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ABSTRACT

Machine Learning Force Fields (MLFFs) are of great importance for chemistry,
physics, materials science, and many other related fields. The Clebsch–Gordan
transform (CG transform) effectively encodes many-body interactions and is
thus an important building block for many models of MLFFs. However, the
permutation-equivariance requirement of MLFFs limits the design space of CG
transform, that is, intensive CG transform has to be conducted for each neighbor-
ing edge and the operations should be performed in the same manner for all edges.
Freeing up the design space can greatly improve the model’s expressiveness while
simultaneously decreasing computational demands. To reach this goal, we utilize
a mathematical proposition, invariance transitivity, to show that implementing the
CG transform layer on the permutation-invariant abstract edges allows complete
freedom in the design of the layer without compromising the overall permutation
equivariance. Developing on this free design space, we further propose group
CG transform with sparse path, abstract edges shuffling, and attention enhancer to
form a powerful and efficient CG transform layer. Our method, known as FreeCG,
achieves state-of-the-art (SOTA) results in force prediction for MD17, rMD17,
MD22, and is well extended to property prediction in QM9 datasets with several
improvements greater than 15% and the maximum beyond 20%. The extensive
real-world applications showcase high practicality. FreeCG introduces a novel
paradigm for carrying out efficient and expressive CG transform in future geo-
metric network designs. To demonstrate this, the recent SOTA, QuinNet, is also
enhanced under our paradigm. Code and checkpoints will be publicly available.

1 INTRODUCTION

Machine Learning Force Fields (MLFFs) are of great importance for drug development (Chen et al.,
2024), materials science (Liu et al., 2024), chemical reaction kinetics (Meuwly, 2021), nanotech-
nology (Wang et al., 2023b), among others. It offers a satisfactory trade-off between accuracy and
efficiency, which is expected to perform as powerful as Density Functional Theory (DFT) (Kohn &
Sham, 1965) or other high accuracy references (Martin, 2020; Ceperley & Alder, 1980; Bartlett &
Musiał, 2007), but with orders-of-magnitude speedup (Cui et al., 2024; Wang et al., 2023c; 2024;
Musaelian et al., 2023; Batzner et al., 2022; Drautz, 2019; Batatia et al., 2022b; Thölke & De Fab-
ritiis, 2021; Schütt et al., 2018; Chmiela et al., 2017).

Graph Neural Networks (GNNs) perform SOTA on several MLFFs benchmarks (Schütt et al., 2018;
2021). Group and group representation theory play important roles in the design of GNNs for
MLFFs. For instance, rotation invariance is generally required in these works, as we naturally re-
quire the potential energy unchanged w.r.t. rotations of the input molecule. A recent design trend is
to maintain rotation, reflection, and translation equivariance in the design of neural networks. They
hope the internal features can move with respect to the input molecule, enabling higher expres-
sive power. GNNs that obey this property are called Equivariant Graph Neural Networks (EGNNs)
(Thomas et al., 2018; Satorras et al., 2021; Gasteiger et al., 2020b; Vaswani et al., 2017; Fuchs et al.,
2020; Liao & Smidt, 2022). To better model many-body interactions, irreducible representations
(irreps) are adopted to represent high-order geometric objects. In this context, the Clebsch-Gordan
(CG) transform is used to translate between different irreps. Several works leverage such high de-
gree irreps or tensors, showing significant performance boost (Batatia et al., 2022b; Batzner et al.,
2022; Musaelian et al., 2023; Gasteiger et al., 2021; Thomas et al., 2018; Simeon & De Fabritiis,
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2024). However, the benefit of high degree irreps and CG transform performed on them is at the
cost of heavy computational overhead. The reason is, tensors are extensions of scalars and vec-
tors, and in this way CG transform also extends the dot product. Thus, the higher the degree of
irreps for the CG transform, the greater the computational demands. The requirements for being
permutation equivariant make this burden hard to alleviate. Unlike rotation or translation equivari-
ance, permutation equivariance is often implicitly guaranteed in EGNNs, which means the order
of internal features should changes according to it of input atoms. To maintain permutation equiv-
ariance, EGNNs require each node to receive information from neighboring atoms together with
the edges linking them, where the heavy computation of CG transform occurs for each neighboring
atom and edge. This means we cannot naı̈vely remove some neighbor computations, as it will break
permutation equivariance. Moreover, the narrowness of the design space prevents us from freely
constructing the CG transform layer, and thus limits the expressivity of models. For instance, we
need to operate on each neighboring atom in an equal way (e.g., the predecessors typically assign
a same MLP operating on scalar features of the edge to produce the weights for each computation
between the central atom and each neighboring one (Batzner et al., 2022; Musaelian et al., 2023)).

In this work, to confront this challenge, we propose FreeCG. The model generates and refines ge-
ometric features from the surrounding edges near each atom. We call the different aggregated edge
geometric features abstract edges, which are permutation invariant when we consider the internal
features maintained by a given atom w.r.t. the neighbouring atoms and edges. By the invariance
transitivity, we show that CG transform on these abstract edges is also permutation invariant, re-
gardless of designs, and does not affect the permutation equivariance of the layer, thus being free
of the burdens above. Furthermore, the abstract edges are constructed from different real edges, so
they contain refined features of them for better model expressive power. The invariance nature of
abstract edges allows us to assign different weights to different edges, instead of weights computed
by the same MLP. The free design space allows us to do more. We put abstract edges into groups,
and operate on each group individually, to further decrease the computation demands. Previous
works that keep E(3)-equivariance are more expensive (Batzner et al., 2022; Musaelian et al., 2023),
as they require an extra parity argument being 1 or −1, and thus the number of irreps is doubled.
Instead, we select an efficient set of paths for CG transform so that we maintain E(3)-equivariance
while being more efficient than keeping SE(3)-equivariance. The abstract edges shuffling, inspired
by (Zhang et al., 2018), is also implied for combination of irreps features. The abstract edges are
then plugged back into the cross-attention calculation to improve the quality of the attention scores.
The operations above are available thanks to the invariance properties of the abstract edges.
The contributions are summarized as follows:
1) We utilize the invariance transitivity with permutation-invariant abstract edges to resolve a major
challenge in the current EGNNs: the narrowness design space of CG transform, which results in
reduced expressivity and high computation overhead.
2) We propose FreeCG, comprising of three main components: Group CG transform with sparse
path, abstract edges shuffling, and Attention enhancer. These contribute to an informative and
efficient model with high-order irreps and CG transform.
3) Experiments on small molecule datasets MD17, rMD17, large molecules ones MD22, and molec-
ular property datasets QM9 reveal the SOTA performance of FreeCG, with several improvements
beyond 15%. The extensive real-world applications further indicate the practicality.
4) This work presents a new paradigm for CG transform in future research, extending beyond the
design presented here. We further enhance QuinNet (Wang et al., 2023c) under this paradigm to
demonstrate this point.

2 RELATED WORKS
Maintaining E(3)-/SE(3)-equivariance has become a popular trend in the design of neural networks
for MLFFs. The challenge lies in how to properly construct geometric objects that are better capable
of modeling the atomic environment. In general, the methods can be categorized into two lines:

Methods with geometric vectors. Several methods directly work on regular geometric vectors
(Schütt et al., 2021; 2018; Gasteiger et al., 2020b;a). The starting point of this line of works is about
covering necessary information for MLFFs. For instance, SchNet (Schütt et al., 2018) first intro-
duces continuous-filter to MLFFs, but only distance information is covered. DimeNet (Gasteiger
et al., 2020b) further considers bond angle information to obtain higher capacity. To make models
capable of capturing many-body interactions, most of the following models in this line explicitly
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Figure 1: The architecture of a single layer of FreeCG. The cross-attention mechanism generates
abstract edges through a permutation-invariant process. The abstract edges are also used to enhance
the quality of the attention score, denoted as Attention Enhancer. In the right part, the Group CG
transform organizes abstract edges into groups and performs the CG transform on each group. We
adopt sparse path for CG transform, enabling lower computation demands while maintaining O(3)
equivariance. Abstract edges shuffling improves the information exchange between different irreps.
Details for sparse path and abstract edges shuffling can be referred to Fig. 2. Better viewed in color.

encode such types of interactions (Thölke & De Fabritiis, 2021; Wang et al., 2024; 2023c). This
is commonly done via calculating different angles between atoms or surfaces (e.g., torsion angle,
improper angle (Wang et al., 2024), dihedral angle (Wang et al., 2023c)). The irreducible repre-
sentations (irreps) and Clebsch-Gordan (CG) transform, on the other hand, can implicitly encode
many-body interactions in well-defined mathematical objects. This work presents FreeCG with
highly efficient and expressive CG transform layers, significantly outperforming previous works by
maximum margins and with minor computational load.

Methods equipped with irreps and CG transform. Applying irreps and CG transform to Equivari-
ant Graph Neural Networks (EGNNs) was first proposed as more of a conceptual framework, known
as Tensor Field Network (Thomas et al., 2018). Several works have been proposed on top of this
foundation. For instance, NequIP (Batzner et al., 2022) has implemented the idea to construct high-
order irreps, and shows state-of-the-art (SOTA) results for MLFFs. Allegro (Musaelian et al., 2023)
resolves the challenges of the scaling issue, which makes it possible to run parallelly on a large
number of GPUs. SE(3)-Transformer (Fuchs et al., 2020) first proposes equivariant dot-product
for generating self-attention. Equiformer (Liao & Smidt, 2022) further achieves E(3)-equivariance
combining MLP attention and non-linear messages. MACE (Batatia et al., 2022b) extends classic
body order expansion methods, Atomic Cluster Expansion (ACE) (Drautz, 2019), to a hierarchical
framework. CG transform is a fundamental building block in these works, but with a limited design
space, affecting both performance and efficiency. In this work, we completely free the design space
of CG transform and propose a novel model, FreeCG, performing strong SOTA and showing high
efficiency for MLFFs, which is also a new design paradigm for future works.

3 METHODS
3.1 BACKGROUND

Group, equivariance and invariance. Permutation, rotation, and translation form different groups
in group theory. Formally, a set with a binary operation (G, ∗) is said to be a group if and only if
the following conditions hold: 1) g1 ∗ g2 ∈ G, for any g1, g2 ∈ G (closure) 2) (g1 ∗ g2) ∗ g3 =
g1 ∗ (g2 ∗ g3), for any g1, g2, g3 ∈ G (associativity) 3) There exists a group element e ∈ G, such that
g∗e = e∗g = g, for any g ∈ G. (e identity element) 4) There is a group element g′ w.r.t. g, such that
g ∗ g′ = g′ ∗ g = e, for each g ∈ G (g′ inverse element). The group elements g ∈ G, according to
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Figure 2: Details on sparse path and abstract edges shuffling. Left: The sparse path holds two useful
properties: 1) The number of paths is less than the weaker SO(3) equivariance (4 vs. 8). 2) Each
output irreps contains the information from input ones with both degree l = 1 and l = 2. Right:
The shuffling strategy is to add a constant k for the index of each abstract edge. The shuffled result
is then added by ÊL

i , and get the final added value dE
L+1

i . Better viewed in color.

the representation theory, can be represented as linear transformations PV (g) ∈ GL(V ) on vector
space V . Given a function f : X → Y , where X and Y are vector spaces. It is said to be G-
equivariant if and only if f(PX(g)x) = PY (g)f(x), for any g ∈ G. G-invariance is a special
case when PY (g) is an identity matrix. Permutation equivariance and E(3)-equivariance are two
properties each layer of our model obeys. Permutation equivariance means the index of node or edge
features will be consistent when passing a layer. E(3)-equivariance covers rotation, translation, and
reflection, where the translation is explicitly guaranteed via only considering the relative distances
between atoms, thus we consider O(3)-equivariance where translations are omitted. It is intuitive to
correspondingly change directional features when the whole molecule rotates or reflects.

Tensor, irreps and CG transform. Tensors are high-dimensional generalizations of scalars, vec-
tors, and matrices. Scalars and vectors are both special cases of Cartesian tensors. Tensor product
can generate high-rank tensors from low-rank ones. Formally, tensors are the results of tensor prod-
uct of several vectors and covectors. In our context, it is not essential to distinguish between vectors
and covectors. Tensors representing groups can be further decomposed to the direct sum of irreps.
For example, tensors of SO(3) (omit reflection compared to O(3)) on 9-space (from tensor product
of two 3 × 3 rotation matrix) can be decomposed into 1 × 1 (l = 0), 3 × 3 (l = 1), and 5 × 5
(l = 2) irreps, which are called Wigner-D matrices. In EGNNs, we often project the distance vector
between atoms onto the unit sphere S2 with the central atom as the center of sphere. Actually, S2 is
homomorphic to the quotient group SO(3)/SO(2), thus it also has its own irreps, e.g., l = 0 scalar
and l = 1 vector. S2 irreps are the main features we maintain in our model, where irreps with degree
l has 2l + 1 elements, which are often indexed by m. To combine these features, we can calculate
the tensor product between them, and the results can, again, be decomposed to irreps. This process
is known as CG transform, which utilizes CG coefficients to perform transformations. For instance,
A1,l2l3 7→l1

m1
=

∑
m2,m3

Cl1l2l3
m1m2m3

A2,l2
m2

A3,l3
m3

, where Al are S2 irreps, m denotes the elements of ir-
reps, and C the CG coefficient. To satisfy O(3), we consider an additional variable, parity p, which
takes the values of 1 or −1. Irreps with p = −1 will be inverse when the space is reflected, and
p = 1 unchanged. The above formula of CG transform becomes:

A1,l2p2l3p3 7→l1p1
m1

= 1(p1=p2p3)

∑
m2,m3

Cl1l2l3
m1m2m3

A2,l2p2
m2

A3,l3p3
m3 (1)

where 1(expression) is the indicator function, outputting 1 if expression is true, and 0 otherwise.
Given a vector (l = 1 S2 irreps), we can lift it to irreps with arbitrary degree l and p = (−1)l, via
a series of real spherical harmonics (Y l

m=1, ..., Y
l
m=2l+1). For further details about group theory,

we refer interested readers to related books and papers (Zee, 2016; Raczka & Barut, 1986; Thomas
et al., 2018; Jeevanjee, 2011; Cohen et al., 2018).

3.2 PROBLEM ANALYSIS

The task of force field prediction can be formalised as follows: Given a set of atoms with their
positions and atom types {X,Z}, the neural network fθ with parameter θ aims to predict the energy,
and by which it derives the predicted force on each atom. In each layer of NequIP (Batzner et al.,
2022), messages from neighboring atoms are aggregated and combined with the features of the
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central atom. The messages are created via CG transform between the irreps. Here, we revisit the
critical step constructing messages to a central atom a in NequIP:

Llepelnpn 7→lopo
acmo

(X,N) = 1(po=pepn)

∑
memn

Cloleln
momemn∑

b∈N (a)

(R(∥r⃗ab∥)lolelnc )Y le
me

(
r⃗ab

∥r⃗ab∥
)N lnpn

bcmn

(2)

where N (a) is the set of neighboring atoms of atom a. R is a MLP. ∥∗∥ is Euclidean norm.
Nb is the features of node b. r⃗ab is the vector pointing from atom a to b. Consider the vec-
tor function form of Eq. 2: Llepelnpn 7→lopo

cmo
= (Llepelnpn 7→lopo

1cmo
,Llepelnpn 7→lopo

2cmo
, ...), which is

permutation equivariant w.r.t. permutation operations acting on X and Z. Formally, it means
Llepelnpn 7→lopo

cmo
(PXX,PZZ) = PLLlepelnpn 7→lopo

cmo
(X,Z). Put simply, if we exchange the in-

dexes of two atoms, for example, 1 and 2, and feed them into function Llepelnpn 7→lopo
cmo

, it equals
to that we directly change the index 1 and 2 of the output of function Llepelnpn 7→lopo

cmo
, which is

(Llepelnpn 7→lopo

2cmo
,Llepelnpn 7→lopo

1cmo
, ...). This property is simple and very important for the molecular

neural networks, as the indexes of atomic features should change correspondingly w.r.t. the changes
of atom indexes, and the feature values for each atom should stay unchanged.

Most works take this property for granted. However, the permutation equivariance is actually im-
portant but vulnerable. It limits the design space to a very small scope, and make the network poorly
scalable when the number of neighbors arises. Specifically, it brings the following issues:
Problem 1 The CG transform layer scales as O(

∑
i card(N (i))), where card(X) is the number

of elements in set X . One cannot arbitrarily remove calculations for a specific neighboring atom
because it would break the permutation equivariance.

Problem 2 The design space is limited for maintaining permutation equivariance. For example, in
Eq. 2, the formulation and the parameters of R should be the same across different neighboring
atoms, thus forbidding the design for complicated CG transform layers.
Problem 1 poses heavy computation challenges, as the CG transform itself is very time-consuming,
compared to dot product and element-wise multiplication. We provide a detailed analysis for the
efficiency of CG transform in Sec. A.6. On the other hand, the narrowness for design space brought
by problem 2 makes it hard to design a high expressive CG transform layer, as only limited struc-
tures can be designed to maintain permutation equivariance. To address these problems, we aim to
free the CG transform in messages transmissions from the constraints of permutation equivariance
without compromising the overall equivariance of the network. Here, we leverage a simple and
useful mathematical property. Consider a function h that can be written as:

h(x) = h
′
(h1(x), h2(x), ...) (3)

if h∗(x) are all G-invariant, then, regardless of how we design h
′
, the overall function h must be

G-invariant as well. The proof is simple, as:

h
′
(h1(PX(g)x), h2(PX(g)x), ...) = Ph(e)h

′
(h1(x), h2(x), ...) (4)

Here, the invariance we study is about the internal features of a given atom w.r.t. the neighbours.
Specifically, it is the sum

∑
b∈N (a)(R(∥r⃗ab∥)lolelnc )Y le

me
( r⃗ab

∥r⃗ab∥ )N
lnpn

bcmn
, and the term for each b.

Such invariant components guarantee the equivariance of the layer mentioned above. Thus, we can
freely design the function h

′
once we have these invariant functions h∗.

3.3 FREECG
Abstract edges. The above proposition presents an elegant way to solve problem 1 and 2. The idea is
to put CG transform inside the function h

′
, and by the conclusion, we can completely free the design

space of the CG transform. The first step is to construct the permutation invariant function h∗. To
emphasize the geometric information, we want these h∗’s to be the aggregation of edge features.
We call h∗’s abstract edges. For the concrete design, we take the transformer architecture in ViSNet
(Wang et al., 2024) as an efficient tool to construct abstract edges. The detailed information of the
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complete implementation is in the Sec. A.2. In ViSNet, each edge maintains high-degree features
Eij = El=1

ij ⊕ El=2
ij consisting of irreps El

ij = Y l(r⃗ij/∥r⃗ij∥). The above features are invariant to
layer index L. The computed attention aL,t

ij is multiplied to each edge. The sum of them ÊL
i,t =∑

ij∈E(i) a
L
ij,tEij forms an temporary abstract edge, where we omit the degree l, and L the index of

the layer. t denotes the index of the t-th abstract edges (ÊL
i,t=1, Ê

L
i,t=2, ...). In the original ViSNet,

it was used to update the geometric feature dE
L+1

i = ÊL
i + oL,1

i · Linear(EL

i ), where Linear is a
fully-connected linear operation, which performs across the dimension of t, thus does not break the
equivariance, and oL,1

i is a variable generated from the node feature, as we will introduce in Sec.
A.2. We utilize that ÊL and E

L
fits the requirements of h∗ in our proposition, take them as abstract

edges, and propose methods to construct CG transform function h
′

upon it. The proof that each
abstract edge meets the requirement for h∗, namely, it is permutation invariant, is in Sec. A.4.

Group CG transform. The number of abstract edges is decided by us, so the complexity for
computing CG transform in Problem 1 is controlled to be constant. The proposition above gives
us complete freedom to construct the CG transform function h

′
, expanding the design space to

maximum, alleviating Problem 2. The idea is to use CG transform function h
′

to replace the updating
mechanism of E in ViSNet. A naı̈ve attempt is to directly take the CG transform between E

L
and

ÊL to acquire E
L+1

. However, we want to further decrease the O(T 2) time complexity for the CG
transform, where T is the number of abstract edges, even though it is a constant number. Leveraging
the unlimited freedom in constructing h, and taking inspiration of group convolution (Krizhevsky
et al., 2012), we propose group CG transform (distinct from the group in group theory). We first
split the abstract edges of E

L
and ÊL into groups, where each index of abstract edge belongs to

some group Ug , the integer g ranges from 1 to G, and G a hyper-parameter for the number of total
groups. Then a group CG transform acts as:

dE
′L+1,lo,po

i,tomo
= 1(po=p1p2)o

L,1
∑
l1,l2

∑
m1,m2

Clo,l1,l2
mom1m2∑

t1,t2∈Ug

W lo,l1,l2
tot1t2 Linear(E

L

i )
l1,p1

t1m1
ÊL,l2,p2

i,t2m2

(5)

where to ∈ Ug . The group CG transform decreases the time complexity to O(T 2/G). Here, the
parameters W for CG transform are also worth emphasizing. They are not necessary to be kept the
same across different abstract edges t to keep permutation equivariance, and do not need to adopt
the same MLP for each edge to calculate weights. Thus, we directly assign different weights W for
different abstract edges to simplify the model design. In contrast to previous methods, We save the
computational cost for calculating weights for each edge.

Sparse path. Typically, ensuring SO(3) equivariance is considered more efficent than ensuring
O(3) equivariance. It is because we often need to consider both p = 1 and p = −1 for a single l
for O(3), thus the total computation is quadrupled, and memory usage is doubled. Here we propose
a method to keep O(3) while being more efficient than SO(3). We only keep (l = 1, p = −1)
and (l = 2, p = 1), which is same as the order of directly using spherical harmonics. In such
way, It suffices that each output irreps containing information from both input irreps through CG
transform, as (l = 1, p = −1) ∗ (l = 2, p = 1) 7→ (l = 1, p = −1), (l = 1, p = −1) ∗ (l =
1, p = −1) 7→ (l = 2, p = 1), (l = 2, p = 1) ∗ (l = 2, p = 1) 7→ (l = 2, p = 1), and
(l = 1, p = −1) ∗ (l = 1, p = −1) 7→ (l = 2, p = 1). There are only 4 path in contrast to 8 path for
SO(3), being O(3) equivariant but more efficient than being SO(3) equivariant, illustrated in Fig. 2.

Abstract edges shuffling. Inspired by ShuffleNet (Zhang et al., 2018), we can also shuffle the
abstract edges to make the information exchanged comprehensively. We shuffle all the abstract
edges. Specifically, we increase the indices of all irreps by ⌊1.5 ∗ T/G⌋. If the index exceeds T ,
we start counting from 1 again. Theoretically, the shuffling strategy can be arbitrary as long as
maintaining the same strategy for each layer during every inference. This process is also depicted in
Fig. 2. The ablation on different strategies is shown in Sec. 4.4.

Abstract edges enhance cross-attention. The transformer integrates neighboring atoms informa-
tion in the model through cross-attention mechanism, which aims to capture relations for those atoms
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Table 1: Performances on MD17 dataset. The results are reported in mean abosolute error (MAE).
The energies and forces are measured in kcal/mol and kcal/mol/Å, respectively. The best numbers
are marked in bold.
Molecule SchNet DimeNet PaiNN SpookeyNet ET GemNet NequIP SO3KRATES ViSNet QuinNet FreeCG

Energy Prediction

Aspirin 0.37 0.204 0.167 0.151 0.123 - 0.131 0.139 0.116 0.119 0.110
Ethanol 0.08 0.064 0.064 0.052 0.052 - 0.051 0.052 0.051 0.050 0.049
Malondialdehyde 0.13 0.104 0.091 0.079 0.077 - 0.076 0.077 0.075 0.078 0.094
Naphthalene 0.16 0.122 0.116 0.116 0.085 - 0.113 0.115 0.085 0.101 0.083
Salicylic acid 0.20 0.134 0.116 0.114 0.093 - 0.106 0.016 0.092 0.101 0.090
Toluene 0.12 0.102 0.095 0.094 0.074 - 0.092 0.095 0.074 0.080 0.076
Uracil 0.14 0.115 0.106 0.105 0.095 - 0.104 0.103 0.095 0.096 0.097

Force Prediction

Aspirin 1.35 0.499 0.338 0.258 0.253 0.217 0.184 0.236 0.155 0.145 0.122
Ethanol 0.39 0.230 0.224 0.094 0.109 0.085 0.071 0.096 0.060 0.060 0.053
Malondialdehyde 0.66 0.383 0.319 0.167 0.169 0.155 0.129 0.147 0.100 0.097 0.095
Naphthalene 0.58 0.215 0.077 0.089 0.061 0.051 0.039 0.074 0.039 0.039 0.034
Salicylic acid 0.85 0.374 0.195 0.180 0.129 0.125 0.090 0.145 0.084 0.080 0.070
Toluene 0.57 0.216 0.094 0.087 0.067 0.060 0.046 0.073 0.039 0.039 0.035
Uracil 0.56 0.301 0.139 0.119 0.095 0.097 0.076 0.111 0.062 0.062 0.059

exhibiting strong interatomic correlations. Thanks to the informative abstract edge, we utilize it to
augment the generation of attention scores. In the original design, to calculate the cross-attention,
the node scalar features are processed to generate query Q, key K, and value V for each atom,
respectively. Then, the self attention is computed as aij = SiLU(Cutoff(∥r⃗ij∥)qikjdkj), where ⊙
represents dot product, and SiLU is the activation function. Note that ViSNet is different from other
transformer-based models where aij is scaled by the SiLU instead of Softmax across different j. We
integrate the information of abstract edges by:

aij = SiLU

(
Cutoff(∥r⃗ij∥)qikjdkj +AttEnhancer(Eij , E

L

j )

)
(6)

where AttEnhancer(Eij , E
L

j ) = maxt(E
L

j,t ⊙ Eij), that is, for each real edge feature Eij , we

compute the dot product with all abstract edges E
L

j,t and take the maximum value across different
abstract edges. Eij does not have an L superscript because these features remain constant across
different layers. This as an additional contribution to the cross-attention, as it quantifies how well
the abstract edges capture the information of the edge linking atoms i and j. The detailed imple-
mentation, including the Cutoff function and dkj in the above formula, is introduced in Sec. A.2.

4 EXPERIMENTS

To evaluate the performance of FreeCG, we collect molecular force field datasets, on which we
compare our methods with other SOTA MLFFs. These datasets include small molecules dataset
MD17 (Chmiela et al., 2017) with its revised version, rMD17 (Christensen & Von Lilienfeld, 2020),
and large molecules dataset MD22 (Chmiela et al., 2023). To test the generalization capacity of the
proposed FreeCG, we also evaluate the performance of FreeCG on a standard molecule property
prediction dataset, QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014). We take popular
SOTA models into the comparison, including sGDML (Chmiela et al., 2017), SchNet (Schütt et al.,
2018), DimeNet (Gasteiger et al., 2020b), SphereNet (Liu et al., 2021), PaxNet (Zhang et al., 2022),
PaiNN (Schütt et al., 2021), SpookyNet (Unke et al., 2021), ForceNet (Hu et al., 2021), ET (Thölke
& De Fabritiis, 2021), GemNet (Gasteiger et al., 2021), ComENet (Wang et al., 2022), NequIP
(Batzner et al., 2022), UniTE (Qiao et al., 2022), SO3KRATES (Frank et al., 2022), MACE (Batatia
et al., 2022b), Allegro (Musaelian et al., 2023), BOTNet (Batatia et al., 2022a), ViSNet (Wang et al.,
2024), ViSNet-LSRM (Li et al., 2023), and QuinNet (Wang et al., 2023c). To asses the practicality
on real-world tasks, Molecular dynamics simulations are run for MD17 molecules and two periodic
systems, water (Fu et al., 2022; Wu et al., 2006) and LiPS (Batzner et al., 2022) under Periodic
Boundary Conditions (PBCs). FreeCG is also evaluated on the conformation space of a 166-atom
mini-protein, Chignolin (Wang et al., 2023a). The results reveal that FreeCG is capable to make
accurate predictions on force and energy efficiently, and it also exhibit strong practicality on real-
world applications. The ablation on each component and hyper-parameters of FreeCG are also
presented. The common settings and extra experiments are reported in the Sec. A.1.
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Table 2: Performances on rMD17 dataset. The results are reported in MAE. The energies and forces
are measured in kcal/mol and kcal/mol/Å, respectively. The best numbers are marked in bold.
Molecule UNiTE GemNet NequIP MACE Allergo BOTNet ViSNet QuinNet FreeCG

Energy Prediction

Aspirin 0.055 - 0.0530 0.0507 0.0530 0.0530 0.0445 0.0486 0.0530
Azobenzene 0.025 - 0.0161 0.0277 0.0277 0.0161 0.0156 0.0394 0.0217
Benzene 0.002 - 0.0009 0.0092 0.0069 0.0007 0.0007 0.0096 0.0107
Ethanol 0.014 - 0.0092 0.0032 0.0092 0.0092 0.0078 0.0096 0.0087
Malonaldehyde 0.025 - 0.0184 0.0185 0.0138 0.185 0.0132 0.0168 0.0146
Naphthalene 0.011 - 0.0046 0.1153 0.0046 0.0046 0.0057 0.0174 0.0118
Paracetamol 0.044 - 0.0323 0.0300 0.0346 0.0300 0.0258 0.0362 0.0392
Salicylic acid 0.017 - 0.0161 0.0208 0.0208 0.0185 0.0161 0.033 0.0233
Toluene 0.010 - 0.0069 0.0115 0.0092 0.0069 0.0059 0.0139 0.0334
Uracil 0.013 - 0.0092 0.0115 0.0138 0.0092 0.0069 0.0149 0.0116

Force Prediction

Aspirin 0.175 0.2191 0.1891 0.1522 0.1684 0.1900 0.1520 0.1429 0.1212
Azobenzene 0.097 - 0.0669 0.0692 0.0600 0.0761 0.0585 0.0513 0.0486
Benzene 0.017 0.0115 0.0069 0.0069 0.0046 0.0069 0.0056 0.0047 0.0056
Ethanol 0.085 0.083 0.0646 0.0484 0.0484 0.0738 0.0522 0.0516 0.0438
Malonaldehyde 0.152 0.1522 0.0118 0.0946 0.0830 0.1338 0.0893 0.0875 0.0802
Naphthalene 0.060 0.0438 0.0300 0.0369 0.0208 0.0415 0.0291 0.0242 0.0228
Paracetamol 0.164 - 0.1361 0.1107 0.1130 0.1338 0.1029 0.0979 0.0840
Salicylic acid 0.088 0.1222 0.0922 0.0715 0.0669 0.0992 0.0795 0.0771 0.0648
Toluene 0.058 0.0507 0.0369 0.0350 0.0415 0.0438 0.0264 0.0244 0.0239
Uracil 0.088 0.0876 0.0669 0.0484 0.0415 0.0738 0.0495 0.0487 0.0446

4.1 COMPARISON WITH STATE-OF-THE-ARTS FOR MLFFS

Force field on small molecules and periodic systems. MD17 is a famous molecular dynamics
benchmark for small molecules. FreeCG outperforms others in all force prediction tasks. It also sig-
nificantly decreases the force prediction errors for the hardest-to-predict molecule in this datasets,
aspirin, by 15%. Remarkably, FreeCG also decreases the MAE by over 10% for ethanol, naphtha-
lene, and salicylic acid. FreeCG does not have a particular preference for the size of molecules.
It demonstrates strong performance for aspirin (180.2 g/mol) and excels on ethanol (46.1 g/mol).
The energy prediction is also competitive when compared to other SOTA methods. rMD17 is the
revised version of MD17. It recomputed the trajectories of each atom with higher accuracy. The
force prediction accuracy of FreeCG is still leading in majority of the molecules. It improves the
force results compared to the baseline model, ViSNet, in all the molecules except for benzene, and
performs SOTA on more atoms. Note that the results on benzene is already extreme high with pre-
vious models. The results for MD17 and rMD17 can be referred to Tab. 1 and 2, respectively. The
accuracy of force prediction on periodic systems, water and LiPS, are also evaluated. Fig. 8 and
9 show that, FreeCG achieves the best performance across other methods, and decrease the MAE
value of the second best by 50% for water.

Force field on large molecules. MD22 is a large molecules benchmark adopted by several studies
(Wang et al., 2024; 2023c; Li et al., 2023). As shown in Tab. 3, it reveals that FreeCG also performs
well for large molecules. It leads in most tracks for force prediction, and shows comparable results
for energy prediction. Remarkably, The decreasing in MAE for energy and force prediction on
Ac-Ala3-NHMe are both around 20%. The performances for the other models are not consistently
well for force prediction, while ViSNet-LSRM exhibits strong performance for energy prediction.
It is also reasonable that all modern deep neural network-based methods outperform sGDML, as a
classical kernel method.
4.2 COMPARISON WITH STATE-OF-THE-ARTS FOR MOLECULAR PROPERTIES PREDICTIONS

To examine the generalization power on molecular property prediction of FreeCG, we collect QM9
as a standard benchmark for this task. FreeCG performs the best for most properties. ViSNet also
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Table 3: Performances on MD22 dataset. The results are reported in MAE. The energies and forces
are measured in kcal/mol and kcal/mol/Å, respectively. The best numbers are marked in bold. Note
that the energy MAE is calculated without being divided by the total number of atoms as Wang
et al. (2024), unlike Wang et al. (2023c); Chmiela et al. (2017; 2023), which does not affect the
comparison.
Molecule sGDML ViSNet ViSNet-Improper ViSNet-LSRM MACE QuinNet FreeCG

Energy Prediction

Ac-Ala3-NHMe 0.391 0.0636 0.0546 0.0673 0.0631 0.0840 0.0507
AT-AT 0.720 0.0708 0.0668 0.0780 0.108 0.144 0.0665
AT-AT-CG-CG 1.42 0.196 0.197 0.118 0.154 0.379 0.254
DHA 1.29 0.0741 0.0700 0.0897 0.135 0.118 0.0761
Buckyball catcher 1.17 0.508 0.537 0.319 0.489 0.563 0.512
Stachyose 4.00 0.0915 0.0882 0.104 0.122 0.226 0.183
Double-walled nanotube 4.00 0.800 0.601 1.81 1.67 1.81 0.543

Force Prediction

Ac-Ala3-NHMe 0.790 0.0830 0.0709 0.0942 0.0876 0.0681 0.0531
AT-AT 0.690 0.0812 0.0776 0.0781 0.0992 0.0687 0.0634
AT-AT-CG-CG 0.700 0.148 0.139 0.1064 0.1153 0.1273 0.1252
DHA 0.750 0.0598 0.0554 0.0598 0.0646 0.0515 0.0507
Buckyball catcher 0.680 0.184 0.201 0.1026 0.0853 0.1091 0.1783
Stachyose 0.680 0.0879 0.0802 0.0767 0.0876 0.0543 0.612
Double-walled nanotube 0.520 0.362 0.292 0.3391 0.2767 0.2473 0.2449

High-order irreps 
and CG transform

Figure 3: The speed and memory occupation of FreeCG compared with other SoTA models. Num-
bers are reported based on a single chignolin molecule. The right three models are based on high-
order irreps and CG transform. Better viewed in color.

performs the second best in most measures. Although these two methods are proposed to be MLFFs,
but they are even more comparable than others in molecular property prediction tasks. The results
are in Tab. 4, which demonstrates strong generalization capabilities of FreeCG.

4.3 EFFICIENCY BENCHMARKING

Except for the conformation exploration in Sec. A.7, AIMD-Chig dataset Wang et al. (2023a) is also
taken as a benchmark for testing the memory usage and inference speed. We compare the inference
speed and memory usage of FreeCG with ViSNet, NequIP, and Allegro. The results are shown in
Fig. 3. The training time and the numbers of parameters are also shown in Tab. 9. FreeCG adds little
extra time and memory cost, compared to the baseline model, ViSNet. It is also the most efficient
one for both memory and speed, compared to the other two CG transform-based methods, NequIP
and Allegro. The overall results prove the effciency of FreeCG. The number of groups in group CG
transform also impacts the inference speed. Fig. 4 shows the theoretical number of paths and the
actual inference time for different group numbers. A computation analysis for CG transform can be
referred to Sec. A.6.
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Table 4: Molecular property prediction on QM9 dataset. The results are reported in MAE. The best
numbers are marked in bold.

Target SchNet EGNN DimeNet++ PaiNN SphereNet PaxNet ET ComENet ViSNet FreeCG
µ mD 33 29 29.7 12 24.5 10.8 11 24.5 9.5 11.4
α ma30 235 71 43.5 45 44.9 44.7 59 45.2 41.1 38.2
ϵHOMO meV 41 29 24.6 27.6 22.8 22.8 20.3 23.1 17.3 16.6
ϵLUMO meV 34 25 19.5 20.4 18.9 19.2 17.5 19.8 14.8 13.5
∆ϵ meV 63 48 32.6 45.7 31.1 31 36.1 32.4 31.7 31.5
⟨R2⟩ ma20 73 106 331 66 268 93 33 259 29.8 82.1
ZPV E meV 1.7 1.55 1.21 1.28 1.12 1.17 1.84 1.2 1.56 1.10
U0 meV 14 11 6.32 5.85 6.26 5.9 6.15 6.59 4.23 4.11
U meV 19 12 6.28 5.83 6.36 5.92 6.38 6.82 4.25 4.51
H meV 14 12 6.53 5.98 6.33 6.04 6.16 6.86 4.52 4.13
G meV 14 12 7.56 7.35 7.78 7.14 7.62 7.98 5.86 5.65
Cv mcal/mol K 33 31 23 24 22 23.1 26 24 23 20.4

Table 5: Ablation on different modules. Abstract edges shuffling and Attention enhancer are added
upon the best choices of the above modules, with respect to the validation loss.

Method Aspirin

Val loss Energy Force

ViSNet - 0.116 0.155

+ Group CG transform
8 groups 0.0509 0.123 0.144
32 groups 0.0416 0.112 0.129

+ Abstract edges shuffling
1-group shuffle 0.0401 0.112 0.128
0.5-group shuffle 0.0396 0.110 0.128
1.5-group shuffle 0.0384 0.111 0.125

+ Attention enhancer 0.0345 0.110 0.122

4.4 ABLATION STUDY

We conduct ablations on different modules we propose, as well as the strategies for abstract edges
shuffling. The results are shown in Tab. 5. It reveals that each of our module contributes to the final
score of FreeCG. In the final implementation of abstract edges shuffling, we add the index of each
abstract edge by ⌊1.5 ∗T/G⌋. Here we also study the influence of the shuffling strategies. We adopt
⌊0.5 ∗ T/G⌋, ⌊1.0 ∗ T/G⌋, and ⌊1.5 ∗ T/G⌋ for comparing the performance. We can see from the
result that ⌊1.5 ∗T/G⌋ works the best. The group numbers are also evaluated and a large number of
groups appears to be a good choice.

4.5 EXTENSION TO OTHER MODELS

FreeCG also presents a paradigm to enhance other geometric models. We use the former SOTA
model, QuinNet, as an example to illustrate how effectively FreeCG can be extended to other archi-
tectures. QuinNet has a transformer architecture inside, so we construct abstract edges the same way
FreeCG does, and adopts all FreeCG modules upon those abstract edges. We evaluate the training
curve of 1000 epochs training for both QuinNet+FreeCG and vanilla QuinNet. As shown in Fig.
10 and 11, when equipped with FreeCG, QuinNet significantly gets improved for both energy and
force prediction. This trend becomes more pronounced with longer training periods, as evidenced
by the results at the 1000th epoch. We also report the results of training for 1500 epochs (see Fig.
10), which shows that QuinNet+FreeCG significantly outperforms fully-trained QuinNet.

5 CONCLUSION

This work proposes FreeCG, an equivariant neural network that frees the design space of CG trans-
form. It achieves SOTA performance in force prediction for MD17, rMD17, and MD22 datasets,
as well as in molecular properties prediction for QM9, with only minor computational overhead.
The practicality of FreeCG for conducting molecular dynamics simulations is thoroughly examined
across periodic systems, small molecules in MD17, and the mini-protein Chignolin. As we show
that FreeCG helps improve QuinNet, it also introduces a new paradigm for expressive and efficient
CG transform-based neural network design in the future.
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A APPENDIX

A.1 EXPERIMENTAL SETTINGS

We conduct all the experiments under the same software and hardware settings. The machine is
equipped with an Intel® Xeon® Gold 6330 CPU @ 2.00GHz, with NVIDIA Tesla A100 80G GPUs.
We run the experiments for each molecule on a single GPU. Pytorch 1.10.0 is used as the basic ma-
chine learning python library. For the CG transform operations, we adopt e3nn 0.5.1. Matplotlib
3.0.3 is utilized for plotting. The details can be referred to Tab. 6. We report the hyperparameters
used in Tab. 7. For training/validation/test splits, we follow previous works (Wang et al., 2024;
2023c; Fu et al., 2022). We pick up the model for evaluating on test set based on the performance
on the validation set. If the model does not improve for a given number of epochs, we will terminate
the training and select the checkpoint with the best validation score. As previous works, Expo-
nential Moving Average (EMA) is adopted to generate the model weights. The detailed training
configurations are shown in Tab. 7.

Table 6: Hardware and software settings.
Hardware Software

CPU GPU Neural Network Equivariance Plotting

Intel® Xeon®

Gold 6330 CPU @ 2.00GHz NVIDIA Tesla A100 Pytorch 1.10.0 e3nn 0.5.1 Matplotlib 3.0.3

Table 7: Hyperparameters for each dataset.
Hyperparameter MD17 rMD17 MD22 QM9 Water-1k LiPS Chignolin

Initial learning rate 4e-4, 2e-4 2e-4 2e-4, 1e-4 1e-4 5e-4 1e-3 2e-4
Learning rate decay factor 0.8
Learning rate decay patience 30 30 30 15 5 5 10
Learning rate warmup step 1000 1000 1000 10000 1000 1000 1000
Optimizer AdamW (β(0.9, 0.999))
Epoch 3000 3000 3000 1500 1000 100 3000
Batch size 4 4 4 32 1 1 4
Number of layers 9 9 9 9 9 9 6
Cutoff 5.0, 4.0 5.0 5.0, 4.0 5.0 6.0 6.0 5.0
Force/Energy loss weights 0.95/0.05 0.95/0.05 0.95/0.05 - 1.0/0 1.0/0 0.95/0.05
Dimension of latent feature 256 256 256 512 256 256 128
Number of groups 8
Output head Equivariant/Scalar
EMA rate 0.999

A.2 MODEL IMPLEMENTATION

Here we show how FreeCG is built upon ViSNet. This section provides detailed explanations of the
implementation details, ensuring FreeCG can be replicated effectively.

Input layer. Given the atom coordinates and types {X = r⃗0, r⃗1, r⃗2, ..., r⃗N ),Z = (z1, z2, ..., zn)},
where r⃗ ∈ R

3 the Cartesian coordinates of atom, and z the atom type (atom numbers). First
we embed the atom types to the latent space, and take them as our first layer’s node features
hi = embedding(zi) ∈ R

C . C is the dimension of the latent space. For each atom, we
only consider neighboring atoms within a given radius N (i), where we maintain the distance
vector from the central atom to the neighboring atoms, and lift them to (l = 1, p = −1) and
(l = 2, p = 1) irreps Eij ∈ R

3+5 via real spherical harmonics applied on the unit vector
Eij = Y l=1(r⃗ij/∥r⃗ij∥) ⊕ Y l=2(r⃗ij/∥r⃗ij∥), where we also calculate the corresponding Euclidean
norm ∥r⃗ij∥. The Euclidean norms of vectors are then converted to high-dimension scalar features
(edge attributes) fij = RBF(r⃗ij) ∈ RC by radial basis functions (RBFs). We also maintain zero-
initialized abstract edges E

L=0

i = 0 for each node to be updated in the following layers. We assign
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the same number of abstract edges as the dimension of the latent features, such that additional oper-
ations to align the dimension numbers are not required.

Intermediate layers. Here, we use a superscript L to denote the index of layer that the features
are in. The message-passing between atoms is implemented by a transformer architecture. For each
atom i, the neighboring atoms j ∈ N (i) will send messages to i, and the messages are aggregated
to update the information of i. The query, key, and value of the node features are first calculated,
respectively: qi = fq(hi), kj = fk(hj), vj = fv(hj). The edge attributes are also converted to
auxiliary terms dkj = fdk(fij) and dvj = fdv(fij) to modulate keys and and values of atoms.
Here functions f ‘s are all fully-connected linear operations. Then we calculate the cross-attention
between i and j, which is

aij = SiLU

(
Cutoff(∥r⃗ij∥)qikjdkj+

AttEnhancer(Eij , E
L

j )

) (7)

where Cutoff(·) is a cosine cutoff function, and AttEnhancer(·) the proposed attention enhancer
module, as we will formulate its details. First, recall the dimension of E

L

i ∈ RC∗8 and Eij ∈ R8.
Each of the C abstract edges will undergo a dot product with Eij . The highest value among them
will be the output of AttEnhancer. In other word,

AttEnhancer(E
L

i , Eij) = max
C

(E
L

i ⊙ Eij) (8)

as we introduce in Eq. 6. Then the values are multiplied with dv and attention.

v̂Lj 7→i = vj · dvj · aij (9)

It then undergoes two different fully-connected operations to generate two coefficients s1 and s2.
They are used to generate the abstract edges:

ÊL
j 7→i = E

L

i · s1 + Eij · s2 (10)

This variable, together with v̂j 7→i, are aggregated by sum:

ÊL
i =

∑
j∈N (i)

ÊL
j 7→i (11)

v̂Li =
∑

j∈N (i)

v̂Lj 7→i (12)

v̂Li then converts to three variables for further operation:

oL,1
i , oL,2

i , oL,3
i = Linear(v̂Li ) (13)

ÊL
i ∈ R

C∗8 and E
L

i ∈ R
C∗8 are used for the following group CG transform and abstract edges

shuffling. First E
L

i ∈ RC∗8 undergoes a fully-connected operation along C dimension, and multiply
with oL,1

i , which means we get oL,1
i · Linear(EL

i ). It, together with ÊL
i ∈ RC∗8, are then divided

into G groups along C dimension, where we get ÊL
i,t∈Gg

∈ RC
G∗8, and (oL,1

i · Linear(EL

i ))t∈Gg ∈
R

C
G∗8. Then, we perform CG transform between two variables in a fully connected form with

learnable weights, and concatenate the results to generate dE
′L+1

i before shuffling, as shown in Eq.
5. For the shuffling strategies, we add ⌊ 3C

2G⌋ to each index of the abstract edges E
′L+1

i . Then, it is
added with ÊL

i to form a residual structure, as we show here:

dE
L+1

i = shuffle(dE
′L+1

i ) + ÊL
i (14)

where dE
L+1

i is added to E
L

i to obtain E
L+1

i . Next, we update h and f . We first show the update
for h:

dhL+1
i = hL

i +

(
Linear1(E

L

i )⊙ Linear2(E
L

i )

)
· oL,2

i

+oL,3
i

(15)
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To update f , we follow ViSNet to leverage rejection of vectors:

dfL+1
ij = fL

ij +RejCalctrg(E
L

i , r⃗ij)⊙

RejCalcsrc(E
L

i , r⃗ij) · SiLU(Linear(fL
ij))

(16)

where rejection calculation module RejCalc is:

RejCalcmode(a, b) = a− (Linearmode(a)⊙ b) · b (17)

The updated E
L+1

, hL+1, and fL+1 are fed into the next layer.

Output layers are different with respect to the task our model performs on. We introduce the details
for each task.

Force field prediction. FreeCG is based on energy-conservative field, which means we derive the
force from the predicted potential energy. Following ViSNet (Wang et al., 2024) and PaiNN (Schütt
et al., 2021), we predict the potential energy of the molecule via equivariant gated module.

hL+1
i , uL+1

i = MLP

(
Concat(hL

i , ∥Linear1(E
L

i )∥)
)

(18)

where MLP is an 1-hidden layer multi-layer preceptor. There is one more step to update E
L+1

i :

E
L+1

i = Linear2(E
L

i ) · uL+1
i (19)

These calculations are then repeated twice in succession. There is also an alternative head design
for force field prediction which uses only scalar features h. Under this setting, Eq. 18 and (19) are
replaced by (L denotes the last layer):

hL = MLP(hL−1) (20)

In Tab. 7 where we introduce our hyper-parameter choices, the scalar version of output head is
denoted as Scalar, and the other one Equivariant. Finally, the total energy of the molecule is the
sum of the last-layer node features hL

i ∈ R:

y =
∑
i

hL
i (21)

and the force is the negative gradients of the total energy:

Fi = −∇r⃗iy (22)

Property prediction. The calculations for properties in QM9 follow the same procedure as energy
prediction in force field prediction, with the exception of molecular dipole and electronic spatial
extent. We first need to calculate the center of mass r⃗c, which is:

r⃗c =

∑
i mi · r⃗i∑

i mi
(23)

For molecular dipole, the formula is:

µ =

∥∥∥∥∥∑
i

E
L

i + hL
i (r⃗i − r⃗c)

∥∥∥∥∥ (24)

and for electronic spatial extent:

⟨R2⟩ =
∑
i

hL
i ∥r⃗i − r⃗c∥ (25)

The output head can be easily adapted for different tasks, providing flexibility in property prediction.
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Figure 4: Efficiency analysis of group CG transform. Left: The number of paths for CG transform
under different group numbers, where the numbers of irreps are the same. Right: The actual running
time for CG transform for different group numers. Here we adopt sparse path strategy for computing
512 irreps (before grouping) for each l. Full CG transform denotes not using sparse path.

Table 8: The basic operation number for each type of CG transform. lo denotes the output degree.
The column and row numbers represent the degrees of two input irreps, respectively. The cyan
blocks represent the operations in regular neural networks, while the others are for high-order CG
transform.

lo = 2 0 1 2 lo = 1 0 1 2 lo = 2 0 1 2

0 1 0 - 3 - 0 - - 5
1 3 1 3 6 9 1 - 9 12
2 5 2 - 9 12 2 5 12 19

A.3 DATASETS DETAILS

MD17 and rMD17. They are both molecular dynamics datasets for small molecules. MD17
(Chmiela et al., 2017), proposed by Chmiela, S., et al. contains ab-initio level molecular dynamics
trajectories. Four types of data are included in the dataset: atomic numbers, atomic positions, molec-
ular energy, and the force acting on each atom. To alleivate the noise during the trajectory computa-
tion, Christensen, A. S. et al. also propose revised MD17 (rMD17) (Christensen & Von Lilienfeld,
2020), where molecular trajectories are calculated at the PBE/def2-SVP level of theory. The preci-
sion of the calculated trajectories is upheld by the tight SCF convergence and dense DFT integration
grid.

MD22 consists of larger molecules with atoms numbering from 42 to 370, in contrast to MD17 and
rMD17. The trajectories are sampled between 400K and 500K at 1fs resolution. The energy and
force labels are obtained at the PBE+MBD level of theory. The root mean squared test error of force
prediction is controlled to be around 1 kcal/mol/Å in the original paper (Chmiela et al., 2023). Thus,
the training data sizes for different molecules vary. Generally, the larger the molecules, the smaller
the training data size.

QM9 consists of around 130,000 molecules with 12 properties regression tasks. It is a subset of the
GDB-17 database (Ruddigkeit et al., 2012). The data is calculated at B3LYP/6-31G(2df,p) based
DFT level of accuracy. Since the attributes vary for different properties, we use distinct output head
for each, as discussed in Sec. A.2.

Chignolin. The AIMD-Chig dataset (Wang et al., 2023a) comprises of two million conformations
of the 166-atom protein chignolin, obtained through sampling at the M06-2X/6-31 G* based DFT
level. There are approximately 10,000 different conformations, including folded, unfolded, and
metastable states. We report the performances of FreeCG on different parts of the energy landscape,
and adopt this dataset to benchmark efficiency, following (Wang et al., 2024).
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FreeCG ViSNet

Figure 5: Applications for the 166-atom mini-protein, Chignolin. a. The energy landscape of
Chignolin was sampled using Replica Exchange Molecular Dynamics (REMD). This landscape is
characterized by two key distance parameters: the x-axis represents the distance between the car-
bonyl oxygen on the D3 backbone and the nitrogen on the G7 backbone, while the y-axis depicts
the distance between the carbonyl oxygen on the E5 backbone and the nitrogen on the T8 backbone.
These two distance metrics collectively illustrate the conformational states of Chignolin across its
energy landscape. The left and right energy basins are corresponded to folded and unfolded states,
respectively. b. The six conformations are sampled at the localization highlighted in the energy
landscape. The force and energy performances (kcal/mol) are reported, with a comparison made to
ViSNet. These six conformations cover both folded and unfolded states. c. The RMSD (Å) during
the molecular dynamics simulation. The shaded area denotes the values of standard derivations. The
RMSD values are obtained by taking average of 10 trajectories. Better viewed in color.

Periodic systems. Periodic Boundary Conditions (PBCs) are vital in molecular dynamics simula-
tions of periodic systems as they eliminate surface effects, enhance statistical sampling, and provide
a realistic representation of bulk properties. Here we focus on two typical molecules, water and
LiPS. The water dataset are generated by the flexible version of the Extended Simple Point Charge
water model (SPC/E-fw) (Wu et al., 2006) in (Fu et al., 2022). The authors provides with several
sizes of training sets, including -1k, -10k, 90k. Here we adopt the 1k version, where 950 samples
are for training and the rest for validation. LiPS is an important solid-state materials for battery de-
velopment. It can help predict key performance metrics such as capacity, energy density, and cycle
life, aiding in the development of next-generation lithium-ion batteries. We follow the same train/val
split as (Fu et al., 2022). Some 3D structures of the data can be referred to Fig. 7.

A.4 PROOF OF THE PERMUTATION INVARIANCE OF ABSTRACT EDGES

According to Sec. A.2, we first recall the last step for generating abstract edges:
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ÊL
i =

∑
j∈N (i)

ÊL
j 7→i =

∑
p∈P

∑
j∈N (i)

P(p)ÊL
j 7→i

Card(P )
(26)

where P is the set for all permutation operations, here we omit the subscript of P for specific spaces
to work on. Here, note we are proving that the abstract edges for each atom are permutation invariant,
and we can freely design CG transform per atom, thus the permutation is applied to j but not i. It
sums over all the permutation operations, and thus the last step is permutation invariant. Then, it
suffices to show that each of the previous step are all at least permutation equivariant. It also suffices
to show they are permutation equivariant w.r.t. single index switch operation, as each permutation
operation can be made by several switches. If we exchange, without loss of generality, index x and
y, then those aij that x or y shows up in the subscript for j will exchange with each other, and so do
v̂j 7→i and ÊL

j 7→i. Thus, the rest steps are equivariant w.r.t. single switch, and so they are permutation
equivariant. Therefore, we conclude our proof that abstract edges Ê’s are permutation invariant.
For E, it is also permutation invariant, as it is generated by permutation invariant function h in the
previous layer. E

L=1
in the first layer is permutation invariant too, as it is set to be fixed zeros.

A.5 PROOF OF THE EQUIVARIANCE OF THE LINEAR COMBINATION OF SPHERICAL
IRREDUCIBLE REPRESENTATION

Let vi be the spherical irreps with order l, g ∈ SO(3), wi the weight for i-th vector in the weighted
sum, and ρV the group homomorphism. We need to prove ρV (g)

∑
i wivi =

∑
i wiρVi

(g)vi. It
holds if we can prove the following conditions 1) ρVi

(g)wivi = wiρVi
(g)vi which is trivially true

as wi is a scalar; 2) ρVi
= ρVj

for arbitrary i and j.

To show 2) is golden, we need to show a) Vi is an invariant subspace of SO(3), since the ρVi would
be ill-defined if it is not the case, which is also trivially true because that is how spherical spaces
are generated; b) Vi = Vj for arbitrary i and j. Here, vi are spherical irreps with same l. Spherical
space of order l is the same vector space spanned by spherical harmonics Y l

ms. Spherical irreps with
order l are the vectors in the same order l spherical space, so Vi = Vj for arbitrary i and j. Since
all Vis are the same we can simply denote each of them as V . Summarize over i for both sides of
ρVi

(g)wivi = wiρVi
(g)vi, we get ρV (g)

∑
i wivi =

∑
i wiρV (g)vi. This concludes our proof.

A.6 ANALYSIS ON THE EFFICIENCY OF CG TRANSFORM

The CG transform consists of two steps: 1) performing a tensor product between two irreps, and 2)
decomposing the resulting tensors into irreps. These transforms are actually quadratic homogeneous
polynomials. For the sake of convenience, we discuss SO(3) group here. Recall the CG transform
formula:

Dlalb 7→ld
md

=
∑

ma,mb

Cldlalb
mdmamb

Ala
ma

Blb
mb

(27)

where ma+mb = md. To illustrate, if we regard single multiplication and addition as the two basic
operations, then combining two l = 1 irreps to form a l = 2 irreps will use up 1 basic operation
for md = ± 2, 3 operations for md = ±1, and 5 operations for md = 0, making a total of 13
basic operations. One effective approach to understanding irreps is to view them as an extension of
vectors and scalars. The dot product between vectors requires only 5 basic operations, in contrast
to the 13 operations mentioned earlier. Hence, the CG transform is extremely time-consuming. The
table of basic operations for the CG transform between each pair is shown in Tab. 8.

A.7 ADDITIONAL EXPERIMENTS

Applications for full-atom proteins. AIMD-Chig dataset (Wang et al., 2023a) comprises nearly
10,000 conformations of the 166-atom mini protein, Chignolin. These conformations were obtained
including folded, unfolded, and metastable states. It is important to evaluate the performance of
FreeCG on such real-world proteins. Following ViSNet (Wang et al., 2024), as shown in Fig. 5, we
explore the energy landscape of Chignolin, where we sample six conformations located at different
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Figure 6: The distributions of interatomic distances r during molecular dynamic simulations of
MD17. The unit of r is Å, and the unit of h(r) is Å

−1
.

Table 9: Comparison of parameters and training speed. The mini-batch size is set to 32.
QuinNet+FreeCG QuinNet FreeCG VisNet

Number of parameters (M) 9.4 9.1 10.4 9.8
Iterations per second 4.19 4.45 3.62 3.95

parts of the landscape, covering folded and unfolded states. The energy and force predictions on
these six conformations are compared with ViSNet. FreeCG succeeds in outperforming ViSNet for
the most sampled conformations. Molecular dynamics simulations are run from six different initial
conformations. To assess the simulation stability, we calculate the Root Mean Square Deviation
(RMSD) between each step in the trajectory and the initial conformation, shown in Fig. 5(c). The
results demonstrate satisfying performance of FreeCG on real-world proteins.

Applications for molecular dynamics simulation. We conduct molecular dynamics simulations
for FreeCG on MD17 and compare the results with DFT calculations. We run a 300ps simulation for
each molecule. The time step is set to 0.5 fs, under a Nosé–Hoover thermostat at 500K temperature.
Like previous works (Fu et al., 2022; Wang et al., 2024; 2023c), we are interested in the distribution
of interatomic distances. Here, h(r) is defined as the probability density function of interatomic
distances r. We plot the distribution as h(r), where h(r) are averaged along frames or predicted
trajectories, and we desire the distribution is similar to the MD17 datasets calculated by DFT. The
results are shown in Fig. 6, which shows that FreeCG is capable to well recover the interatomic dis-
tances distribution. We also conduct molecular dynamics simulation on water (1k version) (Fu et al.,
2022; Wu et al., 2006) and LiPS (Batzner et al., 2022) datasets under periodic boundary conditions
(PBCs) to evaluate how FreeCG performs on large molecular systems. We set the timestep to 0.25
fs and run total 200,000 steps for each type of molecules. We focus on the recovery of radial distri-
bution functions (RDFs) because they effectively describe structural and thermodynamic properties.
It is similarly calculated as h(r) but under different constant multipliers. FreeCG finishes all the
dynamics simulation with accurate recovery of the atomic distributions. The results for molecules
under PBCs are shown in Fig. 8 and 9.

Table 10: Performances of QuinNet equipped with FreeCG on MD17. The results are reported in
MAE. The energies and forces are measured in kcal/mol and kcal/mol/Å, respectively. The best
numbers are marked in bold.

Aspirin Ethanol Malonaldehyde Naphthalene Salicylic acid Toluene Uracil
QuinNet
(from paper)

Energy 0.119 0.050 0.078 0.101 0.101 0.080 0.096
Force 0.145 0.060 0.097 0.039 0.080 0.039 0.062

QuinNet
(1500 epochs)

Energy 0.132 0.052 0.076 0.109 0.106 0.081 0.099
Force 0.152 0.065 0.113 0.043 0.080 0.039 0.061

QuinNet+FreeCG
(1500 epochs)

Energy 0.113 0.048 0.073 0.094 0.103 0.078 0.094
Force 0.127 0.056 0.095 0.034 0.073 0.037 0.057
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a b

c
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Figure 7: The 3D structures of the data considered in this work. a. Aspirin in MD17 and rMD17. b.
Ac-Ala3-NHMe in MD22. c. 1-Cyclohexene-1-carboxylic acid in QM9. d. Chignolin. e. A single
cell of water molecules under PBCs. f. A single cell of LiPS under PBCs (Note that the cell is not
cubic).
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Figure 8: Results on water-1k. Top: The RDFs in molecular dynamic simulations for each bond of
water under PBCs. The unit of r is Å, and the unit of RDF(r) is Å

−1
. Bottom: The force MAE

comparison with other methods. The unit is meV/Å.
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Figure 9: Results on LiPS. Top: The RDFs in molecular dynamic simulations for LiPS under PBCs.
The unit of r is Å, and the unit of RDF(r) is Å

−1
. Bottom: The force MAE comparison with other

methods. The unit is meV/Å.
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Figure 10: QuinNet force prediction performance on MD17 when equipped with modules from
FreeCG. The unit of force is kcal/mol/Å.
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Figure 11: QuinNet energy prediction performance on MD17 when equipped with modules from
FreeCG. The unit of energy is kcal/mol.
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