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Abstract
When applying differential privacy to sensitive
data, we can often improve performance using
external information such as other sensitive data,
public data, or human priors. We propose to use
the learning-augmented algorithms (or algorithms
with predictions) framework—previously applied
largely to improve time complexity or competitive
ratios—as a powerful way of designing and
analyzing privacy-preserving methods that can
take advantage of such external information
to improve utility. This idea is instantiated
on the important task of multiple quantile
release, for which we derive error guarantees
that scale with a natural measure of prediction
quality while (almost) recovering state-of-the-art
prediction-independent guarantees. Our analysis
enjoys several advantages, including minimal
assumptions about the data, a natural way of
adding robustness, and the provision of useful
surrogate losses for two novel “meta” algorithms
that learn predictions from other (potentially
sensitive) data. We conclude with experiments
on challenging tasks demonstrating that learning
predictions across one or more instances can lead
to large error reductions while preserving privacy.

1. Introduction
The differentially private (DP) release of statistics such as
the quantile q of a private dataset x P Rn is an inevitably
error-prone task because we are by definition precluded
from revealing exact information about the instance at
hand (Dwork & Roth, 2014). However, DP instances rarely
occur in a vacuum: even in the simplest practical settings,
we usually know basic information such as the fact that all
individuals have a nonnegative age. Often, the dataset we
are considering is drawn from a similar population as a pub-
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lic dataset z P RN and should thus have similar quantiles,
a case known as the public-private setting (Liu et al., 2021;
Bie et al., 2022). Alternatively, in what we call sequential re-
lease, we aim to release the quantiles of each of a sequence
of datasets x1, . . . ,xT one-by-one. These could be gener-
ated by a stationary or other process that allows information
derived from prior releases to inform predictions of future
releases. In all of these settings, we might hope to incorpo-
rate external information to reduce error, but approaches for
doing so tend to be ad hoc and assumption-heavy.

We propose that the framework of learning-augmented
algorithms—a.k.a. algorithms with predictions (Mitzen-
macher & Vassilvitskii, 2021)—provides the right tools for
deriving DP algorithms in this setting, and instantiate this
idea for multiple quantile release (Gillenwater et al., 2021;
Kaplan et al., 2022). Algorithms with predictions is an
expanding field of algorithm design that constructs methods
whose instance-dependent performance improves with
the accuracy of some prediction about the instance. The
goal is to bound the cost Cxpwq of running on instance x
given a prediction w by some metric Uxpwq of the quality
of the prediction on that instance. Motivated by practical
success (Liu et al., 2012; Kraska et al., 2018) and as a type
of beyond-worst-case analysis (Roughgarden, 2020), such
algorithms can target a wide variety of cost measures, e.g.
competitive ratios in online algorithms (Anand et al., 2020;
Bamas et al., 2020; Diakonikolas et al., 2021; Dütting et al.,
2021; Indyk et al., 2022; Yu et al., 2022; Christianson et al.,
2023; Jiang et al., 2020; Kumar et al., 2018; Lykouris &
Vassilvitskii, 2021; Rohatgi, 2020), space complexity in
streaming algorithms (Du et al., 2021), and time complexity
in graph algorithms (Dinitz et al., 2021; Chen et al., 2022;
Sakaue & Oki, 2022) and distributed systems (Lattanzi
et al., 2020; Lindermayr & Megow, 2022; Scully et al.,
2022). Departing from such work, we instead aim to design
learning-augmented algorithms whose cost Cxpwq captures
the error of some statistic—in our case quantiles—computed
privately on instance an x given a prediction w. We are
interested in bounding this cost in terms of the quality of
the external information provided to our algorithm, Uxpwq.

While incorporating external information into DP is well-
studied, c.f. public-private methods (Bie et al., 2022; Liu
et al., 2021) and private posterior inference (Dimitrakakis
et al., 2017; Geumlek et al., 2017; Seeman et al., 2020), by
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deriving and analyzing a learning-augmented algorithm for
multiple quantiles we show numerous comparative advan-
tages, including:

1. Minimal assumptions about the data, in our case even
fewer than needed by the unaugmented baseline.

2. Existing tools for studying the robustness of algorithms
to noisy predictions (Lykouris & Vassilvitskii, 2021).

3. Co-designing algorithms with predictions together with
methods for learning those predictions from data (Kho-
dak et al., 2022), which we show is crucial for both the
public-private and sequential release settings.

As part of this analysis we derive a learning-augmented ex-
tension of the ApproximateQuantiles (AQ) method
of Kaplan et al. (2022) that (nearly) matches its worst-case
guarantees while being much better if a natural measure
Uxpwq of prediction quality is small. By studying Ux, we
make the following contributions to multiple quantiles:

1. The first robust algorithm, even for one quantile, that
avoids assuming the data is bounded on some interval,
specifically by using a heavy-tailed prior.

2. A provable way of ensuring robustness to poor priors,
without losing the consistency of good ones.

3. A novel connection between DP quantiles and censored
regression that leads to (a) a public-private release al-
gorithm and (b) a sequential release scheme, both with
runtime and error guarantees.

Finally, we integrate these techniques to significantly
improve the accuracy of public-private and sequential
quantile release on several real and synthetic datasets.

2. Related work
There has been significant work on incorporating external
information to improve DP methods. A major line of work
is the public-private framework, where we have access
to public data that is related in some way to the private
data (Liu et al., 2021; Amid et al., 2022; Li et al., 2022; Bie
et al., 2022; Bassily et al., 2022). The use of public data
can be viewed as using a prediction, but such work starts by
making (often strong) distributional assumptions on the pub-
lic and private data; we instead derive instance-dependent
upper bounds with minimal assumptions that we then apply
to such public-private settings. Furthermore, our frame-
work allows us to ensure robustness to poor predictions
without distributional assumptions, and to derive learning
algorithms using training data that may itself be sensitive.
Another approach is to treat DP mechanisms (e.g. the
exponential) as Bayesian posterior sampling (Dimitrakakis
et al., 2017; Geumlek et al., 2017; Seeman et al., 2020).
Our work can be viewed as an adaptation where we give
explicit prior-dependent utility bounds. To our knowledge,
no such guarantees exist in the literature. Moreover, while
our focus is quantile estimation, the predictions-based

framework that we advocate is much broader, as many
DP methods—including for multiple quantiles—combine
multiple queries that must be considered jointly.

Our approach for augmenting DP with external information
centers the algorithms with predictions framework, where
past work has focused on using predictions to improve met-
rics related to time, space, and communication complexity.
We make use of existing techniques from this literature, in-
cluding robustness-consistency tradeoffs (Lykouris & Vassil-
vitskii, 2021) and the online learning of predictions (Khodak
et al., 2022). Tuning DP algorithms has been an important
topic in private machine learning, e.g. for hyperparameter
tuning (Chaudhuri & Vinterbo, 2013) and federated learn-
ing (Andrew et al., 2021), but these have not to our knowl-
edge considered incorporating per-instance predictions.

The specific task we focus on is DP quantiles, a well-studied
problem (Gillenwater et al., 2021; Kaplan et al., 2022), but
we are not aware of work adding outside information. We
also make the important contribution of an effective method
for removing data-boundedness assumptions. Our algorithm
builds upon the state-of-the-art work of Kaplan et al. (2022),
which is also our main source for empirical comparison.

3. Augmenting a private algorithm
The basic requirement for a learning-augmented algorithm
is that the cost Cxpwq of running it on an instance x with
prediction w should be upper bounded—usually up to
constant or logarithmic factors—by a metric Uxpwq of the
quality of the prediction on the instance. We denote this by
Cx À Ux. In our work the cost Cxpwq will be the error of
a privately released statistic, as compared to some ground
truth. We will use the following privacy notion:
Definition 3.1 (Dwork & Roth (2014)). Algorithm A is
pε, δq-differentially private if for all subsets S of its range,
PrtApxq P Su ď eε PrtApx̃q P Su ` δ whenever x „ x̃
are neighboring, i.e. they differ in at most one element.

Using ε-DP to denote pε, 0q-DP, the broad goal of this work
will be to reduce the error Cxpwq of ε-DP multiple quantile
release while fixing the privacy level ε.

3.1. Problem formulation
A good guarantee for a learning-augmented algorithm will
have several important properties that formally separate its
performance from naive upper bounds Ux Á Cx. The first,
consistency, requires it to be a reasonable indicator of strong
performance in the limit of perfect prediction:
Definition 3.2. A learning-augmented guarantee Cx À Ux

is cx-consistent if Cxpwq ď cx whenever Uxpwq “ 0.

Here cx is a prediction-independent quantity that should
depend weakly or not at all on problem difficulty (in the
case of quantiles, the minimum separation between data
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points). Consistency is often presented via a tradeoff with
robustness (Lykouris & Vassilvitskii, 2021), which bounds
how poorly the method can do when the prediction is bad,
in a manner similar to a standard worst-case bound:
Definition 3.3. A learning-augmented guarantee Cx À Ux

is rx-robust if it implies Cxpwq ď rx for all predictions w.

Unlike consistency, robustness usually depends strongly on
the difficulty of the instance x, with the goal being to not do
much worse than a prediction-free approach. Note that the
latter is trivially robust but not (meaningfully) consistent,
since it ignores the prediction; this makes clear the need for
considering the two properties via tradeoff between them.

As discussed further in Section 4.2, this existing language
for quantifying robustness is one of the advantages of
using the framework of learning-augmented algorithms for
incorporating external information into DP methods. We
report robustness-consistency trade-offs for our quantile
release algorithms in the same section.

A last desirable property of the prediction quality measure
Uxpwq is that it should be useful for making good predic-
tions. One way to formalize this is to requireUxt to be learn-
able from multiple instances xt. For example, we could ask
for online learnability, i.e. the existence of an algorithm that
makes predictions wt PW in some action space W given
instances x1, . . . ,xt´1 whose regret is sublinear in T :
Definition 3.4. The regret of actions w1, . . . ,wT P

W on the sequence of functions Ux1
, . . . , UxT is

maxwPW

řT
t“1 Uxtpwtq ´ Uxtpwq.

Sublinear regret implies average prediction quality as good
as that of the optimal prediction in hindsight, up to an
additive term that vanishes as T Ñ 8. Since Uxt roughly
upper-bounds the error Cxt , this means that asymptotically
the average error is governed by the average prediction
quality minwPW

1
T

řT
t“1 Uxtpwq of the optimal w PW . A

crucial observation here is that sublinear regret can often be
obtained by making the function Ux amenable to familiar
gradient-based online convex optimization methods such
as online gradient descent (Khodak et al., 2022). Doing so
also enables instance-dependent linear prediction: setting
wt using a learned function of some instance features ft.

We demonstrate the usefulness of both learning and
robustness-consistency analysis in two applications where it
is reasonable to have external information about the sensitive
dataset(s). In the public-private setting, the prediction w is
obtained from a public dataset x1 that is assumed to be sim-
ilar to x but is not subject to privacy-protection. In sequen-
tial release, we privately release information about each
dataset in a sequence x1, . . . ,xT ; the release at time t can
depend on xt and on a prediction wt, which can be derived
(privately) from past observations. In Section 5 we show
that sequential release can be posed directly as a private

online learning problem, while the public-private setting
can be approached via online-to-batch conversion (Cesa-
Bianchi et al., 2004). Both are thus directly enabled by
treating the prediction quality measures Uxt as surrogate
objectives for the actual cost functions Cx and applying
standard optimization techniques (Khodak et al., 2022).

With these desiderata of algorithms with predictions guar-
antees in-mind, we now move to deriving them for quantile
release. The robustness and learnability of the resulting
prediction quality measures Ux are discussed in Section 4.

3.2. Warm-up: Releasing one quantile
Given a quantile q P p0, 1q and a sorted dataset x P Rn of n
distinct points, we want to release o P rxrtqnus,xrtqnu`1sq,
i.e. such that the proportion of entries less than o is q. As in
prior work (Kaplan et al., 2022), the error of o will be the
number of points between it and the desired interval:

Gapqpx, oq “ ||ti : xris ă ou| ´ tqnu| “ | max
xrisăo

i´ tqnu|

(1)
Gapqpx, oq is constant on intervals Ik “ pxrks,xrk`1ss

in the partition by x of R (let I0 “ p´8,xr1ss and
In “ pxrns,8q), so we also say that Gapqpx, Ikq is the
same as Gapqpx, oq for some o in the interior of Ik.

For single quantile release we choose perhaps the most natu-
ral way of specifying a prediction for a DP algorithm: via the
base measure µ : R ÞÑ Rě0 of the exponential mechanism:
Theorem 3.1 (McSherry & Talwar (2007)). If the util-
ity upx, oq of an outcome o of a query over dataset
x has sensitivity maxo,x„x̃ |upx, oq ´ upx̃, oq| ď ∆
then the exponential mechanism, which releases o w.p.
9 expp ε2∆upx, oqqµpoq for some base measure µ, is ε-DP.

The utility function we use is uq “ ´Gapq , so since this is
constant on each interval Ik the mechanism here is equiva-
lent to sampling k w.p. 9 exppεuqpx, Ikq{2qµpIkq and then
sampling o from Ik w.p. 9µpoq. While the idea of spec-
ifying a prior for EM is well-known, the key idea here is
to obtain a prediction-dependent bound on the error that
reveals a useful measure of the quality of the prediction. In
particular, we can show (c.f. Lemma A.1) that running EM
in this way yields o that w.p. ě 1´ β satisfies

Gapqpx, oq ď
2

ε
log

1{β

Ψ
pq,εq
x pµq

ď
2

ε
log

1{β

Ψ
pqq
x pµq

(2)

where the quantity Ψ
pq,εq
x “

ş

expp´ ε
2 Gapqpx, oqqµpoqdo

is the inner product between the prior and the EM score
while Ψ

pqq
x “ limεÑ8Ψ

pq,εq
x “ µppxrtqnus,xrtqnu`1ssq is

the probability that the prior assigns to the optimal interval.

This suggests two metrics of prediction quality: the neg-
ative log-inner-products U pq,εqx pµq “ ´ log Ψ

pq,εq
x pµq and

U
pqq
x pµq “ ´ log Ψ

pqq
x pµq. Both make intuitive sense: we
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expect predictions µ that assign a high probability to in-
tervals that the EM score weighs heavily to perform well,
and EM assigns the most weight to the optimal interval.
There are also many ways that these metrics are useful.
For one, in the case of perfect prediction—i.e. if µ as-
signs probability one to the optimal interval Itqnu—then
Ψ
pq,εq
x pµq “ Ψ

pqq
x pµq “ 1, yielding an upper bound on the

error of only 2
ε log 1

β . Secondly, as we will see, both are
also amenable for analyzing robustness (the mechanism’s
sensitivity to incorrect priors) and learning. A final and
important quality is that the guarantees using these metrics
hold under no extra assumptions. Between the two, the first
metric provides a tighter bound on the utility loss while the
second does not depend on ε, which may be desirable.

It is also fruitful to analyze the metrics for specific priors.
When x is in a bounded interval pa, bq and µpoq “ 1oPpa,bq

b´a

is the uniform measure, then Ψ
pqq
x pµq ě ψx

b´a , where ψx is
the minimum distance between entries; thus we recover past
bounds, e.g. Kaplan et al. (2022, Lemma A.1), that implic-
itly use this measure to guarantee Gapqpx, oq ď

2
ε log b´a

βψx
.

Here the support of the uniform distribution is correct by
assumption as the data is assumed bounded. However, an-
alyzing Ψ

pqq
x also yields a novel way of removing this as-

sumption: if we suspect the data lies in pa, bq, we set µ to
be the Cauchy prior with location a`b

2 and scale b´a
2 . Even

if we are wrong about the interval, there exists an R ą 0 s.t.
the data lies in the interval pa`b2 ˘Rq, so using the Cauchy
yields Ψ

pqq
x ě

2pb´aqψx{π
pb´aq2`4R2 and thus the following guarantee:

Corollary 3.1 (of Lem. A.1). If the data lies in the interval
pa`b2 ˘Rq and µ is the Cauchy measure with location a`b

2

and scale b´a
2 then the output of the exponential mechanism

satisfies Gapqpx, oq ď
2
ε log

ˆ

π
b´a` 4R2

b´a

2βψx

˙

w.p. ě 1´ β.

If R “ b´a
2 , i.e. we get the interval right, then the bound is

only an additive factor 2
ε log π worse than before, but if we

are wrong then performance degrades as Oplogp1`R2qq,
unlike the OpRq error of the uniform prior. Note our use of
a heavy-tailed distribution here: a sub-exponential density
decays too quickly and leads to error OpRq rather than
Oplogp1 ` R2qq. We can also adapt this technique if we
know only a single-sided bound, e.g. if values must be
positive, by using an appropriate half-Cauchy distribution.

3.3. Releasing multiple quantiles
To simultaneously estimate quantiles q1, . . . , qm we adapt
the ApproximateQuantiles method of (Kaplan et al.,
2022), which assigns each qi to a node in a binary tree and,
starting from the root, uses EM with the uniform prior to
estimate a quantile before sending the data below the out-
come o to its left child and the data above o to its right child.
Thus each entry is only involved in rlog2ms exponential

mechanisms, and so for data in pa, bq the maximum Gapqi

across quantiles is O
´

log2 m
ε log mpb´aq

βψx

¯

, which is much
better than the naive bound of a linear function of m.

Given one prior µi for each qi, a naive extension of (2) gets
a similar polylogpmq bound (c.f. Lem A.2); notably we ex-
tend the Cauchy-unboundedness result to multiple quantiles
(c.f. Cor. A.1). However the upper bound is not a determin-
istic function of µi, as it depends on restrictions of x and µi
to subsets poj , okq of the domain induced by the outcomes
of EM for quantiles qj and qk earlier in the tree. It thus
does not encode a direct relationship between the prediction
and instance data and is less amenable for learning.

We instead want guarantees depending on a more natural
metric, e.g. one aggregating Ψ

pqi,εiq
x pµiq from the previous

section across pairs pqi, µiq. The core issue is that the data
splitting makes the probability assigned by a prior µi to data
outside the interval poj , okq induced by the outcomes of
quantiles qj and qk earlier in the tree not affect the distribu-
tion of oi. One way to handle this is to assign this probability
mass to the edges of poj , okq, rather than the more natural
conditional approach of ApproximateQuantiles. We
refer to this as “edge-based prior adaptation” and use it
to bound Gapmax “ maxi Gapqipx, oiq via the harmonic

mean Ψ
pεq
x of the inner products Ψ

pqi,εiq
x pµiq:

Theorem 3.2 (c.f. Thm. A.1). If m “ 2k ´ 1 for some
k, quantiles q1, . . . , qm are uniformly spaced, and for
each we have a prior µi : R ÞÑ Rě0, then running
ApproximateQuantiles with edge-based prior
adaptation (c.f. Algorithm 2) is ε-DP, and w.p. ě 1´ β

Gapmax ď
2

ε
φlog2pm`1qrlog2pm` 1qs log

m{β

Ψ
pεq
x

for Ψpεqx “

˜

m
ÿ

i“1

1{m

Ψ
pqi,εiq
x pµiq

¸´1 (3)

Here εi “ ε
rlog2pm`1qs and φ “ 1`

?
5

2 is the golden ratio.

The golden ratio is due to a Fibonacci-type recurrence
bounding the maximum Gapqi at each depth of the tree.

Ψ
pεq
x depends only on x and predictions µi, and it yields

a nice error metric U pεqx “ ´ log Ψ
pεq
x “ log

řm
i“1 e

U
pqi,εiq
x .

However, the dependence of the error on m is worse than
of ApproximateQuantiles, as φlog2 m is roughly
Opm0.7q. The bound is still sublinear and thus better than
the naive baseline of running EM m times.

The Õpφlog2 mq dependence results from error compound-
ing across depths of the tree, so we can try to reduce depth
by going from a binary to a K-ary tree. This involves run-
ning EMK´1 times at each node—and payingK´1 more
in budget—to split the data into K subsets; the resulting
estimates may also be out of order. However, by showing
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Figure 1. Maximum gap as a function of m for different variants of
AQ when using the Uniform prior, evaluated on 1000 samples from
a standard Gaussian (left) and the Adult “age” dataset (right). The
dashed and solid lines correspond to ε “ 1 and 0.1, respectively.

that sorting them back into order does not increase the error
and then controlling the maximum Gapqi at each depth via
another recurrence relation, we prove the following:

Theorem 3.3 (c.f. Thm. A.2). For any q1, . . . , qm,
using K “ rexpp

a

log 2 logpm` 1qqs and edge-based
adaptation guarantees ε-DP and w.p. ě 1 ´ β has
Gapmax ď

2π2

ε exp
´

2
a

logp2q logpm` 1q
¯

log m{β

Ψ
pεq
x

.

The rate in m is both sub-polynomial and super-poly-
logarithmic (opmαq and ωplogαmq @ α ą 0); while
asymptotically worse than the prediction-free original
result (Kaplan et al., 2022), for almost any practical value of
m (e.g. m P r3, 1012s) it does not exceed a small constant
(e.g. nine) times log3m. Thus if the error ´ log Ψ

pεq
x of the

prediction is small—i.e. the inner products between priors
and EM scores are large on (harmonic) average—then we
may do much better with this approach.

We compare K-ary AQ with edge-based adaptation to regu-
lar AQ on two datasets in Figure 1. The original is better at
higher ε but similar or worse at higher privacy. We also find
that conditional adaptation is only better on discretized data
that can have repetitions, a case where neither method pro-
vides guarantees. Overall, we find that our prior-dependent
analysis covers a useful algorithm, but for consistency with
past work and due to its better performance at high ε we
will focus on the original binary approach in experiments.

4. Utility of learning-augmented algorithms
In the previous section we derived a data-dependent function
U
pεq
x “ ´ log Ψ

pεq
x that upper bounds the error of quantile

release using priors µ1, . . . , µm. As in the single-quantile
case, we can construct a looser, ε-independent upper bound

Ux “ ´ log Ψx “ log
m
ÿ

i“1

eU
pqiq
x ě U pεqx (4)

using the harmonic mean Ψx of Ψ
pqiq
x . We next summarize

the usefulness of these upper bounds for understanding and
applying DP methods with external information. Note that
all three aspects below are crucial in our experiments.

4.1. Minimal assumptions and new insights
Our guarantees require no extra data assumptions: in-fact,
the first outcome of our analysis was removing a bounded-
ness assumption. This contrasts with past public-private
work (Liu et al., 2021; Bie et al., 2022), which makes
distributional assumptions, and is why we can apply these
results to two very distinct settings in Section 5.

4.2. Ensuring robustness
While we incorporate external information into DP-
algorithms because we hope to improve performance, if
not done carefully it may lead to worse results. For exam-
ple, a quantile prior concentrated away from the data may
have error depending linearly on the distance to the optimal
interval. Ideally an algorithm that uses a prediction will be
robust, i.e. revert back to worst-case guarantees if the pre-
diction is poor, without significantly sacrificing consistency,
i.e. performing well if the prediction is good.

Using the formalization of these properties in Definitions 3.2
and 3.3, algorithms with predictions provides a conve-
nient way to deploy them by parameterizing the robustness-
consistency tradeoff, in which methods are designed to be
rxpλq-robust and cxpλq-consistent for a user-specified pa-
rameter λ P r0, 1s (Bamas et al., 2020; Lykouris & Vassilvit-
skii, 2021). For quantiles, we can obtain an elegant param-
eterized tradeoff by interpolating prediction priors with a
“robust” prior. In particular, since Ψ

pq,εq
x is linear we can pick

ρ to be a trusted prior such as the uniform or Cauchy and for
any prediction µ use µpλq “ p1´ λqµ` λρ instead. Setting
Ψ
pq,εq
x pµpλqq “ p1´λqΨ

pq,εq
x pµq`λΨ

pq,εq
x pρq in (2) yields:

Corollary 4.1 (of Lem. A.1; c.f. Cor. B.1). For quan-
tile q, applying EM with prior µpλq “ p1 ´ λqµ ` λρ is
´

2
ε log 1{β

λΨ
pq,εq
x pρq

¯

-robust and
´

2
ε log 1{β

1´λ

¯

-consistent.

Thus w.h.p. error is simultaneously at most 2
ε log 1

λ worse
than that of only using the robust prior ρ and we only have
error 2

ε log 1{β
1´λ if the prediction µ is perfect, i.e. if it is only

supported on the optimal interval. This is easy to extend to
the multiple-quantile metric´ log Ψ

pεq
x . In fact, we can even

interpolate between the polylogpmq prediction-free guaran-
tee of past work and our learning-augmented guarantee with
the worse dependence on m; thus if the prediction is not
good enough to overcome this worse rate we can still ensure
that we do not do much worse than the original guarantee.

Corollary 4.2 (of Lem. A.2 & Thm. A.1; c.f. Cor. B.2). If
we run binary AQ on data in the interval pa`b2 ˘ Rq for

unknown R ą 0 and use the prior µpλqi “ p1 ´ λqµ ` λρ
for each qi, where ρ is Cauchy pa`b2 , b´a2 q, then the al-

gorithm is
ˆ

2
ε rlog2ms2 log

ˆ

πm
b´a` 4R2

b´a

2λβψx

˙˙

-robust and
´

2
εφ

log2 mrlog2ms log m{β
1´λ

¯

-consistent.
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These results show the advantage of our framework in de-
signing algorithms that make robust use of possibly noisy
predictions. Notably, related public-private work that stud-
ies robustness still assumes source and target data are Gaus-
sian (Bie et al., 2022), whereas we make no distributional
assumptions. We demonstrate the importance of this robust-
ness technique throughout our experiments in Section 5.

4.3. Learning
A last important use for prior-dependent bounds is as surro-
gate objectives for optimization. As we show in Section 5,
being able to learn across upper bounds Ux1

, . . . , UxT of
a sequence of (possibly sensitive) datasets xt is useful for
both the public-private and sequential release. Algorithms
with predictions guarantees are often sufficiently nice to do
this using off-the-shelf online learning (Khodak et al., 2022),
a property that largely holds for our upper bounds as well.

Most saliently, the bound U pq,εqx “´ log Ψ
pq,εq
x is a convex

function of an inner product Ψ
pq,εq
x between the EM score

and the prior µ; thus by discretizing one can learn over a
large family of piecewise-constant priors, which themselves
Lipschitz priors over a bounded domain. The same is
true of the multiple quantile bound U pεqx because it is the
log-sum-exp over U pqi,εiqx and thus also convex. Thus
in theory we can (privately) online learn the sequence
U
pεq
xt with low-regret w.r.t. any set of m Lipschitz priors

(c.f. Theorem B.2). However, in-practice we may not want
to learn in the high dimensions needed by the discretization,
and rather than fixed priors we may wish to learn a mapping
from dataset-specific features. In Section 5 we thus focus on
learning the less-expressive family of location-scale models.

5. Applications
We now consider our two applications from the
introduction—public-private and sequential release—using
a specific class of location-scale priors, which for some
measure f : R ÞÑ Rě0 have form µν,σpxq “

1
σf

`

x´ν
σ

˘

for
ν P R and σ ą 0. Such families allows us to model both the
location of a quantile using ν “ xw, fy—where w P Rd is
a linear model from public features f P Rd about the dataset
x P Rn—and our uncertainty about it using σ, all while
staying in reasonable dimensions. Note that in this section
we use only the ε-independent bound Ux, as U pεqx does not
yield a convex objective; furthermore, while we mainly
discuss the single-quantile bound U pqqx for simplicity, the
general results (c.f. Section C) extend naturally to the case
of m ą 1 because it is the log-sum-exp of the former.

5.1. Convexity vs. robustness of location-scale models
We must first determine which location-scale family to use,
as this include Gaussians with mean ν and variance σ2,
Laplace with mean ν and scale σ, Cauchy with location ν

and scale σ, and more. To make this decision, we consider
two desiderata: (1) the prior should be robust in the way the
Cauchy is robust, i.e. being wrong about the data location
should not harm us too much, and (2) it should be easy to
learn the parameters ν and σ, e.g. by optimizing U pqqx pµν,σq.

While not necessary, one way of ensuring (2) is convexity of
U
pqq
x , which we focus on as it enables efficient algorithms.

Here we make use of a connection between these upper
bounds and the likelihood of censored regression (Pratt,
1981), which for noise ξi P R models a relationship
between features fi P Rd and a variable yi “ xw, fiy ` ξi
when information about yi is only provided in terms
of an interval rai, biq containing it (e.g. an individual’s
income bracket, not their exact income). If ξi is from a
location-scale distribution with ν “ 0 the log-likelihood
given datapoints pai, bi, fiq is

Ltai,bi,fiuni“1
pw, σq“

n
ÿ

i“1

log

ż bi

ai

1

σ
f

ˆ

y ´ xw, fiy

σ

˙

dy (5)

Observe that for a “ xrtqnus and b “ xrtqnus`1 we have

U pqqx pµxw,fy,σq “ ´ logµxw,fy,σppa, bsq

“ ´ log

ż b

a

1

σ
f

ˆ

o´ xw, fy

σ

˙

do
(6)

which is the negative of La,b,f pw, σq. We thus adopt the
reparameterization of Burridge (1981), who showed that
(5) is concave w.r.t. pv, φq “ pwσ ,

1
σ q whenever f is log-

concave, a property satisfied by the Gaussian and Laplace
families but not the Cauchy. Therefore, for such f we have
that `pqqx pxv, fy, φq “ U

pqq
x pµ xv,fy

φ , 1
φ
q is convex w.r.t. pv, φq.

Unfortunately, we show that no log-concave f is robust, in
the sense that for any R ą 0 there exists a dataset of points
in the interval pθ ˘ Rqn s.t. U pqqx pµθ,1q “ ΩpRq (rather
than Oplogp1 ` R2qq as shown for the Cauchy family in
Corollary 3.1). On the other hand, log-concave location-
scale families are the only ones for which U pqqx is convex,
both for the original parameterization and that of Burridge
(1981). We record these facts in the following theorem:

Theorem 5.1 (c.f. Thm. C.1). Let µν,σ be a location-scale
family associated with a continuous measure f : R ÞÑ Rě0.

1. If f is log-concave then D a, b ą 0 s.t. for any R ą 0,
ψ P p0, R2n s, q ě

1
n , and θ P R there exists x P pθ˘Rqn

with mini xri`1s´xris “ ψ s.t. U pqqx pµθ,1q“aR`log b
ψ .

2. If f is not log-concave then there exists x P Rn with
mini xri`1s´xris ą 0 s.t. U pqqx pµθ,1q is non-convex in θ.

Note the latter dataset is not degenerate: for f strictly log-
convex over ra, bs, any x whose optimal interval has length
ă b´a

2 has non-convex U pqqx pµθ,1q“´ log Ψ
pqq
x pµθ,1q.
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We must thus choose between having a robust location-scale
family like the Cauchy or an easy-to-optimize log-concave
one. As we can ensure robustness of the learned prior post-
hoc using the approach of Section 4.2, we choose the latter.
Specifically, we use the Laplace prior, as it is in some sense
the most robust log-concave distribution (it has loss ΘpRq
if x P pθ˘Rqn, whereas e.g. the Gaussian has loss ΘpR2q)
and because it yields a numerically stable closed-form
expression (40) for `pqqx pθ, φq (unlike e.g. the Gaussian).

5.2. Augmenting quantile release using public data
We turn to two applications that depend on optimizing upper
bounds `pqqx pθ, φq on the performance of quantile release
using the Laplace prior with scale 1

φ and location θ
φ . While

our final objective is small Gapq, we will mainly discuss

optimizing `pqqx “ U
pqq
x , or its expectation if x is drawn

from some distribution. In the former case this directly
bounds (w.h.p.) the cost of multiple quantile release via the
theoretical results in Section 3 because Ux ě ´ log Ψ

pεq
x ,

while a bound on ExUx can bound EGapmax by setting
β. For example, β “ 2π2

εn expp2
a

logp2q logpm` 1qq in
Theorem 3.3 implies Gapmax has expectation at most

O
ˆ

exp
´

2
a

logp2q logpm` 1q
¯ logpεmnq`ExUx

ε

˙

(7)

Our first application is the frequently studied setting where
we have a large public dataset x1 P RN and want to use it to
improve the release of statistics of a smaller private dataset
x P Rn. To apply our quantile release method, we must use
x1 to construct a prior µ1 for each that makes U pqqx pµ1q small.
If the entries of x and x1 are sampled i.i.d. from similar
distributions D and D1, respectively, the convexity of U pqqx

suggests using stochastic optimization find a prior µ that ap-
proximately minimizes the expectation Ez„D1nUzpµq using
samples of size n drawn from x1. We provide a guarantee
for a variant of this generic approach that runs online gradi-
ent descent (OGD) with separate learning rates for θ and φ
on samples drawn without replacement from x1:
Theorem 5.2 (c.f. Thm. C.2). If D and D1 have bounded
densities with bounded support then there exists an algo-
rithm optimizing Ux1t

over T datasets x1t of size n drawn
from x1 P RN without replacement that runs in time
OpmNq and returns a set µ1 of m Laplace priors s.t. w.h.p.
Ex„DnUxpµ

1q ď min
µPLapmB,σmin,σmax

Ex„DnUxpµq

` Õ
ˆ

TVqpD,D1q `
c

mn

N

˙ (8)

where LapB,σmin,σmax
is the set of Laplace priors with loca-

tions in r˘Bs and scales in rσmin, σmaxs and TVqpD,D1q
is the total variation distance between the joint distribu-
tions of the order statistics

 

pxrtqinus,xrtqinu`1sq
(m

i“1
for

x „ Dn and
!

px1
rtqinus

,x1
rtqinu`1sq

)m

i“1
for x1 „ D1n.

Figure 2. Public-private release of nine quantiles using one hun-
dred samples from the Adult age (left) and hours (right) datasets.
The public data is the Adult training set while private data is test.

Figure 3. Public-private release of nine quantiles on one hundred
samples from the Goodreads rating (left) and page count (right)
datasets, with ε “ 1. The public data is the “History” genre while
private data is sampled from a mixture of it and “Poetry.”

For N " mn, the suboptimality of µ1 for the upper bound
Ux will depend on the statistical distance between the quan-
tile intervals of D and D1: even if D and D1 are dissimilar,
similar order statistic distributions will ensure good perfor-
mance. Note, as in Section 4.2, we can hedge against large
TVqpD,D1q by mixing the output µ1 with a robust prior.

We evaluate this approach, which we call Public Fit or
PubFit, on Adult (Kohavi, 1996) and Goodreads (Wan
& McAuley, 2018), both used previously for DP quan-
tiles (Gillenwater et al., 2021; Kaplan et al., 2022). Because
our guarantees improve with different step-sizes for θ and
φ, we use COCOB (Orabona & Tomassi, 2017)—an OGD
variant that provably sets per-coordinate step-sizes without
the need for tuning—as PubFit’s stochastic solver. We
also test a robust version where its output is mixed with a
half-Cauchy distribution, and three baselines: the Uniform
prior, just using the quantiles of the public data (public
quantiles), and using the public quantiles to set the loca-
tion parameters of m Cauchy priors (public Cauchy).

Adult tests the D “ D1 case, with its “train” set the public
dataset and a hundred samples from “test” as private.
Figure 2 shows that public quantiles does best at
small ε, as is expected with no distribution shift, but it
cannot adapt to the empirical distribution of a small number
of private points, and so is worse at ε ą 1. Among the
rest, PubFit is most similar to public-quantiles at
small ε but still does well at large ε.

We use the Goodreads “History” and “Poetry” genres to
evaluate under distribution shift by fitting on all but a

7
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small fraction of data from the former and releasing quan-
tiles of samples from varying mixtures of the two datasets.
As expected, the performance of public quantiles
deteriorates with more samples from “Poetry.” For book
ratings, PubFit is best among the remaining methods,
but without much change with distribution shift, possibly
due to an incomplete fit of the data. For page counts,
the PubFit methods and public Cauchy both do as
well as public-quantiles when most data is from
“History,” but PubFit (robust) deteriorates least—and
much less than regular PubFit—as the distribution shifts.
This highlights the importance of robustness analysis, and
suggest the former as a good method to start with, as it takes
advantage of similar public and private distributions (Fig. 2)
while never doing much worse than the default method (Uni-
form) when the the distributions are dissimilar (Fig. 3).

5.3. Sequentially setting priors using past sensitive data
Our second application is sequential release, which we do
not believe has been studied, but arises naturally if e.g. we
wish to release daily statistics from a continuous stream of
data. Here we have a sequence of datasets x1, . . . ,xT , each
with associated public features f1, . . . , fT P Rd (e.g. day of
the week), and we wish to minimize the average maximum
gap 1

T

řT
t“1 maxi Gapqipxt, ot,iq, whose expectation can

be bounded (7) in terms of 1
T

řT
t“1 Uxt . For simplicity, we

assume individuals do not occur in multiple datasets xt, e.g.
we are releasing the median age of new users of a service.
Note the natural way to avoid this assumption is to compose
the privacy budgets at each time; empirically our methods
are especially useful in the low privacy regime this entails.

Our analysis suggests that we can apply online learning here,
e.g. doing the following at each t starting with a prior µ1:

1. release ot using the prior µt and suffer Gapqpxt, otq

2. update to µt`1 using online learning on the loss `pqqxt

Because `pqqxt pθ, φq “ U
pqq
xt pµ θ

φ ,
1
φ
q is convex for Laplace

priors, online convex optimization (OCO) (Shalev-Shwartz,
2011) lets us compete with the best prior in hindsight accord-
ing to the upper boundsU pqqxt pµtq, or with the best linear map
w to locations xw, fty. We can again hedge against poor
predictions by mixing with a constant robust distribution.

However, we face the difficulty that online learning on losses
`
pqq
xt leaks information about xt. There are two natural solu-

tions. One is to use part of the budget ε1 ă ε on a DP online
learner (Jain et al., 2012; Smith & Thakurta, 2013) and hope
that the reduction in budget allocated to quantile release is
made up for by the improved priors. Alternatively, we can
replace ` with a proxy loss ˆ̀that does not depend on the data
and optimize it using regular OCO. The first can be done
with provable guarantees by applying DP-FTRL (Kairouz
et al., 2021), again using two different step-sizes:

Theorem 5.3 (c.f. Thm. C.3). Consider a sequence of
datasets xt P r˘Bsnt with bounded features ft and suppose
we set Laplace priors µt,i “ µ xvt,i,fty

φt,i
, 1
φt,i

via two DP-

FTRL algorithms applied separately to the variables vi and
φi of the losses `xtpxvi, fty, φiqwith budgets ε

1

2 , with respec-

tive step-sizes Θ̃
´

b

ε1

σ2
minT

a

m
d

¯

and Θ̃
´b

ε1
?
m

σ2
minσ

2
maxT

¯

.

This is pε1, δ1q-DP and w.h.p. has regret

1

T

T
ÿ

t“1

Uxtpµtq ´ min
wiPr˘Bs

d

σiPrσmin,σmaxs

1

T

T
ÿ

t“1

Uxtpµxwi,fty,σiq

“ Õ

¨

˝

d
3
4 ` σmax

σmin

d

m

ε1T

c

m log
2

δ1

˛

‚

(9)

Thus we can do as well as any sequence of Laplace priors
µt with locations determined by a fixed linear map from
ft, up to a term that decreases at rate Õp 1?

T
q. Furthermore,

running quantile release with budget ε ´ ε1 ensures
pε, δ1q-DP for each dataset xt. Note that using different
step-sizes allows us to separate the difficulty of learning
a d-dimensional linear map from the difficulty of learning
a scale parameter of magnitude at most σmax.

Unfortunately, DP-FTRL is too noisy to learn competitive
priors, except with a lot of stationary data (c.f. Fig. 4 (left)).
One issue is that its DP guarantee is too strong, as it it
allows swapping out the entire dataset xt rather than a
single entry. It is unclear if a better sensitivity is possible for
Uxt , as changing an entry can flip the sign of the gradient
while preserving magnitude. We show (c.f. Lem. B.1) that it
is possible for the ε-dependent bound U pεqxt over piecewise-
constant priors—remarkably sensitivity decreases with
ε—but that upper bound is non-convex for location-scale
families, which are preferable for model learning.

Our second solution involves recognizing that U pqqxt depends
only on the optimal interval rxtrtqnus,xtrtqnu`1sq, whose
location and size we have (public) estimates for: the former
via the quantile estimate ot and the size is lower-bounded by
the underlying data discretization, which we have access to
in-practice (e.g. age is reported in years, bicycle trip length
in seconds). We use this information to construct proxy
losses ˆ̀pqq

ot pxv, fty, φq, which do not depend on xt and so
be learned with (standard) OCO. As our DP-FTRL analysis
again showed the importance of different step-sizes, we
again use the COCOB optimizer here.

We evaluate sequential release on three online tasks, each
consisting of a sequence of datasets needing quantiles:

1. Synthetic: each dataset is generated such that the quan-
tiles are fixed linear functions of a random Gaussian
feature vector, plus noise.
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2. CitiBike: the data are the lengths of a day’s bicycle trips,
with the date and NYC weather information features.

3. BBC: the data are the Flesch readability scores of the
comments on a headline posted to Reddit’s worldnews
forum, with date and headline text information features.

In addition to the proxy approach, which we call PubProx,
we evaluate static priors—the uniform, Cauchy, and
half-Cauchy (if nonnegative)—and an approach we call
PubPrev, which uses a Laplace prior centered around the
previous step’s released quantile. Note that using the Uni-
form is equivalent to ApproximateQuantiles (AQ).
For both PubProx and PubPrev we ensure robustness by
mixing with a Cauchy (or half-Cauchy, if nonnegative) dis-
tribution with coefficient 0.1; this nearly always improves
performance for these methods, likely by ensuring their
training data is not too noisy. To see its effectiveness, note
how in Figure 4 (right) both augmented methods are almost
always better when made robust, especially PubPrev; in
fact, non-robust PubPrev is unable to do better than Uni-
form after around day 1600, when the start of the COVID-19
pandemic significantly affects bicycle trips.

Our main comparisons is time-aggregated performance as
a function of ε (c.f. Figs. 5 and 6). All except perhaps Syn-
thetic demonstrate significant improvement by our methods
over the Uniform (AQ) baseline, especially at small ε. On
Synthetic and CitiBike, both tasks with features for which a
linear model should provide some benefit, we see in Figure 5
that PubProx is indeed the best across all except perhaps
the lowest privacy settings. For BBC, Figure 6 reveals a
large difference between mean and median performance
(note the difference in y-axis scales), with PubProx doing
best for the typical headline but the Cauchy doing better on-
average due to better performance on headlines with many
comments. The result suggests that in highly noisy settings,
the learning-based scheme should help, but it might not over-
come the robustness of a static Cauchy prior in-expectation.

Overall, the results demonstrate the strength of the Cauchy
and half-Cauchy priors, both as unbounded substitutes
for the Uniform and as a means of robustifying learning-
augmented algorithms. They also demonstrate the utility
of our upper bound in providing an objective for learning,
albeit using proxy data rather the DP online learning:
PubProx usually does better than PubPrev despite using
the same information. Overall, PubProx performs the best
at most privacy levels in all evaluation settings (Synthetic,
CitiBike, and BBC) except when the mean is used as the
metric for BBC (Fig. 6, left), where it does almost as well as
the best. Narrowing the performance gap with non-private
OCO (c.f. Fig. 4 (left), where we run COCOB directly on
`
pqq
xt )—remains an important research direction.

Code to reproduce our results is available at https://
github.com/mkhodak/private-quantiles.

Figure 4. Comparison of sequential release over time on Synthetic
(left, log10 ε “ ´1{2) and CitiBike (right, log10 ε “ ´2) tasks.

Figure 5. Time-averaged performance of the sequential release of
nine quantiles on the Synthetic (left) and CitiBike (right) tasks.

Figure 6. Time-aggregated mean (left) and median (right) perfor-
mance of sequential release of nine quantiles on the BBC task.

6. Conclusion
This work introduces the framework of private algorithms
with private predictions, an extension of the algorithms with
predictions setup to DP methods. Using the application
of multiple quantile release, we provide strong theoretical
and empirical evidence of its utility as a way of integrating
external information in privacy-preserving algorithms. We
believe this way of studying DP methods is highly appli-
cable and will see a great deal of future work in finding
new applications for incorporating predictions or improv-
ing the approaches described here. Some specific areas to
explore include other important dataset statistics (Biswas
et al., 2020) and iterative data analysis methods (Gupta et al.,
2012; Hardt & Rothblum, 2010) and . For multiple quantile
release, our work directly suggests open questions, includ-
ing obtaining algorithms with poly-logarithmic dependence
on m, more natural prior adaptation schemes, and ways to
use non-independent priors.

Acknowledgments
This work was supported in part by a Facebook PhD
Fellowship.

9

https://github.com/mkhodak/private-quantiles
https://github.com/mkhodak/private-quantiles


Learning-augmented private algorithms for multiple quantile release

References
Agarwal, N. and Singh, K. The price of differential privacy

for online learning. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, 2017.

Amid, E., Ganesh, A., Mathews, R., Ramaswamy, S., Song,
S., Steinke, T., Suriyakumar, V. M., Thakkar, O., and
Thakurta, A. Public data-assisted mirror descent for pri-
vate model training. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, 2022.

Anand, K., Ge, R., and Panigrahi, D. Customizing ML pre-
dictions for online algorithms. In Proceedings of the 37th
International Conference on Machine Learning, 2020.

Andrew, G., Thakkar, O., McMahan, H. B., and Ra-
maswamy, S. Differentially private learning with adaptive
clipping. In Advances in Neural Information Processing
Systems, 2021.

Balcan, M.-F., Khodak, M., Sharma, D., and Talwalkar,
A. Learning-to-learn non-convex piecewise-Lipschitz
functions. In Advances in Neural Information Processing
Systems, 2021.

Bamas, E., Maggiori, A., and Svensson, O. The primal-dual
method for learning augmented algorithms. In Advances
in Neural Information Processing Systems, 2020.

Bassily, R., Mohri, M., and Suresh, A. T. Private domain
adaptation from a public source. arXiv, 2022.

Bie, A., Kamath, G., and Singhal, V. Private estimation
with public data. In Advances in Neural Information
Processing Systems, 2022.

Biswas, S., Dong, Y., Kamath, G., and Ullman, J. Coin-
Press: Practical private mean and covariance estimation.
In Advances in Neural Information Processing Systems,
2020.

Boucheron, S., Lugosi, G., and Massart, P. Concentration
Inequalities: A Nonasymptotic Theory of Independence.
Caledon Press, 2012.

Burridge, J. A note on maximum likelihood estimation for
regression models using grouped data. Journal of the
Royal Statistical Society. Series B (Methodological), 43
(1):41–45, 1981.

Cesa-Bianchi, N., Conconi, A., and Gentile, C. On the gen-
eralization ability of on-line learning algorithms. IEEE
Transactions on Information Theory, 50(9):2050–2057,
2004.

Chaudhuri, K. and Vinterbo, S. A. A stability-based valida-
tion procedure for differentially private machine learning.
In Advances in Neural Information Processing Systems,
2013.

Chen, J. Y., Silwal, S., Vakilian, A., and Zhang, F. Faster
fundamental graph algorithms via learned predictions.
In Proceedings of the 40th International Conference on
Machine Learning, 2022.

Christianson, N., Shen, J., and Wierman, A. Optimal
robustness-consistency tradeoffs for learning-augmented
metrical task systems. In Proceedings of the 26th Interna-
tional Conference on Artificial Intelligence and Statistics,
2023.

Cover, T. M. Universal portfolios. Mathematical Finance,
1:1–29, 1991.

Cule, M. and Samworth, R. Theoretical properties of the
log-concave maximum likelihood estimator of a multi-
dimensional density. Electronic Journal of Statistics, 4:
254–270, 2010.

David, H. A. and Nagaraja, H. N. Order Statistics. John
Wiley & Sons, Inc., 2003.

Diakonikolas, I., Kontonis, V., Tzamos, C., Vakilian, A.,
and Zarifis, N. Learning online algorithms with distribu-
tional advice. In Proceedings of the 38th International
Conference on Machine Learning, 2021.

Dimitrakakis, C., Nelson, B., Zhang, Z., Mitrokotsa, A.,
and Rubinstein, B. I. P. Differential privacy for bayesian
inference through posterior sampling, 2017.

Dinitz, M., Im, S., Lavastida, T., Moseley, B., and Vassilvit-
skii, S. Faster matchings via learned duals. In Advances
in Neural Information Processing Systems, 2021.

Du, E., Wang, F., and Mitzenmacher, M. Putting the “learn-
ing” into learning-augmented algorithms for frequency
estimation. In Proceedings of the 38th International Con-
ference on Machine Learning, 2021.

Dütting, P., Lattanzi, S., Leme, R. P., and Vassilvitskii, S.
Secretaries with advice. In Proceedings of the 22nd ACM
Conference on Economics and Computation, 2021.

Dwork, C. and Roth, A. The algorithmic foundations of dif-
ferential privacy. Foundations and Trends in Theoretical
Computer Science, 9(3-4):211–407, 2014.

Geumlek, J., Song, S., and Chaudhuri, K. Rényi differential
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A. Section 3 details
A.1. Quantile estimation via a prediction-dependent prior

The base measure µ of DP mechanisms such as the exponential is the starting point of many approaches to incorporating
external information, especially ones focused on Bayesian posterior sampling (Dimitrakakis et al., 2017; Geumlek et al.,
2017; Seeman et al., 2020); while it is also our approach to single-quantile estimation with predictions, a key difference here
is the focus on utility guarantees depending on both the prediction and instance, which is missing from this past work. In the
quantile problem, given a quantile q and a sorted dataset x P Rn of n distinct points, the goal is to release a number o that
upper bounds exactly tqnu of the entries. A natural error metric, Gapqpx, oq, is the number of entries between the released
number o and tqnu, and we can show that prediction-dependent bound using astraightforward application of EM with utility
´Gapq:

Lemma A.1. Releasing o P R w.p. 9 expp´εGapqpx, oq{2qµpoq is ε-DP, and w.p. 1´ β

Gapqpx, oq ď
2

ε

ˆ

log
1

β
´ log Ψpq,εqx pµq

˙

ď
2

ε

ˆ

log
1

β
´ log Ψpqqx pµq

˙

(10)

where Ψ
pq,εq
x pµq “

řn
i“0 expp´εGapqpx, Iiq{2qµpIiq “

ş

expp´εGapqpx, oq{2qµpoqdo is the inner product

between µ and the exponential score while Ψ
pqq
x pµq “ µpItqnuq is the measure of the optimal interval (note

maxk uqpx, Ikq “ ´Gapqpx, Itqnuq “ 0 and so Ψ
pqq
x pµq ď Ψ

pq,εq
x pµq @ ε ą 0).

Proof. ε-DP follows from uq having sensitivity one and the guarantee of EM with base measure µ (McSherry & Talwar,
2007, Theorem 6). For the error, since we sample an interval Ik and then sample o P Ik we have

PrtGapqpx, oq ě γu “ Prtuqpx, Ikq ď ´γu “
n
ÿ

j“0

Prtk “ ju1uqpx,Ijqď´γ

ď

n
ÿ

j“0

expp´ εγ
2 qµpIjq

řn
i“0 expp ε2uqpx, IiqqµpIiq

ď
expp´ εγ

2 q

Ψ
pq,εq
x pµq

(11)

The result follows by substituting β for the failure probability and solving for γ.

We can also analyze the error metrics in this bound for specific measures µ. In particular, if the points are in a bounded interval
pa, bq and we use the uniform measure µpoq “ 1oPpa,bq{pb ´ aq then Ψ

pq,εq
x pµq ě ψx

b´a , where ψx “ mink xrk`1s ´ xrks,
and we exactly recover the standard bound of 2

ε log b´a
βψx

, e.g. the one in (Kaplan et al., 2022, Lemma A.1) (indeed their
analysis implicitly uses this measure). However, our approach also allows us to remove the boundedness assumption, which
itself can be viewed as a type of prediction, as one needs external information to assume that the data, or at least the quantile,
lies within the interval pa, bq. Taking this view, we can use the prediction to set the location ν P R and scale σ ą 0 of a
Cauchy prior µν,σpoq “ σ{pπpσ2 ` po´ νq2qq without committing to pa, bq actually containing the data. Since we know
that the optimal interval pxrtqnus,xrtqnu`1ss is a subset of pa`b2 ˘Rq for some R ą 0, setting ν “ a`b

2 and σ “ b´a
2 yields

Ψpqqx pµν,σq ě
σ

π

xrtqnu`1s ´ xrtqnus

σ2 `maxkPttqnu,tqnu`1upν ´ xrksq2
ě
σ

π
min
k

xrk`1s ´ xrks

σ2 `R2
ě

2pb´ aqψx{π

pb´ aq2 ` 4R2 (12)

If R “ b´a
2 , i.e. we get the interval containing the data correct, then substituting the above into Lemma A.1 recovers

the guarantee of the uniform prior up to an additive factor 2
ε log π. However, whereas for the uniform prior we have no

performance guarantees if the interval is incorrect, using the Cauchy prior the performance degrades gracefully as the error
(R) grows. While this first result can be viewed as designing a better prediction-free algorithm, it can also be viewed as
making more robust use of the external information about the interval containing the data.
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A.2. Multiple-quantile release using multiple priors

To estimate m ą 1 quantiles q1, . . . , qm at once, we adapt the recursive approach of (Kaplan et al., 2022), whose method
ApproximateQuantiles implicitly constructs a binary tree with a quantile qi at each node and uses the exponential
mechanism to compute the quantile q̃i “ pqi ´ qiq{pqi ´ qiq of the dataset x̂i of points in the original dataset x restricted
to the interval pâi, b̂iq; here q

i
ă qi and qi ą qi are quantiles appearing earlier in the tree whose respective estimates âi

and b̂i determine the sub-interval (if there is no earlier quantile on the left and/or right of qi we use q
i
“ 0, âi “ a and/or

qi “ 1, b̂i “ b). Because each datapoint only participates in Oplog2mq exponential mechanisms, the approach is able to run
each mechanism with budget Ωpε{ log2mq and thus only suffer error logarithmic in the number of quantiles m, a significant
improvement upon running one EM with budget ε{m on the entire dataset for each quantile, which has error Opmq in the
number of quantiles.

We can apply prior-dependent guarantees to ApproximateQuantiles—pseudocode for a generalized version of which
is provided in Algorithm 2—by recognizing that implicitly the method assigns a uniform prior µi to each quantile qi and
then running EM with the conditional prior µ̂i restricted to the interval râi, b̂is determined by earlier quantiles in the binary
tree. An extension of the argument in Equation 11 (c.f. Lemma A.2) then yields a bound on the error of the estimate oi
returned for quantile qi in terms of the prior-EM inner-product computed with this conditional prior µ̂i over the subset x̂i:

PrtGapqipx, oiq ě γu ď
exp

`

εi
2 pγ̂i ´ γq

˘

Ψ
pq̃i,εiq
x̂i

pµ̂iq
for γ̂i “ p1´ q̃iqGapq

i
px, âiq ` q̃i Gapqipx, b̂iq (13)

Note that the error is offset by a weighted combination γ̂i of the errors of the estimates of quantiles earlier in the tree.
Controlling this error allows us to bound the maximum error of any quantile via the harmonic mean of the inner products
between the exponential scores and conditional priors:

Lemma A.2. Algorithm 2 with K “ 2 and εi “ ε{rlog2ms @ i is ε-DP and w.p. ě 1´ β has

max
i

Gapqipx, oiq ď
2

ε
rlog2ms2 log

m

βΨ̂
pεq
x

for Ψ̂pεqx “

˜

m
ÿ

i“1

1{m

Ψ
pq̃i,εiq
x̂i

pµ̂iq

¸´1

(14)

Proof. The privacy guarantee follows as in (Kaplan et al., 2022, Lemma 3.1). Setting the above probability bound (13) to
βΨ̂pεqx

mΨ
pεiq

q̃i
px̂i,µ̂iq

for each i we have w.p. ě 1´ β that Gapqipx, oiq ď
2
ε̄ log m

βΨ̂
pεq
x

` γ̂i @ i. Now let ki be the depth of quantile

qi in the tree. If ki “ 1 then i is the root node so γ̂i “ 0 and we have Gapqipx, oiq ď
2
ε̄ log m

βΨ̂
pεq
x

. To make an inductive

argument, we assume Gapqipx, oiq ď
2k
ε̄ log m

βΨ̂pεq
@ i s.t. ki ď k, and so for any i s.t. ki “ k ` 1 we have that

Gapqipx, oiq ď
2

ε̄
log

m

βΨ̂
pεq
x

` p1´ q̃iqGapq
i
px, âiq ` q̃i Gapqipx, b̂iq ď

2pk ` 1q

ε̄
log

m

βΨ̂
pεq
x

(15)

Thus Gapqipx, oiq ď
2ki
ε̄ log m

βΨ̂
pεq
x

@ i, so using ki ď rlog2ms and ε̄ “ ε
rlog2 ms

yields the result.

Setting µ̂i to be uniform on râi, b̂is exactly recovers both the algorithm and guarantee of (Kaplan et al., 2022, Theorem 3.3).
As before, we can also extend the algorithm to the infinite interval:

Corollary A.1. If all priors are Cauchy with location a`b
2 and scale b´a

2 and the data lies in the interval pa`b2 ˘Rq then

w.p. ě 1´ β the maximum error is at most 2
ε rlog2ms2 log

ˆ

πm
b´a` 4R2

b´a

2βψx

˙

.

However, while this demonstrates the usefulness of Lemma A.2 for obtaining robust priors on infinite intervals, the associated
prediction measure Ψ̂

pεq
x is imperfect because it is non-deterministic: its value depends on the random execution of the

algorithm, specifically on the data subsets x̂i and priors µ̂i, which for i not at the root of the tree are affected by the DP
mechanisms of i’s ancestor nodes. In addition to not being given fully specified by the prediction and data, this makes Ψ̂pεq

difficult to use as an objective for learning. A natural more desirable prediction metric is the harmonic mean of the inner
products between the exponential scores and original priors µi over the original dataset x, i.e. the direct generalization of
our approach for single quantiles.
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Unfortunately, the conditional restriction of µi to the interval râi, b̂is removes the influence of probabilities assigned to
intervals between points not in this interval. To solve this, we propose a different edge-restriction of µi that assigns
probabilities µipp´8, âiqq and µippb̂i,8qq of being outside the interval râi, b̂is to atoms on its edges âi and b̂i, respectively.
Despite not using any information from points outside x̂i, this approach puts probabilities assigned to intervals outside
râi, b̂is to the edge closest to them, allowing us to extend the previous probability bound (13) to depend on the original
prior-EM inner-product (c.f. Lemma D.3):

PrtGapqipx, oiq ě γu ď exppεpγ̂i ´ γ{2qq{Ψ
pqi,εiq
x pµiq (16)

However, the stronger dependence of this bound on errors γ̂i earlier in the tree lead to an Õpφlog2 mq “ Opm0.7q dependence
on m, where φ “ 1`

?
5

2 is the golden ratio:

Theorem A.1. If the quantiles are uniform negative powers of two then Algorithm 2 with K “ 2, edge-based prior
adaptation, and εi “ ε{rlog2pm` 1qs @ i is ε-DP and w.p. ě 1´ β has

max
i

Gapqipx, oiq ď
2

ε
φlog2pm`1qrlog2pm` 1qs log

m

βΨ
pεq
x

for Ψpεqx “

˜

m
ÿ

i“1

1{m

Ψ
pqi,εiq
x pµiq

¸´1

(17)

Proof. Since q̃i “ 1{2 @ i, setting the new probability bound equal to βΨpεqx

mΨ
pqiεiq
x pµiq

yields that w.p. ě 1´ β

Gapqipx, oiq ď
2

ε̄
log

m

βΨ
pεq
x

` 2γ̂i “
2

ε̄
log

m

βΨ
pεq
x

`Gapq
i
px, âiq `Gapqipx, b̂iq @ i (18)

If for each k ď rlog2ms we define Ek to be the maximum error of any quantile of at most depth k in the tree then since one
of q

i
and qi is at depth at least one less than qi and the other is at depth at least two less than qi we have Ek ď 2Ak

ε̄ log m

βΨ
pεq
x

for recurrent relation Ak “ 1` Ak´1 ` Ak´2 with A0 “ 0 and A1 “ 1. Since Ak “ Fk`1 ´ 1 for Fibonacci sequence
Fj “

φj´p1´φqj
?

5
, we have

max
i

Gapqipx, oiq “ max
k

Ek ď
2φrlog2pm`1qs`1

ε̄
?

5
log

m

βΨ
pεq
x

“
2φrlog2pm`1qs`1

ε
?

5
rlog2pm` 1qs log

m

βΨ
pεq
x

(19)

Thus while we have obtained a performance guarantee depending only on the prediction and the data via the harmonic
mean Ψ

pεq
x of the true prior-EM inner-products, the dependence on m is now polynomial. Note that it is still sublinear,

which means it is better than the naive baseline of running m independent exponential mechanisms. Still, we can do much
better—in-fact asymptotically better than any power of m—by recognizing that the main issue is the compounding error
induced by successive errors to the boundaries of sub-intervals. We can reduce this by reducing the depth of the tree using
a K-ary rather than binary tree and instead paying K ´ 1 times the privacy budget at each depth in order to naively release
values for K ´ 1 quantiles. This can introduce out-of-order quantiles, but by Lemma D.4 swapping any two out-of-order
quantiles does not increase the maximum error and so this issue can be solved by sorting the K ´ 1 quantiles before using
them to split the data. We thus have the following prediction-dependent performance bound for multiple quantiles:

Theorem A.2. If we run Algorithm 2 with K “ rexpp
a

log 2 logpm` 1qqs, edge-based adaptation, and εi “ ε̄
kpi

for some

power p ą 1, ki the depth of qi in the K-ary tree, and ε̄ “ ε
K´1

´

řrlogKpm`1qs
k“1

1
kp

¯´1

, then the result satisfies ε-DP

and w.p. ě 1´ β we have maxi Gapqipx, oiq ď
2π2

ε exp
´

2
a

logp2q logpm` 1q
¯

log m

βΨ
pεq
x

if p “ 2 and more generally

maxi Gapqipx, oiq ď
cp
ε exp

´

2
a

logp2q logpm` 1q
¯

log m

βΨ
pεq
x

, where cp depends only on p.
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Proof. The privacy guarantee follows as in (Kaplan et al., 2022, Lemma 3.1) except before each split we compute K ´ 1
quantiles with K ´ 1 times less budget. As in the previous proof, we have w.p. ě 1´ β that

Gapqipx, oiq ď
2

εi
log

m

βΨ
pεq
x

` 2γ̂i “
2k2
i

ε̄
log

m

βΨ
pεq
x

` 2p1´ q̃iqGapq
i
px, âiq ` 2q̃i Gapqipx, b̂iq @ i (20)

If for each k ď rlogKpm` 1qs we define Ek to be the maximum error of any quantile of at most depth k in the tree then
since both q

i
and qi are at depth at least one less than qi we have Ek ď 2Ak

ε̄ log m

βΨ
pεq
x

, where Ak “ kp ` 2Ak´1 and

A1 “ 1. For the case of p “ 2, Ak ď 6 ¨ 2k and 1{ε̄ “ K´1
ε

řrlogKpm`1qs
k“1

1
k2 ď

π2

6ε pK ´ 1q so we have that

max
i

Gapqipx, oiq “ max
k

Ek ď
12

ε̄
2rlogKpm`1qs log

m

βΨ
pεq
x

ď
2π2

ε
pK ´ 1q2rlogKpm`1qs log

m

βΨ
pεq
x

(21)

Substituting K “ rexpp
a

log 2 logpm` 1qqs and simplifying yields the result. For p ą 1, Ak ď 2k´2
`

2` Φ
`

1
2 ,´p, 2

˘˘

,
where Φ is the Lerch transcendent, and 1{ε̄ ď K´1

ε ζppq, where ζ is the Riemann zeta function. Therefore

max
i

Gapqipx, oiq “ max
k

Ek ď
2rlogKpm`1qs

2ε̄

ˆ

2` Φ

ˆ

1

2
,´p, 2

˙˙

log
m

βΨ
pεq
x

ď
cp
ε
pK ´ 1q2rlogKpm`1qs log

m

βΨ
pεq
x
(22)

for cp “
`

1` Φ
`

1
2 ,´p, 2

˘

{2
˘

ζppq.

Similarly to Theorem A.1, the proof establishes a recurrence relationship between the maximum errors at each depth.
Note that in addition to the K-ary tree this bound uses depth-dependent budgeting to remove a Oplog2mq-factor; the
constant depending upon the parameter p ą 1 of the latter has a minimum of roughly 8.42 at p « 1.6. As discussed
before, the new dependence Õ

´

exp
´

2
a

logp2q logpm` 1q
¯¯

on m is sub-polynomial, i.e opmαq @ α ą 0. While it is

also super-polylogarithmic, its shape for any practical value of m is roughly Oplog2
2mq, making the result of interest as a

justification for the negative log-inner-product performance metric.

A.3. Experimental details

For the experiments in Section 3, specifically Figures 3, we evaluate three variants of the algorithm on data drawn from a
standard Gaussian distribution and from the Adult “age” dataset (Kohavi, 1996). In both cases we use 1000 samples and run
each experiment 40 times, reporting the average performance. As we do for all datasets, we use reasonable guesses of mean,
scale, and bounds on each dataset to set priors. As in this section we report the Uniform, we need to specify its range; for
Gaussian we use r´10, 10s, while for “age” we use r10, 120s.

The original AQ algorithm of Kaplan et al. (2022) is now fully specified. We test two variants of our K-ary modification:
one with edge-based adaptation, and the other using the original conditional adaptation. For both cases we set K as a
function of m according to the formula in Theorem 3.3, and we set the power p of the depth-dependent budget discounting
to 1.5, which is close to the theoretically optimal value of around 1.6 (c.f. Thm A.2).
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B. Section 4 details
B.1. Robustness-consistency tradeoffs

While prediction-dependent guarantees work well if the prediction is accurate, without safeguards they may perform catas-
trophically poorly if the prediction is incorrect. Quantiles provide a prime demonstration of the importance of robustness, as
using priors allows for approaches that may assign very little probability to the interval containing the quantile. For example,
if one is confident that it has a specific value x P pa, bq one can specify a more concentrated prior, e.g. the Laplace distribution
around x. Alternatively, if one believes the data is drawn i.i.d. from some a known distribution then µ can be constructed via
its CDF using order statistics (David & Nagaraja, 2003, Equation 2.1.5). These reasonable approaches can result in distri-
butions with exponential or high-order-polynomial tails, using which directly may work poorly if the prediction is incorrect.

Luckily, for our negative log-inner-product error metric it is straightforward to show a parameterized robustness-consistency
tradeoff by simply mixing the prediction prior µ with a robust prior ρ:

Corollary B.1. For any prior µ : R ÞÑ Rě0, robust prior ρ : R ÞÑ Rě0, and robustness parameter λ P r0, 1s, releasing

o P R w.p. 9 expp´εGapqpx, oq{2qµ
pλqpoq for µpλq “ p1 ´ λqµ ` λρ is

´

2
ε log 1{β

λΨ
pq,εq
x pρq

¯

-robust and
´

2
ε log 1{β

1´λ

¯

-

consistent w.p. ě 1´ β.

Proof. Apply Lemma A.1 and linearity of Ψ
pq,εq
x pµpλqq “ p1´ λqΨ

pq,εq
x pµq ` λΨ

pq,εq
x pρq.

Thus if the interval is finite and we set ρ to be the uniform prior, using µpλq in the algorithm will have a high probability
guarantee at most 2

ε log 1
λ -worse than the prediction-free guarantee of Kaplan et al. (2022, Lemma A.1), no matter how

poor µ is for the data, while also guaranteeing w.p. ě 1´ β that the error will be at most 2
ε log 1{β

1´λ if µ is perfect. A similar
result holds for the case of an infinite interval if we instead use a Cauchy prior. Corollary B.1 demonstrates the usefulness
of the algorithms with predictions framework for not only quantifying improvement in utility using external information
but also for making the resulting DP algorithms robust to prediction noise.

The above argument for single-quantiles is straightforward to extend to the negative log of the harmonic means of the inner
products. In-fact for the binary case with uniform quantiles we can trade-off between polylogpmq-guarantees similar to
those of Kaplan et al. (2022) and our prediction-dependent bounds:

Corollary B.2. Consider priors µ1, . . . , µm : R ÞÑ Rě0, Cauchy prior ρ : R ÞÑ Rě0 with location a`b
2 and scale

b´a
2 , and robustness parameter λ P r0, 1s. Then running Algorithm 2 on quantiles that are uniform negative powers

of two with K “ 2, edge-based prior adaptation, εi “ ε̄ “ ε{rlog2ms @ i, and priors µpλqi “ λρ ` p1 ´ λqµi @ i is
ˆ

2
ε rlog2ms2 log

ˆ

πm
b´a` 4R2

b´a

2λβψx

˙˙

-robust and
´

2
εφ

log2 mrlog2ms log m{β
1´λ

¯

-consistent w.p. ě 1´ β.

Proof. Apply Lemma A.2, Theorem A.1, and the linearity of inner products making up Ψ̂
pεq
x and Ψ

pεq
x .

B.2. Learning predictions, privately

Past work, e.g. the public-private framework (Liu et al., 2021; Bassily et al., 2022; Bie et al., 2022), has often focused
on domain adaptation-type learning where we adapt a public source to private target. We avoid assuming access to large
quantities of i.i.d. public data and instead assume numerous tasks that can have sensitive data and may be adversarially
generated. As discussed before, this is the online setting where we see loss functions defined by a sequence of datasets
x1, . . . ,xT and aim to compete with best fixed prediction in-hindsight. Note such a guarantee can also be converted into
excess risk bounds (c.f. Appendix E.1).

B.2.1. NON-EUCLIDEAN DP-FTRL

Because the optimization domain is not well-described by the `2-ball, we are able to obtain significant savings in dependence
on the dimension and in some cases even in the number of instances T by extending the DP-FTRL algorithm of (Kairouz
et al., 2021) to use non-Euclidean regularizers, as in Algorithm 1. For this we prove the following regret guarantee:
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Theorem B.1. Let θ1, . . . , θT be the outputs of Algorithm 1 using a regularizer φ : Θ ÞÑ R that is strongly-convex w.r.t.
} ¨ }. Suppose @ t P rT s that `xtp¨q is L-Lipschitz w.r.t. } ¨ } and its gradient has `2-sensitivity ∆2. Then w.p. ě 1 ´ β1

we have @ θ˚ P Θ that

T
ÿ

t“1

`pθt;xtq ´ `pθ
˚;xtq ď

φpθ˚q ´ φpθ1q

η
` ηL

˜

L`

˜

G` C

d

2 log
T

β1

¸

σ∆2

a

rlog2 T s

¸

T (23)

where G “ Ez„N p0p,Ipq sup}y}ď1xz,yy “ Ez„N p0p,1q}z}˚ is the Gaussian width of the unit } ¨ }-ball and C is the

Lipschitz constant of } ¨ }˚ w.r.t. } ¨ }2. Furthermore, for any ε1 ď 2 log 1
δ1 , setting σ “ 1

ε1

b

2rlog2 T s log 1
δ1 makes the

algorithm pε1, δ1q-DP.

Proof. The privacy guarantee follows from past results for tree aggregation (Smith & Thakurta, 2013; Kairouz et al., 2021).
For all t P rT s we use the shorthand ∇t “ ∇θ`xtpθtq; we can then define θ̃t “ arg minθPΘ φpθq ` η

řt
s“1x∇s, θy and

bt “ gt ´
řt
s“1∇s. Then

T
ÿ

t“1

`xtpθtq ´ `xtpθ
˚q ď

T
ÿ

t“1

x∇t, θt ´ θ˚y “
T
ÿ

t“1

x∇t, θ̃t ´ θ˚y `
T
ÿ

t“1

x∇t, θt ´ θ̃ty

ď
φpθ˚q ´ φpθ1q

η
` η

T
ÿ

t“1

}∇t}2˚ `
T
ÿ

t“1

}∇t}˚}θ̃t ´ θt}

ď
φpθ˚q ´ φpθ1q

η
` ηL

˜

LT `
T
ÿ

t“1

}bt}˚

¸

(24)

where the first inequality follows from the standard linear approximation in online convex optimization (Zinkevich, 2003),
the second by the regret guarantee for online mirror descent (Shalev-Shwartz, 2011, Theorem 2.15), and the last by applying
McMahan (2017, Lemma 7) with φ1p¨q “ φp¨q ` η

řt
s“1x∇s, ¨y, ψp¨q “ ηxbt, ¨y, and φ2p¨q “ φp¨q ` ηxgt, ¨y, yielding

}θ̃t ´ θt} ď η}bt}˚ @ t P rT s. The final guarantee follows by observing that the tree aggregation protocol adds noise
bt „ N p0p, σ2∆2

2rlog2 tsq to each prefix sum and applying the Gaussian concentration of Lipschitz functions (Boucheron
et al., 2012, Theorem 5.6).

The above proof of this result follows that of the Euclidean case, which can be recovered by setting G “ Op
?
dq, C “ 1,

and ∆2 “ OpLq.1 In addition to the Lipschitz constants L, a key term that can lead to improvement is the Gaussian width
G of the unit } ¨ }-ball, which for the Euclidean case is Op

?
dq but e.g. for } ¨ } “ } ¨ }1 is Op

?
log dq. Note that a related

dependence on the Laplace width of Θ appears in Agarwal & Singh (2017, Theorem 3.1), although their guarantee only
holds for linear losses and is not obviously extendable. Thus Theorem B.1 may be of independent interest for DP online
learning.

B.2.2. LEARNING PRIORS FOR ONE OR MORE QUANTILES

We now turn to learning priors µt “
`

µtr1s, ¨ ¨ ¨ , µtrms
˘

to privately estimatem quantiles q1, . . . , qm on each of a sequence of
T datasets xt. We will aim to set µ1, . . . , µT s.t. if at each time t we run Algorithm 2 with privacy ε ą 0 then the guarantees
given by Lemmas A.1 and A.2 will be asymptotically at least as good as those of the best set of measures in Fm, where F
is some class of measures on the finite interval pa, bq. The latter we will assume to be known and bounded. Note that in this
section almost all single-quantile results follow from settingm “ 1, so we study it jointly with learning for multiple quantiles.

Ignoring constants, the loss functions implied by our prediction-dependent upper bounds for multiple-quantiles are the
following negative log-harmonic sums of prior-EM inner-products:

U pεqxt pµq “ log
m
ÿ

i“1

1

Ψ
pqi,εiq
xt pµrisq

“ log
m
ÿ

i“1

1
şb

a
expp´εi Gapqipxt, oq{2qµrispoqdo

(25)

1As of this writing, the most recent arXiv version of Kairouz et al. (2021, Theorem C.1) has a typo leading to missing a Lipschitz
constant in the bound, confirmed via correspondence with the authors.
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Algorithm 1: Non-Euclidean DP-FTRL. For the InitializeTree, AddToTree, and GetSum subroutines see
Kairouz et al. (2021, Section B.1).

Input: Datasets x1, . . . ,xT arriving in a stream in arbitrary order, domain Θ Ă Rp, step-size η ą 0, noise scale
σ ą 0, `2-sensitivity ∆2 ą 0, regularizer φ : Θ ÞÑ R

g1 Ð 0p
T ÐInitializeTree(T, σ2,∆2) // start tree aggregation
for t “ 1, . . . , T do

θt Ð arg minθPΘ φpθq ` ηxgt, θy
suffer `xtpθtq
T ÐAddToTree(T , t,∇θ`xtpθtq) // add gradient to tree

gt`1 ÐGetSum(T , t) // estimate
řt
s“1∇θ`xspθsq

We focus on minimizing regret maxµPFm
řT
t“1 U

pεq
xt pµtq´U

pεq
xt pµq over these losses for priors µris in a class FV,d of proba-

bility measures that are piecewise V -Lipschitz over each of d intervals uniformly partitioning ra, bq. This is chosen because it
covers the class FV,1 of V -Lipschitz measures and the class of F0,d of discrete measures that are constant on each of the d in-
tervals. The latter can be parameterized by W P 4md , so that the losses have the form U

pεq
xt pµWq “ log

řm
i“1xst,i,Wrissy

´1

for st,i P Rdě0. This can be seen by setting st,irjs “ d
b´a

şa` b´ad j

a` b´ad pj´1q
expp´εi Gapqipxt, oq{2qdo and

µWris
poq “ d

b´aWri,js over the interval
“

a` b´a
d pj ´ 1q, a` b´a

d j
˘

. Finally, for λ P r0, 1s we also let
F pλq “ tp1´ λqµ` λ

b´a : µ P Fu denote the class of mixtures of measures µ P F with the uniform measure.

As detailed in Appendix E.2, losses of the form´ logxst, ¨y, i.e. those above when m “ 1, have been studied in (non-private)
online learning (Hazan et al., 2007; Balcan et al., 2021). However, specialized approaches, e.g. those taking advantage
exp-concavity, are not obviously implementable via prefix sums of gradients, the standard approach to private online
learning (Smith & Thakurta, 2013; Agarwal & Singh, 2017; Kairouz et al., 2021). Still, we can at least use the fact that
we are optimizing over a product of simplices to improve the dimension-dependence by applying Non-Euclidean DP-FTRL
with entropic regularizer φpWq “ mxW, logWy, which yields an m-way exponentiated gradient (EG) update (Kivinen
& Warmuth, 1997). To apply its guarantee for the problem of learning priors for quantile estimation, we need to bound the
sensitivity of the gradients ∇WU

pεq
xt pµWq to changes in the underlying datasets xt. This is often done via a bound on the

gradient norm, which in our case is unbounded near the boundary of the simplex. We thus restrict to γ-robust priors for some
γ P p0, 1s by constraining W P 4md to have entries lower bounded by γ{d—a domain where }∇WU

pεq
xt pµWq}1 ď d{γ

(c.f. Lemma E.1)—and bounding the resulting approximation error; we are not aware of even a non-private approach that
avoids this except by taking advantage of exp-concavity (Hazan et al., 2007).

We thus have a bound of 2d{γ on the `2-sensitivity. However, this may be too loose since it allows for changing the entire
dataset xt, whereas we are only interested in changing one entry. Indeed, for small ε we can obtain a tighter bound:

Lemma B.1. The `2-sensitivity of∇wU
pεq
xt pµwq is d

γ mint2, eε̃m ´ 1u, where ε̃m “ p1` 1mą1qmaxi εi.

Proof for m “ 1; c.f. Appendix E.2.1. Let x̃t be a neighboring dataset of xt and let U pεqx̃t
pµWq “ ´ logxs̃t,wy be the

corresponding loss. Note that maxoPra,bs |Gapqpxt, oq ´Gapqpx̃t, oq| ď 1 so

s̃trjs “

ż a` b´ad j

a` b´ad pj´1q

exp
´

´
ε

2
Gapqpx̃t, oq

¯

do P e˘
ε
2

ż a` b´ad j

a` b´ad pj´1q

exp
´

´
ε

2
Gapqpxt, oq

¯

do “ e˘
ε
2 strjs (26)

Therefore since m “ 1 we denote w “Wr1s, st “ st,1, and s̃t “ s̃t,1 and have

}∇wU
pεq
xt pµwq ´∇wU

pεq
x̃t
pµwq}2 “

g

f

f

e

d
ÿ

j“1

ˆ

strjs

xst,wy
´

s̃trjs

xs̃t,wy

˙2

“

g

f

f

e

d
ÿ

j“1

s2
trjs

xst,wy2

ˆ

1´
s̃trjsxst,wy

strjsxs̃t,wy

˙2

ď }∇wU
pεq
xt pµwq}1 max

j
|1´ κj |

(27)

where κj “
s̃trjsxst,wy

strjsxs̃t,wy
P

strjs expp˘ ε
2 qxst,wy

strjsxst,wy expp˘ ε
2 q
P expp˘εq by Equation 26. The result follows by taking the minimum with the

bound on the Euclidean norm of the gradient (Lemma E.1).
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Since eε ´ 1 ď 2ε for ε P p0, 1.25s, for small ε this allows us to add less noise in DP-FTRL. With this sensitivity bound,
we apply Algorithm 1 using the entropic regularizer to obtain the following result:

Theorem B.2. For d ě 2, γ P p0, 1{2s if we run Algorithm 1 on U pεqxt pµWq “ log
řm
i“1

1

Ψ
pqi,εiq
xt

pµWq
over γ-robust priors

with step-size η “ γm
d

c

logpdq{T

1`
´

2
?

logpmdq`
b

2 log T
β1

¯

σ
?

logrlog2 T s mint1,ε̃mu
and regularizer φpWq “ mxW, logWy then for

any V ě 0, λ P r0, 1s, and β1 P p0, 1s we will have regret

max
µrisPF

pλq
V,d

T
ÿ

t“1

U pεqxt pµWtq ´ U
pεq
xt pµq ď

V mT

γdψ̄
pb´ aq3 ` 2 maxtγ ´ λ, 0uT log 2

`
2md

γ

g

f

f

e

˜

1`

˜

4
a

logpmdq ` 2

d

2 log
T

β1

¸

σ
a

rlog2 T s mint1, ε̃mu

¸

T log d

(28)

w.p. ě 1 ´ β1, where ψ̄ is the harmonic mean of ψxt “ mink xtrk`1s ´ xtrks and ε̃m “ p1 ` 1mą1qmaxi εi. For any

ε1 ď 2 log 1
δ1 setting σ “ 1

ε1

b

2rlog2 T s log 1
δ1 makes this procedure pε1, δ1q-DP.

Proof. For set of γ-robust priors ρ s.t. ρris “ mint1 ´ γ ` λ, 1uµris `
maxtγ´λ,0u

b´a and W P 4md s.t. Wri,js “

b´a
d

şa` b´ad j

a` b´ad pj´1q
ρrispoqdo we can divide the regret into three components:

T
ÿ

t“1

U pεqxt pµWt
q ´ U pεqxt pµq “

T
ÿ

t“1

U pεqxt pµWt
q ´ U pεqxt pµWq `

T
ÿ

t“1

U pεqxt pµWq ´ U
pεq
xt pρq `

T
ÿ

t“1

U pεqxt pρq ´ U
pεq
xt pµq (29)

The first summation is the regret of DP-FTRL with regularizer φ, which is strongly convex w.r.t. } ¨ }1. The Gaussian
width of its unit ball is 2

a

logpmdq, by Lemma E.1 the losses are d
γ -Lipschitz w.r.t. } ¨ }1, and by Lemma B.1 the

`2-sensitivity is ∆2 “
d
γ mint2, eε̃m ´ 1u ď 2d

γ mint1, ε̃mu, so applying Theorem B.1 yields the bound m2 log d
η `

ηd2T
γ2

´

1`
´

4
?

log d` 2
b

2 log T
β1

¯

σ
a

rlog2 T s mint1, εu
¯

. The second summation is a sum over the errors due to
discretization, where we have

T
ÿ

t“1

U pεqxt pµWq ´ U
pεq
xt pρq “

T
ÿ

t“1

log
m
ÿ

i“1

xst,i,Wrisy
´1 ´ log

m
ÿ

i“1

1
şb

a
expp´εi Gapqipxt, oq{2qρrispoqdo

ď

T
ÿ

t“1

m
ÿ

i“1

şb

a
expp´ εi

2 Gapqipxt, oqqρrispoqdo´ xst,i,Wrisy

xst,i,Wrisy

ď

T
ÿ

t“1

m
ÿ

i“1

řd
j“1

şa` b´ad j

a` b´ad pj´1q
expp´ εi

2 Gapqipxt, oqqpρrispoq ´ µWris
poqqdo

γψxt{pb´ aq

ď

T
ÿ

t“1

m
ÿ

i“1

řd
j“1

şa` b´ad j

a` b´ad pj´1q
|ρrispoq ´ ρrispoi,jq|do

γψxt{pb´ aq
ď
V mT

γdψ̄
pb´ aq3

(30)

where the first inequality follows by concavity, the second by using the definition of W to see that xst,i,Wrisy “
şb

a
expp´ εi

2 Gapqipxt, oqqµWris
poqdo ě

γψxt

b´a , the third by Hölder’s inequality and the mean value theorem for some

oi,j P pa`
b´a
d pj´1q, a` b´a

d jq, and the fourth by the Lipschitzness of ρris P F
pγq
V,d. The third summation is a sum over the

errors due to γ-robustness, with the result following by U pεqxt pρq´U
pεq
xt pµq ď U

pεq
xt pµq´logp1´maxtγ´λ, 0uq´U

pεq
xt pµq ď

2 maxtγ ´ λ, 0u log 2.
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Note that in the case of V ą 0 or λ “ 0 we will need to set d “ ωT p1q or γ “ oT p1q in order to obtain sublinear regret.
Thus for these more difficult classes our extension of DP-FTRL to non-Euclidean regularizers yields improved rates, as in
the Euclidean case the first term has an extra 4

?
d-factor. The following provides some specific upper bounds derived from

Theorem B.2:

Corollary B.3. For each of the following classes of priors there exist settings of d (where needed) and γ ą 0 in Theorem B.2
that guarantee obtain the following regret w.p. ě 1´ β1:

1. λ-robust and discrete µris P F
pλq
0,d : Õ

ˆ

dm
λ

c

´

1` mint1,ε̃mu
ε1

¯

T

˙

2. λ-robust and V -Lipschitz µris P F
pλq
V,1: Õ

ˆ

m
λ

b

V
ψ̄

4

c

´

1` mint1,ε̃mu
ε1

¯

T 3

˙

3. discrete µris P F0,d: Õ
ˆ

?
dm 4

c

´

1` mint1,ε̃mu
ε1

¯

T 3

˙

4. V -Lipschitz µris P FV,1: Õ
ˆ

?
m 4

b

V
ψ̄

8

c

´

1` mint1,ε̃mu
ε1

¯

T 7

˙

Thus competing with λ-robust priors with discrete PDFs enjoys the fastest regret rate of Õp
?
T q, while either removing

robustness or competing with any V -Lipschitz prior has regret ÕpT 3{4q, and doing both has regret ÕpT 7{8q. When
comparing to Lipschitz priors we also incur a dependence on the inverse of minimum datapoint separation, which may
be small. A notable aspect of all the bounds is that the regret improves with small ε due to the sensitivity analysis in
Lemma B.1; indeed for ε “ Opε1q the regret bound only has a Oplog 1

δ1 q-dependence on the privacy guarantee. Finally,
for λ-robust priors we can also apply the log b´a

λψ -boundedness of ´ log Ψ
pq,εq
x pµq and standard online-to-batch conversion

(e.g. Cesa-Bianchi et al. (2004, Proposition 1) to obtain the following sample complexity guarantee:

Corollary B.4. For any α ą 0 and distribution D over finite datasets x of ψ-separated points from pa, bq, if we run

the algorithm in Theorem B.2 on T “ Ω

ˆ

log 1
β1

α2

´

d2m2

λ2

´

1` mint1,ε̃mu
ε1

¯

` log2 1
λψ

¯

˙

i.i.d. samples from D then

w.p. ě 1 ´ β1 the average Ŵ “ 1
T

řT
t“1 Wt of the resulting iterates satisfies Ex„D log

řm
i“1

1

Ψ
pqi,εiq
x pµŴris

q
ď

min
µrisPF

pλq
0,d

Ex„D log
řm
i“1

1

Ψ
pqi,εiq
x pµrisq

` α. For α-suboptimality w.r.t. µris P F
pλq
V,1 the sample complexity is

Ω

ˆ

log 1
β1

α2

´

V 2m2

λ4ψ2α2

´

1` mint1,ε̃mu
ε1

¯

` log2 1
λψ

¯

˙

.
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C. Section 5 details
C.1. Location-scale families

A location-scale model is a distribution parameterized by a location ν P R and scale σ P Rě0 whose density has the form
µν,σpxq “

1
σf

`

x´ν
σ

˘

for some centered probability measure f : R ÞÑ Rě0.

C.1.1. IMPOSSIBILITY OF SIMULTANEOUS ROBUSTNESS AND CONVEXITY

Theorem C.1. Let f : R ÞÑ Rě0 be a centered probability measure and for each θ P Θ define µθpxq “ fpx´ θq.

1. If f is continuous then Uxpµθq is convex in θ for all sorted dataset x P Rn if and only if f is log-concave.

2. There exist constants a, b ą 0 s.t. for any r ą 0, ψ P p0, R2n s, q ě
1
n , and θ P R there exists a sorted dataset

x P pθ ˘Rqn with miniPrn´1s xri`1s ´ xris “ ψ s.t. U pqqx pµθq “ aR` log b
ψ .

Proof. For the first direction of the first result, consider any θ, θ1 P R and λ P r0, 1s. We have that

U
pqq
˚x pµλθ`p1´λqθ1q ´

´

λU pqqx pµθq ´ p1´ λq logU pqqx pµθ1
¯

“ log
Ψ
pqq
x pµθq

λΨ
pqq
x pµθ1q

1´λ

Ψ
pqq
x µλθ`p1´λqθ1q

(31)

so it suffices to show that Ψxpqqpµλθ`p1´λqθ1q ě Ψ
pqq
x pµθq

λΨ
pqq
x pµθ1q

1´λ. By the log-concavity of f we have

µλθ`p1´λqθ1pλx` p1´ λqyq “ fpλpx´ θq ` p1´ λqpy ´ θ1qq ě fpx´ θqλfpy ´ θ1q1´λ “ µθpxq
λµθ1pyq

1´λ (32)

for all x, y P R. Therefore by the Prékopa-Leindler inequality we have that

Ψpqqx pµλθ`p1´λqθ1q “

ż xrtqnu`1s

xrtqnus

µλθ`p1´λqθ1pxqdx ě

˜

ż xrtqnu`1s

xrtqnus

µθpxqdx

¸λ˜
ż xrtqnu`1s

xrtqnus

µθ1pxqdx

¸1´λ

“ Ψxpqqpµθq
λΨpqqx pµθ1q

1´λ

(33)

For the second direction, by assumption D a ă c, b ą c s.t.
a

fpxqfpyq ą fpx`y2 q @ x, y P ra, bs, i.e. f is strictly
log-convex on ra, bs. Let x P Rn be any dataset s.t. xrtqnu`1s ´ xrtqnus ď

b´a
2 and set θ “ xrtqnus ´ a, θ1 “ xrtqnus ´

a`b
2 .

Then we have
d

ż xrtqnu`1s

xrtqnus

µθpxqdx

ż xrtqnu`1s

xrtqnus

µθ1pxqdx “

d

ż xrtqnu`1s

xrtqnus

a

µθpxq
2
dx

ż xrtqnu`1s

xrtqnus

a

µθ1pxq
2
dx

ě

ż xrtqnu`1s

xrtqnus

a

µθpxqµθ1pxqdx

“

ż xrtqnu`1s

xrtqnus

a

fpx´ θqfpx´ θ1qdx

ą

ż xrtqnu`1s

xrtqnus

f

ˆ

x´
θ ` θ1

2

˙

dx “

ż xrtqnu`1s

xrtqnus

µ θ`θ1
2

pxqdx

(34)

where the first inequality is Hölder’s and the second is due to the strict log-convexity of f on ra, bs. Taking the logarithm of
both sides followed by their negatives completes the proof.

Finally, for the second result, since f is centered and log-concave, by Cule & Samworth (2010, Lemma 1)
there exist constants C, c ą 0 s.t. µθpxq ď C expp´c|x ´ θ|q @ θ P R. Let x “
`

θ `R´ nψ θ `R´ pn´ 1qψ ¨ ¨ ¨ θ `R´ 2ψ θ `R´ ψ
˘

, so that |xrtqnus ´ θ| ě |xr1s ´ θ| “ R ´ nψ ě R
2 .

Then

Ψpqqx pµθq “

ż xrtqnu`1s

xrtqnus

µθpxqdx ď Cψ expp´c|xrtqnus ´ θ|q ď Cψ expp´cR{2q (35)

so U pqqx pµq “ ´ log Ψ
pqq
x pµθq ě log 1

Cψ `
cR
2 .
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Variants of the first result have been shown in the censored regression literature (Burridge, 1981; Pratt, 1981). In fact,
Burridge (1981) shows convexity of U pqqx pµ xv,fy

φ , 1
φ
q w.r.t. pv, φq P RdˆRą0, i.e. simultaneous learning of a feature map and

inverse scale. Convexity of Ux “ ´ log Ψx “ log
řm
i“1

1

Ψ
pqiq
x

“ log
řm
i“1 expp´ log Ψ

pqiq
x q follows because log

řm
i“1 e

xi

is convex and non-decreasing in each argument. Note that for the converse direction, the dataset x is not a degenerate case;
in-fact if f is strictly log-convex over an interval ra, bs then any dataset whose optimal interval has length smaller than b´a

2

will yield a non-convex U pqqx pµθq.

C.1.2. THE CASE OF THE LAPLACIAN

For the Laplace prior with a “ xrtqnus and b “ xrtqnu`1s we have

´ logΨpqqx pµ θ
φ ,

1
φ
q

“ log 2´ log

ˆ

sign

ˆ

b´
θ

φ

˙ˆ

1´ exp

ˆ

´

ˇ

ˇ

ˇ

ˇ

b´
θ

φ

ˇ

ˇ

ˇ

ˇ

φ

˙˙

´ sign

ˆ

a´
θ

φ

˙ˆ

1´ exp

ˆ

´

ˇ

ˇ

ˇ

ˇ

a´
θ

φ

ˇ

ˇ

ˇ

ˇ

φ

˙˙˙ (36)

For θ ă aφ this simplifies to

log 2´ log
`

eθ´aφ ´ eθ´bφ
˘

“ log 2´ log
´

pe
b´a

2 φ ´ e
a´b

2 φqeθ´
a`b

2 φ
¯

“

ˇ

ˇ

ˇ

ˇ

θ ´
a` b

2
φ

ˇ

ˇ

ˇ

ˇ

´ log

ˆ

sinh

ˆ

b´ a

2
φ

˙˙

(37)

and similarly for θ ą bφ it becomes

log 2´ log
`

ebφ´θ ´ eaφ´θ
˘

“ log 2´ log
´

pe
b´a

2 φ ´ e
a´b

2 φqe
a`b

2 φ´θ
¯

“

ˇ

ˇ

ˇ

ˇ

a` b

2
φ´ θ

ˇ

ˇ

ˇ

ˇ

´ log

ˆ

sinh

ˆ

b´ a

2
φ

˙˙

(38)

On the other hand for θ P raφ, bφs it is

log 2´ log
´

2´ e´|bφ´θ| ´ e´|aφ´θ|
¯

“ log 2´ log
`

2´ eθ´bφ ´ eaφ´θ
˘

“ log 2´ log
´

e´
b´a

2 φ
´

2e
b´a

2 φ ´ eθ´
a`b

2 φ ´ e
a`b

2 φ´θ
¯¯

“
b´ a

2
φ` log 2´ log

´

2e
b´a

2 φ ´ eθ´
a`b

2 φ ´ e
a`b

2 φ´θ
¯

“
b´ a

2
φ´ log

ˆ

e
b´a

2 φ ´ cosh

ˆ

θ ´
a` b

2
φ

˙˙

(39)

Thus we have

U pqqx pµ θ
φ ,

1
φ
q “

#

b´a
2 φ´ log

`

exp
`

b´a
2 φ

˘

´ cosh
`

θ ´ a`b
2 φ

˘˘

if θ P raφ, bφs
ˇ

ˇθ ´ a`b
2 φ

ˇ

ˇ´ log
`

sinh
`

b´a
2 φ

˘˘

else
(40)

Suppose x P r˘Bsn and has the optimal interval has separation ψ ą 0, θ
φ P r˘Bs, and 1

φ P rσmin, σmaxs. Then
φ P r1{σmax, 1{σmins and θ P r˘B{σmins, and so

U pqqx pµ θ
φ ,

1
φ
q ď

2B

σmin
` log

2σmax

ψ
(41)

For θ R raφ, bφs, the derivative w.r.t. θ always has magnitude 1. Within the interval, the derivative w.r.t. θ is

´
sinhp a`b2 φ´θq

expp b´a2 φq´coshpθ´ a`b2 φq
, which attains its extrema at the endpoints aφ and bφ, where its magnitude is also 1. Out-

side the interval, the derivative w.r.t. φ has magnitude
ˇ

ˇ

ˇ

ˇ

a` b

2
sign

ˆ

a` b

2
φ´ θ

˙

´
b´ a

2
coth

ˆ

b´ a

2
φ

˙
ˇ

ˇ

ˇ

ˇ

ď
|a` b|

2
`
b´ a

2
coth

ˆ

b´ a

2
φ

˙

ď
|a` b|

2
`
b´ a

2

ˆ

2{φ

pb´ aq
` 1

˙

“
|a` b|

2
`
b´ a

2
`

1

φ

(42)
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while inside the interval the derivative w.r.t. φ is b´a
2 ´

pb´aq expp b´a2 φq´pa`bq sinhp a`b2 φ´θq

2pexpp b´a2 φq´coshp a`b2 φ´θqq
, which again attains its extrema

at the endpoints aφ and bφ, yielding magnitudes

b´ a

2
`
b´ a

2

ˆ

coth

ˆ

b´ a

2
φ

˙

` 1

˙

`
|a` b|

2
ď
b´ a

2

ˆ

2{φ

pb´ aq
` 3

˙

`
|a` b|

2
ď

1

φ
`

3

2
pb´ aq `

|a` b|

2
(43)

Thus we have
|BθU

pqq
x pµ θ

φ ,
1
φ
q| ď 1 and |BφU

pqq
x pµ θ

φ ,
1
φ
q| ď 4B ` σmax (44)

C.2. Public-private release

C.2.1. GUARANTEES

Theorem C.2. Suppose for N ě n we have a private dataset x „ Dn and a public dataset x1 „ D1N , both drawn
from κ-bounded distributions over r˘Bs. Use i.i.d. draws from the public dataset to construct T “ tN{nu datasets
x1t „ D1

n and run online gradient descent on the resulting losses `x1tpθ, ψq “ LSEip`
pqiq
xt pθris, φrisqq over the parameter

space θ P r˘B{σmins
m starting at θ “ 0m and φ P r1{σmax, 1{σmins

m starting at the midpoint, with stepsize B
a

m
T for θ

and σmax´σmin

4B`σmax

a

m
T for φ, obtaining iterates pθ1, φ1q, . . . , pθT , φT q. Return the priors µi “ µ θ̄ris

φ̄ris
, 1
φ̄ris

for θ̄ “ 1
T

řT
t“1 θt

and φ̄ “ 1
T

řT
t“1 φt the average of these iterates. Then µ1 “

`

µ1 ¨ ¨ ¨ µm
˘

satisfies

Ex„DnUxpµ
1q ď min

µPLapmB,σmin,σmax

Ex„DnUxpµq ` 2

ˆ

2B

σmin
` log

4κmpn` 1qNσmax

β1

˙

TVqpD,D1q

` pB ` 4Bσmax ` σ
2
maxq

c

mpn` 1q

N
` 2

ˆ

4B

σmin
` log

4κmpn` 1qNσmax

β1

˙

d

2pn` 1q

N
log

4

β1

`
pn` 1qβ1

N

ˆ

3`
4B

σmin
` 4 log

2κpn` 1qN
?

2mσmax

β1

˙

(45)

where LapB,σmin,σmax
is the set of Laplace priors with locations in r˘Bs and scales in rσmin, σmaxs.

Proof. DefineD1ψ
n to be the conditional distribution over z „ D1n s.t. ψz ě ψ, with associated density ρ1ψpzq “

ρ1pzq1ψzěψ

1´p1ψ
,

where p1ψ “
ş

ψzăψ
ρ1pzq ď κn2ψ. Then we have for any µ˚ P LapmB,σmin,σmax

that

Ez„DnUxpµ
1q “ Ez„DnUzpµ

1q ´ Ez„D1nUzpµ
1q ` Ez„D1nUzpµ

1q ´ Ez„D1ψ
nUzpµ

1q ` Ez„D1ψ
nUzpµ

1q

ď

ż

Uzpµ
1qpρpzq ´ ρ1pzqq `

ż

Uzpµ
1qpρ1pzq ´ ρ1ψpxqq ` Ez„D1ψ

nUzpµ
˚q ` Eψ

ď Ez„DnUxpµ
˚q `

ż

pUzpµ
1q ` Uxpµ

˚qq|ρpzq ´ ρ1pxq| `

ż

pUzpµ
1q ` Uzpµ

˚qq|ρ1pzq ´ ρ1ψpzq| ` Eψ
(46)

where Eψ is the error of running online gradient descent with the specified step-sizes on samples z1t „ D1ψ
n for t “ 1, . . . , T .

Now if z has entries drawn i.i.d. from a κ-bounded distribution Dn (or D1n), then we have that

ż ψ

0

ρψzpyqdy “ Prpψz ď ψ : z „ Dnq ď npn´ 1qmax
zPR

Prp|z ´ z1| ď ψ : z1 „ Dq ď κn2ψ (47)

where ρψz is the density of ψz for z „ Dn (not to be confused with the conditional density ρψ over z); the same holds for
the analog ρ1ψz

for D1n. Since this holds for all ψ ě 0 and log 1
y is monotonically decreasing on y ą 0, this means the worst-

case measure that ρψz can be is constant over r0, ψs and thus
şψ

0
ρψzpyq log 1

ydy ď κn2
şψ

0
log 1

ydy “ κn2ψp1 ` log 1
ψ q,

and similarly for ρ1ψz
. We then bound the first integral, noting that Uz “ LSEipU

pqiq
z q ď maxi U

pqiq
z ` logm ď
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2B
σmin

` log 2mσmax

ψz
and that the r.v. ψz depends only on the joint distribution over the order statistics of Dn and D1n:

ż

pUzpµ
1q ` Uzpµ

˚qq|ρpzq ´ ρ1pzq| ď

ż
ˆ

2B

σmin
` log

2mσmax

ψz

˙

|ρpzq ´ ρ1pzq|

ď 2

ˆ

2B

σmin
` log

2mσmax

ψ

˙

TVqpD,D1q `
ż

ψzăψ

|ρpzq ´ ρ1pzq| log
1

ψz

ď 2

ˆ

2B

σmin
` log

2mσmax

ψ

˙

TVqpD,D1q `
ż ψ

0

pρψzpyq ` ρ
1
ψz
pyqq log

1

y
dy

ď 2

ˆ

2B

σmin
` log

2mσmax

ψ

˙

TVqpD,D1q ` 2κn2ψ

ˆ

1` log
1

ψ

˙

(48)

For the second integral we have for p1ψ “
ş

ψzăψ
ρ1pzq ď κn2ψ that

ż

pUzpµ
1q ` Uzpµ

˚qq|ρ1pzq ´ ρ1ψpzq|

“

ż

ψzěψ

pUxpµ
1q ` Uzpµ

˚qq

ˇ

ˇ

ˇ

ˇ

ˇ

ρ1pzq ´
ρ1pzq

1´ p1ψ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ż

ψzăψ

pUzpµ
1q ` Uzpµ

˚qqρ1pzq

“
2p1ψ

1´ p1ψ

ż

ψzěψ

ˆ

2B

σmin
` log

2mσmax

ψ

˙

ρ1pzq `

ż

ψzăψ

ˆ

2B

σmin
` log

2mσmax

ψz

˙

ρ1pzq

“ 2p1ψ

ˆ

4B

σmin
` log

4m2σ2
max

ψ

˙

`

ż

ψzăψ

ρ1pzq log
1

ψz

ď 2κn2ψ

ˆ

4B

σmin
` log

4m2σ2
max

ψ

˙

` κn2ψ

ˆ

1` log
1

ψ

˙

(49)

Finally, we bound Eψ . By κ-boundedness of D1, the probability that D t P rT s s.t. ψz1t
ă ψ @ t P rT s is at most κn2Tψ, so if

we set ψ “ β1

2κn2T then w.p. ě 1´ β1{2 the sampling z1t from x1 as specified is equivalent to rejection sampling from D1ψ
n,

on which the functions Uz are bounded by 2B
σmin

` log 2mσmax

ψ . Therefore with probability ě 1´ β1{2 by Shalev-Shwartz
(2011, Theorem 2.21) and Theorem E.1 we have that w.p. 1´ β1{2

Eψ ď pB ` pσmax ´ σminqp4B ` σmaxqq

c

m

T
` 2

ˆ

4B

σmin
` log

2mσmax

ψ

˙
c

2

T
log

4

β1

“ pB ` 4Bσmax ` σ
2
maxq

c

mpn` 1q

N
` 2

ˆ

4B

σmin
` log

2mσmax

ψ

˙

d

2pn` 1q

N
log

4

β1

(50)

Combining terms and substituting the selected value for ψ yields the result.

C.2.2. EXPERIMENTAL DETAILS

For our public-private experiments we evaluate several methods on the Adult (“age” and “hours” categories) and Goodreads
(“rating” and “page count” categories). For the former we use the train set as the public data, while for the latter we use the
“History” genre as the public data and the “Poetry” genre as the private data (Wan & McAuley, 2018). The public data are used
to fit Laplace location and scale parameters using the COCOB optimizer run until progress stops. We use the implementation
here: https://github.com/anandsaha/nips.cocob.pytorch. All evaluations are averages of forty trials.

We use the following reasonable guesses for locations ν, scales σ, and quantile ranges ra, bs for these distributions:

• age: ν “ 40, σ “ 5, a “ 10, b “ 120

• hours: ν “ 40, σ “ 2, a “ 0, b “ 168

• rating: ν “ 2.5, σ “ 0.5, a “ 0, b “ 5

• page count: ν “ 200, σ “ 25, a “ 0, b “ 1000
1´q

Note that, here and elsewhere, using q-dependent range for b only helps the Uniform prior, which is the baseline. The scales
σ are used to set the scale parameter of the Cauchy distribution for public quantiles—its location is fixed by the
public quantiles. Meanwhile the locations ν are used to set to scale parameter of the half-Cauchy prior used to mix with
PubFit for robustness (using coefficient 0.1 on the robust prior). We choose this prior because the data are all nonnegative.
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C.3. Sequential release

C.3.1. GUARANTEES

Theorem C.3. Consider a sequence of datasets xt P r˘Rs
nt and associated feature vectors ft P r˘F s

d. Suppose
we set the component priors µt,i of µt as the Laplace distributions µt,i “ µ xvt,ifty

φt,i
, 1
φt,i

, where vt,i P r˘B{σmins
d

and φi P r1{σmax, 1{σmins are determined by separate runs of DP-FTRL with budgets pε1{2, δ1{2q and step-sizes η1 “

B
Fσmin

c

2mε11

rlog2pT`1qsT
´

1`
b

2md log T
β1

log 1
δ1

¯ , and η2 “
1{σmin

B`σmax

c

mε12

2rlog2pT`1qsT
´

1`
b

2m log T
β1

log 1
δ1

¯ . Then we have regret

max
wiPr˘Bs

d

σiPrσmin,σmaxs

T
ÿ

t“1

Uxtpµtq ´ Uxtpµxwi,fty,σiq ď
BpF ` 1q ` σmax

σmin

g

f

f

emdrlog2pT ` 1qsT

˜

4`
8

ε1

d

2md log
T

β1
log

2

δ1

¸

(51)
For sufficiently small ε1 (including ε1 ď 1) we can instead simplify the regret to

4

σmin

´

BFd
3
4 `B ` σmax

¯

g

f

f

e

mrlog2pT ` 1qsT

ε1

d

2m log
T

β1
log

2

δ1
(52)

Proof. Note that
m
ÿ

j“1

}∇vj LSEip`
pqiq
xt,ft

q}22 ď }ft}
2
2

m
ÿ

j“1

˜

expp`
pqjq
xt,ft

q
řm
i“1 expp`

pqiq
xt,ft

q

¸2

ď F 2d (53)

and
m
ÿ

j“1

pBφj LSEip`
pqiq
xt,ft

qq2 ď p4B ` σmaxq
2
m
ÿ

j“1

˜

expp`
pqjq
xt,ft

q
řm
i“1 expp`

pqiq
xt,ft

q

¸2

ď p4B ` σmaxq
2 (54)

and so applying Theorem B.1 twice with the assumed budgets and step-sizes yields

max
wiPr˘Bs

d

σiPrσmin,σmaxs

T
ÿ

t“1

Uxtpµtq ´ Uxtpµxwi,fty,σiq “ max
viPr˘

B
σmin

s
d

φiPr
1
σmax

, 1
σmin

s

T
ÿ

t“1

LSEip`
pqiq
xt,ft

pvt,i, φt,iqq ´ LSEip`
pqiq
xt,ft

pvi, φiqq

ď

m
ÿ

i“1

}v1,i ´ vi}
2
2

2η1
` η1rlog2pT ` 1qsT

˜

1`
2

ε1

d

2md log
T

β1
log

2

δ1

¸

m
ÿ

j“1

}∇vj LSEip`
pqiq
xt,ft

q}22

`

m
ÿ

i“1

pφ1,i ´ φiq
2

2η2
` η2rlog2pT ` 1qsT

˜

1`
2

ε1

d

2m log
T

β1
log

2

δ1

¸

m
ÿ

j“1

pBφj LSEip`
pqiq
xt,ft

qq2

ď
2B2md

η1σ2
min

` η1rlog2pT ` 1qsTF 2d

˜

1`
2

ε1

d

2md log
T

β1
log

2

δ1

¸

`
m

2η2σ2
min

` η2rlog2pT ` 1qsT pB ` σmaxq
2

˜

1`
2

ε1

d

2m log
T

β1
log

2

δ1

¸

ď
2BF

σmin

g

f

f

e2mdrlog2pT ` 1qsT

˜

1`
2

ε1

d

2md log
T

β1
log

2

δ1

¸

`
2

σmin
pB ` σmaxq

g

f

f

e2mrlog2pT ` 1qsT

˜

1`
2

ε1

d

2m log
T

β1
log

2

δ1

¸

ď
2

σmin
pBpF ` 1q ` σmaxq

g

f

f

emdrlog2pT ` 1qsT

˜

1`
2

ε1

d

2md log
T

β1
log

2

δ1

¸

(55)
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C.3.2. EXPERIMENTAL DETAILS

For sequential release we consider the following tasks:

• Synthetic is a stationary dataset generation scheme in which we randomly sample a one standard Gaussian vector
a for each feature dimension (we use ten) and another b of size m ` 2, which we sort. On each day t of T
we sample the public feature vector ft, also from a standard normal, and the “ground truth” quantiles qi on that
day are then set by xa, fty ` bri`1s. We generate the actual data by sampling from the uniform distributions on
rxa, fty ` bris, xa, fty ` bri`1ss. The number of points we sample is determined by t100{pm ` 1qu plus different
Poisson-distributed random variable for each; in the “noiseless” setting used in Figure 4 (left) the Poisson’s scale is
zero, so the “ground truth” quantiles are correct for the dataset, while for Figure 5 (left) we use a Poisson with scale
five. For the noiseless setting we use 100K timesteps, while for the noisy setting we use 2500.

• CitiBike consists of data downloaded from here: https://s3.amazonaws.com/tripdata/index.html,
We take the period from September 2015 through November 2022, which is roughly 2500 days, although days with
less than ten trips—seemingly data errors—are ignored. For each day we include a feature vector containing seven
dimensions for the day of the week, one dimension for a sinusoidal encoding of the day of the year, and six weather
features from the Central Park station downloaded from here https://www.ncei.noaa.gov/cdo-web/,
specifically average wind speed, precipitation, snowfall, snow depth, maximum temperature, and minimum temperature.
These are scaled to lie within similar ranges.

• BBC consists of Reddit’s worldnews corpus downloaded from here: https://zissou.infosci.cornell.
edu/convokit/datasets/subreddit-corpus/corpus-zipped/. We find all conversations corre-
sponding to a post of a BBC article, specified by the domain bbc.co.uk, and collect those with at least
ten comments. We compute the Flesch readability score of each comment using the package here https:
//github.com/textstat/textstat. The datasets for computing quantiles are then the collection of scores
for each headline; the size is roughly 10K, corresponding to articles between 2008 and 2018. As features we combine a
seven-dimensional day-of-the-week encoding, sinusoidal features for the day of the year and the time of day of the
post, information about the post itself (whether it is gilded, its own Flesch score, and the number of tokens), and finally
a 25-dimensional embedding of the title, set using a normalized sum of GloVe embeddings (Pennington et al., 2014) of
the tokens, excluding English stop-words via NLTK (Loper & Bird, 2002).

We again use reasonable guesses of data information to set the static priors, and to initialized the learning schemes.

• Synthetic: ν “ 0, σ “ 1, a “ ´100, b “ 100

• CitiBike: ν “ 10, σ “ 1, a “ 0, b “ 50{p1´ qq

• BBC: ν “ 50, σ “ 10, a “ ´100´ 100{p1´ qq, b “ 100` 100q

We use a and b for the static Uniform distributions, ν and σ for the static Cauchy distributions, in the case of nonnegative
data (CitiBike) we use ν for the scale of the half-Cauchy distribution, and for the learning schemes we initialize their Laplace
priors to be centered at ν with scale σ. We again use the COCOB optimizer for non-private and proxy learning, and for robust-
ness we mix with the Cauchy (or half-Cauchy for nonnegative data) with coefficient 0.1 on the robust prior. For the PubPrev
method, we set its scale using σ. For DP-FTRL, we heavily tune it to show the possibility of learning on the synthetic
task; the implementation is adapted from the one here: https://github.com/google-research/DP-FTRL. All
results are reported as averages over forty trials.
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D. Additional proofs for multiple quantile release
Lemma D.1. In Algorithm 2, for any i P rms we have

1. Gapq̃ipx̂i, oq ď Gapqipx, oq ` γ̂i @ o P R

2. Gapqipx, oq ď Gapq̃ipx̂i, oq ` γ̂i @ o P râi, b̂is

where γ̂i “ p1´ q̃iqGapq
i
px, âiq ` q̃i Gapqipx, b̂iq.

Proof. For o P râi, b̂is we apply the triangle inequality twice to get

Gapq̃ipx̂i, oq “ | max
x̂rjsăo

j ´ tq̃in̂iu|

“ | max
x̂rjsăo

j ` max
xrjsăâi

j ´ tqinu` tqinu´ max
xrjsăâi

j ´ tq̃in̂iu|

ď Gapqipx, oq `

ˇ

ˇ

ˇ

ˇ

ˇ

tq̃iptqinu´ tq
i
nuqu` tq

i
nu´ max

xrjsăâi
j ´ tq̃ip max

xrjsăb̂i

j ´ max
xrjsăâi

jqu

ˇ

ˇ

ˇ

ˇ

ˇ

ď Gapqipx, oq ` p1´ q̃iqGapq
i
px, âiq ` q̃i Gapqipx, b̂iq

(56)

and again to get

Gapqipx, oq “ | max
xrjsăo

j ´ tqinu|

“ | max
x̂rjsăo

j ` max
xrjsăâi

j ´ tq̃in̂iu` tq̃in̂iu´ tqinu|

ď Gapq̃ipx̂i, oq `

ˇ

ˇ

ˇ

ˇ

ˇ

max
xrjsăâi

j ´ tq̃ip max
xrjsăb̂i

j ` max
xrjsăâi

jqu´ tq̃iptqinu´ tq
i
nuqu´ tq

i
nu

ˇ

ˇ

ˇ

ˇ

ˇ

ď Gapq̃ipx̂i, oq ` p1´ q̃iqGapq
i
px, âiq ` q̃i Gapqipx, b̂iq

(57)

For o ă âi we use the fact that maxxrjsăo j ď maxxrjsăâi j and the triangle inequality to get

Gapq̃ipx̂i, oq “ tq̃in̂iu

“ tq̃ip max
xrjsăb̂i

j ´ max
xrjsăâi

jqu

ď tq̃i max
xrjsăb̂i

ju` tp1´ q̃iq max
xrjsăâi

ju´ max
xrjsăo

j

“ tq̃i max
xrjsăb̂i

ju` tp1´ q̃iq max
xrjsăâi

ju´ max
xrjsăo

j ` tqinu| ´ tq̃iptqinu´ tq
i
nuqu´ tq

i
nu

ď Gapqipx, oq ` p1´ q̃iqGapq
i
px, âiq ` q̃i Gapqipx, b̂iq

(58)

For o ą b̂i we use the fact that maxxrjsăb̂i
j ď maxxrjsăo j and the triangle inequality to get

Gapq̃ipx̂i, oq “ tp1´ q̃iqn̂iu

“ tp1´ q̃iqp max
xrjsăb̂i

j ´ max
xrjsăâi

jqu

ď max
xrjsăo

j ´ tq̃i max
xrjsăb̂i

j ´ tp1´ q̃iq max
xrjsăâi

j

“ max
xrjsăo

j ´ tq̃i max
xrjsăb̂i

j ´ tp1´ q̃iq max
xrjsăâi

j ´ tqinu` tq̃iptqinu´ tq
i
nuqu` tq

i
nu

ď Gapqipx, oq ` p1´ q̃iqGapq
i
px, âiq ` q̃i Gapqipx, b̂iq

(59)

28



Learning-augmented private algorithms for multiple quantile release

Lemma D.2. For any γ ą 0 the estimate oi of the quantile qi by Algorithm 2 satisfies

PrtGapqipx, oiq ě γu ď
exp pεipγ̂i ´ γq{2q

Ψ
pq̃i,εiq
x̂i

pµ̂iq
(60)

Proof. We use ki to denote the interval Îpjqk sampled at index i in the algorithm and note that oi corresponds to the released
number o at that index. Since oi P râi, b̂is, applying Lemma D.1 yields

PrtGapqipx, oiq ě γu “
n̂i
ÿ

j“0

Prtki “ ju1
Gapqi px,Î

piq
j qěγ

“

ni
ÿ

j“0

expp´εGapq̃ipx̂i, Î
piq
j q{2qµ̂ipÎ

piq
j q1Gapqi px,Î

piq
j qěγ

řn̂i
l“0 exppεuq̃ipx̂i, Î

piq
l q{2qµ̂ipÎlq

ď
exppεγ̂i{2q

Ψ
pq̃i,εiq
x̂i

pµ̂iq

ni
ÿ

j“0

expp´εGapqipx, Î
piq
j q{2qµ̂ipÎ

piq
j q1Gapqi px,Î

piq
j qěγ

ď
exppεpγ̂i ´ γq{2q

Ψ
pq̃i,εiq
x̂i

pµ̂iq

(61)

Lemma D.3. For any γ ą 0 the estimate oi of the quantile qi by Algorithm 2 with edge-based prior adaptation satisfies

PrtGapqipx, oiq ě γu ď
exppεpγ̂i ´ γ{2qq

Ψ
pqi,εiq
x pµiq

(62)

Proof. Applying Lemma D.1 yields the following lower bound on Ψ
pεiq
q̃i
px̂i, µ̂iq:

n̂i
ÿ

l“0

exppεuq̃ipx̂i, Î
piq
l q{2qµ̂ipÎ

piq
l q “ exppεuq̃ipx̂i, Î

piq
0 q{2qµipp´8, âisq ` exppεuq̃ipx̂i, Î

piq
n̂i
q{2qµiprb̂i,8qq

`

n̂i
ÿ

l“0

exppεuq̃ipx̂i, Î
piq
l q{2qµipÎlq

“

maxxrjsăâi
j

ÿ

l“0

expp´εGapq̃ipx̂i, Il X p´8, âisq{2qµipIl X p´8, âisq

`

n
ÿ

l“maxxrjsăb̂i
j

expp´εGapq̃ipx̂i, Il X rb̂i,8qq{2qµipIl X rb̂i,8qq

`

maxxrjsăb̂i
j

ÿ

l“maxxrjsăâi
j

expp´εGapq̃ipx̂i, Il X râi, b̂isqµipIl X râi, b̂isq

ě Ψpqi,εiqx pµiq expp´εγ̂i{2q

(63)

Substituting into Lemma A.2 yields the result.
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Lemma D.4. Suppose q0 ă q1 are two quantiles and o0 ą o1. Then

max
i“0,1

Gapqipx, oiq ě max
i“0,1

Gapqipx, o1´iq (64)

Proof. We consider four cases. If tq0|x|u ď maxxrjsăo1
j and tq1|X|u ď maxxrjsăo0

j then

tq0|x|u ď minttq1|x|u, max
xrjsăo1

ju ď maxttq1|x|u, max
xrjsăo1

ju ď max
xrjsăo0

j (65)

and so
max
i“0,1

Gapqipx, oiq “ max
xrjsăo0

j ´ tq0|x|u ě max
i“0,1

GapqipX, oi´1q (66)

If tq0|X|u ď maxxrjsăo1 j and tq1|x|u ą maxxrjsăo0 j then

tq0|x|u ď max
xrjsăo1

j ď max
xrjsăo0

j ă tq1|x|u (67)

and so both improve after swapping. If tq0|x|u ą maxxrjsăo1
j and tq1|x|u ą maxxrjsăo0

j then

max
xrjsăo1

j ď minttq0|x|u, max
xrjsăo0

ju ď maxttq0|x|u, max
xrjsăo0

ju ď tq1|x|u (68)

and so
max
i“0,1

Gapqipx, oiq “ max
xrjsăo1

j ´ tq1|x|u ě max
i“0,1

Gapqipx, oi´1q (69)

Finally, if tq0|x|u ą maxxrjsăo1 j and tq1|x|u ď maxxrjsăo0 j then

max
xrjsăo1

j ă tq0|x|u ď tq1|x|u ď max
xrjsăo0

j (70)

so swapping will make the new largest error for each quantile at most as large as the other quantile’s current error.
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E. Additional proofs for online learning
E.1. Online-to-batch conversion

Theorem E.1. Suppose an online algorithm sees a sequence `x1p¨q, . . . , `xT p¨q : Θ ÞÑ r0, Bs of convex losses whose data
x1, . . . ,xT are drawn i.i.d. from some distribution D, and let θ1, . . . , θT be its predictions. If maxθPΘ

řT
t“1 `xtpθtq ´

`xtpθq ď RT , θ̂ “ 1
T

řT
t“1 θt, and T “ Ω

´

Tα `
B2

α2 log 1
β1

¯

for Tα “ min2RTďTα T , then w.p. ě 1´ β1

Ex„D`xpθ̂q ď min
θPΘ

Ex„D`xpθq ` α (71)

Proof. This is a formalization of a standard procedure; we follow the argument in Khodak et al. (2022, Lemma A.1).
Applying Jensen’s inequality, Cesa-Bianchi et al. (2004, Proposition 1), the assumption that regret is ď RT , and Hoeffding’s
inequality yields

Ex„D`xpθ̂q ď
1

T

T
ÿ

t“1

Ex„D`xpθtq ď
1

T

T
ÿ

t“1

`xtpθtq `B

c

2

T
log

2

β1
ď min

θPΘ

1

T

T
ÿ

t“1

`xtpθq `
RT
T
`B

c

2

T
log

2

β1

ď min
θPΘ

Ex„D`xpθq `
RT
T
` 2B

c

2

T
log

2

β1

(72)

w.p. ě 1´ β1. Substituting the lower bound on T yields the result.

E.2. Negative log-inner-product losses

For functions of the form ftpµq “ ´ log
şb

a
stpoqµpoqdo, Balcan et al. (2021) showed ÕpT 3{4q regret for the case

stpoq P t0, 1u @ o P ra, bs using a variant of exponentiated gradient with a dynamic discretization. Notably their algorithm
can be extended to (non-privately) learn´ log Ψ

pqq
xt pµq, since st in this case is one on the optimal interval and zero elsewhere.

However, the changing discretization and dependence of the analysis on the range of st suggests it may be difficult to
privatize their approach. The discretized form ´ logxst,wy is more heavily studied, arising in portfolio management (Cover,
1991). It enjoys the exp-concavity property, leading to Opd log T q regret using the EWOO method (Hazan et al., 2007).
However, EWOO requires maintaining and sampling from a distribution defined by a product of inner products, which
is inefficient and similarly difficult to privatize. Other algorithms, e.g. adaptive FTAL (Hazan et al., 2007), also attain
logarithmic regret for exp-concave functions, but the only private variant we know of is non-adaptive and only guarantees
Op
?
T q-regret for non-strongly-convex losses (Smith & Thakurta, 2013). The adaptivity, which is itself data-dependent,

seems critical for taking advantage of exp-concavity.

Lemma E.1. If ftpµWq “ ´ log
řm
i“1

1{m
xst,i,Wrisy

for st,i P Rdě0 then }∇WftpµWq}1 ď d{γ @W P 4md s.t. Wri,js ě

γ{d @ i, j for some γ P p0, 1s.

Proof.

}∇WftpµWq}1 “

m
ÿ

i“1

}∇Wris
ftpµWq}1 “

˜

m
ÿ

i“1

1

xst,i,Wrisy

¸´1 m
ÿ

i“1

d
ÿ

j“1

st,irjs

xst,i,Wrisy
2

ď

˜

m
ÿ

i“1

1

xst,i,Wrisy

¸´1 m
ÿ

i“1

1

xst,i,Wris dWrisy
ď d{γ

(73)

where the first inequality follows by Sedrakyan’s inequality and the second by Wri,js ě γ{d.
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E.2.1. PROOF OF LEMMA B.1 FOR m ą 1

Proof. Let x̃t be a neighboring dataset of xt constructed by adding or removing a single element, and let U pεqx̃t
be the

corresponding loss function. We note that changing from xt to x̃t changes the value of Gapqipxt, oq at any point o P ra, bs
by at most ˘1 and so the value of the exponential score at any point o P ra, bs is changed by at most a multiplicative factor
expp´εi{2q in either direction. Therefore

s̃t,irjs “

ż a` b´ad j

a` b´ad pj´1q

expp´εi Gapqipx̃t, oq{2qdo

P expp˘εi{2q

ż a` b´ad j

a` b´ad pj´1q

expp´εi Gapqipxt, oq{2qdo “ expp˘εi{2qst,irjs

(74)

where ˘ indicates the interval between values.

}∇WU pεqxt pWq ´∇WU
pεq
x̃t
pWq}F

“

g

f

f

f

e

m
ÿ

i“1

d
ÿ

j“1

¨

˝

˜

m
ÿ

i1“1

1

xst,i1 ,Wri1sy

¸´1
st,irjs

xst,i,Wrisy
2
´

˜

m
ÿ

i1“1

1

xs̃t,i1 ,Wri1sy

¸´1
s̃t,irjs

xs̃t,i,Wrisy
2

˛

‚

2

“

˜

m
ÿ

i1“1

1

xst,i1 ,Wri1sy

¸´1

g

f

f

f

e

m
ÿ

i“1

d
ÿ

j“1

˜

st,irjs

xst,i,Wrisy
2
´

s̃t,irjs

xs̃t,i,Wrisy
2

řm
i1“1

1
xst,i1 ,Wri1sy

řm
i1“1

1
xs̃t,i1 ,Wri1sy

¸2

“

˜

m
ÿ

i1“1

1

xst,i1 ,Wri1sy

¸´1

g

f

f

f

e

m
ÿ

i“1

d
ÿ

j“1

s2
t,irjs

xWt,i,Wrisy
4

¨

˝1´
xgt,i,xrisy2

xs̃t,i,Wrisy
2

řm
i1“1

s̃t,irjs
xst,i1 ,Wri1sy

řm
i1“1

st,irjs
xs̃t,i1 ,Wri1sy

˛

‚

2

ď

˜

m
ÿ

i1“1

1

xst,i1 ,Wri1sy

¸´1 m
ÿ

i“1

d
ÿ

j“1

st,irjs

xst,i,Wrisy
2
|1´ κi,j | ď

d

γ
max
i,j
|1´ κi,j |

(75)

where we have

κi,j “
xst,i,Wrisy

2

xs̃t,i,xrisy2

m
ř

i1“1

s̃t,irjs
xst,i1 ,Wri1sy

m
ř

i1“1

st,irjs
xs̃t,i1 ,Wri1sy

P
xst,i,Wrisy

2

xst,i,Wrisy
2 expp˘εiq

m
ř

i1“1

st,irjs expp˘
ε
i1
2 q

xst,i1 ,Wri1sy

m
ř

i1“1

st,irjs

xst,i1 ,Wri1sy expp˘
ε
i1
2 q

“ expp˘2 max
i
εiq (76)

Substituting into the previous inequality and taking the minimum with the `1 bound on the gradient of the losses from
Lemma E.1 yields the result.

E.2.2. SETTINGS OF γ AND d FOR COROLLARY B.3

1. λ-robust and discrete µris P F
pλq
0,d : γ “ λ

2. λ-robust and V -Lipschitz µris P F
pλq
V,1 : γ “ λ and d “

S

d

V pb´aq3

ψ̄

c

´

1` mint1,ε̃mu
ε1

¯

T

W

3. discrete µris P F0,d: γ “
?
md 4

b

1`mint1,ε̃mu{ε1

T

4. V -Lipschitz µris P FV,1: γ “
?
m 4

b

V pb´aq3

ψ̄
8

b

1`mint1,ε̃mu{ε1

T and

d “

S

d

V pb´aq3

ψ̄

c

´

1` mint1,ε̃mu
ε1

¯

T

W
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Algorithm 2: ApproximateQuantiles with predictions
Input: sorted unrepeated data x P pa, bqn, ordered quantiles q1, . . . , qm P p0, 1q,
priors µ1, . . . , µm : R ÞÑ Rě0, prior adaptation rule r P{conditional,edge},
privacy parameters ε1, . . . , εm ą 0, branching factor K ě 2
// runs single-quantile algorithm on datapoints x̂
Method quantile(x̂, q, ε, µ):

Output: o P pa, bq w.p. 9 expp´εGapqpx̂, oq{2qµpoq

Method recurse(j, q, q, â, b̂):
// determines K ´ 1 indices i whose quantiles to compute at this node
if |j| ě K then

iÐ
`

jrr|j|{Kss, ¨ ¨ ¨ , jrrpK´1q|j|{Kss

˘

else
iÐ j

// restricts dataset to the interval pâ, b̂q
ki Ð minxrksąâ k

ki Ð maxxrksăb̂
k

x̂i Ð
`

xrkis, ¨ ¨ ¨ ,xrkis
˘

// sets relative quantiles q̃i and restricts priors to the interval râ, b̂s
for j “ 1, . . . , |i| do

q̃irjs Ð pqirjs ´ qq{pq ´ qq

if r “ conditional then

µ̂irjspoq Ð
µirjs

poq

µirjs
prâ,b̂sq

1oPrâ,b̂s

else
µ̂irjspoq Ð µirjspoq1oPpâ,b̂q ` µirjspp´8, âsqδpo´ âq ` µirjsprb̂,8qqδpo´ b̂q

// computes K ´ 1 quantiles oi and sorts the results

oi Ð
`

quantile(x̂i, q̃ir1s , εir1s{|i|, µ̂ir1s) , ¨ ¨ ¨ , quantile(x̂i, q̃ir|i|s , εir|i|s{|i|, µ̂ir|i|s)
˘

oi Ðsort(oi)
// recursively computes remaining indices on the K intervals induced by oi

if |j| ă K then
oÐ oi

else
oÐ concat(recurse(

`

jr1s, ¨ ¨ ¨ , jrr|j|{Ks´1s

˘

, q, qir1s , â,or1s),
`

or1s
˘

)

for j “ 2, . . . , |i| do
oÐconcat(o, recurse(

`

jrrpj´1q|j|{Ks`1s, ¨ ¨ ¨ , jrrj|j|{Ks´1s

˘

, qirj´1s
, qirjs ,orj´1s,orjs))

oÐconcat(o,
`

orjs
˘

)

oÐ concat(o, recurse(
`

jrrpK´1q|j|{Ks`1s, ¨ ¨ ¨ , jr|j|s
˘

, qirK´1s
, q,orK´1s, b̂))

Output: o
Output: recurse(

`

1, ¨ ¨ ¨ ,m
˘

, 0, 1,´8,8)
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