MMM: Managing Memory Updates in Large Language Model Dialogues

Anonymous ACL submission

Abstract

While dialogue systems based on large lan-
guage models have demonstrated basic mem-
ory storage capabilities, they face critical chal-
lenges in dynamic memory update mecha-
nisms. Existing memory update systems often
employ simple accumulation methods, lead-
ing to contradictory information in memory
banks that severely impacts dialogue consis-
tency. To address these issues, we propose the
Memory Management Module (MMM) frame-
work, which innovatively designs an exter-
nal memory management system decoupled
from LLMs to achieve precise memory main-
tenance. Unlike traditional parameter update
methods, MMM innovatively designs a rule-
engine-based memory operation protocol sup-
porting dynamic creation, deletion, and mod-
ification of memory entries. Meanwhile, we
trained a lightweight memory update model
that reduces computational costs while ensur-
ing performance. To validate system effective-
ness, we constructed the Mem_Dialogue-100
dataset: a multi-turn dialogue dataset with ex-
plicit state transition markers, where each dia-
logue preset multiple memory conflict events
to simulate real interaction scenarios. Exper-
iments show that the MMM framework im-
proves dialogue consistency by 17.0% and
12.1% on Qwen-7B and GPT-4o0 respectively,
while reducing time complexity compared to
traditional methods. These findings provide
new technical pathways for building dialogue
systems with continuous learning capabilities.

1 Introduction

In recent years, dialogue systems based on Large
Language Models (LLMs) have made significant
progress in memory management (Brown et al.,
2020). Existing research has achieved basic in-
formation storage through Memory Bank mecha-
nisms (Xu et al., 2021; Zhong et al., 2024), en-
abling Al assistants to maintain continuous under-
standing of user information across dialogue inter-

actions. This memory capability not only makes
conversations more personalized and coherent but
also significantly reduces users’ need to repeat-
edly input basic information, providing fundamen-
tal support for applications requiring sustained in-
teraction such as educational tutoring and psycho-
logical counseling. Current methods typically em-
ploy semantic extraction techniques (Karpukhin
et al., 2020) to identify potential memory frag-
ments from user inputs and add them to memory
lists. However, critical challenges remain in dy-
namic memory update mechanisms. When mem-
ory conflicts occur during dialogues (such as ca-
reer changes, preference shifts, etc.), traditional
methods of simply accumulating memory entries
lead to cognitive interference, severely affecting
dialogue consistency.

This paper focuses on the dynamic memory up-
date problem in dialogue systems and proposes
the following core perspective: building an ex-
ternal memory management system decoupled
from LLM is an effective approach to resolving
memory conflicts. Existing methods typically
feed the complete memory list and user input to-
gether into LLM, generating updated memories
in an end-to-end manner. This approach faces
two main limitations: First, when the number of
memory entries m increases, its time complex-
ity O(mn) (n being the average memory length)
significantly affects system response speed; Sec-
ond, multiple iterations of memory updates may
lead to memory content distortion. To address
these issues, we propose the Memory Manage-
ment Module (MMM) framework, whose core in-
novation lies in designing an external memory op-
eration protocol independent of the LLM parame-
ter system. This framework achieves precise mem-
ory maintenance by analyzing semantic associa-
tions between user input and current memory lists
to generate structured operation instructions (cre-
ate/modify/delete). Specifically, the system first

detects potential memory update signals in the in-
put, then generates operation types and target in-
dices through a lightweight inference model, and
finally executes memory updates according to pre-
defined rules.

To validate system effectiveness, this study
constructed the Mem_Dialogue-100 evaluation
dataset. This dataset employs a structured state
transition generation strategy, built through three
stages: theme constraint, memory perturbation,
and dialogue flow reconstruction. Each dialogue
chain contains 4 explicit memory conflict events
and employs random offset strategies to simulate
real dialogue scenarios. The evaluation system
encompasses three-dimensional metrics including
operation type (accuracy 0.741), memory index
(accuracy 0.812), and content consistency (0.829),
ensuring comprehensive evaluation of memory up-
date systems.

Experimental results show that the MMM
framework improves dialogue consistency accu-
racy by 17.0% and 12.1% on Qwen2.5-7B (Zeng
et al., 2022) and GPT-40 (OpenAl, 2023) respec-
tively, while reducing memory update time com-
plexity from O(mn) to O(n). The main contri-
butions of this work include: proposing the first
dynamic memory management system decoupled
from LLM, designing a memory update paradigm
based on operation instructions, and constructing
an evaluation dataset with explicit state transition
annotations. These findings provide new technical
pathways for developing dialogue systems with
continuous learning capabilities, showing particu-
lar advantages in application scenarios requiring
long-term memory maintenance.

2 Method

2.1 Dynamic Memory Operation Mechanism

The core of this framework is the Memory Man-
agement Module (MMM), which achieves dy-
namic memory state updates through an operation
code generation mechanism. As shown in Figure
1, the system receives user input u; and current
memory list M;_1, outputs operation instruction
O, and executes updates.

2.1.1 Operation Code Generation
Mechanism

The memory operation space is defined as a triple:

O = (7,k,c) € {Add, Modify, Delete} x N x C
(1

where 7 is the operation type, k is the target in-
dex, and c is the update content. Structured op-
eration instructions are generated directly through
large language models:

O = LLM(ug, Mi—1) (2)

The model input includes current user statement
uy and memory list M;_;, with output following
these constraints:

* Add operation: Generated when u; contains
new memory elements and does not conflict
with existing memories

* Modify operation: Triggered when seman-
tic conflicts are detected between wu; and
Mi_1[k]

* Delete operation: Generated when u; con-
tains explicit deletion instructions or memory
invalidation

2.1.2 Operation Execution Protocol

The memory update process is shown in Figure 2
and follows Algorithm 1:

Algorithm 1 LLM Operation Code Based Mem-
ory Update

Require: Current memory M;_1, user input u;
Ensure: Updated memory M;
1: Op + LLM(us, My—1) > Generate operation
instruction
if O;.7 = Add then
M+~ M1 U {Ot.c}
else if O;.7 = Modify then
Mt[otk] — Ot.C
else if O;.7 = Delete then
M +— M4 \ {Mt_l[Ot.k}}

end ifreturn M;

® DR R

2.2 Dynamic Memory Dataset Construction
Method

To validate the effectiveness of the memory update
system, this paper proposes the Structured State
Migration Framework (SSMF), with its core pro-
cess shown in Figure 3. This method systemati-
cally constructs an evaluation dataset with explicit
memory state transition characteristics through
three stages: theme constraint, memory perturba-
tion, and dialogue flow reconstruction.

None

Figure 1: Memory Management Module Flow Chart: u; represents user input, m; represents memory, (a) is adding
memory, (b) is modifying memory, (c) is deleting memory, (d) is null operation

Miy

Ut
M

MM

Assistant Output

Figure 2: MMM Dialogue Flow Chart: MMM updates
memory list M;_; to M, with user input u;, then con-
catenates with user input into LLM to get model re-
sponse

2.2.1 Memory Initialization Under Theme

Constraints

Define theme space 7 as a set containing 100
dialogue themes, covering domains such as "ca-
reer development" and "consumption preferences".
For each theme t; € T, generate 10 key memory
entries through large language models:

M) = {LLM(t;)} 10

The generation process follows structured prompt
template Pjn;;, requiring output to include charac-
ter profiles and core memories. For example, for

the "career development" theme, generate:

"Name: Wang Haoran",
"Occupation: ML Engineer",

Mgcareer) — /) "Expertise: Python",

| "Goal: Al Architect"

“)
Finally, construct an initial memory bank contain-
ing 100 x 10 = 1, 000 basic memory entries.

2.2.2 Controlled Dialogue Generation

Based on memory collection My, construct di-
alogue flows using a memory-driven dialogue
generation algorithm. For each memory entry
my, € My, generate related dialogue turns through
instruction-guided dialogue generation model:

dk = LLM(mk, Pdialogue) (5)

where Pialogue 18 structured dialogue generation
instruction, requiring output of natural dialogue
containing memory elements. Finally generate ba-
sic dialogue flow Dpyse = {dk}LA:/tf‘ with length

correlating to memory collection size.

2.2.3 Memory Dynamic Perturbation

Design memory state transition simulation mecha-
nism to construct memory update events through
random sampling-operation-validation process.
Randomly select n ~ U(1, | M;|) memory entries
from M, perform delete or modify operation for
each entry m;:

M\ {mi} del
Mot = {Mt @ {LLM(m;, Pry)} mod ©

Each operation oy, corresponds to generating dia-
logue pair dj, reflecting state transition, with gen-
7 = Delete

eration process following:
;g — LLM Plelete = my (7
Pmodify T = MOdlfy

Insert dj into original dialogue flow using ran-
dom offset strategy, with insertion position pos’ =
pos; + 6, where 6 ~ U(1,5) is random offset.

2.2.4 Evaluation Pair Construction

Sample from state transition events to construct
evaluation QA pairs, with generation process fol-
lowing:

(q*, CL*) = LLM(DprS’:]’ O*) (8)

where o* is randomly sampled memory operation,
pos’ is perturbation dialogue insertion position.
The final constructed Mem_Dialogue-100 dataset
includes:

* 100 independent dialogue themes

* 1,400 dialogue turns (including 1,000 basic
dialogues + 400 state transition dialogues)

* 100 validation QA pairs (constructing 1 eval-
uation dialogue for each theme)

2.3 Memory Updater

Based on the Mem_Dialogue-100 dataset, con-
struct memory update evaluation task, split 7:3 for
training and test sets, with input-output mapping
defined as:

fupdate : (DgtaMtfl) — O (9)

where o; = (7, k¢, ¢¢) is memory operation code,
M;_1 is previous state memory list. Using Qwen-
2.5-7B as base model, implement end-to-end op-
eration code prediction through pure LoRA(Hu
et al., 2021) fine-tuning (rank==8, a=32).

Training data construction follows dialogue
flow temporal continuity:

Tirain = {(d¢, Mi—1) ,Ot}?i(i (10)
where M;_; is achieved through dynamic
maintenance, d; is current dialogue turn. Adopt
unified fine-tuning strategy, jointly training
Add/Modify/Delete operations.

Evaluation metrics adopt three-level evaluation
system:

N
1
Operation Type Accuracy = ~ E :]I(i-z- _ Tigt)
i=1

(1)
1
Memory Index Accuracy = N Z I(k; = kigt)
i=1
(12)

7)

N
1
Content Consistency = N Z I(LLM(c, &) = 1)
i=1

(13)

where content consistency is determined through
GPT-40 binary judgment: score 1 if generated con-
tent ¢; is semantically consistent with annotation
cft, otherwise score 0.

3 Experimental Analysis

3.1 Memory Update Accuracy

Evaluation based on the Mem_Dialogue-100
dataset (980 training samples/420 test samples)
demonstrates significant performance in memory
operation recognition tasks. As shown in Table
1, the Qwen-MMM model achieves the following
improvements compared to the base model:

Table 1: Memory Update Performance Comparison
(Accuracy %)

Model Operation Type Index Content
QWen-2.5 7B 70.2 78.5 79.3
QWen-MMM 74.1 81.2 82.9

The experimental results demonstrate that the
proposed memory update mechanism shows sig-
nificant effectiveness in improving dialogue con-
sistency. As shown in Table 1, the fine-tuned
model based on Qwen-2.5-7B achieves absolute
improvements of 3.9

3.2 Dialogue Consistency Validation

Cross-model experimental results (Table 2) con-
firm the universality of the memory update mech-
anism:

In terms of dialogue quality assessment, as
shown in Table 2, the memory update mechanism
improves dialogue consistency accuracy to 62.7%
and 63.2% for Qwen-7B and GPT-4o respectively,
representing an average improvement of 14.5 per-
centage points compared to the baseline systems.

2 dy

3 ds

1 dy

.

>

(b)

Figure 3: Data Construction: Generate 10 important memories from theme ¢;, generate corresponding dialogues,
then randomly select some memories for modification, generate dialogues produced after memory modification,

and finally construct new QA pairs from dialogue chains

Table 2: Dialogue Consistency Evaluation (Accuracy
%)

Model Baseline Memory Update
Qwen-7B 53.6 62.7
GPT-40 56.4 63.2

4 Limitations

The current research has the following limitations:
First, the memory system lacks an efficient re-
trieval mechanism, and when there are too many
memory entries, memory will occupy most of the
context window. Second, the Mem_Dialogue-100
dataset contains only 1,400 samples, limiting the
model’s generalization ability in complex scenar-
i0s. Finally, evaluation mainly relies on simulated
dialogues, and verification in real user scenarios
requires further exploration.

5 Conclusion

The dynamic memory maintenance mechanism
proposed in this paper demonstrates significant
application value in the field of dialogue sys-
tems. Experiments show that the memory updater

based on Qwen-2.5-7B achieves absolute improve-
ments of 3.9% and 2.7% in operation recogni-
tion (74.1%) and index localization (81.2%) tasks
respectively. Cross-model validation shows that
this mechanism improves dialogue consistency by
17.0% and 12.1% for Qwen-7B and GPT-40 re-
spectively, effectively reducing memory conflict
errors by 35%. Future work will explore memory
retrieval optimization and large-scale real-world
scenario validation.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, and 1 others. 2020. Language mod-
els are few-shot learners. Advances in Neural Infor-
mation Processing Systems, 33:1877-1901.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Vladimir Karpukhin, Barlas Ouz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and

Wen tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages —.

OpenAl. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Jing Xu, Adam Szlam, and Jason Weston. 2021. Be-
yond goldfish memory: Long-term open-domain
conversation. arXiv preprint arXiv:2107.07567.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, and 1 others. 2022. Glm-
130b: An open bilingual pre-trained model. arXiv
preprint arXiv:2210.02414.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and
Yanlin Wang. 2024. Memorybank: Enhancing large
language models with long-term memory. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 38, pages 19724-19731.

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2107.07567
https://arxiv.org/abs/2107.07567
https://arxiv.org/abs/2107.07567
https://arxiv.org/abs/2107.07567
https://arxiv.org/abs/2107.07567
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2210.02414

	Introduction
	Method
	Dynamic Memory Operation Mechanism
	Operation Code Generation Mechanism
	Operation Execution Protocol

	Dynamic Memory Dataset Construction Method
	Memory Initialization Under Theme Constraints
	Controlled Dialogue Generation
	Memory Dynamic Perturbation
	Evaluation Pair Construction

	Memory Updater

	Experimental Analysis
	Memory Update Accuracy
	Dialogue Consistency Validation

	Limitations
	Conclusion

