(z = 0|y1, y2, x) log

(
1

πθ(y2|x)

)]
= Ex∼Dx

[
π∗(y1|x) log

(
1

πθ(y1|x)

)
+ π∗(y2|x) log

(
1

πθ(y2|x)

)]
= Ex∼Dx

[
π∗(y1|x) log

(
π∗(y1|x)
πθ(y1|x)

)
+ π∗(y2|x) log

(
π∗(y2|x)
πθ(y2|x)

)]
+ C

≡ Ex∼Dx

[
KL
[
π∗(y|x)||πθ(y|x)

]]
, (51)

where C is an irrelevant constant. Note that in progressing from the first to second equality, we can ignore cases where
where sampled responses satisfy y1 = y2, since these contribute only another irrelevant constant to the loss. Along with our
stated response data assumptions, this allows us to remove expectation over {y1, y2} without loss of generality.

Final step: From (49) and (51) we observe that the only difference between the RLHF and DPO losses under the given
conditions is whether a forward or backward KL is used. And of course without any constraints, the minimizing solutions
are equivalent as expected, consistent with the analysis from (Rafailov et al., 2024), i.e.,

argmin
πθ

ℓRLHF (πθ, πref, r
∗, λ) = argmin

πθ

ℓDPO(πθ, πref, λ). (52)

Critically though, this KL equivalence transparently need not still hold once constraints are introduced, as the forward KL
will favor mode covering while the backward KL will push mode following (Bishop, 2006). ■

E.6. Proof of Propositions 4.1 and 4.2

These results both follow directly from the original design of ℓTYPO(πθ, πref, λ). Regarding Proposition 4.1, given that
πref = π∗ for all x ∈ dgoodx , then for the unsupervised term we have

argmin
πθ

Ey∼πref(y|x),x∈dgood
x

[
KL
[
πref(y|x)||πθ(y|x)

]]
= π∗. (53)
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And for the supervised term we have

argmin
πθ

E{y1,y2}∼πref(y|x),x∼Dx

[
KL
[
p∗(z|y1, y2, x)||pθ(z|y1, y2, x)

]]
= π∗. (54)

Hence overall, for any x ∈ dgoodx , πθ = π∗ will be optimal for any λ, as this selection independently optimizes the
constituent terms. Moreover, this optimality is independent of optimization over x ∈ dbadx , which retains the flexibility to
achieve solutions with dist[π̂TYPO

θ , π∗] < dist[πref, π
∗]. From this Proposition 4.1 immediately follows.

Additionally, Proposition 4.2 follows from the same basic line of reasoning. For completeness, we note that when λ→ 0,
only the supervised term will be minimized (which recovers the BT-optimal policy as above), while when λ → ∞, the
unsupervised term will dominate the optimization (which transparently produces πref). ■

F. Other Derivations
F.1. Derivation of (12)

Note that

p∗(y1 ≻ y2|x) =
exp[r∗(y1, x)]

exp[r∗(y1, x)] + exp[r∗(y2, x)]
=

exp[r∗(y1,x)]
Z(x)

exp[r∗(y1,x)]
Z(x) + exp[r∗(y2,x)]

Z(x)

=
π∗(y1|x)

π∗(y1|x) + π∗(y2|x)
, (55)

where π∗(y|x) = exp[r∗(y1,x)]
Z(x) and Z(x) :=

∑
y exp[r

∗(y, x)]. The policy π∗ so-defined is necessarily BT-optimal by
construction. From here then we have

argmax
πθ

Ey∼πθ(y|x)
[
r∗(y, x)

]
= argmax

πθ

Ey∼πθ(y|x)
[
r∗(y, x)

]
= argmax

πθ

Ey∼πθ(y|x)

[
exp[r∗(y1, x)]

Z(x)

]
= argmax

πθ

Ey∼πθ(y|x)
[
π∗(y|x)

]
=

{
1 if y = argmaxy′ π∗(y′|x)
0 otherwise , (56)

which is the definition of πδ . ■

F.2. Additional f -DPO Analysis

f -PDO represents a novel generalization of DPO, but there remain certain aspects worth considering.

Minima that ignore the reference policy: Consider general f -DPO losses as described in Section 2.4, which as special
cases of QPO are expressible in the form

ℓQPO(πθ, πref,− log σ[λ(·)], f ′, λ) = (57)

E{yw,yl,x}∼Dtr − log σ

(
λf ′

[
πθ(yw|x)
πref(yw|x)

]
− λf ′

[
πθ(yl|x)
πref(yl|x)

]
, λ

)
.

In addition to the requirements on f to form an f -divergence, to produce a valid f -DPO loss per Theorem 1 from
(Wang et al., 2024) it must be that f ′ is invertible with 0 /∈ domain of f ′. Therefore the domain of f will be (0,∞) and
f ′(u) → −∞ as u → 0 because of convexity. But if this is the case, upon inspection of (57) we observe that when
πθ(yl|x) → 0, then for any fixed πθ(yw|x) > 0 the input argument to the logistic function σ(·) = 1

1+exp[−(·)] will converge
to infinity, pushing the output to one and subsequently minimizing the corresponding negative-log factor. And so the global
optimum can be achieved independent of the value of πref. ■
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F.3. Derivation of (16)

dsup(πθ, πref) = E{y1,y2}∼πref(y|x),x∼Dx

[
KL
[
p∗(z|y1, y2, x)||pθ(z|y1, y2, x)

]]
= −E{y1,y2}∼πref(y|x),x∼Dx

[
Ez∼p∗(z|y1,y2,x) log pθ(z|y1, y2, x)

]
+ C

≡ −E{y1,y2}∼πref(y|x),x∼Dx

[
p∗(z = 1|y1, y2, x) log pθ(z = 1|y1, y2, x)

]
+ − E{y1,y2}∼πref(y|x),x∼Dx

[
p∗(z = 0|y1, y2, x) log pθ(z = 0|y1, y2, x)

]
,

= −E{y1,y2}∼πref(y|x),x∼Dx

[
p∗(z = 1|y1, y2, x) log pθ(z = 1|y1, y2, x)

+ p∗(z = 1|y2, y1, x) log pθ(z = 1|y2, y1, x)
]

= −E{yw,yl,x}∼Dtr

[
log pθ(z = 1|yw, yl, x)

]
= −E{yw,yl,x}∼Dtr

[
log

(
πθ(yw|x)

πθ(yw|x) + πθ(yl|x)

)]
,

= E{yw,yl,x}∼Dtr

[
log

(
1 +

πθ(yl|x)
πθ(yw|x)

)]
, (58)

where C is a constant independent of θ. Additionally, the third-to-last equality stems from the definition of how tuples
{yw, yl, x} are sampled. In particular, for a given pair {y1, y2}, by definition a proportion p∗(z = 1|y1, y2, x) of the time
yw = y1, while a proportion p∗(z = 0|y1, y2, x) = p∗(z = 1|y2, y1, x) of the time yw = y2. Hence

p∗(z = 1|y1, y2, x) log pθ(z = 1|y1, y2, x) + p∗(z = 1|y2, y1, x) log pθ(z = 1|y2, y1, x)
≡ log pθ(z = 1|yw, yl, x) (59)

when the latter is averaged over the preference distribution. ■

G. Limitations
As more of an analysis-driven contribution, our experiments on real-world data are limited to Figure 4. Moreover, there are
promising possibilities raised by pairing our contribution with prior work in new ways that we have not yet been explored.
One example is the potential use of REINFORCE in conjunction with modifications to the proposed ℓTYPO loss.

H. Broader Impacts
Aligning the output of LLMs with human preferences has obvious, well-documented benefits. However, there nonetheless
remains the risk that tools designed to improve LLM responses could be repurposed for nefarious aims. For example,
preference data labels could potentially be modified to train models, using preference losses such as ours, that intentionally
produce toxic content.
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