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ABSTRACT

We analyze the ability of computational units to retain past responses after param-
eter updates, a key property for system-wide continual learning. Neural networks
trained with gradient descent lack this capability, prompting us to propose Mod-
elleyen, an alternative approach with inherent response preservation. We demon-
strate through experiments on modeling the dynamics of a simple environment
and on MNIST that, despite increased computational complexity and some repre-
sentational limitations at its current stage, Modelleyen achieves continual learning
without relying on sample replay or predefined task boundaries.

1 INTRODUCTION

Modern machine learning relies on neural networks (NNs) to model complex systems, achieving
remarkable success in areas like image recognition, language processing, and complex behavior.
Yet as these problems are solved, crucial shortcomings at their core start to gain attention (Clune
(2019); Zador (2019); Marcus (2018); LeCun (2022)). Importantly, they struggle with continual
learning—the ability to learn new tasks without forgetting previous ones, as essential for open-ended
learning, reflecting real-world dynamics. This limitation necessitates frequent, resource-intensive
retraining, making scalability impractical. In this paper, we analyze a property essential for system-
wide continual learning: the ability of computational units to retain past responses after parameter
updates. We show that neurons in gradient-based NNs lack this capability and propose the early
design of an alternative approach, Modelleyen, where units inherently preserve past responses. We
also extend this approach to larger networks and, through experiments on modeling a simple en-
vironment and on MNIST, demonstrate that despite higher computational complexity and some
performance limitations due to representational limitations at its current stage, we achieve system-
wide continual learning without requiring replay or task boundaries. It also offers the advantage of
human-comprehensible internal representations, as shown in additional results.

2 RELATED WORK

The inability of continual learning is a core limitation of current ML systems (Hadsell et al. (2020);
Zhuang et al. (2020); Qu et al. (2021)). Solutions proposed for for this problem often don’t fully
resolve the fundamental limitations of NNs in this regard but aim to mitigate their effects. Many
continual learning methods rely on simplifying assumptions, like externally defined task boundaries
and task change information (Rusu et al. (2016); Jacobson et al. (2022); Wang et al. (2022), or storing
and replaying past observations Buzzega et al. (2020); Galashov et al. (2023)), which bias learning
toward previous tasks without enabling true continual learning (Kirkpatrick et al. (2017)). One
exception is methods generating multiple experts and assigning tasks based on a generative model
(Erden & Faltings (2024); Lee et al. (2020)), though these still assume distinct tasks by decomposing
the system into experts, relying on the availability of bulk data for each expert’s generative model
– an assumption that does not hold in real-world learning. Thus, the continual learning problem
merely shifts to the generative model for task identification rather than the entire system.

Over the past decades, evolutionary biology has highlighted the crucial role of local variation and
selection in shaping biological structures and driving their evolution Gerhart & Kirschner (2007);
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Marc (2005); West-Eberhard (2003), including neural processes in the brain Marc (2005); Edelman
(1993). Our method centers on this mechanism, which is vital for achieving continual learning.

3 LOCAL PRESERVATION OF PAST RESPONSES

System-wide preservation of past response is difficult to define and analyse, likely impossible with-
out explicit retained knowledge of past samples. For that, we turn our attention to a local preservation
of past response, which acts as a useful tool for system-wide continual learning, if not a prerequisite.

We look at computational units whose response y can be phrased as y = f(
∑

wixi+b) where wi are
the weights, xi are the inputs and b is the bias of the unit, and f(·) is a nonlinear activation function.
Neurons in NNs are examples of such units (as well as CSVs in our design, see next section).

Assume that the unit, in the past, has been exposed to an input instance Xt = [x0t, ...xNt] at some
step t. With the standing weights W = [w0, w1, ...wN ], its response to this input given as yt =
f(
∑

wi · xit + b). Suppose that after an arbitrary process of learning in response to other input
instances, the parameters of the unit are updated to W′ = [w′

0, ...w
′N ] w′

i = wi + ∆wi and b′ =
bi + ∆b at step t = T . New response to past input Xt is now y′t = f(

∑
w′

ixit + b′). We want
to ensure y′t = y, or f(

∑
w′

ixit + b′) = f(
∑

wixit + b). This is generally valid (and valid for
monotonous activations used in NNs only) if

∑
(wi +∆wi)xit + (b+∆b) =

∑
wixit + b, or if:

∑
∆wixit +∆b = 0 (1)

Eq. 1 is the condition for local preservation of information. A learning update rule defining ∆wi

and ∆b should satisfy this condition if response of the unit to previous inputs Xt, t ≤ T is to be
preserved.

Some of the terms in the sum of Eq. 1 may be 0 due to ∆wi being 0, as defined by the learning rule,
based on the current value of wi. So we can rewrite 1 as:

∑
i:∆wi ̸=0

∆wixit +∆b = 0 (2)

Note that this equation is in general dependent on xit of t ≤ T for i : ∆wi ̸= 0, which we assume
to be not explicitly available. The only possibility for an update rule to satisfy the condition is to
make it independent of xit. This would only be possible if ∀i : ∆wi ̸= 0, and ∀t ≤ T , xit can be
readily deduced from the available information, in which case wi. This can be written as:

∀i : ∆wi ̸= 0, ∀t ≤ T, wi = g(xit)→ xit = g−1(wi) (3)

So that 1 becomes independent of xit:
∑

i:∆wi ̸=0 ∆wig
−1(wi) + ∆b = 0. It follows from 3 that:

xi0 = xi1 = ... = xiT , ∀t ≤ T, ∀i : ∆wi ̸= 0 (4)

These conditions do not apply to neural networks trained by gradient descent because there is (1)
no direct correspondence between a learned weight and the input value it modulates (Eq. 3), and
(2) no guarantee that previously encountered inputs will be identical for a given weight (Eq. 4). In
contrast, our design meets these conditions, as outlined at the end of the following section.

4 MODELLEYEN: LEARNING BASIC ENVIRONMENT DYNAMICS

Our proposal, termed Modelleyen, is designed to model sequential observations from an environ-
ment, but can be applied to any prediction task. It learns the environment’s structure with minimal
exposure, enabling information reuse and continual learning while maintaining consistency with
past experiences. At the core of our method is a local variation and selection process Gerhart &
Kirschner (2007) as essential for continual learning and structured environment modelling.

2



Published at ICLR 2025 World Models Workshop

Below, we outline Modelleyen’s core mechanism, which relies on the immediate succession of ac-
tivities in discrete state variables to model simple environmental dynamics. The next section extends
this mechanism to observation spaces that can be represented as networks. Due to space constraints,
we provide an overview of key definitions, the basic learning process, and core continual learning
properties. For a full description, see Appendix A.2.1 and Algorithms 1 and 2.

Definition 1 (State Variable - SV) A state variable X is a unit in our system whose state, SX , can
take values 1 (active), -1 (inactive), or 0 (unobserved/undefined depending on context).

SVs can be interpreted as boolean variables with possibility to take an unobserved value. The
integers assigned for states are only for notation and not for algebraic operation. The following are
subtypes of SVs:

Definition 2 (Base SV - BSV and Dynamics SV - DSV) A BSV X is an SV whose values are provided
externally each timestep and whose state is limited by SX ∈ {−1, 1}. Each BSV comes with two
DSVs, XA and XD, that represent its activation and deactivation at current step (t) compared to
previous timestep respectively; where SXA

= 1 if and only if SX(t − 1) = −1 ∧ SX(t) = 1, and
SXD

= 1 if and only if SX(t − 1) = 1 ∧ SX(t) = −1, and persisting as long as no new event in
BSVs are observed.

Definition 3 (Conditioning SV - CSV) A CSV C is a type of SV with mutable sets of positive sources
XP , negative sources XN , and conditioning targets Y . Positive and negative sources are BSVs and
DSVs, while targets can be DSVs or other CSVs. The sources of C are considered ”satisfied” if all
positive sources are active and all negative sources are not active. If sources are satisfied, SC = 1
if sources are satisfied and SY ∈ {0, 1}, ∀x ∈ Y (targets are active); SC = −1 if sources are
satisfied and SY ∈ {0,−1}, ∀x ∈ Y (targets are inactive), and SC = 0 otherwise. Additionally,
each CSV has a ”unconditionality” flag, which indicates if the CSV has, in the past, been always
observed active when sources were satisfied (”unconditional”), was never observed active without
a predictive explanation (”conditional”), or was sometimes observed active without a predictive
explanation (”possibly conditional”), the latter representing uncertainty in a qualitative manner.

BSVs are essentially environment observations, while DSVs represent their changes.1 CSVs model
the presence or absence of a relationship between a learned condition (sources) and its effect (active
target states), indicated by the CSV being active (1) or inactive (-1). Figure 7 in Appendix sum-
marizes these SV types and their connections. Note that CSVs are not feedforward computational
units; they represent the relationship between sources and targets - states of their targets are set in-
dependently of the CSV, unlike feedforward units that determine target states based on source states.
CSVs partially function as feedforward units only when used for prediction of alternative outcomes.

The learning process proceeds step-by-step, without incorporating an aggregate evaluation of mul-
tiple observational samples gathered from the environment, nor relying on repeated passes over a
batch of data—distinct from traditional approaches. Initially, the model includes only BSVs and
their DSVs, with no CSVs. At each step, Modelleyen seeks to explain the observed states of CSVs
and DSVs in the previous timestep (modeling BSVs indirectly via DSVs). It does so by creating
new CSVs to account for unexplained DSVs and CSVs. These retrospective explanations captured
by CSVs become predictions for potential outcomes in the next timestep. Learning capability of
Modelleyen comes from the operations on CSVs - their formation, and the modification of their
positive and negative sources; summarized as follows (detailed on Algorithms 1 and 2):

Initial formation: Figure 1b. At each step, if there are active DSVs or CSVs without an explanation
(an active conditioner or an unconditionality flag, see Appendix), a new CSV is generated to explain
them. Initially, the CSV has no negative sources (XN = ∅) and includes all active BSVs and DSVs
at that timestep as positive sources (XP ). No additional positive sources can be added to the CSV.

Negative connections formation: Figure 1d. At the first instance where a CSV’s sources are satisfied
but its state is inactive, the CSV receives all active DSVs and BSVs at that timestep as negative
sources (XN ), similar to previous step. No additional negative sources are added thereafter.2

1In our implementation we also use BSVs to represent actions taken by the agent in the previous step. The
actions do not have associated DSVs, since their activation and deactivation is in agent’s control.

2This process is separate from initial sources’ formation to only to avoid exhaustive negative connections.
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(a) (b) (c) (d) (e)

Figure 1: Sample formation of a CSV in a continual manner. The relationship to be modelled is Y =
X0 and !X2 (”!” denotes ”not”). Black and orange arrows represent positive and negative sources
for CSV C0 respctively. Xi can be interpreted either as single or grouped SVs. (a) Initial state
with no relation formed between X0 − 3 and Y . (b) X0, X1 → Y observed. Positive connections
hypothesizing both X0 & X1 are required for Y are formed. (c) X0 → Y is observed. X1 is
deduced unnecessary for Y . (d) X0, X2, X3 →!Y observed. Y is hypothesized to be suppressed
by X2 and X3. (e) X0, X2 →!Y observed. X3, seen unnecessary for suppression of Y , refined.
Correct structure learned and is stable.

Refinements: Figures 1c and 1e. When a CSV’s state is determined as 1 with at least one active
positive source and active targets, we remove nonactive positive sources (x ∈ XP : SX ̸= 1) from
XP and active negative sources (x ∈ XN : SX = 1) from XN . When the state is 0, with at least one
active positive source, inactive targets, and at least one active negative source, we remove nonactive
negative sources (x ∈ XN : SX ̸= 1) from XN .

Intuitively, a CSV starts by being connected to all active SVs at formation, representing a com-
prehensive hypothesis of relationships. These relationships are then refined based on observations
where some connections are deemed unnecessary, ensuring the CSV remains consistent with past
observations locally. This refinement is central to Modelleyen’s continual learning ability, evident
from its lowest organizational level of CSVs, as formalized of the following property.

Theorem 1 Let yi be an instance that includes the previous states of all the positive and negative
sources of a CSV C and the current states of all its conditioning targets. Then, if C undergoes any
modification as a result of encounter with an instance y1, its state in reponse to any past instance y0
is not altered by this modification; as long as its targets remain identical and C does not undergo
negative sources formation.3 For the proof, see Appendix A.2.3.

Theorem 1 is exemplified in Figure 1: In 1b, after elimination of X1 as a positive source, the
earlier exposure of X0, X1 → Y still results in a state of activity in C0, and likewise for X2 &
X3. With this property, we know that the state of a CSV in response to any past encounter is not
altered except possibly for initial negative sources formation (happening only once per CSV), hence
realizing continual learning without destructive adaptation in Modelleyen inherently and from the
lowest level of organization.

Another way to look at Theorem 1 is it being a satisfaction of the conditions on 3 and 4 by the
following equivalences by CSVs as computational units: (1) Sources to which the CSV is no longer
connected to are the instances that took different values in the past (equivalent to having wi = 0),
and they are known to have ∆w = 0 since a removed source remains disconnected. (2) For all
the remaining connections (∆w not necessarily = 0, i.e. can undergo change) we know that xit =
1, ∀t ≤ T since the ongoing presence of an input i means that it has not been observed absent in
the past. (3) The observation condition of a CSV (same as the condition for the satisfaction of its
sources) is equivalent to f(.) being a step function, wi being 1 for all connections, and b = −|Wc|,
Wc being the set of all connected sources. Hence, Modelleyen locally preserves past responses.

A CSV can condition/predict not only the activation of direct environmental dynamics (DSVs), but
also possibly the activation of other CSVs. This capability enables the model to become more
complex upstream, allowing for the representation of arbitrarily complex logical relations in a struc-
turally minimal way, without requiring any a priori knowledge of the existence of such relations.
(As a result, it is not constrained by the assumptions such as those in Mordoch et al. (2023) discussed

3The requirement for identicality of targets in this theorem is only to account for the fact that heterogeneous
targets result in duplication of CSVs - see the Appendix for details of this mechanism. The theorem holds when
one considers the response of the duplicated CSVs with respect to the targets assigned to each duplicate as well.
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(a) (b)

Figure 2: Example of upstream conditioning. In Figure 1, assume the unconditionality flag (see
Appendix A.2.1) of C0 is set after observing that (X0, !X2) did not activate it. (a) Upon observing
X0, !X2, X4, X5 → Y , C0 is active, as X0, !X2 led to Y . A new CSV C1 forms and conditions
C0. Note that (X4, X5) alone won’t activate C0 unless its sources are active. (b) New conditioners
undergo CSV processes: X5 from C1 is refined, forming C2 and C3. Multiple conditioners repre-
sent alternatives, so C0 is activated when either C1 or C2 sources are active. This allows logical
functions to be incorporated in a minimal, ongoing manner without losing past knowledge.

in the introduction). This formation of upstream conditioning pathways is exemplified on Figure 2,
continuing our example from Figure 1. The processes of refinements, negative sources formations,
and even further upstream conditioning are identical regardless of what the target of a CSV is.

Additionally, in Appendix A.2.4, we quantify the statistical significance of relationships between
each CSV and their targets - this prevents excessive complexification in environments with numerous
observations and spurious relationships, expected to be especially important when scaling to higher-
dimensional environments. Details of this mechanism are excluded from the main text for brevity.

This approach fundamentally differs from methods like NNs. In Modelleyen, the agent updates its
model instantly with each new observation, initially ”overfitting” to fully account for data before
refining it to be as simple and explanatory as possible without contradicting prior experience. The
model remains as general as needed based on past exposures, but no more. A more specific repre-
sentation (more sources per CSV) enables precise generalization with new observations, increasing
consistency as sources are refined. This process mirrors biological systems, where redundancy
allows for adaptive selection Gerhart & Kirschner (2007). We propose calling such mechanisms
—which rely on local variation and selection— varsel mechanisms, and networks using them varsel
networks. Unlike conventional methods that avoid overfitting through gradual adjustment, varsel
networks inherently build the necessary generalization from all prior data.

5 MODELLEYEN WITH NETWORK REFINEMENT

Our initial experiments with the base Modelleyen mechanism (Section 7) use a low-dimensional
finite state machine. While Modelleyen can theoretically handle any observation space, large spaces
lead to overly complex models. Here, we provide an extension, called Modelleyen with Network
Refinement (MNR), enabling it to operate on observation spaces represented as networks. While
MNR generalizes to any network-representable data with proper conversion, our attention here is
on vision, and 2D shape identification in particular. Details of our feature representation (how we
convert the images to a network), one of many conceivable alternatives, are in Section A.3.2; though
the algorithm is agnostic to the specific feature representation used and here, the reader can think
about a generic concept of a visual feature that can be edges, gradients, objects, or raw pixels.

First, we define the basis of our representation of observations & sources for CSVs in this extension:

Definition 4 A state network (SN) is a directed graph (N,E), where each node has a type. A list of
state networks and associated keys, P = [(k0, SN0), (k1, SN1), ...] is a state polynetwork (SPN).

Node types in state networks (SNs) represent distinct features (e.g., edges, corners, or objects in
visual space), with nodes being observed instances of these features in the current observation (e.g.
edges with the same orientation or instances of the same object are distinct nodes of the same type;
see Fig. 8a in Appendix for an example). Edges (E) represent relations between nodes, e.g. relative
positions in visual inputs or succession in temporal domains. A state polynetwork (SPN) is a collec-
tion of distinct state networks with a designator key, enabling the definition of different feature and
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(a) Source SN. (b) Refiner SN. (c) Source, refined.

Figure 3: Illustration of network refinement with rerelation. In (c), highlighted edges are created
through rerelation. Paths (A,D) and (A,C) exist in both networks but are mediated by different
intermediaries (B and K respectively), leading to refined intermediaries and new edges. Similarly,
path (Z,C), mediated by (Y,X) in the source and (L) in the refiner, is refined. Edge (A,Z) is
removed as it lacks a corresponding path in the refiner SPN. Edge (A,B) is preserved unchanged,
as it appears in both networks, despite differing successors of B. (Node positions are illustrative and
irrelevant to refinement.)

relation types. In visual space, this could include shape, color gradients, or abstract objects, as well
as multi-dimensional relations (e.g., relative positioning). An example SPN is shown in Fig. 9c.

SPNs will serve as input sources for CSVs in our model, replacing the sets of state variables in
base Modelleyen. Learning the model involves constructing SPN structures that capture the desired
information, bringing us to the question of how an SPN (representing a CSV’s input configuration)
should be modified in response to new SPN observations.

An operation analogous to refinement in base Modelleyen (which reduces lists of SVs to their inter-
section) is needed to identify the shared part of two or more SPNs. For this, we define:

Definition 5 An SPN P0 = [(k0, SN
0
0 ), (k1, SN

0
1 ), ...(kN , SN0

N )] is satisfied by another SPN
P1 = [(k0, SN

1
0 ), (k1, SN

1
1 ), ...(kN , SN1

N )] (with the same set of keys K = [k0, k1, ...kN ]) given a
potentially partial assignment f : V (P0) → V (P1), where N(Pi) is the set of all nodes across all
state networks of Pi, if and only if the following conditions hold: (1) For ∀n0 ∈ N(P0), f(n0) is
defined (has a mapped node in N(P1)), and (2) For ∀e0 = (n0, n1) ∈ E(SN0

i ) where E(SN0
i ) is

the set of all edges in state network SN0
i in P0, there exists a path in SN1

i from f(n0) to f(n1).

Intuitively, P0 is satisfied by P1 under an assignment if every node in P0 has a corresponding target
node in P1, and every edge in P0 has a path in P1 connecting the assigned targets of its endpoints
within the same SN. This ensures that all entities and relations in P0 are present in P1, even if
mediated by additional entities not in P0 (as paths, not direct edges, are required).

We can now redefine ”finding the intersection” of two SPNs P0 and P1 as ”minimally refining P0 to
be satisfied by P1.” This is achieved through network refinement with rerelation, where P0 (source) is
refined by P1 (refiner). The process, detailed in Alg. 3 in the Appendix, relies on two subprocesses:

Refinement: Nodes in P0 that are missing in P1, and edges in SNs of P0 that don’t have a path
between their endpoints in the corresponding SN of P1, are removed.

Rerelation: When an edge (n0, n1) is removed (including via node removal), a new edge (pi, si) is
created for ∀pi ∈ P (n0), si ∈ S(n1), where P (n) and S(n) are predecessors and successors of n
respectively. (Each edge formed by rerelation is also checked for the same conditions of presence.)

Figure 3 illustrates this process: the source SPN in 3a is refined by the refiner in 3b, resulting in
the refined SPN in 3c. Paths like (A,D) or (A,C) are preserved despite differing intermediaries.
Applying this process sequentially to a source SPN across multiple refiners results in a final SPN
representing commonalities across all refiners, ensuring it is satisfied by each refiner retrospectively.4

Above, we outlined the key modifications to the base Modelleyen framework to enable its opera-
tion on networks. Additional implementation details, excluded from the main text, are provided in
Appendix A.3. These include a statistical refinement mechanism to mitigate noise, a method for

4The local continual learning guarantee in base Modelleyen (Theorem 1) also applies to Algorithm 3, as
nodes and paths in an SPN are analogous to state variables in the base version. Thus, the theorem’s proof holds
for node and path removal, with edge refinement being more constrained than path refinement.
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identifying proper node mappings, the feature representation used to convert images into networks,
and adjustments to the original Modelleyen learning flow to accommodate network representations.
One point to note is that the feature representation used for network construction has limitations
in representational expressivity, which is largely responsible for the suboptimal accuracy of MNR.
Further details are in Section A.3.2, with a broader discussion in the Conclusion.

6 EXPERIMENTAL SETUP

Modelleyen We demonstrate the operation of Modelleyen on a simple test environment, which is a
finite-state machine (FSM), designed to model various types of temporal successions, whose details
we omit here due to spatial limitations and present in Appendix A.4. The agent learns the environ-
ment through Modelleyen and selects actions using a simple planner (Sec. A.1, Appendix) based on
the learned model. The environment includes three subtypes (”RS”, ”SG”, ”NEG”), and two variants
of vanilla (regular design) and random (with two additional states activating randomly, unrelated to
the task, to test the ability to handle noise). This environment was chosen to validate the core oper-
ation in a simple and understandable setting, which made in-depth analysis and debug of the design
very feasible during development process. There is no inherent limitation to applying Modelleyen to
more complex environments, like those used for RL algorithms. However, the planner would need
adjustments to make the search nonexhaustive, and an integration of environment modeling with
complex visual space processing, such as the MNR variant, is needed. We leave validation on such
environments and changes in design to future work, as this presentation is dense enough already.
We measure the average steps to reach the goal by an agent that chooses actions using the planner
that operates on the environment model that has been learned (with a 10% chance of random actions
for exploration) vs. an agent that acts purely randomly. We conduct continual learning experiments
where the agent learns with predefined goals and the environment subtypes switch every 500 steps
(with readaptation) or 1000 steps (without readaptation). We test whether the agent can achieve
similar performance in different subtypes, both in vanilla and random environment variants without
any readaptation of the model, and also analyse learning progression when readaptation is enabled.
For more details, see Appendix A.4.

MNR We experiment on MNIST dataset, with the aim to show continual learning performance of
MNR, contrast it with the learning progression of neural networks, and investigate learned repre-
sentations of classes by MNR for proper structure and comprehensibility in some additional results.
Our MNR learning process involves randomly selecting NC classes from the 10 available at the start
of each trial. In one cycle, the system is exposed to Nsample samples from each class sequentially,
with one exposure and learning step per sample (no reexposure, as repeated steps have no effect in
MNR). Processing samples from one class constitutes an iteration. Neural networks follow the same
flow, trained on one sample per step until convergence or max epochs. Performance is evaluated via
per-class accuracy after each iteration (NC evaluations per cycle). We train for 10 such cycles,
simulating a general and realistic continual flow on information with the requirement of ongoing
learning without any constraining assumptions. We run our experiments on MNR with NC = 3, 5
and 10, and with NC = 3 on NNs for comparison of behavior. Reported results are averages of
10 and 5 runs for NC = 3 and 5 respectively. Further details, including choice of parameters and
computation of predictions in MNR, are on Appendix A.5.

We don’t provide comparisons with existing continual learning methods, as none offer a meaningful
comparison. As noted in Section 2, all methods we know of rely on restrictive assumptions, such
as replay buffers or clear task boundaries, which our approach is specifically designed to avoid.
Existing methods can achieve near-perfect information retention under these conditions Erden &
Faltings (2024), hence comparing them as baselines wouldn’t be informative. Additionally, none
of these methods integrate with precise, goal-directed behavior in learned models, making them
unsuitable for our behavioral experiments.

7 RESULTS AND DISCUSSION

Modelleyen: Table 1 displays the agent’s continual learning performance across changing environ-
ments. Both vanilla and random variants maintain or even improve their performance after exposure
to different environments, often outperforming initial learning periods, without readaptation. For
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Figure 4: Average (5 trials) episode durations throughout learning with changing environment sub-
types, with model readaptation enabled. Vertical limits show the environment changes, note that the
actual step of change slightly varies across trials since end of the ongoing episode is waited.

Table 1: Continual learning in environment modelling. Mean episode durations with environment
change, for vanilla, random environment, and readaptation variants. Columns represent the suc-
cessive environment subtypes. Subtypes indexed ”L” have model learning enabled, ”NL” have it
disabled (except for ”readaptation” variant, which continues learning throughout the end). All re-
sults are averages across 5 trials.

RS-L SGS-L NEG-L RS-NL SGS-NL
Vanilla 45.58 (25.55) 5.33 (0.28) 4.47 (0.22) 10.38 (1.68) 4.3 (0.11)

Random Env. 190.86 (148.0) 32.3 (9.93) 9.87 (3.45) 121.69 (82.33) 35.05 (5.42)
Readaptation 89.01 (58.72) 28.19 (21.45) 6.06 (0.74) 13.73 (3.45) 4.71 (0.15)

Random actions 275.86 67.53 52.48 275.86 67.53

instance, the vanilla version averages 5.33 steps on the SGS variant during learning and 4.3 steps
after intermittent exposure to other subtypes. Fig. 4 also illustrates this, showing that with model
adaptation enabled, the agent performs consistently with its previous endpoint performance in the
same environment subtype, without any spikes indicating destructive adaptation. Additionally, most
steps are spent in the RS variant due to the precise timing requirements of the planner (see Sec. A.1
in Appendix).

MNR Figure 5 shows learning progression of MNR for NC = 3, 4, and 5 classes; as well as that
of the neural network variants for NC = 3 for comparison. MNR’s final performance, as expected,
does not achieve perfect identification, with accuracies of 85%, 60% and 50% for NC = 3, 5 and 10
respectively after 10 cycles. This stems primarily from limitations of feature representation (Section
A.3.2) and while it suggests the need for improvement with better representations (see Conclusions),
it is not our main focus here. To validate continual learning of our design, we focus on MNR’s high
retention of learned information, as shown in Figures 5a, 5d, and 5e. Performance on class i remains
stable in later iterations (j > i) of the same cycle, with early accuracy persisting throughout. This
contrasts sharply with neural networks: a fully connected NN (Fig. 5b) loses all information on
class j > i in early cycles, and even after 10 cycles, it fails to retain a stable representation, showing
> 50% accuracy loss. A convolutional NN performs worse, losing all information repeatedly. Con-

(a) MNR, NC = 3. (b) Fully connected NN, NC = 3. (c) Convolutional NN, NC = 3.

(d) MNR, NC = 5. (e) MNR, NC = 10.

Figure 5: Learning performance of MNR, fully connected, and convolutional neural networks on
NC-class incremental learning over 10 cycles. Accuracies reflect correct classification ratios for
each class. Shaded areas denote cycles, and vertical lines separate iterations within cycles. Results
are averaged over 10 (a-c) and 5 (d-e) runs. Note that class indices i are randomly chosen at the start
of each run and do not necessarily correspond to digit i.
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tinual learning is most critical in early cycles (first 3-4), as in the long run, with increasing number
of cycles, the problem is equivalent to stochastic gradient descent with a slow timescale, reducing
the problem to statistical learning with data abundance. MNR’s retention of performance is con-
sistent across tests with 5 and 10 classes as well, albeit with lower baseline accuracies. We note
that in MNR, as in Modelleyen, even when there are small performance fluctuations, it is by design
not due to direct destruction of existing information (unless a conditioner is removed for cumulative
insignificance) but stems from over-refinement or negative conditioning.

We briefly note the factors limiting performance of MNR compared to the perfect detection achieved
by neural networks. First, the representation used lacks full expressivity, capturing only gradient
change points rather than all shape features (see Appendix A.3.2). Second, the current statistical
refinement (Appendix A.3) approach retains some features not present in every sample of a class,
yet SPN satisfaction (Definition 5) requires precise matches. This leads to missed instances, espe-
cially outliers. This is rather straightforward to offset by allowing soft satisfaction of SPNs. These
limitations were not the focus of this work, which prioritized validating the learning flow with a
demonstrative representation, and will be addressed in future research.

We also note that the internal representations using MNR are inherently comprehensible to human
eye. We omit this analysis here, but they can be found in Appendix A.7.

8 CONCLUSIONS

In this work, we analyzed the ability of computational units in a learning system to preserve past re-
sponses while adapting to new inputs—a crucial prerequisite for true continual learning. We demon-
strated that standard neural networks inherently fail to meet this requirement and introduced Mod-
elleyen, a novel learning algorithm capable of retaining past responses, as verified both theoretically
and experimentally. We extended the principles of Modelleyen to network structures, enabling it to
process large observation spaces, such as visual data, more effectively. Although the current im-
plementation has limitations, requiring considerable future development to achieve computational
efficiency and match modern neural networks in performance; both our theoretical inquiry and the
initial experimental results here demonstrate that such an approach is essential to realize contin-
ual learning in AI systems, and approaches based on straightforward statistical parameter tuning
like NNs are inherently inadequate for learning without loss of past knowledge. This can be more
regarded as a class of architectures based on local variation and selection, whose exploration by
community is long overdue. To the best of our knowledge, our work is the first inquiry into such a
mechanism for learning.

Limitations and future work The current design is preliminary and faces several limitations, partic-
ularly in its MNR variant for networked observation spaces. Firstly, its implementation is compu-
tationally demanding due to redundant modeling introduced for simplicity, as optimization was not
prioritized (see Appendix A.3). Upstream CSVs are represented as large networks instead of distinct
subnetworks, with each CSV limited to one target, inflating computation cost. Also, learning flow
processes multiple intersecting upstream paths simultaneously, which could be streamlined by fo-
cusing on the ”best-matching” path. While Modelleyen allows for complexifying as much as needed,
operations should ideally involve a small set of CSVs with combined SPNs no more complex than
the SPN of the observation, capping per-step complexity to the observation space size - we aim to
realize this goal. Secondly, the current feature representation, based on gradient sign changes, is
simple and tailored for 2D shape detection but has limited expressivity (see Appendix A.3.2), affect-
ing performance. Future work could refine this method or adopt established approaches like SIFT
(Lindeberg (2012)), pretrained visual models (Oquab et al. (2023)), or frequency components (Xu
et al. (2020)), all compatible with the MNR flow. Pixel-level detection, similar to neural networks,
or intermediate representations like CNN-style filters could also improve performance and expand
applicability, though scalability and interpretability must be considered. Additionally, Modelleyen
is currently explored separately for environment dynamics modeling and behavior. A natural future
direction is modeling the dynamics of environments observed as networks (i.e., network dynam-
ics), enabling experiments with complex visual spaces. Similarly, temporal dynamics, particularly
in non-Markovian environments with long-term dependencies, can also be effectively represented,
processed, and learned as networks using our refinement algorithm.
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(a) (b)

Figure 6: Illustration step-by-step upstream generation of action network, operating on different SV
types. BX, CX and GX stand for BSV, CSV and GSV nodes respectively, (A) for activation, (0)
for nonactive state. Black arrows are positive sources and precondition targets, green arrows are
constituent (dashed) and constituency (solid) relations. The node that is extended at each step is
highlighted in red. (a) Step 1. CSV C0 is opened. For CSVs, their upstream conditioners (C1) and
sources are expanded (G0, B0(A)). (b) Steps 2-4. Each step opens up one of the sources of previous
step. For GSVs (G0), constituents (B2, B3), constituencies (G1) and precondition events (G0(A))
are opened. For DSVs (B0(A)), their precondition states (B0(0)) and their conditioners (C2) are
opened. Possible interrelations (e.g. B2 for C1, G0) do not need reopening if they already exist.

A APPENDIX

A.1 PLANNER

Here we describe our planner, an extension on Modelleyen designed to demonstrate goal-directed
planning through backward tracking from desired goal states to current states.

Preprocessing the model and Group SVs: We first briefly preprocess a learned model to reduce the
number of connections. To this end, we group the sets of BSVs in our that are either (1) collectively
act as positive or negative source of a CSV, or (2) have an event that is collectively predicted by
a CSV. Each such grouping becomes a constituent of a Group SV (GSV). For example, if a CSV
C0 has positive sources (B0, B1, B2) and predicts deactivation of (B3, B4); then two GSVs are
created: G0 = (B0, B1, B2), G2 = (B3, B4). This preprocessing stage is only for practical
purposes and is not in principle needed for the operation of the planner, but we think it is essential
for scalable representations of models learned by Modelleyen in the long run.

Main Process of the Planner: The planner constructs an action network (AN) based on a model gen-
erated by Modelleyen, incorporating alternative outcomes. An AN is a dependency graph with root
nodes representing the current environmental states (current BSV, GSV, and DSVs), along with pos-
sible alternative connections (shown by multiple conditioning links from CSVs) needed to achieve
a specified goal state variable. To build this, we use a simple recursive function that generates the
upstream action network for a given node (Figure 6 - see Algorithm 4 for details). At each call,
the function adds predecessors for the specified node until it reaches the root nodes that represent
current environmental states. These predecessors vary by state variable types based on their model
functionality, as summarized in Figure 6b.

Action Choice: The agent generates an action network each time it needs to select an action. (While
this is computationally unnecessary—since the agent could reuse a generated AN until it reaches
the goal by tracking its position along the AN—we maintain this approach for simplicity.) From
the generated AN, the agent identifies actions that can immediately activate any CSV in the action
model, specifically those whose sources and sources of their downstream targets do not involve any
unactualized BSV states. The agent then randomly selects one of these actions for the current step.
Since only one action is chosen, the agent can consider the entire AN including alternative pathways.

This planner is explicitly goal-directed, identifying a path from initial states to the goal without
needing rewards, although rewards can help prioritize the search. Unlike methods like model-based
RL, which typically search from initial states to goals via forward-sampling, the planner considers
both initial and goal states, focusing on steps derived from the environment model. The planning
algorithm is a simple search method that unfolds upstream action networks from the model, as our
main aim is to demonstrate the interface between Modelleyen’s modeling components and general
deliberative behavior without going into extensive detail. Planning is a well-established field with
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Figure 7: Illustration of SV types and relationships. The figure shows BSVs (Bi), their DSVs for
activation (A) and deactivation (D), and CSVs (Ci). Here, CSV C0 takes as positive source BSV B0,
as negative source the activation DSV of B1; and conditions the CSV C1 as well as the deactivation
of B2, modelling ”B2 is deactivated and C1 is active if B0 is active and B1 is not activated.”

efficient methods and useful heuristics Ghallab et al. (2016), and once the interface between Mod-
elleyen and the planner is established, implementing more advanced algorithms is straightforward.

Finally, we note two visible limitations of the current version of the planner. First, the generated
action networks are exhaustive, including every possible path to initial states. Second, the current
version does not account for the precise timing of multiple events. In our experiments, for instance,
the RS environment subtype (see Figure 10) takes longer due to the BSV DO having two pathways
for deactivation, the correct one being the one that deactivates BSV W as well at the same time.
The planner fails to distinguish between these pathways, leading to some unnecessary loops. These
limitations are not addressed in current framework to keep its simplicity, since they do not affect our
demonstrative use of the planner to a major degree. They are discussed in the Conclusions of the
main text.

Overview of the Agent’s Operation Flow In summary, the operation of an agent utilizing Mod-
elleyen and this planner follows these steps, repeated continuously as the agent interacts with the
environment in an online manner, without the need for episode division or offline learning periods:

1. Execute actions and gather the resulting observations from the environment.

2. Process the environment’s observations and update the model (Modelleyen - Algorithms 1
and 2.)

3. Generate a plan based on the current model and goals, then select an action from the result-
ing plan (Planner - Algorithm 4.)

A.2 DETAILS OF MODELLEYEN

A.2.1 DETAILS OF SYSTEM COMPONENTS

We define a state variable (SV) as a variable that can take three values: 1 for active, -1 for inactive,
and 0 which can be interpreted as unobserved, undefined, or irrelevant depending on context. Note
that the numerical values are given only as shorthand notation and do not participate in an algebraic
operation anywhere. The phrase nonactive refers to any SV that is not active. The SV construct
comes in three subtypes: Base SVs (BSVs), Dynamics SVs (DSVs), Conditioning SVs (CSVs).

BSV: BSVs are the externally-specified SVs whose states, which is assumed to be either 1 or -1,
are provided externally to the system at each time instant. These can be regarded as the direct
observations from the environment.

DSV: Each BSV comes with two associated DSVs, for activation (A-DSV) and deactivation (D-
DSV) respectively. Activation at timestep t is defined as the transition of a BSV state from -1 in step
t−1 to 1 in step t; and likewise deactivation at t is defined from 1 in t−1 to -1 in t. At step t, A-DSV
is deduced active (state 1) if activation is observed at step t, inactive (-1) if a BSV is inactive at t−1
and no activation is observed at t, and undefined (0) if the BSV is already active. Symmetrically,
at step t, D-DSV is deduced active (state 1) if deactivation is observed at step t, inactive (-1) if a
BSV is active at t − 1 and no deactivation is observed at t, and undefined (0) if the BSV is already
inactive. The BSVs are modelled only through changes in their states via their associated DSVs,
and are not predicted by themselves.
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CSV: A CSV is a SV that conditions either DSVs or other CSVs (but not BSVs since they are not
subject to direct modelling of their states); that is, predicts their activation. More specifically; each
CSV comes with a set of positive and negative sources, where each source is either a BSV or DSV;
and a set of targets, which correspond to the SVs that this CSV conditions. At steady state, a CSV’s
source conditions are said to be satisfied when all its positive sources were active and all its negative
sources were nonactive in the previous step - in other words, the satisfaction corresponds to the
condition all(positive sources) and not(any(negative source)) in the previous step. A CSV
state is undefined (0) if its source conditions are not satisfied. If its source conditions are satisfied;
a CSV’s state is active (1) if the state of all its targets are either active or unobserved; and inactive
(-1) if the state of all its targets are either inactive or unobserved. In case inactive and active targets
are observed together, the CSV is duplicated to encompass the corresponding subsets of targets (as
detailed below), hence we always ensure that one of the two above conditions will be satisfied with
respect to the states of the targets. A CSV is to be interpreted as a state variable that represents
the observance of a particular relationship - it being active means that this particular relationship
(e.g. a change, as represented by a DSV, is observed conditioned on some sources) is observed,
and it being inactive means that this relationship is not observed. The CSV being undefined or
unobserved corresponds to the case in which the conditions for the observation of the relationship
are not satisfied in the first place.

Potential targets of conditioning (i.e. DSVs and CSVs), when they are not undefined, are expected to
be active if one of their conditioners are active; and inactive otherwise. Furthermore, these types of
SVs also possess an unconditionally flag, that allow for exceptions in this activity prediction, and are
used to model uncertainty regarding activation of SVs. This flag can take three values: It starts with
a value ”unconditional” at the creation of the CSV and, if the CSV is observed to always be active
whenever its sources were satisfied, it remains so. At the first observation of a case where the sources
of the CSV are satisfied without the CSV being active, this flag changes to ”conditional,” signalling
that sources alone do not suffice for the activation of the CSV and activity of one of its upstream
conditioners is expected. The ”conditional” value persists until the first observation of a case where
CSV is observed active without any upstream conditioner being active and no new conditioner could
be formed (see below and the main text); in which case the flag changes to ”possibly unconditional”
and remains as such.

Over the course of interaction with the environment, Modelleyen learns a model that predicts the
BSV states at the next step indirectly via the prediction of the DSV states. Within the predictions
uncertainty is also represented where needed, as apparent from the description of the SVs. Since
uncertainty is represented in a local basis (by unconditionality flags of individual SVs), and since
CSVs are points of connection relating potentially multiple sources to potentially multiple targets;
the uncertainty representation can represent alternative correlated outcomes in a tree-like manner
where each downstream “branch” corresponding to the alternative outcomes in one direction or an-
other can include multiple outcomes that occur together - we note that representation of uncertainty
as such is not possible in a local manner with e.g. classical neural networks.

A.2.2 LEARNING THE MODEL

First, we provide an overview of the learning process in one step of interaction with the environment.
During a step, the model is traversed, and the states of all its SVs are computed. For CSVs sources
and targets are modified to be able to match the current states to the predictions/explanations of the
CSV, so that the model is consistent with the environment at each step. After that, new CSVs are
generated for the DSVs and CSVs that lack an explanation at the current step. The new CSV takes as
positive sources all currently active eligible SVs in an exhaustive manner. Finally, model is refined
by removal of unnecessary state variables.

The learning process is summarized formally on Algorithms 1 and 2. Below, we provide a detailed
breakdown of the processes described on those algorithms.

Initially, the model is generated with only BSVs and their associated DSVs, and without any CSV.
At every step, the current and previous states of all the SVs are recorded, as well as the current and
previous events (activation and deactivation) of every BSV.

At each step, the effective network created by DSVs and CSVs are traversed in the reverse order
of computation, similar to backpropagation algorithm; starting from DSVs, then the CSVs that
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Algorithm 1 Pseudocode of the main Modelleyen adaptation loop; formed of state computations
followed by CSV generation for unexplained SVs.
Parameter: N Set of all target nodes
Function ProcessEnvironmentStep(observations)

1: BSV States← observations
2: ComputeDSV States() {Computes DSV states by BSV events}
3: for level ∈ reverse(ComputationLevels) do
4: for CSV ∈ SV sin(level) do
5: ComputeState(CSV )
6: end for
7: end for
8: UnexplainedSV s← [SV : SV.state = 1 and NoConditionerActive(SV )]
9: sources← [SV : SV in [BSV s,DSV s] and SV.state = 1 and isEligible(SV )]

10: NewCSV = CreateCSV (sources, [SV : SV in UnexplainedSV s and TargetEligible(SV )])

11: ModelRefinement() {Removes CSVs with no source or target}

Algorithm 2 Pseudocode for CSV state computation.
Function ComputeState(CSV )

1: if AnySourceActive() then
2: SeparateActiveInactiveTargets() {Creates two CSVs from current one with active and

inactive targets in either of them}
3: if AnyTargetObserved() then
4: State = 1
5: PosSources← [source : source in PosSources and source.state = 1]
6: NegSources← [source : source in NegSources and source.state! = 1]
7: else if AnyTargetInactive() then
8: if not(AllSourcesActive()) then
9: State = 1

10: else
11: if AnyNegativeSourceActive() then
12: State = 0
13: NegSources← [source : source in NegSources and source.State = 1]
14: else
15: State = −1 {No negative source active to explain inactivity of targets}
16: end if
17: end if
18: end if
19: else
20: State = 0 {Unobserved if targets are not observed}
21: end if
22: if State = −1 then
23: if NegativeConnectionsFormed then
24: FormNegativeConnections()
25: else
26: unconditionality = ”isConditional” {-1 for }
27: end if
28: end if

condition these BSVs, then the conditioners of these CSVs, and so on. Each traversed SV gets their
state computed, and additionally CSV compositions are changed where needed, as in Figure 1 and
detailed below.

Processing of a CSV

The process for CSVs are carried as follows: If no positive source of a CSV is observed at a given
step, its state is deduced as 0 (undefined/unobserved). If at least one source is observed, and if there

15



Published at ICLR 2025 World Models Workshop

are both active and inactive targets among the CSV targets, then the CSV is duplicated with different
target sets to create one copy that includes active targets and one copy that includes inactive targets
(and any undefined targets are shared by both). This ensures that the CSV remains consistent, since
it’s activation represents the activation of all its targets provided they are not undefined. There is
no way to say whether an undefined target will be consistent with one duplicate or another after the
changes to the CSV described below without observing a non-undefined state in them, so they are
put into both copies and do not otherwise affect the state deduction of the CSV (except if all targets
are undefined, see below).

Following this operation, if a CSV has any target active, then its state is deduced as active (1). If
there is no perfect match with the standing sources of CSV and their activations (i.e. there are
either inactive positive sources or active negative sources), these source lists are refined so that the
remaining sources correspond perfectly to the current state of the network - in other words, any
positive source that is inactive and any negative source that is active is removed. This refinement
eliminates parts of the previously-posited relationships “hypothesized” to be necessary by the CSV
in an exhaustive manner (see details on CSV formation, below) that are observed to be not necessary
for the observation of the effect that the CSV models (Figure 1c.

If, on the other hand, the CSV has any inactive target (which is exclusive with any target being
active due to the duplication-differentiation operation made above) and if not all its positive sources
are active, then the state is deduced as 0, being consistent with the interpretation of a CSV as being
defined only if all its positive sources are active. If however, all positive sources are active; then
we look if any negative source is active that can justify the inactivation of the targets of the CSV. If
there is at least one negative source that is active, we deduce the state as 0 since source conditions
are not satisfied; and refine the negative targets that are not currently active in the same manner we
described in the previous paragraph (due to the observation that they are seen to be not necessary for
the suppression of the CSV - Figure 1e).

If, instead, all the targets of CSV are undefined, then the CSV is undefined as well.

A CSV is always created with only positive sources at first and no negative sources, and a CSV
always starts as an unconditional CSV for whom we never expect to observe an inactive state (see
below part for details on the generation of CSVs). At the observation of an inactive state in the CSV
(i.e. one in which sources are active but targets are inactive), only once after the creation of the CSV,
we duplicate the CSV and separate the targets that are currently undefined (to protect them from
the change being made). In the duplicate that has the inactive targets, we connect the CSV with the
negative sources by forming a negative sources list that encompasses all the currently-active eligible
BSVs and DSVs in the model, which will be subject to future refinement (criteria of eligibility
is detailed below, essentially corresponding to SVs that do not yield useful information). This,
essentially, attempts to explain the CSV’s observed inactivation. If, however, an inactive state is
observed despite already having formed connection with negative sources, then the unconditionally
flag of the CSV is set to ”conditional”, representing that the CSV’s state is now uncertain (setting
aside its possible conditioners).

CSV generation and model refinement

After the traversal of SVs for computation of their states and modifications in CSV compositions, all
DSVs and CSVs who are observed active but are neither unconditional nor have an active conditioner
that explains their activation are labelled as unexplained. We then form a CSV that, as positive
sources, has all the eligible, currently-active BSVs and DSVs; and as target, has all the eligible
SVs in unexplained list (Figure 1a). Any target which is left outside of this CSV, and hence remain
unexplained, have their unconditionally flags set to ”possibly conditional” (which basically signals
that the SV can go active without any explanation or predictor).

Finally, at the end of the step, we refine the general model by removing any CSVs that may be
duplicates of other CSVs (ending up representing the same thing from different histories), as well
as any CSV that has no sources or targets left as a result of refinement or duplication operations.

Source eligibility for CSVs

To reduce model complexity and avoid the need for repeated exposures to the environment, we
pre-filter sources during CSV formation or CSV negative-sources formation by their eligibility as
follows: We define trivial sources of a CSV as the sources of all the SVs that lie downstream starting
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from this CSV (i.e. SVs conditioned by this CSV, and CSVs conditioned by them, and so on), plus
the associated BSV if a DSV is reached. Intuitively, these are the sources whose states can be
determined by the knowledge that the CSV is active (since a CSV being active means that it’s target
will be active as well, which will inform us about the states of its sources), and hence wouldn’t
be informative sources for the current CSV as any information conveyed by them will be trivial.
When forming a CSV, among all the currently-active BSV and DSVs, we filter those that provide
trivial information to all the unexplained SVs (i.e. prospective targets for the generated CSV) out as
positive sources, and take only those that do not provide trivial information as source to at least one
of them. Furthermore, after this filtering, if there is a prospective target for which all the remaining
prospective sources provide trivial information, then this target is not taken as a target of the CSV
and hence remains unexplained.

In a similar spirit, when forming negative sources, we filter out all the candidates that provide trivial
information for the CSVs. In addition, however, we filter out any upstream positive source (that is,
the cumulative list of all positive sources among all upstream CSVs of this CSV, i.e. its conditioners
and conditioners of its conditioners, including itself) because we already know (by the definition of
the conditioning process) that there was an instance in which this CSV was observed when the SVs
in this list of positive conditioners was also observed; and hence these negative sources would be
eliminated in exposure with the same instance again.

Conditioner formation for unconditional CSVs

Here we note a modification that we do not employ currently, but is possible: Currently we allow no
CSVs to condition unconditional CSVs since they are not informative and hence prevent the model
from being minimal. However, we note that allowing for conditioners to be formed to unexplained
(no active conditioners) unconditional CSVs as well could result in these CSVs already having
some conditioners learned from the previous encounters with the environment in case they ever turn
conditional, reducing the required number of interactions for the learning of the full environment
model, at the cost of making the model more exhaustive in terms of what is being modelled. This
would require two changes: (1) At CSV formation, not excluding the unexplained CSVs that are
unconditional; and (2) when refining positive sources, we create a CSV which takes as its initial
positive sources that are being removed, and that conditions the CSV whose sources are being refined
currently. This way, instead of removing what was observed to be active at previous encounters at
which the CSV was active, we push them to an upper level of computation to represent an alternative
condition in which the CSV was observed to be active before.

A.2.3 PROOF OF THEOREM 1

Let Xi
P and Xi

N be positive and negative sources of C respectively that remains after refinements
that instance yi causes. Since we know that C does not undergo negative sources formation, and that
y0 comes before y1, we can say that X1

P ⊆ X0
P and X1

N ⊆ X0
N since only refinements are allowed

on XP and XN sets of C by our definition of operations.

We now analyse the two possible cases with respect to satisfaction of sources:

• If, in the original encounter with y0 the sources of C were satisfied, then we had Sx =
1∀x ∈ X0

P and Sx = 1∀x ∈ X0
P . Since X1

P ⊆ X0
P and X1

N ⊆ X0
N , we will also have

Sx = 1 ∀x ∈ X1
P and Sx = 1 ∀x ∈ X1

P at the new encounter with instance y0. Hence, if
sources of C were satisfied in the previous encounter with y0, they will remain satisfied in
the new encounter. The value of SC can be -1 or 1 if and only if sources of C are satisfied;
in which case it is exclusively determined by the state of its targets (-1 if targets are inactive
and 1 if targets are active). Since the states of targets are determined by y0 and hence is the
same across the past and new encounter with y0; if SC = 1(−1) in the past exposure with
y0, then it will be 1(−1) in the new exposure as well.

• If, in the original encounter with y0 the sources of C were not satisfied (and hence original
encounter yielded SC = 0), then we either had Sx ̸= 1 ∀x ∈ X0

P or Sx = 1 ∀x ∈ X0
N (note

that we defined Xi
P and Xi

N as source sets after the refinements; and hence we know that
in both cases it will be the whole of positive/negative source sets that have the property, and
not a subset of them; since the source SVs that were not a part of that subset will have been
refined). Since X1

P ⊆ X0
P and X1

N ⊆ X0
N , we will also have either Sx ̸= 1 ∀x ∈ X1

P (if
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former) or Sx = 1 ∀x ∈ X1
N (if latter), both of them not satisfying the sources conditions

of C (hence the new encounter with y0 also yielding SC = 0.

Therefore, in all cases, response to y0 remains identical before and after exposure to y1.

A.2.4 LEARNING THE STATISTICAL SIGNIFICANCE OF ENCOUNTERED RELATIONS

The base mechanisms of Modelleyen as described in the main text rest on an attempt of prediction
of all encountered changes in state variables in the environment, forming an explanatory/predictive
relationship between any two observed events in that attempt of full modelling of the environment.
Unlike neural networks (or other statistical learning methods), the naive algorithm does not depend
on, but also does not naturally incorporate, a method of statistically averaging and filtering learned
relationships. Such a means of estimation of statistical significance of learned relationships can be
incorporated into the models learned by modelleyen in a straightforward manner into the learned
relationships locally, which in turn can be used to filter out non-significant relationships, hence
preventing overcomplexification of the model.

Let C be a CSV, and let T be a target SV of that CSV. We define the event sources satisfied, SS(C),
to be the event where all positive sources of C are active and all negative sources are nonactive. For
each target, we define an observation of the target O(T ) to be when the target is observed (i.e. either
active or inactive, state 1 or -1, as defined in the main text) and an incidence of the target I(T ) to be
when the target is active (state 1). We define the event concurrence to be the event where both the
sources of C are satisfied and there is an indicence of target, CC(C, T ) = SS(C) ∧ I(T ).

We quantify the statistical significance of a learned relationship between a set of sources of a CSV
and one of its targets as the amount of increase in the probability of the incidence of the target given
the satisfaction of the sources of the CSV. We define normalized causal effect (NCE) as the amount
of increase in probability of incidence of T that satisfaction of sources of CSV C causes, normalized
by the original probability of incidence:

NCE =
P (I(T )|SS(C))− P (I(T ))

P (I(T ))
(5)

The conditional probability in the nominator can be expanded as:

P (I(T )|SS(C)) =
P (I(T ), SS(C))

P (SS(C))
=

P (CC(C, T ))

P (SS(C))
(6)

by our definition of concurrence CC(C, T ) above. All of the probabilities can be computed by
locally tracking of the number of instances that the corresponding events are observed, when the
target is observed (i.e. O(T ) = 1). When the target is unobserved/undefined, by extension none of
the other events are observed.

A positive NCE means that SS(C) increases probability of I(T ) and a negative NCE means that
SS(C) decreases it. An NCE of e.g. 2.0 means that SS(C) increases probability of I(T ) to 3 times
the original probability. Within the context of our modelling mechanism, a negative NCE means
that the relationship between sources of C and T has been learned in the wrong direction - actual
negative relations learned in proper direction will still result in positive NCE, because the sources
of that relation will go within the negative sources of C instead of the positive ones, still in the end
resulting in the SS(C). The lower the magnitude of NCE, the less significant the relationship is.

Given NCE values for each relationship, one can set a positive threshold ϵT , where NCE values with
magnitude below it are regarded as statistically insignificant. ϵT represents the trade-off between
complete modelling and model complexity. After that separation of relationships into significant
and insignificant ones, one can proceed either with their removal, or simply with blocking further
conditioner formation for them to prevent overcomplexification in an attempt to predict a near-
random relationship (i.e. to prevent ”fitting the noise”). Since our main aim in employing this
mechanism is to prevent overcomplexification, and since removal of such insignificant relationships
from the model completely would result in their re-learning if the agent is exposed to them again;
we opt for the latter option and block further conditioner formation for them.
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NCE values may have other utilities for the processes of the agent. An example might be that it can
be used in the prioritization of subgoals in the planner (see main text), where more reliable causal
relationhips are prioritized over less reliable ones. We do not investigate into such utilities at this
stage.

It’s important to note that the statistical estimates are not precise during the transient phase. This is
due to the refinement mechanism, which prioritizes structural revisions and adjustments to make a
given CSV align with observations where feasible. During this phase, estimates tend to overempha-
size significance. However, these transients are brief, and NCEs insignificant CSVs quickly diminish
once the refinements are complete and the CSV sources settle into their final form. Furthermore, this
final form is typically less constrained, leading to more exposures over time in the same environ-
ment. Alternatively, we could eliminate these inaccuracies by resetting recorded statistics after each
change to the CSV’s composition, though this would increase the time needed for an NCE value to
be deemed reliable. We do not use this approach here, as we do not find the temporary bias toward
significance in transient SVs to be an issue, but it can be employed where precision has priority over
efficiency.

Effect on continual learning Notice that there is no change (particularly no decay) in NCE if
the target is not observed - hence, this measure of statistical significance does not decay (relation-
ship ”forgotten”) in case of a changed environment in which the new one does not display the
co-occurance of the two events (target and CSV sources being satisfied), as long as its target is not
observed in isolation as well. If its target is observed in the new environment, two cases may occur:

1. P (I(T )) is stable. This would be expected in an already-mature model or in environments
where there is not much variability in the occurance of individual targets (even if the con-
ditions under which they occur differ). In this case, there is no change in NCE.

2. P (I(T )) changes. In this case, NCE will change according to P (I(T )). Note, however,
that additional exposure can only mean a more accurate estimate of the true P (I(T )) value
- any change in P (I(T )) hence does not have a detrimental effect, but instead makes the
causal effect estimate more reliable in the context of the complete model; provided that
the new environment itself does not have a probability of P (I(T )) in itself that is non-
representative of the general probability, in particularly one that is excessively higher than
the general one. This latter possibility (an immature estimate of P (I(T )) and an unnatu-
rally high P (I(T )) in the new environment) is the only case in which a previously-learned
correct relationship can be wrongly destroyed in case of a changing environment. But
even such cases would have no long-term ramifications as P (I(T )) for any given target T
would reach to a reliable estimate after a few cycles of exposures to environments where T
is observed.

The current method of computing and filtering based on statistical significance has one drawback,
however; and it is that only first-order significance of relations are considered. In other words: If
we have a CSV C0 with a target D0, and C0 (possibly unconditional) is conditioned by another
CSV C1, then whether C0-D0 relationship will be regarded as significant or not depends only on
the observations of sources of C0 and D0; and will not consider their dependency on C1. This
may result in unnecessary filtering in cases where a said statistical relationship is insignificant in the
absence of a particular upstream conditioner, but becomes significant with that - we also see effects
of this limitation to some degree in our results in the main text. Resolution of this limitation requires
consideration of and conditioning on higher-order conditioners when computing the NCE value, and
is left for future work.

A.3 DETAILS OF MNR

Formal algorithm for network refinement with rerelation Algorithm 3 presents network refinement
with relation process formally.

Statistical Refinement Given the noisy experimental domain, we enhanced Algorithm 3 by incor-
porating node/edge observation statistics. Instead of removing a node/edge upon its first absence,
we remove it only if the ratio of its absences exceeds a threshold Tref ∈ (0, 1). This prevents los-
ing important features potentially missed due to noise or misassignment (see below). Being a more
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Algorithm 3 Network refinement with rerelation.
Function-RefineBy(P0, P1, f)
Parameters: P0, source SPN. P1, refiner SPN. f , a partial assignment between nodes in P0 to nodes
in P1.

1: for SN0
i ∈ P0 do

2: for n ∈ nodes(SN0
i ) do

3: if f(n) not defined then
4: for (n0, n1) ∈ edges(SN0

i , n) do
5: RemoveWithRerelation(SN0

i , n0, n1)
6: end for
7: SN0

i .RemoveNode(n)
8: end if
9: end for

10: for (n0, n1) ∈ edges(SN0
i ) do

11: if path(f(n0), f(n1)) not in SN1
i then

12: RemoveWithRerelation(SN0
i , n0, n1)

13: end if
14: end for
15: end for
Function-RemoveWithRerelation(SN , n0, n1)

1: for (p, s) ∈ prod(PSN (n0), SSN (n1)) do
2: SN .AddEdge(p, s)
3: end for
4: SN .RemoveEdge(n0, n1)

constrained removal condition, this maintains Modelleyen’s continual learning guarantees. The in-
consistency with past responses in this modification is intentional, as the mechanism is designed
to prevent adaptation to infrequently observed instances, which are treated as noise. In the case of
statistical refinement, past responses are preserved only for inputs that were observed frequently
enough, above the defined insignificance threshold.

Assignments A key issue in extending the base Modelleyen framework to network refinement is
finding a suitable (possibly partial) node mapping f : V (P0) → V (P1)) between two SPNs. The
only constraint is that source nodes can only map to nodes of the same type (i.e., representing the
same feature). However, multiple valid mappings may exist, resulting in different post-refinement
structures (see Figure 8). To address this, we used the following approach: We create a population
of alternative assignments by pairing nodes from the source and refiner SPNs based on shared node
types. While this works well with a small number of nodes per type, our feature representation
(Section A.3.2) often requires additional prioritization. To address this, we rank node pairs by their
positional proximity in both SPNs, using the negative softmax of the distance between candidate
pairs to probabilistically select the most suitable assignments. After generating the population,
we calculate a mismatch score for each assignment, representing the total number of nodes and
paths in the source SPN missing from the refiner SPN. The assignment with the lowest mismatch
score—requiring the least refinement—is selected.

In our experiments, this assignment mechanism produced effective mappings (see Section 7). How-
ever, it is not flawless, and selecting the optimal assignment from the population remains the most
computationally intensive step in our workflow. Further research could likely improve this process
or even eliminate the need for such assignments altogether.

A.3.1 CHANGES IN LEARNING FLOW

As in base Modelleyen, our system design defines a model using conditioning state variables (CSVs),
which describe relationships between their sources (state polynetworks, or SPNs) and targets (other
CSVs or specific target state variables). The learning flow largely follows Modelleyen’s approach,
except for the following adjustments:
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(a) Source SN. (b) Refiner SN.

(c) Refinement result
with A assigned to
A0.

(d) Refinement result
with A assigned to
A1.

Figure 8: A node (A) of a given type (red) in the refiner SPN can map to multiple nodes in the source
network (A0 or A1), resulting in two post-refinement networks with no clear superior assignment.

1. Unlike base Modelleyen, where upstream CSVs integrate with lower-level CSVs via an and
condition, our implementation treats upstream CSVs as observed subvariants of their CSV
targets, with source SPNs encompassing the source SPNs of them. This allows assign-
ments from lower-order CSVs to propagate upstream, eliminating redundant assignments
and simplifying the learning flow by avoiding the need for additional subnetwork defini-
tions.

2. Unlike base Modelleyen, which creates a common CSV for all targets in a step, we assume
a single target per CSV and create separate CSVs (with identical sources) for each target.
This change supports the upstream assignment propagation in previous point.

3. Instead of embedding negative (suppressing) sources within a CSV, we externalize them
into separate CSVs. A negatively-conditioning CSV is formed when a state variable with
an inactive state and no active negative conditioner is observed (with potentially multi-
ple formed per target). We also redefine the unconditionality flag to deactivate upon the
first observation of an inactive state, allowing simultaneous positive and negative upstream
conditioning.

4. Instead of the complex NCC metric, we filter insignificant conditioners by removing a
conditioner C of target T if P (SS(C)|I(T )) < Tsign, where SS(C) and I(T ) represent
the satisfaction of C’s sources and the observation of T ’s state, respectively.

The major changes, outlined in points 1 and 2, primarily affect CSV composition without altering
the core learning flow or CSV state definitions. These changes were made for implementation
simplicity and will be modified in future framework developments to include multiple targets and
distinct upstream networks, improving representational efficiency (see Section 7).

Currently, the operational flow is computationally intensive, limiting simulations to shorter dura-
tions. At this stage, our focus is on designing and validating the learning flow rather than optimizing
the algorithm or capping model complexity, though these aspects are briefly discussed in the Con-
clusions of the main text.

A.3.2 FEATURE REPRESENTATION FOR BASIC SHAPE LEARNING

Modelleyen with network refinement (MNR) is applicable to any observation space representable as
networks. For our experiments, we focus on demonstrating the method in a basic visual processing
domain: 2D shape identification in binary images, using MNIST as the test domain. This task is
foundational in computer vision and has historically served as a starting point for approaches like
neural networks LeCun et al. (1998); Cortes (1995). Below, we detail the feature representation
(image-to-network conversion) used. We note that this is only demonstrative for the use of our
approach in a simple context, but future work can extend it to other types, including 2D features like
color gradients or 3D features with spatial positions, as the domain requires.
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(a) Original image. (b) Approximated
contours and corners.

(c) Final SPN, all networks
drawn together.

Figure 9: Example SPN construction from an image for 2D shape identification. In (c), blue, green,
and black edges denote inner, outer, and contour connections, respectively. Nodes, colored by type,
represent gradient change points (e.g., ”cc xneg xpos 1” indicates a concave corner with x-gradient
shifting from (-) to (+)).

To ensure generality in shape detection and avoid overly hand-crafted features, we use horizontal (x)
and vertical (y) gradient orientation change points. Our image processing flow involves: (1) con-
verting a grayscale image to binary with a 50% threshold, (2) approximating contours as polygons
using OpenCV’s Ramer–Douglas–Peucker algorithm OpenCV (2025), yielding corners and oriented
edges (CW for outer, CCW for inner contours) (Figure 9b), and (3) computing the sign of gradients
at each corner in the x and y dimensions based on edge orientation (e.g., a rightward-facing edge
has a negative x-axis gradient).

We build the final SPN using corners where gradient orientations change in the x or y axes. Travers-
ing the contour in its connected direction (CW or CCW), we create a node for each corner if the
gradient direction (positive or negative) changes in either axis from the predecessor to the successor
edge. The node type is defined by the change axis, direction, and corner convexity. For example,
the top-right corner in Figure 9b represents a convex corner with a y-gradient change from positive
to negative, resulting in a node of type ”convex, +y to -y” (node cx ypos yneg 0 in Fig. 9c). This
process defines the SPN’s nodes.

Our SPN includes four types of SNs: contour, inner, outer, and all. Contour SNs represent connec-
tions along the contour, linking nodes as described earlier, with edges added between predecessors
and successors of skipped corners. Inner and outer SNs connect nodes with straight lines that stay
within the inner (pixel value 1) or outer (value 0) regions of the binary image. All-type SNs combine
all connections, regardless of type, to persistently represent relative positional relationships even
when their actual types can vary across images. Each network type has horizontal and vertical vari-
ants, where directed edges indicate positional relationships along the respective axis. For example,
a directed edge (n0, n1) in contour-horizontal means n0 is to the left of n1. See Fig. 9c for an
example SPN.

Limitations and possible extensions: This representation is broadly applicable and domain-agnostic
for 2D shape detection, relying on contours matching image gradients. However, it’s mainly for
demonstrating our design and has limitations, such as limited expressivity from not capturing all de-
tails of the shape but only those that represent gradient sign changes (e.g., only three of five corners
are used in Fig. 9c). This affects final identification accuracy, making it fall short from a perfect
performance as discussed in Section 7. A more complete approach would consider all gradient orien-
tation changes, increasing complexity but also completeness. Likewise, it currently works for shape
detection, but could be extended to other 2D features or 3D spaces with similar logic. Additionally,
for learning with a varsel mechanism, shape detection might benefit from alternative representations
like pixel-level processing, CNN filters, or frequency-based transformations, as discussed in the
Conclusion. Finally, we note that multiple feature types can be used with SPN representation, either
in separate networks or within the same network, capturing positional relations between features
across domains. While we don’t explore this here, it’s an interesting direction for future work.
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Figure 10: The environment and its subenvironments that we test on, essentially a FSM with two
cells each of whom can take one of the states ”DO, DC, W, G, SG1, SG2, X” or be empty (”-”).
Each state is connected with arrows representing succession relations between them; filled circles
correspond to multiple alternatives that can result from it. Green, red and blue portions are ”RS”,
”SG”, and ”NEG” subtypes respectively (detailed in text), black portion is included in all subtypes.
In ”Complete” variant, all transitions and states are included. The agent’s goal is to activate state
”G” in the first cell, and optimal actions are indicated by bold transitions. The environment has 20
actions, much larger than what is actually useful, in order to make it difficult to reach goal randomly.

A.4 DETAILS OF EXPERIMENTAL FRAMEWORK

Computation resources All experiments were run on a 2.4GHz 8-Core Intel Core i9 processor
with 32 GB 2667MHz DDR4 memory. No GPU was used. Giving an accurate estimate for compu-
tation time is impossible since experiments were run in parallel to unevenly-distributed independent
workloads.

A.4.1 MODELLEYEN

Test environment Figure 10 shows the test environment used for our behavior experiments. The
environment includes three subtypes (”RS”, ”SG”, ”NEG”), illustrated by different colors. This
setup was designed to model various types of temporal successions, such as basic succession, corre-
lated changes, alternative causes/outcomes, uncertain transitions, and negative conditons. There is
also a random variant of the environment where two additional states that get activated randomly are
introduced, in order to test statistical significance filtering mechanisms. The environment was in-
spired from Multiroom environment in Minigrid. The states represent closed door (DC), open door
(DO), wall (W), subgoal 1/2 (SG1/2), goal (G) and a random variable (X); ”RS” stands for ”rooms”
and represents an agent going through multiple rooms opening doors in each, and ”SGS” represents
one in which agent reaches two subgoals and then reaches the goal afterwards, and ”NEG” repre-
sents a case where goal appears conditioned on one positive and one negative conditon. In all, the
goal can be moving. Alternative outcomes are present in all environment subtypes, since each of
them allows for multiple outcomes following an empty (”-/-”) state. Alternative predecessors are
tested in ”SGS” environment where SG2 can be preceded by SG1 in either of the two cells; and
likewise in general the appearance of G can be preceded by any of the alternatives associated with
different environment subtypes. The capability to represent positive and negative relations together
is tested in subtype ”NEG”, in which G appears only if X is enabled in the first cell and not the
second one.

Significance filtering Modelleyen’s mechanism of filtering based on statistical significance (i.e.
NCE) is enabled only for the random variant of the environment. When enabled, we used a cutoff
NCE of 0.25 for blocking upstream conditioner formations (i.e. no more upstream conditioners are
formed if the CSV does not cause a ¿25% in the probability of occurrence of its target).

A.5 MNR

Sample sizes: We use Nsample = 20, 10, 5 and test set size of 50, 20, 10 samples per class for
experiments with NC = 3, 5, 10 respectively. Reported results are averages of 10 runs for NC = 3
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and 5 runs for NC = 5. Population size for generating assignments was chosen as 10 for both
learning and prediction.

MNR settings: For MNR, we choose refinement threshold Tref = 0.05, significance threshold
Tsign = 0.05. ϵ for polygonal approximation is 0.01L where L is the arc length of contour being
approximated.

Neural network settings: Our fully connected neural network architecture is of 2 hidden layers
with 128 neurons each, while the CNN architecture has a pair of convolutional (32 filters with 3x3
kernels) and max-pooling (with pool size 2x2) layer, repeated twice sequentially, followed by a
dense layer of 128 neurons. All NNs use ReLU activation in hidden layers and softmax in output.
We use a maximum of 100 epochs and an early stopping patience of 10 epochs. All remaining
settings are Keras defaults.

Prediction in MNR To predict targets for a given observed SPN, we follow this procedure: First,
we attempt to find an assignment that satisfies the source SPN of the CSV. If no assignment is
found, the CSV is considered inactive. If an assignment is found, we compute the activation proba-
bility of the CSV. If the CSV is unconditional (no positive/negative conditioners), the probability is
p = P (I(T )|SS(C)), tracked over the learning process. If the CSV is conditional, the probability
is p = (1 − pmax−) · pmax+, where pmax− and pmax+ are the maximum activation probabil-
ities of negative and positive conditioners, respectively. Intuitively, this approach prioritizes the
most-upstream representations (most closely matching the observed SPN) when calculating the fi-
nal probability, resolving conflicts between activating and suppressing pathways by multiplying their
probabilities.

A.6 A SAMPLE MODEL LEARNED ON SMR

A sample model learned on the SMR environment (Figure 10) is provided on Figure 11. Figure 12
provides, as an example, the pathway of BSV 1G (state G at cell 1), in which the specific pathways
connecting to this BSV can be seen more clearly in a human-comprehensible manner. Figure 13
shows the whole model, but only with reliable connections; clearly showing ”islands of certain state
transitions” which can be an example of a delimiting criterion that can be used for abstractions.

A.7 RESULTS ON COMPREHENSIBILITY OF LEARNED REPRESENTATIONS BY MNR

Figure 14 illustrates samples of the learned SPNs, ranging from general representations at lower
depths (near the target variable) to more specific ones at higher depths capturing rarer subvariants.
These representations are visually intuitive, effectively depicting the digits, their features, and inter-
relations. For instance, most contours of digit ”2” are preserved in Fig. 14a, though features like
holes at the lower-left turning point (common in some samples like that in Fig. 9) are omitted, while
persistent features, such as the vertical gradient change (”cx yneg ypos 1”), are retained. Similarly,
digit ”5” in Fig. 14b retains key features, including vertical gradient changes on the right and hori-
zontal changes at the top and bottom, along with correct positional relations. While general contours
of ”5” are refined at depth 0, they are preserved at the more specific subvariants upstream, like in
Fig. 14c which provide more details. Some additional examples are also provided in Figure 15.
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Figure 11: A sample environment model learned by Modelleyen. In the visualized model, brown
nodes are BSVs, blues are DSVs, and the rest are CSVs. The enlarged pathways (bold arrows and
large nodes) are reliable outcomes (i.e. unconditional CSVs) and the rest are uncertain (possibly con-
ditional) ones. Black arrows represent conditioning relationships and gray arrows represent source
relationships (all positive in this example). Disconnected SVs (those that can never be activated by
environment design) are cut for visual clarity.

Figure 12: Same model as Figure 11, but for the predictive pathway of BSV 1G only. Many path-
ways for the activation of 1G can be seen in a human-comprehensible way in this model via the
distinct CSVs preceding it (C3, C6, C12 C16, C23) and that the only reliable one of them is C6,
and whose further sources can be seen by pursuing them upstream. In contrast, interpretation of
a neural network model is much less straightforward due to nonlinearities, continuous parameters,
and extensive connectivity that ties each neuron at the output to virtually all other neurons in the
network.
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Figure 13: Same model as Figure 11, but with reliable pathways only, showing ”islands of certainty”
as potential candidates for abstraction.

(a) Digit 2, depth 0. (b) Digit 5, depth 0. (c) Digit 5, depth 8.

Figure 14: Sample source SPNs learned by the system, shown with all SNs combined. Blue, black,
and gray edges represent inner, contour, and all-type connections, respectively. Depths indicate
conditioning distance from the target variable (number of CSVs in the conditioning path). Node po-
sitions reflect the average of all observed positions during the CSV’s lifetime. Additional examples
are in Fig. 15.
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(a) Digit 4, depth 0. (b) Digit 7, depth 0.

(c) Digit 6, depth 0.

(d) Source of a negative conditioner (suppress-
ing connection) for digit 6, initialized from an in-
stance of digit 4.

Figure 15: Additional examples of representations of digits learned by MNR.
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Algorithm 4 Simplified overview of the planning algorithm, relying on recursive generation of
upstream action networks (the graph of behaviors required to realize the desired goals from the
currently active SVs).
Function Plan(currentActiveSVs, goalSVs)

1: ActionNetwork← EmptyNet
2: for SV, target ∈ goalSVs do
3: GenerateUpstreamAN(SV, target)
4: end for

Comment: Argument ”target” states what the desired state is in the SV, which can be activation (A),
deactivation (D), active (1) or nonactive (0). Irrelevant for CSVs.
Function GenerateUpstreamAN(SV, target)

1: if satisfiedByCurrentActives(SV, target): return True
2: pathways← EmptyList
3: if type(SV) in [BSV, GSV] then
4: pathways.add(Precondition(sv, target))
5: Comment: These are the preconditions for target to occur in a SV. For (A, D, 1, 0) they are (0,

1, A, D) respectively; since a SV must be activated for itself to be active, needs to be inactive
for itself to get activated, and so on.

6: pathways.add(Constituents(sv), target)
7: pathways.add(Constituencies(sv), target)
8: if target in [’A’, ’D’]: pathways.add(Conditioners(sv, target))
9: else if type(SV) is CSV then

10: pathways.add(Sources(sv))
11: pathways.add(Conditioners(sv))
12: end if
13: if pathways is Empty: return False
14: for upstreamSV, upstreamTarget in pathways do
15: ActionNetwork.AddEdge((upstreamSV, upstreamTarget), (SV, target))
16: GenerateUpstreamAN(upstreamSV, upstreamTarget)
17: end for
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