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ABSTRACT

This paper presents a method to explain the internal representation structure of
a neural network for image generation. Specifically, our method disentangles
primitive feature components from the intermediate-layer feature of the neural
network, which ensures that each feature component is exclusively used to gen-
erate a specific set of image regions. In this way, the generation of the entire
image can be considered as the superposition of different pre-encoded primitive
regional patterns, each being generated by a feature component. We find that the
feature component can be represented as an OR relationship between the demands
for generating different image regions, which is encoded by the neural network.
Therefore, we extend the Harsanyi interaction to represent such an OR interaction
to disentangle the feature component. Experiments show a clear correspondence
between each feature component and the generation of specific image regions.

1 INTRODUCTION

The interpretability of deep neural networks (DNNs) has received increasing attention along with
the fast development of deep learning. However, there is a clear technical boundary between tech-
niques of explaining a single scalar output score of a DNN1 and methods of explaining the high-
dimensional output (e.g., an image) of a DNN. For example, for DNNs for classification, attribution
methods (Simonyan, 2013; Shrikumar et al., 2017; Selvaraju et al., 2017) were developed to esti-
mate attributions of input variables to the scalar classification confidence. Zeiler & Fergus (2014)
and desai & Ramaswamy (2020) visualized inference patterns encoded by a DNN, which determined
the scalar classification confidence. In contrast, for image generation, the generated image contains
much richer information than a scalar classification confidence, so it is difficult to apply previous
explanation techniques designed for a single scalar output of a DNN. Instead, image generation is
usually explained by controlling image generation results via input engineering (Härkönen et al.,
2020; Voynov & Babenko, 2020).

Therefore, the essence of such difference in the explanation techniques lies in the two facts. (1)
The explanation of a single scalar output2 can be considered to explain the the structure of a DNN’s
inference logic. (2) In comparison, there is no solid theory developed to explain the internal rep-
resentation structure of the neural network for image generation. For example, as Figure 1 shows,
both attribution/importance scores of input variables to the classification confidence (Selvaraju et al.,
2017) and interactions between input variables for inference (Ren et al., 2024a; 2023a) all reflect po-
tential representation structure of the DNN.

However, how to explain the internal representation structure of an image-generation model has not
been sophisticatedly formulated. This problem can be discussed in the following two aspects.

First, we can empirically say that most DNNs do not encode image information at a pixel level3.
Instead, image generation of the DNN is conducted somewhat like pasting a set of pre-encoded re-
gional patterns, rather than let each pixel be generated independently. Therefore, how to faithfully

1Outputs of these models are supposed to be summarized as a single or very few scalar scores.
2For example, people usually explain the scalar classification confidence log

p(y=ytruth |x)
1−p(y=ytruth |x)

of most dis-

criminative models for multi-category classification
3PixelRNN and PixelCNN (Van Den Oord et al., 2016) are special cases, but these models still encode

spatial relationships between pixels into larger patterns, instead of handling each individual pixel independently.
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Figure 1: Different ways of explaining representation structures of a DNN. Both estimating the
attribution of input variables (a) and extracting interactions between input variables encoded by the
DNN (b) partially explain the representation structure of a DNN for image classification. (c) In
comparison, we propose to decompose the feature in an intermediate layer f into different feature
components ∆f1,∆f2, ...,∆fm. Each i-th feature component ∆fi is exclusively used to generate
an primitive regional pattern in Si. Thus, the generation of an entire image can be explained as the
superposition of all primitive regional patterns.

formulate and quantify the primitive regional patterns is the core of explaining the internal
representation structure of image-generation models.

Second, is it possible for the image generation result to be mathematically represented as the super-
position of different primitive regional patterns?

Therefore, in order to formulate the representation structure of a given DNN for image generation,
in this study, we disentangle the feature f of an intermediate layer of the DNN into different feature
components f = f0 + ∆f1 + ∆f2 + ... + ∆fm, each being used to generate a specific subset of
image regions. Specifically, as Figure 1 shows, the disentanglement of feature components should
satisfy the following two requirements.

• Each feature component ∆fi is responsible for generating a specific primitive regional pattern Si.

• The generation of the entire image can be explained as the superposition of different primitive
regional patterns.

In this way, above two requirements ensure the faithfulness of the explanation of the image genera-
tion. The generation of a certain subset of image regions is exclusively determined as the superpo-
sition of different primitive regional patterns, each being generated by a specific feature component.

To this end, we prove that the feature component ∆fi represents a certain OR relationship between
the demands for the generation of different image regions. We extend the theory of the Harsanyi in-
teraction (Harsanyi, 1958) to mathematically formulate the OR relationship between different prim-
itive regional patterns used by a given neural network. Our theory ensures that the generated image
can be represented as a linear superposition of these primitive regional patterns.

As Figure 2 shows, the OR interaction means that when the DNN is required to generate any one
region of Si, ∆fi must be added into the feature in the intermediate layer.

In sum, this paper proposes a new method to disentangle feature components from the intermediate
layer of a DNN. It is theoretically guaranteed that each feature component is exclusively used to
generate a specific set of image regions. Experiments have demonstrated the faithfulness of the
proposed explanation of image generation.

2 RELATED WORK

The interpretability analysis of GAN model. In recent years, numerous studies have explored the
interpretability of GAN models. Some studies explained the GAN models by analyzing the latent

2
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Figure 2: The selection of feature com-
ponents reflects an OR relationship be-
tween demands of reconstructing differ-
ent regions. Given the demand of recon-
structing a certain set of image regions,
a feature component ∆fk is selected if
its action region Sk contains any one
target image region for reconstruction.

space of GANs (Abdal et al., 2021; Härkönen et al., 2020; Lang et al., 2021; Patashnik et al., 2021).
For instance, Härkönen et al. (2020) employed principal component analysis (PCA) to identify the
main directions in the latent space. By making layer-wise perturbations along these directions, it
achieved interpretable control of the image generation process. While most of these works focused
on GAN interpretability from the perspective of input manipulation, some other works took a differ-
ent approach by examining the role of intermediate neurons in the generation process. For example,
Bau et al. (2018) identified specific neurons associated with certain object categories. In this way,
this method enabled people to control the presence of certain objects in the generated images by
adjusting the activation of the neurons.

Unlike previous output control based on input engineering, we aim to explore the internal represen-
tation structure of an image-generation network, which represents a new explanation perspective.
We disentangle feature components that control the generation of specific regions, and we discover
that the feature component can be formulated as the OR relationship between the demands of recon-
structing different image regions.

Interaction-based DNN explanation. In the field of explainable AI, an emerging question is
whether the decision-making process of DNNs can be interpreted as a set of sparse symbolic con-
cepts. To address this, a theoretical system based on the Harsanyi interaction has been proposed
to explain how symbolic concepts are encoded by DNNs. Over the past three years, about 20 ar-
ticles have been published in the field of explainable AI, which aimed to tackle the mathematical
possibility of explaining DNN inference logic through a limited set of logical patterns. Most of
these studies were surveyed by Ren et al. (2024a). Specifically, Sundararajan et al. (2020); Janizek
et al. (2021); Tsai et al. (2023) proposed different types of interactions between input variables of
a DNN. Ren et al. (2023a) used the Harsanyi dividend (Harsanyi, 1958) to represent the AND in-
teraction in a DNN. They also experimentally discovered that DNNs usually encoded a limited set
of interactions between input variables, i.e., the sparsity of AND interactions. Li & Zhang (2023)
revealed that low-order interactions exhibited higher transferability across different input samples in
discriminative neural networks. Ren et al. (2024a) proved the three common conditions under which
the sparsity of interactions could be guaranteed. Ren et al. (2023b) proposed a method to learn op-
timal masked states of input variables based on interactions and alleviated the bias of the Shapley
value caused by the sub-optimal masked states of input variables. Furthermore, Chen et al. (2024)
extracted common interactions across different neural networks, and interactions shared by different
neural networks usually represented generalizable inference patterns. Cheng et al. (2024) proposed
to extract the interactions from the intermediate layers of neural networks, so as to illustrate how
DNNs gradually learned and forgot inference patterns during forward propagation.

In addition, the interaction theory can also explain the representation power of a neural network.
Specifically, this can be elaborated as follows. Wang et al. (2020) discovered and proved the neg-
ative correlation between DNNs’ adversarial transferability and the interaction inside adversarial
perturbations. Ren et al. (2021) found adversarial attacks primarily affected the high-order interac-
tions than low-order interactions. Similarly, Zhou et al. (2024) revealed that low-order interactions
tended to generalize better than high-order interactions. Liu et al. (2023) explained the intuition that
DNNs learned low-order interactions more easily than high-order interactions. Deng et al. (2022)
proved a counter-intuitive bottleneck i.e., bivariate interactions of middle orders were usually not
well encoded by a neural network. Ren et al. (2023c) found that Bayesian neural networks (BNNs)
tended to avoid encoding complex Harsanyi interactions, compared to normal neural networks. Ren
et al. (2024b) and Zhang et al. (2024) discovered and proved the dynamics of learning interactions
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in neural networks exhibited a two-phase phenomenon, which had been widely observed in different
neural networks and tasks. Deng et al. (2024) proved that the mechanisms underlying fourteen dif-
ferent classical attribution methods could all be rewritten as different redistributions of interaction
effects to input variables.

In sum, most previous studies used interactions to explain the scalar output of a neural network. In
comparison, in this paper, we first attempt to apply interactions to explain high-dimensional image
generation of a DNN, which proposes fully new challenges. To this end, we discover that each
feature component disentangled from the neural network can be formulated as an OR interaction
between demands of reconstructing different image regions. Experiments verified the effectiveness
of the proposed method.

3 EXPLAINING REPRESENTATION STRUCTURE OF IMAGE GENERATION

3.1 PRELIMINARY: AND INTERACTION

As the theoretical foundation of the explanation of an image-generation network, let us first intro-
duce the definition of interactions in the task of image classification. Given an input image x, let

v(x) denote the output of a DNN for image classification. We can set v(x) = log
p(y=ytruth |x)

1−p(y=ytruth |x)
to denote the classification confidence. Let us divide the image x into n = H · W regions, and
therefore we rewrite x = [x1,x2, . . . ,xn]

T , where xk denotes the k-th image region. We use
N = {1, 2. . . , n} as the set of indices of all image regions. For each specific set S ⊆ N of image
regions, the numerical effect of the Harsanyi interaction between image regions in S is computed as

I(S)
def
=

∑
T⊆S

(−1)|S|−|T | · u(T ) (1)

where u(T )
def
= v (xT ) − v (x∅), and v (xT ) denotes the classification confidence w.r.t. the true

category of the masked sample xT , where regions of N\T are masked, while regions in T remain
unchanged. Therefore, u(N) = v(x)− v(x∅) represents the overall effect of all the input variables.

Each Harsanyi interaction represents an AND relationship between input variables encoded by the
DNN, and contributes a certain effect I(S) to the network output v(x). For example, as shown in
Fig 1(b), the DNN encodes the non-linear relationship between S = {head,mantle, body...} to
form a bird pattern. The co-appearance of all images regions in S triggers the AND relationship of
the bird pattern and makes an effect I(S|x) to the classification confidence u(N). The absence of
any region in S will remove the effect I(S|x) from u(N).

Ren et al. (2024a) and Zhou et al. (2023) have discovered and partially proven the sparsity
property and the universal-matching property of the interactions, as the mathematical guarantee
for taking interactions as faithful primitive inference patterns encoded by the DNN. According to
Theorem 3.1, we can construct a surrogate logical model h(·) based-on the extracted interactions.
This surrogate logical model can accurately fit the classification confidence u(·) of a DNN, no matter
how the input is masked, i.e., ∀T ⊆ N, u(T ) = h(xT ). The above property is called the universal-
matching property.
Theorem 3.1. (Universal-matching property (Ren et al., 2024a), also proved in Appendix B).
Given an input sample x, the output u(T ) on each masked sample {xT | T ⊆ N} can be well
matched by a surrogate logical model h(xT ). The surrogate logical model sums up effects of all
interactions that are triggered by the masked sample xT as the output score.

∀T ⊆ N, u (T ) = h (xT ) ,

subject toh (xT )
def
=

∑
S⊆N,S ̸=∅

1(
xT triggers AND

relation S
) · I (S) =

∑
S⊆T,S ̸=∅

I (S) (2)

Besides the universal-matching property, the sparsity property is another property that guarantees
the faithfulness of the interaction-based explanation. When we enumerate all subsets S ⊆ N
and compute effects of all 2n interactions, it is proved that for the DNNs with stable outputs on
masked input samples,4 most of the extracted interactions have negligible effects on the output, i.e.,

4Ren et al. (2024a) proposed the common conditions for smooth outputs on masked inputs, which could be
satisfied by most well-trained DNNs.
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I(S|x) ≈ 0. Only a small set of interactions, denoted by Λ = {S ⊆ N : |I(S)| > τ}, have con-
siderable effects , where τ is a small scalar threshold. Therefore, we consider such a small number
of salient interactions as the faithful explanation of the DNN. As Corollary 3.2 shows, the surrogate
logical model h(·) can be approximated by these salient interactions.
Corollary 3.2 (Sparsity property (Ren et al., 2024a)). The surrogate logical model h(xT ) on each
randomly masked sample xT , T ⊆ N , uses the sum of a small number of salient interactions to
approximate the network output score u(T ).

∀T ⊆ N, u(T ) = h(xT ) ≈
∑

S⊆T,S ̸=∅
I(S) (3)

3.2 TWO REQUIREMENTS TO EXPLAIN REPRESENTATION STRUCTURE

In this paper, we aim to extract the internal representation structure encoded by a DNN for image
generation. Instead of generating each pixel independently5, lots of empirical findings (Härkönen
et al., 2020; Voynov & Babenko, 2020) all showed that a DNN usually encoded a set of regional
patterns as the internal structure of an image, and the generation of an image could be considered as
the superposition of the pre-encoded regional patterns.

Therefore, in this paper, we extend the Harsanyi interaction to represent such regional patterns from
a trained DNN. Let a DNN generate an image x with a certain input code. We divide the generated
image into n = H ·W images, denoted by x = [x1, . . . ,xn]

T . N = {1, 2. . . , n} denotes the set
of indices for image regions. Let f ∈ RD denote the feature of an intermediate layer of the DNN.
Then, the objective of this study is to decompose the feature f into m feature components, so as to
let each feature component ∆fk exclusively generate a specific regional pattern.

x = g(f), f = f0 +∆f1 +∆f2 + . . . +∆fm (4)

where f0 represents a baseline feature as a non-informative feature state, and M = {1, 2, ...,m}
denotes the index set of all feature components. f0 can be set as the average feature over all features
given different input codes z. i.e., f0 = Ez[d(z)], where d(·) denotes the modules of the image-
generation model between the input code z and the intermediate feature. We use g(f) to represent
the image generated by the feature f , i.e., z d−→ f

g−→ x.

Two requirements for feature decomposition. In this way, each feature component ∆fk added
upon the baseline feature f0 is supposed to exclusively generate a certain regional pattern Sk ⊆ N ,
and thus can be taken as the primitive patterns encoded by the DNN. Sk is also termed the action
region of the k-th feature component. In this way, the generation of specific image regions is
controlled by a set Ω ⊆ M of feature components, denoted by F (Ω)

def
= f0 +

∑
k∈Ω∆fk. In

particular, F (M) = f . To achieve this, the feature decomposition is conducted w.r.t. the following
two requirements.

Requirement 1: Each feature component ∆fk exclusively generates a specific set of image regions
Sk ⊆ N , without affecting other image regions. I.e., the addition of ∆fk to F (Ω) should not change
the generation of other regions.

∀k ∈M, ∀Ω ⊆M \ {k}, gN\Sk
(F (Ω)) = gN\Sk

(F (Ω ∪ {k}))
s.t. F (Ω ∪ {k}) = F (Ω) + ∆fk

(5)

gN\Sk
(·) denotes image regions in N \ Sk selected from the generated image g(·).

Requirement 2-α. The generation of each i-th image region can be fully determined by the super-
position of all feature components that cover the i-th region.

xi = gS={i}(F (Ω)), subject to Ω = {k | i ∈ Sk} (6)

i.e., g(F (Ω)) well generates the i-th region xi of the target image x.

Requirement 2-β. The generation of image regions in Ŝ can also be exclusively determined by the
superposition of feature components that intersect with Ŝ, i.e.,

xŜ = gŜ(F (Ω̂)), subject to Ω̂ = {k | Sk ∩ Ŝ ̸= ∅} (7)

5Except for neural networks like PixelCNN and PixelRNN.
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where Ω̂ denotes the set of feature components whose action regions partially cover regions in Ŝ.

Requirement 1 shows that all regions in Sk can be considered as a singleton visual pattern encoded
by the DNN. The above requirements ensures that the feature decomposition is a faithful explanation
of the representation structure of the DNN generating the image x.

Minimal feature for regional generation. We can consider that ∆f1+∆f2+...+∆fm are features
required to be added to the baseline feature f0 to generate the entire image x, in Equation (4). If
we are only requested to reconstruct a subset Ŝ of image regions, then we only need to use feature
components F (Ω̂) = f0 +

∑
k∈Ω̂ ∆fk, s.t. Ω̂ = {k | Sk ∩ Ŝ ̸= ∅} ⊆ M , and the addition of

any further feature components will not affect the generation of regions in Ŝ, according to above
requirements. Ω̂Ŝ denotes the set of feature components selected to reconstruct image regions in Ŝ.
In this way, we can consider F (Ω̂) as the minimal feature of generating image regions in Ŝ, denoted
by u(Ŝ) = F (Ω̂). On the other hand, the minimal feature u(Ŝ) can be also estimated as follows.

u(Ŝ) = argminu(Ŝ) ∥u(Ŝ)∥L-1, w.r.t. xŜ = gŜ(u(Ŝ)). (8)

Therefore, the decomposition of feature components ∆fk w.r.t. above requirements can be written
as follows.

Decomposion of f = f0 +
∑

k∈M
∆fk w.r.t. Requirement 1,2-α,2-β

≡ min{∆fk} ∥u(Ŝ)∥L-1 s.t.∀Ŝ ⊆ N, u(Ŝ) = F (Ω̂) = f0 +
∑

k∈Ω̂
∆fk

(9)

where Ω̂ = {k | Sk ∩ Ŝ ̸= ∅}

Implementation details. The computation of the minimal feature u(Ŝ) w.r.t. image regions in Ŝ can
be approximated as min

α
∥u(Ŝ)∥L−1+

λ
|Ŝ|∥gŜ(u(Ŝ))−xŜ∥2L−2, subject to ∥gŜ(u(Ŝ))−xŜ∥L−2 <

τ, u(Ŝ) = f0 + α ⊙ ∆f . Here, we consider the minimal feature are all contained by the whole
feature f , so we apply the empirical constrain u(Ŝ) = f0 + α ⊙ (f − f0),w.r.t.α ∈ [0, 1]D. Each
feature dimension of α is in the range of [0,1]. ⊙ is referred to as the element-wise multiplication.
In this way, we constrain u(Ŝ) strictly locates within the range between f0 and f .

3.3 USING INTERACTIONS FOR FEATURE DISENTANGLEMENT

The above subsection introduces how to compute the minimal feature component, and clarifies the
mathematical connection between the feature components {∆fk}k and minimal features {u(Ŝ)}Ŝ .
Then, in this subsection, we introduce how to disentangle feature components ∆f1, ...,∆fm from
all minimal features, so as to let each feature component ∆fk exclusively generate regions in Sk.

OR interaction. To this end, we prove that the proposed two requirements can be rewritten as
follows.

• For each feature component ∆fl whose action regions does not cover any regions in Sk, i.e,
Sk ∩ Sl = ∅, this component does not affect the generation of the image regions in Sk.

• u(Ŝ) = F (Ω̂) = f0 +
∑

k∈Ω̂ ∆fk, Ω̂ = {k | Ŝ ∩ Sk ̸= ∅}
Clearly, above two terms reflects an OR relationship in the selection of feature components towards
the reconstruction of the target regions in Ŝ. When we need to reconstruct image regions in Ŝ, then
the feature component ∆fk should be added to f0 if and only if Ŝ covers any regions in Sk. For
example, as Figure 2 shows, let us consider a feature component ∆fk w.r.t.Sk = {1, 3}. Then,
this feature component must be added to f0 when the reconstruction demand includes either the 1st
or the 3rd image region. If the construction demand does not contains any region in Sk, then ∆fk
should not be added. Therefore, we can consider the selection of the feature component ∆fk reflects
an OR relationship between the target reconstruction regions.

Each feature component ∆fk can be formulated as an OR interaction between reconstruction de-
mands of different regions in Sk, as follows. Fortunately, we realize that we can extend the Harsanyi
interaction theory (Ren et al., 2024a) to represent such OR interaction. It is because the OR rela-
tionship is equivalent to a specific AND relationship, i.e., a feature component ∆fk is not added if

6
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Algorithm 1 Disentangling feature components and find salient feature components

Input: Target image generated by a random input code x = g(d(z)), threshold τ

Output: Feature components {∆fi}, index set of salient feature components Ω̂N

for S ⊆ N do ▷ computing minimal features
compute minimal feature u(S) based on Equation 9

end for
for S ⊆ N do ▷ computing OR interactions

compute ∆fk = Ior(Sk) based on Equation 10
end for
for Sk ⊆ N do ▷ selecting salient feature components using τ

if ∥∆fk∥L−2 > τ then
The index set of salient feature components Ω̂N ← Ω̂N ∪ {k},∆fk = Ior(Sk)

end if
end for
return {∆fi}, Ω̂N

and only if all regions in Sk are not in demand for reconstruction.

∆fk = Ior(Sk) = −
∑

S′⊆Sk

(−1)|Sk|−|S′|u (N\S′) , Sk ̸= ϕ (10)

Please see Algorithm 1 for the pseudo-code of disentangling feature components.

Just like the Harsanyi interaction (or the AND interaction), the above definition of the OR interaction
satisfies the following universal property.
Theorem 3.3. (Universal matching property of the OR interaction, proof in Appendix D). Given
the demand of reconstructing regions in Ŝ in the target image x, the minimal feature u(Ŝ) for
image reconstruction can be well estimated by a surrogate logical model h(xŜ). The surrogate
logical model sums up feature components corresponding to all interactions that are triggered by
the reconstruction target Ŝ.

∀Ŝ ∈ N, u(Ŝ) = h(xŜ), subject to

h(xŜ)
def
= f0 +

∑
Sk⊆N,Sk ̸=∅

1(
xŜ triggers OR

relation Sk
) ·∆fk = f0 +

∑
Sk∩Ŝ ̸=∅,Sk ̸=∅

∆fk
(11)

Theorem 3.3 ensures that OR interactions for feature decomposition satisfy the Requirement 2, i.e.,
when the demand of reconstructing regions in Ŝ will trigger all feature components ∆fk, as long
as Ŝ partially covers any regions in Sk. Please see Algorithm 2 in Appendix E for a pseudocode of
selecting a specific set Ω̂Ŝ of feature components to reconstruct the target image regions in Ŝ.

In addition, because the OR interaction can be considered as a special AND interaction that reverses
the definition of the masked state and the unmasked state, the OR interaction also satisfies the spar-
sity property. The sparsity property shows that the minimal feature is the sum of a few non-zero
feature dimensions in feature components, while other dimensions in feature components have neg-
ligible effects. The action region of a salient feature component can be view as a primitive regional
pattern. The entire image x is generated by superimposing these primitive regional patterns.

4 EXPERIMENT

We tested our method on the BigGAN-128 model (Brock, 2018). We used the intermediate features
in the layer2 for the feature decomposition, i.e., the output of the first ResBlock in BigGAN. The
baseline feature component f0 was computed as the average feature over different input codes z, i.e.,
computing f0 = Ez[d(z)], when we set the DNN to generate images in different categories. Given
an input code z, the DNN generated the image x, and the image was segmented into a 6 × 6 grid.
Because the computation cost of interactions was NP-complete, we randomly selected n = 9 grids
on the foreground object, and analyzed the OR interactions between these image regions encoded
by the DNN.

7
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4.1 VISUALIZING FEATURE COMPONENTS (OR INTERACTIONS)

Given a random input code z, we used the DNN to generate an image x, and extracted feature com-
ponents used for image generation. We followed the feature decomposition method described in
Section 3. In order to obtain the baseline feature f0, we used the DNN to generate different images
in different categories, and extracted the average of intermediate features over all the generated im-
ages as the baseline feature f0 in experiments. In order to compute the OR interaction corresponding
each feature component, we divided the original images into 6×6 regions in grids, and randomly
chose 9 regions of the main part of the image as input variables. The parameter α was initialized
to a vector with all-ones elements, and λ was set to 10000. We optimized u(N), i.e., the corre-
sponding minimal feature of all regions in N . For each other set of regions S ⊆ N , the solution
corresponding to u(N) was set as the starting point of further computation of u(S). Then we fol-
lowed the algorithm in Equation 10 to compute Ior(Sk). We used the L-2 norm ∥∆f∥L−2 to rank the
interaction strength of each feature component (please see Appendix H for more detailed settings).
Figure 5 shows the sparsity of the extracted interactions. This figure visualizes all elements of all the
extracted interactions (feature components) by sorting their absolute values in a descending order.
Most elements of feature components were almost zero, which verified the sparsity of the feature
components.

Figure 3 verifies that the different feature components were exclusively responsible for the recon-
struction of their own action regions. The interpretability of feature components enabled us to
control the reconstruction of different image regions by adding different feature components.

4.2 VERIFYING THE DISENTANGLED FEATURE COMPONENTS (OR INTERACTIONS)

Towards the reconstruction of a single image region. In order to verify whether the disentangled
feature components were exclusively responsible for the reconstruction of specific image regions, we
randomly selected a region i ∈ N of the image x. We chose all the feature components whose action
regions included the i-th region. Then, we added these feature components into the baseline feature
f0, and obtained f̂ = f0 +

∑
k∈Ω fk, s.t.Ω = {k|i ∈ Sk}. Figure 7(a) shows image reconstruction

results when we added the ratio p of feature components that covered the i-th image region. We
discovered that the feature f̂ only well constructed the i-th region in the image x. The target image
region was gradually reconstructed when we added increasing numbers of feature components.

Towards the reconstruction of a set of image regions. We further evaluated our method in the
reconstruction of a set of image regions. We randomly selected a set of regions S ⊆ N in the image
x. We chose all the feature components whose action regions partially covered S. Then, we added
these feature components into the baseline feature f0, and obtained f̂ = f0 +

∑
k∈Ω fk, s.t.Ω =

{k|S∩Sk ̸= ∅}. Figure 7(b) shows image reconstruction results when we added the ratio p of feature
components whose action regions partially covered S. We discovered that the feature f̂ only well
constructed the regions in S in the image x. The target image regions were gradually reconstructed
when we added increasing numbers of feature components.

Examining image reconstruction effects of irrelevant feature components. From another per-
spective, we also examined whether irrelevant feature components would affect the generation of a
region. We randomly selected the i-th region in image x. Then, we gradually added all the feature
components whose action region did not cover the i-th region, i.e., f̂ = f0 +

∑
k∈Ω∆fk s.t.Ω =

{k|i /∈ Sk}. Figure 6 shows images reconstructed by adding the ratio p of irrelevant feature compo-
nents in Ω. We found that although we had added all irrelevant feature components, the target image
region was not changed.

5 CONCLUSION

In this paper, we introduce a new method to explain the internal representation of a image generation
neural network. We use the OR interaction to disentangle components from the intermediate feature
of the neural network. Our theory ensures that each component exclusively generates a primitive re-
gional pattern, and the generation of the whole image can be explained as the superposition of all the
extracted primitive regional patterns. Experiments have validated the faithfulness of the explanation

8
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Reconstructing 
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Figure 3: Incremental reconstruction of different image regions when we gradually added feature
components. We added all feature components corresponding to the target image regions (in red
boxes) for image reconstruction. It shows that different regions in the target object were sequentially
reconstructed, but these feature components did not reconstruct the background. The heatmap shows
the distribution of the overlapping action regions of the added feature components.

Image x
1st

component
2nd

component
3rd

component
4th

component
5th

component
6th

component
7th

component

Figure 4: Action regions of the seven most salient feature components.

of the representation structure of the neural network. I.e., each component is only responsible for
the generation of a set of regions. People can control the neural network to exclusively reconstruct
a specific set of image regions by adding feature components corresponding to these regions. As a
limitation of the current theory, there is no strictly theory to constrain all feature components within
the manifold of the intermediate-layer features that are generated by the input code z, although
experiments have verified the effectiveness of using these feature components to control image gen-
eration. Thus, ensuring and computing the input code that corresponds to each combination of these
feature components are the future work of this study.
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Figure 5: Sparsity of the extracted interaction
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Figure 6: Validation of Requirement 1, i.e., irrelevant feature components do not reconstruct the
target region. We added different ratios p of irrelevant feature components whose action regions
did not cover the target image regions (in red boxes). We found that the target image region was
not reconstructed, when we added these irrelevant feature components. Very weak reconstruction
effects are caused by small computational errors.

image x image x

(a) Reconstruct a specific region (b) Reconstruct a set of regions
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Figure 7: Validation of Requirement 2, i.e., relevant feature components reconstruct the target re-
gion. We added different ratios p of feature components whose action regions covered the target
image regions (in red boxes). We found that the target image region was gradually reconstructed
when we added increasing number of feature components.
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A AXIOMS AND THEOREMS FOR THE HARSANYI DIVIDEND INTERACTION

The Harsanyi dividend was designed as a standard metric to measure interactions between input
variables encoded by the network. In this section, we present several desirable axioms and theorems
that the Harsanyi dividend interaction I(S) satisfies. This further demonstrates the trustworthiness
of the Harsanyi dividend interaction.

The Harsanyi dividend interactions I(S) satisfies the efficiency, linearity, dummy, symmetry,
anonymity, recursive and interaction distribution axioms, as follows. We follow the notation in
the main paper to let u(S) = v(xS)− v(x∅).

• Efficiency axiom. The output score of a model can be decomposed into interaction effects of
different patterns, i.e., u(N) =

∑
S⊆N I(S).

• Linearity axiom. If we merge output scores of two models u1 and u2 as the output of model u,
i.e. ∀S ⊆ N, u(S) = u1(S) + u2(S), then their interaction effects Iu1(S) and Iu2(S) can also be
merged as ∀S ⊆ N, I(S) = Iu1(S) + Iu2(S).

• Dummy axiom. If a variable i ∈ N is a dummy variable, i.e., ∀S ⊆ N \ {i}, u(S ∪ {i}) = u(S)
then it has no interaction with other variables, ∀∅ ≠ S ⊆ N \ {i}, I(S ∪ {i}) = 0.

• Symmetry axiom. If input variables i, j ∈ N cooperate with other variables in the same way,
i.e., ∀S ⊆ N \ {i, j}, u(S ∪ {i}) = u(S ∪ {j}), then they have same interaction effects with other
variables, ∀S ⊆ N \ {i, j}, I(S ∪ {i}) = I(S ∪ {j}).
• Anonymity axiom. For any permutations π on N , we have ∀S ⊆ N, Iu(S) = Iπu(πS) where
πS = {π(i)|i ∈ S} and the new model πu is defined by (πu)(πS) = u(S). This indicates that
interaction effects are not changed by permutation.

• Recursive axiom. The interaction effects can be computed recursively. For i ∈ N and
S ⊆ N \ {i}, the interaction effect of the pattern S ∪ {i} is equal to the interaction effect of
S with the presence of i minus the interaction effect of S with the absence of i, i.e., ∀S ⊆
N \ {i}, I(S ∪ {i}) = I(S|i is always present) - I(S).I(S|i is always present) denotes the inter-
action effect when the variable i is always present as a constant context, i.e. I(S|i is always present)
=
∑

S⊆I(S)(−1)|S| · u(L ∪ {i}).

• Interaction distribution axiom. This axiom characterizes how interactions are distributed for
“interaction functions”. An interaction function uT parameterized by a subset of variables T is
defined as follows. ∀S ⊆ N , if T ⊆ S, uT (S) = c; otherwise, uT (S) = 0. The function uT models
pure interaction among the variables in T , because only if all variables in T are present, the output
value will be increased by c. The interactions encoded in the function uT satisfies I(T ) = c, and
∀S ̸= T, I(S) = 0.

B PROVE FOR AND-INTERACTION UNIVERSAL MATCHING PROPERTY

In this section, we proof the univeral matching properties for the Harsanyi interaction.

Theorem B.1. (Universal-matching property).Given an input sample x, the output classification
confidence u(T ) on each masked sample {xT | T ⊆ N} can be well matched by a surrogate logical
model h(xT ). The surrogate logical model sums up effects of all interactions that are triggered by
the masked sample xT as the output score.

∀T ⊆ N,h (xT ) = u (T )

=
∑

S⊆N,S ̸=∅
1 (xT triggers AND relation S) · I (S)

=
∑

S⊆T,S ̸=∅
I (S)

(12)
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proof According to the definition of the Harsanyi interaction, we have ∀S ⊆ N ,∑
T⊆S

I(T ) =
∑
T⊆S

∑
L⊆T

(−1)|T |−|L|u(L)

=
∑
L⊆S

∑
T⊆S:T⊇L

(−1)|T |−|L|u(L)

=
∑
L⊆S

|S|∑
t=|L|

∑
T⊆S:S⊇L

|T |=t

(−1)t−|L|u(L)

=
∑
L⊆S

u(L)

|S|−|L|∑
m=0

(
|S| − |L|

m

)
(−1)m

= u(S)

Therefore, we have u(S) =
∑

T⊆SI(T ).

C PROVING THAT THE OR INTERACTIONS CAN BE CONSIDERED AS A
SPECIFIC AND INTERACTION

The OR-interaction is defined as follow.
∆fk = Ior(Sk) = −

∑
Sl⊆Sk

(−1)|Sk|−|Sl|u (N\Sl) , Sk ̸= ϕ (13)

Here, u (N\Sl) denotes the minimal feature of the set N\Sl, and regions in the set Sl is not in the
action region. Let us denote xT as a masked state of x, where only the regions in T are presented.
Furthermore, we define x′

T as the masked state where regions in T are removed. Therefore, the
definition of OR interaction can be rewritten as follows:

Ior (S | x) = −
∑
T⊆S

(−1)|S|−|T |v(xN\T ), T ̸= ϕ

= −
∑
T⊆S

(−1)|S|−|T |v (x′
T ) , S ̸= ∅

= −I ′and (S | x′) , S ̸= ∅

(14)

where v(xN\T ) = u(N\T ). Therefore, we can consider the OR interaction as a specific AND
interaction.

D PROOF OF THEOREM 3.3 IN THE MAIN PAPER

According to Appendix C, we reconsider the definition of the masked board state xT as x′
T . xT

denotes the masked state where regions in the set T are inside the action region, and regions in the
set N \ T are not considered. In comparison, x′

T denotes the masked state where regions in the set
T are not considered, and regions in the set N \ T are inside the action region.

In this way, the effect of an OR interaction based on the definition of x can be represented as the
effect Ior(S|x) of an AND interaction based on the definition of x′.

Ior(S|x) = wor
S ·

[
−
∏
i∈S

¬exist(xi)

]
= −wor

S ·
∏
i∈S

¬exist(xi)

= − wor
S

wand
S

· I ′and(S|x′)

(15)

where the function exist(xi) represents whether xi is in the action region. Therefore, as we have
proven that the universal-matching property of the AND-interaction, the OR interaction still satisfies
this property.
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Algorithm 2 Reconstructing the regions in Ŝ based on all the salient feature components in Ω̂N

Input: Target image regions Ŝ, all the salient feature components Ω̂N = {∆f1,∆f2, ...}
Output: Reconstructed image xS

f̂ ← f0
for k ∈ Ω̂N do do

if Sk ∩ Ŝ ̸= ∅ then
f̂ ← f̂ +∆fk

end if
end for
return xŜ = g(f̂)

Figure 8: Images generated by same intermediate feature but different input codes

E A PSEUDOCODE OF RECONSTRUCTING IMAGE REGIONS

Algorithm 2 presents a pseudocode of selecting a specific set Ω̂Ŝ of feature components to recon-
struct the target image regions in Ŝ.

F DISCUSSION FOR THE INFLUENCE OF THE INPUT CODE

The BigGAN model uses ResNet GAN architecture, i.e., uses residual blocks, and the input code (a
concatenated vector of the latent vector and the class vector) will be fed into the following modules.
Therefore, after modifying the intermediate feature of a specific layer, the generated image might
still change if the input code changed, due to the residual structure.

Therefore, to validate the influence of the input code is small, we randomly selected input codes,
and modify the intermediate feature to a same f . The results are shown in Figure 8.

The experiment result showed that the influence of the input code is relatively small (the background
might change a little, but the main parts of the image didn’t change). Therefore, we can consider
that most of the information is contained in the intermediate feature.

G THE IMPLEMENTATION DETAIL OF EXTRACTING FAITHFUL FEATURE
COMPONENTS

Although we proved the sparsity of the OR interaction in the main paper, it is still challenging to
regard those extracted regional patterns as the faithful primitive regional patterns encoded by the
model. We find that the OR interaction is quite sensitive to the minimal feature and a small change
to the minimal feature might not have a significant change in the generated image, but it will cause
a change to the feature components we extracted.

Therefore, we ensured the interaction stability by removing the noise in the minimal feature. We
use a vector qS to model the noise in the minimal feature ∆fk = Ior(S). Each element in qS is
bounded in the range of [−τ, τ ], where τ is a threshold to avoid large noise.

Primitive regional patterns with stability is extracted by solving the following optimization problem:

min
{qS}

∑
S⊆N,S ̸=∅

∥Ior(S|x, {qS})∥L−1 (16)
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In this way, we can ensure the interaction stability by removing noises in the minimal feature. Ex-
periments in the main paper showed we can still well reconstruct the image after removing noises.

H EXPERIMENT SETTINGS

This section includes detailed experiment settings in this paper.

In our experiment, we use BigGAN-128 to generate the image categories of ImageNet. Therefore,
when calculating the baseline intermediate feature, we randomly generated images of all the 1000
classes in ImageNet. And the truncation of the BigGAN model was set to 0.4. After disentangling
feature components, we ranked those feature components by their L-2 norm. In order to find out
which components are salient, we removed the feature components from the intermediate feature
in descending order, utill the generated image is similar to the baseline image. Empirically, we
found that for most samples, the top 60% feature components were salient. And in Figure 5 we
also found that in log space, about 40% interactions had relatively low interaction strength. When
calculating the distribution of action regions, we performed a weighted sum of the number of feature
components contained in each region, where the weight of a single feature component in a region is
its L-1 norm divided by the number of its action regions. When we create heat map visualizations,
we apply an exponential operation based on the weights mentioned above to enhance the contrast
between different regions.
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