
A Simple and Fast Baseline for Tuning Large
XGBoost Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

XGBoost, a scalable tree boosting algorithm, has proven effective for many pre-1

diction tasks of practical interest, especially using tabular datasets. Hyperparam-2

eter tuning can further improve the predictive performance, but training many3

models on large datasets can be time consuming. Owing to the discovery that4

(i) there is a strong linear relation between dataset size & training time, (ii) XG-5

Boost models satisfy the ranking hypothesis, and (iii) lower-fidelity models can6

discover promising hyperparameter configurations, we show that uniform sub-7

sampling makes for a simple yet fast baseline to speed up the tuning of large8

XGBoost models using multi-fidelity hyperparameter optimization with data sub-9

sets as the fidelity dimension. We demonstrate the effectiveness of this baseline10

on large-scale tabular datasets ranging from 15− 70GB in size.11

1 Introduction12

Despite modern developments in deep learning models for tabular datasets [12, 22], XGBoost [4]13

has stood the test time of time and remains the favorite scalable tree boosting algorithm for a wide14

range of problems [21], including large-scale tabular datasets. Further performance gains can be15

realized by careful hyperparameter optimization (HPO) of XGBoost models.16

One of the most successful HPO techniques is sequential Bayesian optimization (BO) [20]. BO has17

consistently proven to be the superior method for tuning black-box functions, as was also recently18

demonstrated by the NeurIPS 2020 Black-Box Optimization Challenge [24]. Its sequential nature19

is, however, limiting. XGBoost models with large-scale tabular datasets greater than 10GB in size,20

our focus in this work, come with significant computational costs — training a single model can be21

time consuming, and the full dataset may not even fit the memory.22

In this work, we establish that uniformly subsampling large-scale tabular datasets provides a simple,23

fast, and surprisingly effective baseline for multi-fidelity hyperparameter optimization of XGBoost24

models. In particular, we show that:25

• There is a strong linear relationship between the training time of XGBoost models and26

dataset size (in terms of the fraction of the full dataset). Naturally, training on smaller27

subsets provides substantial runtime gains.28

• Hyperparameter configurations ranked by performance on lower-fidelity versions of XG-29

Boost models (where the fidelity parameter is the fraction of the full dataset size) tend to30

maintain their relative ranking when trained on the full dataset. This hints that XGBoost31

models also satisfy the ranking hypothesis as discussed for neural network models in Born-32

schein et al. [2].33

• Tuning lower-fidelity approximations of XGBoost models, with uniformly subsampling as34

little as 1% of the samples in the full dataset, leads to modest performance drops (often less35
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than 0.5%) in terms of the validation score (e.g. AUROC) when compared to well-tuned36

models on the full dataset.37

• For XGBoost models with large-scale tabular datasets, we demonstrate that Hyperband38

[14] is much more economical than an exhaustive randomized grid search in terms of the39

total wallclock time to achieve the same performance. Combining it with BO [6] allows us40

to squeeze out a few more runtime gains.41

2 Motivations & Related Work42

Our main inspiration comes from Bornschein et al. [2], which provides a detailed study of general-43

ization performance of neural networks w.r.t dataset size, which complements existing studies w.r.t44

model size. The authors propose the ranking hypothesis: over-parameterized neural network mod-45

els tend to maintain their relative ranking over a wide range of data subsets drawn from the same46

underlying data distribution.47

Our focus, however, is the training of batch models like XGBoost [4] with very large datasets (often48

larger than 10GB). Neural networks already have the luxury of stochastic optimization using mini-49

batches of data, but XGBoost carries a few qualitative differences as it uses all data at once. It relies50

on boosting, i.e., greedily building an additive model by adding one base function at a time that51

learns only the residual predictive function. The number of boosting rounds can increase the model52

capacity. This is unlike neural networks, where the model capacity is fixed for a given architecture.53

Further, data (rows) and feature (columns) subsampling is already supported by XGBoost, but is54

not to be confused with our goals. XGBoost subsamples for the robustness of the constructed en-55

semble, whereas we are aiming for a simple approach to reduce the computational burden of tuning56

large XGBoost models without significantly compromising performance via lower fidelity approxi-57

mations based on data subsets. Notably, He et al. [10] briefly describe the use of data subsampling58

in XGBoost models used as feature extractors for logistic regression, but do not fully explore the59

computational and performance benefits for tuning of XGBoost models.60

A large fraction of the literature has focused their analysis on tuning large neural networks models61

with stochastic training using subsets of data [9, 3, 16]. Most recently, Klein et al. [13] propose62

FABOLAS, a general framework to model the loss and training time as a function of the dataset63

size, inspired by multi-task BO [23] where the tasks are now continuous. The evaluation, however,64

is still focused on neural network models. Most notably, the analysis highlights the importance of65

using wallclock times for comparing HPO algorithms for practical usage, which we also do in this66

work.67

With the success of Bornschein et al. [2], one may be tempted to believe that the inductive biases of68

neural networks are aligned with natural data like images, which form the bulk of the benchmarks,69

and are therefore amenable to training using subsets. Tabular datasets, however, are not expected to70

have such easily exploitable biases, as has been shown by previous work [21, 12, 22]. Surprisingly, to71

the contrary, we empirically demonstrate that batch trained models like XGBoost are also amenable72

to training with uniformly sampled subsets of large datasets.73

3 Background74

There are two broad approaches to achieve scalable and efficient hyperparameter optimization:75

(i) modeling the landscape of hyperparameters to model’s performance, we can be more efficient76

about configuration selection, e.g., through BO [20]; and (ii) adaptively allocating computational77

resources, we can evaluate a large number of hyperparameters, and be more efficient about configu-78

ration evaluation, e.g., through Hyperband [14]. Both approaches can also be combined for further79

practical gains [6].80

Bayesian Optimization (BO) We can formulate the performance of any machine learning model81

as a function f : X → R, where X is the search space of hyperparameter configurations. The82

hyperparameter optimization (HPO) problem can then be defined as the search for the optimal83

configuration x? ∈ X , where x? = argmaxx∈X f(x) gives us the globally optimal score value84

(e.g., validation accuracy for classification models). BO models this function using a proba-85

bilistic model, p(f | D), conditioned on the evaluations D = {(x0, f(x0)), . . . } observed so86
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far [8]. We can use this model to query a new configuration x′ that maximizes an acquisition87

function a(x) of interest, i.e., x′ = argmaxx∈X a(x). A common choice of the probabilistic88

model is Gaussian processes [19], and the acquisition function is the Expected Improvement (EI)89

a(x) = Ep(f |D)[max(0, f(x) − f(x?))] [15], where x? is the best configuration seen so far. For90

subsequent trials, we refit the model with D ← D ∪ {(x′, f(x′))}, and repeat the acquisition step.91

Multi-Fidelity Hyperparameter Optimization (HPO) For a given black box function f(x),92

multi-fidelity optimization aims to learn from an augmented function f(x, r) with a fidelity pa-93

rameter r ∈ [rmin, rmax], such that f(x) = f(x, rmax) [23]. In the case of HPO, r represents the94

computational resource. The expectation is that low fidelity approximations of the true function,95

i.e., r < rmax, are computationally much cheaper, but informative towards learning f(x). Popular96

choices of the fidelity parameter r include the number of epochs when training neural networks, or97

the fraction of the full dataset used for training the model.98

Hyperband (HB) Framing the hyperparameter optimization as a multi-armed bandit problem,99

Hyperband [14] is an approach towards multi-fidelity HPO that builds upon repeated trials of Suc-100

cessive Halving (SH) [11]. For a total computational budget B, SH uses the average budget B/r101

for each hyperparameter configuration B/r, where r is fixed a priori. This leads to a trade off — a102

small value of r would allow many evaluations, but at lower and less reliable fidelities, whereas a103

large value of r would allow only a small number of reliable evaluations. Hyperband instead uses104

multiple trials of SH (“brackets") for different values of r (“rung levels"). At each bracket, Hyper-105

band ranks the different configurations, only allowing the top 1/η fraction to continue to a higher106

rung level. Hyperband relies on random draws of the hyperparameter configurations for conver-107

gence to the global optimum, and often works very well for small to medium computational budget.108

By accounting for information from existing evaluations, BOHB [6] improves upon Hyperband by109

combining BO with HB.110

4 Experiments111

Datasets In our benchmark study, we focus on large-scale tabular datasets which are at least 10112

GB in raw size. The actual size after feature preprocessing is often much larger. We keep the feature113

preprocessing to a minimum as provided by AWS Sagemaker [5, 18], which includes converting text114

features into tf-idf vectorization [1], categorical variables into one-hot representation, and splitting115

datetime variables across days/weeks/months.1 We include datasets that are both classification and116

regression to demonstrate the generality of our results. The complete list of benchmark datasets and117

their key details are provided in Table 1. For brevity, we only show results using a subset of the118

datasets, and the remainder of the figures are available in Appendix A.119

Table 1: For our study, we consider large tabular datasets with a raw size of approximately 10 GB,
whose sizes after feature preprocessing are noted below. The number of rows are represented by N ,
and the number of raw features by D.

Dataset Kind N D Processed Size (GB)

adform Binary Classification 23,999,936 108 56.2
adfraud Binary Classification 149,813,196 9 30.2
lendingc Binary Classification 1,760,668 990 29.3
codes 10-Way Classification 22,889,691 9 15.9
taxifare Regression 44,936,324 17 69
reddit-score Regression 36,008,714 18 56.6
census-income Regression 2,452,939 789 38.2

Evaluation For all regression datasets, we maximize the R2 score. For all binary classification120

datasets, we use the weighted AUC score, and for multiclass classification datasets, we use the one-121

vs-rest formulation of weighted AUC score [7]. We use the implementation provided by Pedregosa122

et al. [17]. All evaluation scores need to be maximized by the HPO algorithm.123

1The complete set of feature processors and their implementation is available at https://github.com/
aws/sagemaker-scikit-learn-extension
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HPO Tuning For our study, we focus on multi-fidelity HPO with Hyperband (HB) [14] and124

BOHB [6]. All results are compared to an exhaustive randomized grid search as the gold stan-125

dard, where we run each algorithm for a total budget of approximately 60000 seconds (∼ 17126

hours) on AWS Sagemaker [5, 18] using m5.12/24xlarge CPU instances. As noted earlier, we127

use the fraction of the full dataset size as the fidelity parameter r, which is chosen from the set128

R = {1/100, 1/10, 1/4, 1/2, 3/4, 1}. This choice is of practical consequence as we describe in129

Section 4.1. Table 2 provides the details of the tuned hyperparameters.2130

Table 2: The set of XGBoost hyperparameters tuned are in the table below, with their considered
ranges. For reference, the corresponding XGBoost hyperparameter names are provided alongside
the sampling distribution used to sample the range.

Hyperparameter XGBoost Parameter Distribution (Range)

Learning Rate eta log -uniform(10−3, 1.)
`1 Regularization alpha log -uniform(10−6, 2.)
`2 Regularization lambda log -uniform(10−6, 2.)
Min. Split Loss gamma log -uniform(10−6, 64.)
Row Subsample Ratio subsample uniform(0.5, 1.)
Column Subsample Ratio col_subsample uniform(0.3, 1.)
Max. Tree Depth max_depth log -randint(2, 8)
Boosting Rounds num_round log -randint(2, 1024)

4.1 Data Subsampling and Training Runtime131

We find that the relationship between the training time of a single XGBoost model and the dataset132

size is roughly linear. This observation is consistent across all our benchmark datasets when we133

consider the fraction of the dataset size r ∈ R, as visualized in Figure 1. Reducing the fraction134

r further to 1/1,000 or 1/10,000 does not provide proportional gains to be meaningful in practice135

(often amounting to less than 500ms per run).136
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Figure 1: In these plots, ?’s denote individual runs corresponding to different hyperparameter con-
figurations. (Left) We find a linear relationship between XGBoost training time and the dataset size
fraction r ∈ R. This has practical consequences (Section 4.1). (Right) XGBoost models satisfy the
ranking hypothesis [2], making them amenable to multi-fidelity HPO (Section 4.2). For each dataset,
we pick the best performing configuration at each fraction r, and see how it performs across all other
fractions, connected via a line of the same color. Well-performing configurations in lower-fidelity
models typically maintain performance on the full-fidelity model too. We crop the bottom quantile
for better legibility. For instance, on the dataset adform, there is only a single line, indicating that
the best performing configuration through all fidelities r is the same.

This observation has two important practical consequences: (i) the HPO tuning algorithm can now137

benefit from faster runs of the lower fidelity models, and a model using 1/10 the data can train138

roughly 10 times faster than the full-fidelity model; (ii) the linear relationship can be successfully139

exploited by Hyperband for efficient resource allocation, since the algorithm expects the relationship140

2See https://xgboost.readthedocs.io/en/latest/parameter.html#general-parameters for
the XGBoost hyperparameters.
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to be roughly linear. A large deviation from linearity would break the assumptions such that lower-141

fidelity models end up getting disproportionately larger time than desired, defeating the resource142

allocation strategy of Hyperband.143

4.2 The Ranking Hypothesis144

Bornschein et al. [2] note that overparameterized neural network architectures seem to maintain their145

relative ranking in terms of generalization, when trained on arbitrarily small subsets of data. This146

is termed as the ranking hypothesis, and established empirically. Neural networks are trained using147

stochastic minibatches of i.i.d data, and a priori, it would appear that batch models like XGBoost148

would not satisfy the ranking hypothesis. Surprisingly, however, XGBoost models satisfy the rank-149

ing hypothesis for all our benchmarks considered. Observing Figure 1 more closely reveals that the150

trend may not always be monotonic from the lowest fidelity to the highest fidelity and configurations151

may switch ranks. Nevertheless, overall we notice that well-performing lower fidelity runs tend to152

perform well also with the full dataset.153

As a consequence of this property, we can afford to use far fewer computational resources to dis-154

cover competitive hyperparameter configurations. Moreover, this property is necessary when using155

adaptive resource allocation HPO algorithms such as Hyperband [14]. In practice, we find that opti-156

mizing using very small data subsets (say r = 10−5) can lead to over-regularized XGBoost models,157

whose configurations do not perform as well when retrained on the full dataset. This highlights158

that the choice of the minimum fidelity level rmin is crucial to a successful multi-fidelity HPO. Our159

experiments in Section 4.3 and the visuals in Figure 2 reveal that r = 1/100 works for most datasets.160

4.3 Relative Performance of Lower-Fidelity Models161

Considering the best-scoring configuration on the full dataset as the reference, we quantify the rela-162

tive performance of lower-fidelity models on the validation set in two ways — (i) Without retraining:163

pick best tuned model at each fidelity r, and directly compute the score. (ii) With retraining: pick164

the configuration corresponding to the best tuned model at each fidelity r, and retrain with the full165

dataset. To test the performance limits of the models, in addition toR, we test on r ∈ {10−4, 10−5}166

as well. The results are visualized in Figure 2.167
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Figure 2: We compare the relative performance of lower-fidelity XGBoost models to the full-fidelity
model trained with the full dataset (Section 4.3). In addition, to push r to its limit, we include
{10−3, 10−4, 10−5}, which suffer a much greater performance drop. (Left) Without retraining,
lower fidelity models as low as r = 0.01 (i.e., 1% of the training size) can sustain a reasonably
low drop in the validation score. The model effectively breaks when using even smaller subsets.
(Right) With retraining, we find that the hyperparameter configurations of the lower-fidelity models
can further close the generalization gap, often performing better potentially due to the regularization
effect of using data subsets.

In summary, we find that we are able to sustain (on average across benchmark datasets) as low as168

3.3% drop in performance when training with as little as 1% (r = 1/100) of the full training dataset,169

sampled uniformly at random. Further, retraining with the full dataset reduces the generalization170

gap to just 1.4%. Higher fidelity models are even better, sustaining less than 0.5% error on average.171

This result is of immense practical value as we can discover competing configurations with far lower172

computational costs, as we demonstrate in Section 4.4.173
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4.4 Economical HPO174

By virtue of the facts that, (i) training on data subsets leads to proportionately faster training time175

(Section 4.1), (ii) XGBoost models satisfy the ranking hypothesis for all practical purposes (Sec-176

tion 4.2), and (iii) lower-fidelity models can discover high performing configurations Section 4.3,177

it is now reasonable to expect benefits in the computational cost of hyperparameter optimization,178

especially in terms of the total wallclock time.179
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Figure 3: Owing to XGBoost models training faster with data subsets, satisfying the ranking hypoth-
esis, and maintaining high-performance with lower-fidelity approximations, we are able to achieve
significantly faster wallclock times for the HPO of large-scale XGBoost models, shown here for the
adform dataset (Section 4.4). The y-axis is log-scaled. Notably, Hyperband spends much more time
training lower fidelity models, but is able to try many more configurations. Randomized grid search
instead spends time in higher-fidelity configurations, which is wasteful if the configuration is not
promising.

To validate this, we compare random search to both our subsampling-based Hyperband proposal180

and to its BO extension in Figure 3. The results show that higher-fidelity models now take far181

less wallclock time, and that we can tune large-scale XGBoost models considerably faster. Further,182

we find that combining BO with Hyperband, as in Falkner et al. [6], can provide further marginal183

improvements in the wallclock time of model tuning. Unlike randomized grid search, which would184

allocate roughly the same time to more expensive higher-fidelity configurations, smarter resource185

allocation as in Hyperband [14] and smarter candidate configuration as with BO [6] can provide186

meaningful computational cost savings.187

5 Conclusions & Future Outlook188

XGBoost remains an effective model choice for many practical problems in the industry, but catering189

to very large datasets is a computational challenge for such batch models, i.e., models which do not190

employ minibatching of the data for stochastic optimization. Further, small changes in XGBoost191

hyperparameters can have large effects; for instance, changing the tree depth can drastically change192

the learned predictor, which one could expect to be a consequence of data subsampling.193

Our work instead provides surprising evidence to the contrary — XGBoost satisfies many of the fa-194

vorable properties that allow us to exploit multi-fidelity hyperparameter optimization towards faster195

tuning, most importantly the ability to discover promising hyperparameter configurations with sub-196

sets of data as small as 1% of the total size, constructed simply by uniform sampling.197

Limitations & Future Work The simplicity and speed of uniform sampling of the dataset is the198

key strength of our proposed baseline for multi-fidelity hyperparameter optimization. While this199

may be enough for curated datasets, it also remains fundamentally limited in its ability to always200

provide a representative subset for any dataset in the wild. Therefore, much of our future effort lies201

in finding reliable ways to summarize datasets using informative samples.202

Societal Impact By using uniform subsampling to construct data subsets, the results presented in203

this work rely on the often commonly used assumption in machine learning that data is i.i.d. and204

covers the true underlying data distribution reasonably well. If the dataset has unfavorable biases205

towards certain subpopulations, those may be exacerbated by simple uniform subsampling. Better206

subsampling methods accounting for such scenarios must be a consideration for practical usage of207

our proposed baseline when such assumptions are violated.208
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A Additional Figures312

A.1 Data Subsampling and Training Runtime313

In continuation to Section 4.1, we provide the training runtime plots for the remainder of our bench-314

mark datasets (see Table 1) in Figure 4.315
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Figure 4: As in Figure 1(a), for the remainder of our benchmark datasets too, we find a strong linear
relationship.

A.2 The Ranking Hypothesis316

For the remainder of the datasets of our benchmark in Figure 5, we are able to demonstrate the317

ranking hypothesis is satisfied. The consequences of this are discussed in Section 4.2.318
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Figure 5: As in Figure 1(b), the remainder of our benchmark datasets satisfy the ranking hypothesis
as well.

A.3 Relative Performance of Lower-Fidelity Models319

For the remainder of the datasets, we make a similar assessment without retraining and with retrain-320

ing, as described in Section 4.3.321
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Figure 6: As in Figure 2, the remainder of our benchmark datasets also show similar trends in
performance with uniformly subsampled datasets. Here again, we show much lower values of r to
push the subsampling to its limits.
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A.4 Economical HPO322

We provide the cumulative tuning time plots, as in Section 4.4, for the remainder of the datasets in323

Figure 7.324
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Figure 7: As in Figure 3, the remainder of our benchmark datasets reveal similar runtime trends,
where combining with Bayesian optimization can often have practical benefits. More importantly,
by virtue of the Hyperband resource scheduling, we are able to test many more configurations and
only spend higher resources on the most promising ones.
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