
MMM: Managing Memory Updates in Large Language Model Dialogues

Anonymous ACL submission

Abstract001

While dialogue systems based on large lan-002
guage models have demonstrated basic mem-003
ory storage capabilities, they face critical chal-004
lenges in dynamic memory update mecha-005
nisms. Existing memory update systems often006
employ simple accumulation methods, lead-007
ing to contradictory information in memory008
banks that severely impacts dialogue consis-009
tency. To address these issues, we propose the010
Memory Management Module (MMM) frame-011
work, which innovatively designs an exter-012
nal memory management system decoupled013
from LLMs to achieve precise memory main-014
tenance. Unlike traditional parameter update015
methods, MMM innovatively designs a rule-016
engine-based memory operation protocol sup-017
porting dynamic creation, deletion, and mod-018
ification of memory entries. Meanwhile, we019
trained a lightweight memory update model020
that reduces computational costs while ensur-021
ing performance. To validate system effective-022
ness, we constructed the Mem_Dialogue-100023
dataset: a multi-turn dialogue dataset with ex-024
plicit state transition markers, where each dia-025
logue preset multiple memory conflict events026
to simulate real interaction scenarios. Exper-027
iments show that the MMM framework im-028
proves dialogue consistency by 17.0% and029
12.1% on Qwen-7B and GPT-4o respectively,030
while reducing time complexity compared to031
traditional methods. These findings provide032
new technical pathways for building dialogue033
systems with continuous learning capabilities.034

1 Introduction035

In recent years, dialogue systems based on Large036

Language Models (LLMs) have made significant037

progress in memory management (Brown et al.,038

2020). Existing research has achieved basic in-039

formation storage through Memory Bank mecha-040

nisms (Xu et al., 2021; Zhong et al., 2024), en-041

abling AI assistants to maintain continuous under-042

standing of user information across dialogue inter-043

actions. This memory capability not only makes 044

conversations more personalized and coherent but 045

also significantly reduces users’ need to repeat- 046

edly input basic information, providing fundamen- 047

tal support for applications requiring sustained in- 048

teraction such as educational tutoring and psycho- 049

logical counseling. Current methods typically em- 050

ploy semantic extraction techniques (Karpukhin 051

et al., 2020) to identify potential memory frag- 052

ments from user inputs and add them to memory 053

lists. However, critical challenges remain in dy- 054

namic memory update mechanisms. When mem- 055

ory conflicts occur during dialogues (such as ca- 056

reer changes, preference shifts, etc.), traditional 057

methods of simply accumulating memory entries 058

lead to cognitive interference, severely affecting 059

dialogue consistency. 060

This paper focuses on the dynamic memory up- 061

date problem in dialogue systems and proposes 062

the following core perspective: building an ex- 063

ternal memory management system decoupled 064

from LLM is an effective approach to resolving 065

memory conflicts. Existing methods typically 066

feed the complete memory list and user input to- 067

gether into LLM, generating updated memories 068

in an end-to-end manner. This approach faces 069

two main limitations: First, when the number of 070

memory entries m increases, its time complex- 071

ity O(mn) (n being the average memory length) 072

significantly affects system response speed; Sec- 073

ond, multiple iterations of memory updates may 074

lead to memory content distortion. To address 075

these issues, we propose the Memory Manage- 076

ment Module (MMM) framework, whose core in- 077

novation lies in designing an external memory op- 078

eration protocol independent of the LLM parame- 079

ter system. This framework achieves precise mem- 080

ory maintenance by analyzing semantic associa- 081

tions between user input and current memory lists 082

to generate structured operation instructions (cre- 083

ate/modify/delete). Specifically, the system first 084

1

detects potential memory update signals in the in-085

put, then generates operation types and target in-086

dices through a lightweight inference model, and087

finally executes memory updates according to pre-088

defined rules.089

To validate system effectiveness, this study090

constructed the Mem_Dialogue-100 evaluation091

dataset. This dataset employs a structured state092

transition generation strategy, built through three093

stages: theme constraint, memory perturbation,094

and dialogue flow reconstruction. Each dialogue095

chain contains 4 explicit memory conflict events096

and employs random offset strategies to simulate097

real dialogue scenarios. The evaluation system098

encompasses three-dimensional metrics including099

operation type (accuracy 0.741), memory index100

(accuracy 0.812), and content consistency (0.829),101

ensuring comprehensive evaluation of memory up-102

date systems.103

Experimental results show that the MMM104

framework improves dialogue consistency accu-105

racy by 17.0% and 12.1% on Qwen2.5-7B (Zeng106

et al., 2022) and GPT-4o (OpenAI, 2023) respec-107

tively, while reducing memory update time com-108

plexity from O(mn) to O(n). The main contri-109

butions of this work include: proposing the first110

dynamic memory management system decoupled111

from LLM, designing a memory update paradigm112

based on operation instructions, and constructing113

an evaluation dataset with explicit state transition114

annotations. These findings provide new technical115

pathways for developing dialogue systems with116

continuous learning capabilities, showing particu-117

lar advantages in application scenarios requiring118

long-term memory maintenance.119

2 Method120

2.1 Dynamic Memory Operation Mechanism121

The core of this framework is the Memory Man-122

agement Module (MMM), which achieves dy-123

namic memory state updates through an operation124

code generation mechanism. As shown in Figure125

1, the system receives user input ut and current126

memory list Mt−1, outputs operation instruction127

Ot and executes updates.128

2.1.1 Operation Code Generation129

Mechanism130

The memory operation space is defined as a triple:131

O = (τ, k, c) ∈ {Add,Modify,Delete} × N× C
(1)132

where τ is the operation type, k is the target in- 133

dex, and c is the update content. Structured op- 134

eration instructions are generated directly through 135

large language models: 136

Ot = LLM(ut,Mt−1) (2) 137

The model input includes current user statement 138

ut and memory listMt−1, with output following 139

these constraints: 140

• Add operation: Generated when ut contains 141

new memory elements and does not conflict 142

with existing memories 143

• Modify operation: Triggered when seman- 144

tic conflicts are detected between ut and 145

Mt−1[k] 146

• Delete operation: Generated when ut con- 147

tains explicit deletion instructions or memory 148

invalidation 149

2.1.2 Operation Execution Protocol 150

The memory update process is shown in Figure 2 151

and follows Algorithm 1: 152

Algorithm 1 LLM Operation Code Based Mem-
ory Update

Require: Current memoryMt−1, user input ut
Ensure: Updated memoryMt

1: Ot ← LLM(ut,Mt−1) ▷ Generate operation
instruction

2: if Ot.τ = Add then
3: Mt ←Mt−1 ∪ {Ot.c}
4: else if Ot.τ = Modify then
5: Mt[Ot.k]← Ot.c
6: else if Ot.τ = Delete then
7: Mt ←Mt−1 \ {Mt−1[Ot.k]}
8: end ifreturnMt

2.2 Dynamic Memory Dataset Construction 153

Method 154

To validate the effectiveness of the memory update 155

system, this paper proposes the Structured State 156

Migration Framework (SSMF), with its core pro- 157

cess shown in Figure 3. This method systemati- 158

cally constructs an evaluation dataset with explicit 159

memory state transition characteristics through 160

three stages: theme constraint, memory perturba- 161

tion, and dialogue flow reconstruction. 162

2

add ···

Modify

···

(a) (b)

Delete

···

×

None ···

×

(d)(c)

Figure 1: Memory Management Module Flow Chart: ut represents user input, mi represents memory, (a) is adding
memory, (b) is modifying memory, (c) is deleting memory, (d) is null operation

MMM

LLM

Assistant Output

Figure 2: MMM Dialogue Flow Chart: MMM updates
memory listMt−1 toMt with user input ut, then con-
catenates with user input into LLM to get model re-
sponse

2.2.1 Memory Initialization Under Theme163

Constraints164

Define theme space T as a set containing 100165

dialogue themes, covering domains such as "ca-166

reer development" and "consumption preferences".167

For each theme ti ∈ T , generate 10 key memory168

entries through large language models:169

M(i)
0 = {LLM(ti)}10j=1, ∀ti ∈ T (3)170

The generation process follows structured prompt171

template Pinit, requiring output to include charac-172

ter profiles and core memories. For example, for173

the "career development" theme, generate: 174

M(career)
0 =

"Name: Wang Haoran",

"Occupation: ML Engineer",

"Expertise: Python",
...

"Goal: AI Architect"

(4) 175

Finally, construct an initial memory bank contain- 176

ing 100× 10 = 1, 000 basic memory entries. 177

2.2.2 Controlled Dialogue Generation 178

Based on memory collection Mt, construct di- 179

alogue flows using a memory-driven dialogue 180

generation algorithm. For each memory entry 181

mk ∈Mt, generate related dialogue turns through 182

instruction-guided dialogue generation model: 183

dk = LLM(mk,Pdialogue) (5) 184

where Pdialogue is structured dialogue generation 185

instruction, requiring output of natural dialogue 186

containing memory elements. Finally generate ba- 187

sic dialogue flow Dbase = {dk}
|Mt|
k=1 , with length 188

correlating to memory collection size. 189

2.2.3 Memory Dynamic Perturbation 190

Design memory state transition simulation mecha- 191

nism to construct memory update events through 192

random sampling-operation-validation process. 193

Randomly select n ∼ U(1, |Mt|) memory entries 194

fromMt, perform delete or modify operation for 195

each entry mi: 196

Mt+1 =

{
Mt \ {mi} del
Mt ⊕ {LLM(mi,Pm)} mod

(6) 197

3

Each operation ok corresponds to generating dia-198

logue pair d′k reflecting state transition, with gen-199

eration process following:200

d′k = LLM

({
Pdelete τ = Delete
Pmodify τ = Modify

,mi

)
(7)201

Insert d′k into original dialogue flow using ran-202

dom offset strategy, with insertion position pos′ =203

posi + δ, where δ ∼ U(1, 5) is random offset.204

2.2.4 Evaluation Pair Construction205

Sample from state transition events to construct206

evaluation QA pairs, with generation process fol-207

lowing:208

(q∗, a∗) = LLM(D′
[pos′:], o

∗) (8)209

where o∗ is randomly sampled memory operation,210

pos′ is perturbation dialogue insertion position.211

The final constructed Mem_Dialogue-100 dataset212

includes:213

• 100 independent dialogue themes214

• 1,400 dialogue turns (including 1,000 basic215

dialogues + 400 state transition dialogues)216

• 100 validation QA pairs (constructing 1 eval-217

uation dialogue for each theme)218

2.3 Memory Updater219

Based on the Mem_Dialogue-100 dataset, con-220

struct memory update evaluation task, split 7:3 for221

training and test sets, with input-output mapping222

defined as:223

fupdate : (D≤t,Mt−1) 7→ ot (9)224

where ot = (τt, kt, ct) is memory operation code,225

Mt−1 is previous state memory list. Using Qwen-226

2.5-7B as base model, implement end-to-end op-227

eration code prediction through pure LoRA(Hu228

et al., 2021) fine-tuning (rank=8, α=32).229

Training data construction follows dialogue230

flow temporal continuity:231

Ttrain = {(dt,Mt−1) , ot}980t=1 (10)232

where Mt−1 is achieved through dynamic233

maintenance, dt is current dialogue turn. Adopt234

unified fine-tuning strategy, jointly training235

Add/Modify/Delete operations.236

Evaluation metrics adopt three-level evaluation 237

system: 238

Operation Type Accuracy =
1

N

N∑
i=1

I(τ̂i = τ
gt
i)

(11)

239

Memory Index Accuracy =
1

N

N∑
i=1

I(k̂i = k
gt
i)

(12)

240

Content Consistency =
1

N

N∑
i=1

I(LLM(c
gt
i , ĉi) = 1)

(13)

241

where content consistency is determined through 242

GPT-4o binary judgment: score 1 if generated con- 243

tent ĉi is semantically consistent with annotation 244

c
gt
i , otherwise score 0. 245

3 Experimental Analysis 246

3.1 Memory Update Accuracy 247

Evaluation based on the Mem_Dialogue-100 248

dataset (980 training samples/420 test samples) 249

demonstrates significant performance in memory 250

operation recognition tasks. As shown in Table 251

1, the Qwen-MMM model achieves the following 252

improvements compared to the base model: 253

Table 1: Memory Update Performance Comparison
(Accuracy %)

Model Operation Type Index Content
QWen-2.5 7B 70.2 78.5 79.3
QWen-MMM 74.1 81.2 82.9

The experimental results demonstrate that the 254

proposed memory update mechanism shows sig- 255

nificant effectiveness in improving dialogue con- 256

sistency. As shown in Table 1, the fine-tuned 257

model based on Qwen-2.5-7B achieves absolute 258

improvements of 3.9 259

3.2 Dialogue Consistency Validation 260

Cross-model experimental results (Table 2) con- 261

firm the universality of the memory update mech- 262

anism: 263

In terms of dialogue quality assessment, as 264

shown in Table 2, the memory update mechanism 265

improves dialogue consistency accuracy to 62.7% 266

and 63.2% for Qwen-7B and GPT-4o respectively, 267

representing an average improvement of 14.5 per- 268

centage points compared to the baseline systems. 269

4

modify

delete

None

···

··· ···

···

(a)

(b)

Query
Query

Figure 3: Data Construction: Generate 10 important memories from theme ti, generate corresponding dialogues,
then randomly select some memories for modification, generate dialogues produced after memory modification,
and finally construct new QA pairs from dialogue chains

Table 2: Dialogue Consistency Evaluation (Accuracy
%)

Model Baseline Memory Update
Qwen-7B 53.6 62.7
GPT-4o 56.4 63.2

4 Limitations270

The current research has the following limitations:271

First, the memory system lacks an efficient re-272

trieval mechanism, and when there are too many273

memory entries, memory will occupy most of the274

context window. Second, the Mem_Dialogue-100275

dataset contains only 1,400 samples, limiting the276

model’s generalization ability in complex scenar-277

ios. Finally, evaluation mainly relies on simulated278

dialogues, and verification in real user scenarios279

requires further exploration.280

5 Conclusion281

The dynamic memory maintenance mechanism282

proposed in this paper demonstrates significant283

application value in the field of dialogue sys-284

tems. Experiments show that the memory updater285

based on Qwen-2.5-7B achieves absolute improve- 286

ments of 3.9% and 2.7% in operation recogni- 287

tion (74.1%) and index localization (81.2%) tasks 288

respectively. Cross-model validation shows that 289

this mechanism improves dialogue consistency by 290

17.0% and 12.1% for Qwen-7B and GPT-4o re- 291

spectively, effectively reducing memory conflict 292

errors by 35%. Future work will explore memory 293

retrieval optimization and large-scale real-world 294

scenario validation. 295

References 296

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 297
Subbiah, Jared D. Kaplan, Prafulla Dhariwal, 298
Arvind Neelakantan, Pranav Shyam, Girish Sastry, 299
Amanda Askell, and 1 others. 2020. Language mod- 300
els are few-shot learners. Advances in Neural Infor- 301
mation Processing Systems, 33:1877–1901. 302

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 303
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 304
Weizhu Chen. 2021. Lora: Low-rank adaptation of 305
large language models. In International Conference 306
on Learning Representations. 307

Vladimir Karpukhin, Barlas Ouz, Sewon Min, Patrick 308
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 309

5

Wen tau Yih. 2020. Dense passage retrieval for open-310
domain question answering. In Proceedings of the311
2020 Conference on Empirical Methods in Natural312
Language Processing (EMNLP), pages –.313

OpenAI. 2023. Gpt-4 technical report. arXiv preprint314
arXiv:2303.08774.315

Jing Xu, Adam Szlam, and Jason Weston. 2021. Be-316
yond goldfish memory: Long-term open-domain317
conversation. arXiv preprint arXiv:2107.07567.318

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,319
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,320
Wendi Zheng, Xiao Xia, and 1 others. 2022. Glm-321
130b: An open bilingual pre-trained model. arXiv322
preprint arXiv:2210.02414.323

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and324
Yanlin Wang. 2024. Memorybank: Enhancing large325
language models with long-term memory. In Pro-326
ceedings of the AAAI Conference on Artificial Intel-327
ligence, volume 38, pages 19724–19731.328

6

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2107.07567
https://arxiv.org/abs/2107.07567
https://arxiv.org/abs/2107.07567
https://arxiv.org/abs/2107.07567
https://arxiv.org/abs/2107.07567
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2210.02414

	Introduction
	Method
	Dynamic Memory Operation Mechanism
	Operation Code Generation Mechanism
	Operation Execution Protocol

	Dynamic Memory Dataset Construction Method
	Memory Initialization Under Theme Constraints
	Controlled Dialogue Generation
	Memory Dynamic Perturbation
	Evaluation Pair Construction

	Memory Updater

	Experimental Analysis
	Memory Update Accuracy
	Dialogue Consistency Validation

	Limitations
	Conclusion

