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EKM: An Exact, Polynomial-Time Divide-and-Conquer Algorithm for the
K-Medoids Problem

Anonymous Authors1

Abstract
The K-medoids problem is a challenging combi-
natorial clustering task, widely used in data anal-
ysis applications. While numerous algorithms
have been proposed to solve this problem, none
of these are able to obtain an exact (globally opti-
mal) solution for the problem in polynomial time.
In this paper, we present EKM: a novel algorithm
for solving this problem exactly with worst-case
O
(
NK+1

)
time complexity. The algorithm is

provably correct by construction, obtained using
formal program derivation steps. We demonstrate
the effectiveness of our algorithm by comparing it
against various approximate methods and a state-
of-the-art, exact branch-and-bound (BnB) algo-
rithm on numerous real-world datasets. Our algo-
rithm can not only provide provably exact solu-
tions, but also consume much less time over all
datasets compared with the BnB algorithm. We
also show that the wall-clock time of our algo-
rithm aligns with its worst-case time complexity
analysis on synthetic datasets. In contrast, a state-
of-the-art BnB algorithm not only exhibits expo-
nential time complexity even for fixed K but also
frequently produces erroneous solutions. This
highlights the importance of employing formal,
correct derivation steps when constructing exact
algorithms.

1. Introduction
In machine learning (ML), K-medoids is the problem of par-
titioning a given dataset into K clusters where each cluster is
represented by one of its data points, known as a medoid. A
plethora of approximate/heuristic methodologies have been
proposed to solve this problem, such as PAM (Partitioning
Around Medoids) Kaufman (1990), CLARANS (Clustering

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Large Applications based on randomized Search) (Ng &
Han, 2002), and variants of PAM (Schubert & Rousseeuw,
2021; Van der Laan et al., 2003).

While approximate algorithms are computationally efficient
and have been scaled up to large dataset sizes, because they
are approximate they provide no guarantee that the exact
(globally optimal) solution can be obtained. In high-stakes
or safety-critical applications, where errors are unacceptable
or carry significant costs, we want the best possible partition
given the specification of the clustering problem. Only an
exact algorithm can provide this guarantee.

However, there are relatively few studies on exact algo-
rithms for the K-medoids problem. The use of branch-
and-bound (BnB) methods predominates research on this
problem (Ren et al., 2022; Elloumi, 2010; Christofides &
Beasley, 1982; Ceselli & Righini, 2005). An alternative
approach is to use off-the-shelf mixed-integer programming
solvers (MIP) such as Gurobi (Gurobi Optimization, 2021)
or GLPK (GNU Linear Programming Kit) (Makhorin, 2008).
These solvers have made significant achievements, for in-
stance, Elloumi (2010); Ceselli & Righini (2005)’s BnB
algorithm is capable of processing medium-scale datasets
with a very large number of medoids. More recently, Ren
et al. (2022) designed another BnB algorithm capable of
delivering tight approximate solutions—with an optimal gap
of less than 0.1%—on very large-scale datasets, comprising
over one million data points with three medoids, although
this required a massively parallel computation over 6,000
CPU cores.

These existing studies on the exact K-medoids problem
have three defects. Firstly, most previous studies on exact
algorithms impose a computation time limit, thus exact solu-
tions are rarely actually calculated; the only rigorously exact
cases are those computed by (Christofides & Beasley, 1982;
Ceselli & Righini, 2005) for small datasets with a maximum
size of 150 data items. Secondly, worst-case time and space
complexity analyses are not reported in studies of BnB-
based algorithms. Such BnB methods have exponential
worst-case time/space complexity, yet this critical aspect is
rarely discussed or analyzed rigorously. As a result, existing
studies on the exact algorithms for the K-medoids prob-
lem either omit time complexity analysis (Elloumi, 2010;
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Christofides & Beasley, 1982; Ceselli & Righini, 2005) or
overlook essential details (Ren et al., 2022) such as algo-
rithm complexity with respect to cluster size and the impact
on performance of upper bound tightness. This omission
undermines the reproducibility of findings and hinders ad-
vancement of knowledge in this domain. Thirdly, proofs of
correctness of these algorithms is often omitted. Exact solu-
tions require such mathematical proof of global optimality,
yet many BnB algorithm studies rely on weak assertions
or informal explanations that do not hold up under close
scrutiny (Fokkinga, 1991).

In this report, we take a fundamentally different approach,
by combining several modern, broadly applicable algorithm
design principles from the theories of constructive algo-
rithmics (Meertens, 1986; Jeuring & Pekela, 1993; Bird
& de Moor, 1996). The derivation of our algorithm is ob-
tained through a rigorous, structured approach known as the
Bird-Meertens formalism (or the algebra of programming)
(Meertens, 1986; Jeuring & Pekela, 1993; Bird & de Moor,
1996). This formalism enables the development of an effi-
cient and correct algorithm by starting with an obviously
correct but possibly inefficient algorithm and deriving an
equivalent, efficient implementation by way of equational
reasoning steps. Thus, the correctness of the algorithm is
assured, skipping the need for error-prone, post-hoc induc-
tion proofs. Our proposed algorithm for the K-medoids
problem has worst-case O

(
NK+1

)
time complexity and

furthermore is amenable to optimally efficient vectorization
and parallelization.

The paper is organized as follows. In Section 2, we ex-
plain in detail how our efficient EKM algorithm is derived
through provably correct equational reasoning steps. Sec-
tion 3 presents the results of empirical computational com-
parisons between our proposed algorithms, approximate
algorithms, and the state-of-the-art exact algorithm devel-
oped by Ren et al. (2022). These comparisons were con-
ducted on datasets from the UCI machine learning repos-
itory, and a few datasets from Ren et al. (2022). Further-
more, we provide a detailed time-complexity analysis com-
paring Ren et al. (2022)’s algorithm with our algorithm.
The results demonstrate that, even for fix K, Ren et al.
(2022)’s algorithm exhibits exponential time complexity.
In contrast, our proposed algorithms consistently achieve
predictable polynomial time complexity. In addition, the
naive brute-force algorithm for solving this problem also
has O

(
NK+1

)
complexity. To highlight the difference be-

tween our algorithm and a brute-force algorithm, we also
compared the performance of our algorithm in exhaustive
generation and solving the K-medoids problem by compar-
ing against the classical one-by-one enumeration strategy by
using itertools library. Section 4 summarizes the contri-
butions of this study, reviews related work. Finally, Section
5 suggests future research directions.

2. Theory
Our novel EKM algorithm for K-medoids is derived using
rational algorithm design steps, described in the following
subsections. There are two main advantages to this approach
of deriving correct (globally optimal) algorithms from spec-
ifications. First, since the exhaustive search algorithm is
correct for the MIP problem, any algorithm derived through
correct equational reasoning steps from this specification
is also (provably) correct. Second, the proof is short and
elegant: a few generic theorems for shortcut fusion already
exist and when the conditions of these shortcut fusion theo-
rems hold, it is simple to apply them to a specific problem
such as the K-medoids problem here. This provably correct
design step is vitally important in the study of the exact algo-
rithm, as we will see shortly in the experiments, where the
state-of-art BnB algorithm produces solutions lower than
exact solutions frequently. This highlights the importance of
using a correct-by-construction algorithm derivation process
rather than relying on ad-hoc BnB algorithms.

2.1. Specifying a mixed-integer program (MIP) for the
K-medoids problem

We denote a data set D consists of N data points xn =
(xn1, xn2, . . . , xnD) ∈ RD, ∀n ∈ {1, . . . , N} = N , where
D is the dimension of the feature space. We assume the
data items xn ∈ D are all stored in a ordered sequence
(list) D = [x1,x2, . . . ,xN ]. In clustering problem, we
need to find a set of centroids U = {µk : k ∈ K}, where
K = {1, . . . ,K} in RD, and each centroid µk associ-
ated with a unique cluster Ck, which subsumes all data
points x are the closest to this centroid than other centroids,
this closeness is defined by a distance function d (x,µ),
there is no constrains on the distance function in the K-
medoids problem, a common choice is the squared Eu-
clidean distance function d2 (x,µ) = ∥x− y∥22 . For
each set of centroids U we have a set of disjoint clusters
C = {C1, C2, . . . CK}, and set K is then called the cluster
labels.

The K-medoids problem is usually specified as the follow-
ing MIP

U∗ = argmin
U

E (U)

subject to U ⊆ D, |U| = K,
(1)

where E (U) =
∑

k∈K
∑

xn∈Ck
d (xn,µk) is the objective

function for the K-medoids problem, and U∗ is a set of
centroids that optimize the objective function E (U). In
our study, we make no assumptions about the objective
function, allowing any arbitrary distance function to be
applied without affecting the worst-case time complexity
while still obtaining the exact solution.
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2.2. Representing the solution as an (inefficient)
exhaustive search algorithm

In the theory of transformational programming (Bird &
de Moor, 1996; Jeuring & Pekela, 1993), combinatorial
optimization problems such as (1) are solved using the fol-
lowing, generic, generate-evaluate-select algorithm,

s∗ = selE (evalE (gen (D))) . (2)

Here, the generator function gen : D →
[[
RD

]]
, enumer-

ates all possible combinatorial configurations s :
[
RD

]
(here, configurations consist of a list of data items repre-
senting the K medoids) within the solution (search) space,
S (here, this is the set of all possible size K combina-
tions). For most problems, gen is a recursive function so
that the input of the generator can be replaced with the
index set N and rewritten gen (n), ∀n ∈ N . The evalu-
ator evalE :

[[
RD

]]
→

[([
RD

]
,R

)]
computes the ob-

jective values r = E (s) for all configurations s generated
by gen (n) and returns a list of tupled configurations (s, r).
Lastly, the selector selE :

[([
RD

]
,R

)]
→

([
RD

]
,R

)
select the best configuration s∗ with respect to objective E.

Algorithm (2) is an example of exhaustive or brute-force
search: by generating all possible configurations in the
search space S for (1), evaluating the corresponding objec-
tive E for each, and selecting an optimal configuration, it
is clear that it must solve the problem (1) exactly. Taking
a different perspective, (2) can be considered as a generic
program for solving the MIP (1). However, program (2)
is generally inefficient due to combinatorial explosion; the
size of gen (D) is often exponential (or worse) in the size
of D.

To make this exhaustive solution practical, two aspects must
be considered to improve the efficiency of the program. The
first aspect is the design of an efficient generator. By recog-
nizing that in many combinatorial problems, generators can
be expressed as efficient recursions that take advantage of
solving difficult problems by first addressing easier subprob-
lems, Another principle is known as shortcut fusion. For
many problems, it is often possible to fuse selE , evalE , and
gen into a single, fused, efficient program. This fusion can
save substantial amounts of computation because it elim-
inates the need to generate and store every configuration.
However, the fusion is only possible when the generator
is defined as a recursive program, this immediately elim-
inates any one-by-one enumeration approach, as none of
them are defined recursively. The remaining paper will be
dedicated to explaining an efficient generator for solving the
K-medoids problem and the fusion in this problem.

n=4 𝑺𝟎
𝟒 𝑺𝟏

𝟒 𝑺𝟐
𝟒 𝑺𝟑

𝟒 𝑺𝟒
𝟒

n=3 𝑺𝟎
𝟑 𝑺𝟏

𝟑 𝑺𝟐
𝟑 𝑺𝟑

𝟑

n=2 𝑺𝟎
𝟐 𝑺𝟏

𝟐 𝑺𝟐
𝟐

n=1 𝑺𝟎
𝟏

𝑺𝟏
𝟏

n=0 𝑺𝟎
𝟎

Figure 1. A generic recursive generator of all possible sublists for
list [x1,x2,x3,x4], in each recursive stage n, the sublists of size
k (combinations) are automatically grouped into list Sn

k , for all
k ∈ {0, 1, . . . n}.

2.3. Constructing an efficient, recursive combinatorial
configuration generator

In K-medoids there are only N×(N − 1)×· · ·×(N −K)
ways of selecting centroids whose corresponding assign-
ments are potentially distinct. Thus, the solution space S for
the K-medoids problem consists of all size K combinations
(K-sublists) of the data input D, denoted as s :

[
RD

]
. If

we can design an efficient, recursive combination generator
gencombs : N ×K →

[
RD

]
to enumerate all possible size

K combinations, at least one set of such centroids corre-
sponds to an optimal value of the clustering objective E.
An efficient and structured combination generator which
achieves this, will be described next.

Denoting Sn
k :

[
RD

]
as the list that stores all possible

size k combinations from list [x1,x2, . . .xn] of length n,
and Sn = [Sn

k | k ∈ {0, . . . n}] as the list of all sublists of
that list. The key to constructing an efficient combination
generator can be reduced to solving the following problem:
given all sublists Sn for list D1 = [x1,x2, . . .xn], and
Sm for list D2 = [y1,y2, . . .ym], construct all sublists
Sn+m for list D1 ∪ D2. This problem captures the essence
of Bellman’s principle of optimality (Bellman, 1954) i.e.
we can solve a problem by decomposing it into smaller
subproblems, and the solutions for these subproblems are
combined to solve the original, larger problem. In this
context, constructing all combinations Sn+m for list D1 ∪
D2 is the problem; all possible combinations Sn, Sm for
lists D1, D2 respectively, are the smaller subproblems.

In previous work of Little et al. (2024), it was demonstrated
that the constraint algebra (typically a group or monoid)
can be implicitly embedded within a generator semiring
through the use of a convolution algebra. Subsequently, the
filter that incorporates these constraints can be integrated
into the generator via the semiring fusion theorem (for de-
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tails of semiring lifting and semiring fusion, see Little et al.
(2024)). In our case, we can substitute the convolution
algebra used in Little et al. (2024) with the generator semir-
ing ([[T]] ,∪, ◦, ∅, [[ ]]) (T stands for type variable), then we
have following equality

Sn+m
k =

⋃
i+j=k
0≤i,j≤k

(
Sn
i ◦ Sm

j

)
,∀ 0 ≤ k ≤ n+m (3)

where l1 ◦ l2 = [s ∪ s′ | s ∈ l1, s
′ ∈ l2] is the cross-join

operator on lists l1 and l2 obtained by concatenating each
element s in configuration l1 with each element s′ in l2. For
instance, [[1] , [2]] ◦ [[3] , [4]] = [[1, 3] , [1, 4] , [2, 3] , [2, 4]].
Informally, (3) is true because the size k combinations for
the list D1 ∪ D2 should be constructed from all possible
combinations Sn

i in D1 and Sm
j in D2 such that i+ j = k

for all 0 ≤ i, j ≤ k. In other words, all possible size k
combinations should be constructed by joining all possible
combinations with a size smaller than k.

Definition (3) is a special kind of convolution prod-
uct for two lists la = [a0, a2, . . . , an−1] and lb =
[b0, b2, . . . , bm−1],

conv (f, l1, l2, k) = [c0, c1, . . . , ck] , (4)

where ck is defined as

ck =
⋃

i+j=k
0≤i,j≤k

f (ai, bj) , 0 ≤ k ≤ n+m− 1. (5)

Given Sn and Sm, it is not difficult to verify that
Sn+m = conv (◦,Sn,Sm, n+m− 1), representing all
sublists (combinations) for list D1 ∪ D2. Furthermore, all
combinations with size smaller than k can be obtained by
calculating conv (◦,Sn,Sm, k), denoted as Sn+1

≤k . Using
equation Sn+1

≤k = conv
(
◦,Sn

i ,S ′m
j , k

)
, a combination gen-

erator recursion gencombs : N ×K →
[
RD

]
can be defined

by following pattern matching

gencombs ([ ] , k) = [[[ ]]]

gencombs ([xn] , k) = [[[ ]] , [[xn]]]

gencombs (xs ∪ ys, k) =

conv (◦, gencombs (xs, k) , gencombs (ys, k) , k) .
(6)

where D = xs ∪ ys. The function gencombs (D, k) gen-
erate all combinations with a size k or less. For in-
stance, gencombs ([x1,x2,x3] , 2) = S3

≤2 ([x1,x2,x3]) =
[[[]] , [[x1] , [x2] , [x3]] , [[x1,x2] , [x1,x3] , [x2,x3]]]. See
Figure 1 for an illustration of the process by which recursive
combination generator (6) operates. The generator (6) is
an instance of the divide-and-conquer (D&C) algorithm,

for which the original problem (xs ∪ ys) can be divided
into arbitrary two disjoint subproblems xs and ys and the
subproblems are solved independently.

One of the benefits of being a D&C algorithm is that all
D&C algorithms are easy to parallelize. Moreover, our
generator is specifically designed for ease of vectorization
and parallelization, making it well-suited for modern hard-
ware optimized for array-based operations. By deliberately
organizing combinations of the same size into the same
list, we enable storage in a pre-allocated array. Operations
on these contiguous memories will decrease the possibility
of cache misses, which makes our program more efficient.
Alternative methods are typically list-based, such as the gen-
erator proposed by (He & Little, 2023) and the Gray code
generator (Kreher & Stinson, 1999). These methods rely
on dynamic memory allocation, making them significantly
less efficient than our proposed generator. Alternatively,
one-by-one generation approaches, such as lexicographical
generation, are primarily designed for random generation
and often involve substantial constant factors that are ob-
scured within the big-O notation.

Moreover, the one-by-one enumeration strategy does not
permit any form of fusion, rendering future speed-ups for
this method unattainable. Consequently, both the best-case
and worst-case complexities of the one-by-one enumera-
tion strategy remain O

(
NK+1

)
. In contrast, the recursive

structure of our generator enables fusion. Previous research
by He & Little (2023) demonstrated an order-of-magnitude
speed-up using the simplest bounding techniques. While our
focus is on illustrating the principles of program derivation,
and we thus omit such optimizations, we show that even the
plain version of our algorithm is significantly faster than the
state-of-the-art BnB algorithm.

2.4. Applying shortcut fusion equational
transformations to derive an efficient, correct
implementation

The combination generator gencombs constructed above,
gives us an efficient recursive basis to use 2 to derive an ef-
ficient algorithm for solving the K-medoids problem. Thus,
a provably correct algorithm for solving the K-medoids
problem can be rendered as

s∗ = selE (evalE (gencombs (xs, k))) . (7)

As we mentioned above, if both selector selE and evaluator
evalE can be fused into the generator by identifying spe-
cific shortcut fusion theorems, then a significant amount of
computational effort and memory can be saved.

For any configurations of size k, we can evaluate the ob-
jectives of the k-combinations immediately once its was
generated. Since adding more medoids provably decreases

4
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the objective value, we do not evaluate combinations of
sizes smaller than k. However, this approach can be gener-
alized to solve the k-medoids problem for all k ≤ K. In
other words, the following fusion condition holds:

selE (evalE (gencombs (xs, k))) =

selE,k (conv (◦E,k, gencombs (xs) , gencombs (ys) , k)) ,
(8)

where selE,k select the configuration with lowest objective
among all size k combinations, and ◦E,k is the cross-join op-
erator described above augmented with evaluation updates,

l1◦E,kl2 =



[(s1 ∪ s2, E (s1 ∪ s2)) |
(s1, r) ∈ l1, (s2, r) ∈ l2] if |s1 ∪ s2| = k

[(s1 ∪ s2, r) |
(s1, r) ∈ l1, (s2, r) ∈ l2] otherwise,

(9)
Due of the universal property (Bird & de Moor, 1996), the
solution obtained by recursion

EKM ([ ] , k) = [[[ ]]]

EKM ([xn] , k) = [[[ ]] , [[xn]]]

EKM (xs ∪ ys, k) =

selE,k (conv (◦E,k,EKM (xs, k) ,EKM (ys, k) , k)) ,
(10)

is also a solution to the specification (7), without the proof
of induction.

We now analyze the time and space complexity of the al-
gorithm EKM (D,K) for a dataset of size N . Since the
pairwise distances between data points can be stored in
a pre-allocated matrix, accessing any element in this ma-
trix requires only O (1) time. Evaluating the objective of a
K-combination requires indexing K×N entries. Thus eval-
uating each K-combination takes O (N) time, and there are(

N
K

)
= O

(
NK

)
combinations in total. Therefore, the

overall running time of EKM (D,K) is O
(
NK+1

)
. +Ad-

ditionally, EKM (D,K) only stores partial configurations
of sizes smaller than K − 1 resulting in a space complexity
of O

(
NK−1

)
.

3. Experiments
In this section, we analyze the computational performance
of our algorithm EKM on both synthetic and real-world data
sets. Our evaluation aims to test the following predictions:
(a) EKM always obtains the best objective value1; (b) wall-
clock run-time matches the worst-case polynomial time
complexity analysis; (c) the state-of-art BnB algorithm (Ren

1The squares Euclidean distance function was chosen for the
experiments, any other proper metrics could also be used.

Table 1. Empirical comparison of the EKM algorithm, against
widely-used approximate algorithms (PAM, Fast-PAM, and
CLARANS) and the state-of-art exact BnB algorithm developed
by Ren et al. (2022), for K = 3, in terms of sum-of-squared errors
(E), smaller is better. For Ren et al. (2022)’s aglorithm, we include
both the upper bound and the optimal gap. The best-performing
algorithm is highlighted in bold, while incorrect solutions are
marked in red. Although some of the upper bounds returned by
BnB algorithm are exact, these values are not marked in bold, as
the optimal gap has not yet converged to zero. Wall clock time
in brackets (seconds), we set a time limit 1.08 × 104 for BnB
algorithm.

UCI
DATASET

N D EKM (OURS) REN’S BNB PAM FASTER-PAM CLARANS

LM 338 3 3.96 × 101

(8.20 × 10−1 )
1.21 × 101

(2.31 × 101 )
0

3.99 × 101

(4.02 × 10−3 )
4.07 × 101

(3.01 × 10−3 )
5.33 × 101

(6.14)

UKM 403 5 8.36 × 101

(1.37)
5.51 × 101

(1.62 × 103 )
≤ 0.1%

8.44 × 101

(8.57 × 10−3 )
8.40 × 101

(3.21 × 10−3 )
1.16 × 102

(4.98 × 101 )

LD 345 5 3.31 × 105

(8.3 × 10−1 )
1.21 × 101

(2.47 × 101 )
≤ 0.1%

3.56 × 105

(4.11 × 10−3 )
3.31 × 105

(3.87 × 10−3 )
4.68 × 105

(3.40)

ENERGY 768 8 2.20 × 106

(1.37 × 101 )
2.20 × 106

(1.68 × 101 )
≤ 0.1%

2.28 × 106

(6.95 × 10−3 )
2.28 × 106

(3.94 × 10−3 )
2.97 × 106

(2.71)

VC 310 6 3.13 × 105

(6.82 × 10−1 )
1.50 × 105

(3.83 × 102 )
≤ 0.1%

3.13 × 105

(3.15 × 10−3 )
3.58 × 105

(5.36 × 10−3 )
5.27 × 105

(2.58)

WINE 178 13 2.39 × 106

(2.22 × 10−1 )
1.16 × 104

(5.17 × 101 )
≤ 0.1%

2.39 × 106

(1.06 × 10−3 )
2.63 × 106

(2.34 × 10−3 )
6.86 × 106

(5.56 × 10−1 )

YEAST 1484 8 8.37 × 101

(1.74 × 102 )
6.57 × 101

(1.08 × 104 )
≤ 39.19%

8.42 × 101

(9.54 × 10−2 )
8.42 × 101

(6.08 × 10−2 )
1.05 × 102

(1.73 × 102 )

IC 3150 13 6.9063 × 109

(4.53 × 103 )
6.18 × 109

(6.37 × 103 )
0

6.9105 × 109

(8.68 × 10−1 )
6.9063 × 109

(1.91 × 10−1 )
1.44 × 1010

(2.70 × 101 )

WDG 5000 21 1.67 × 105

(5.23 × 104 )
1.60 × 105

(1.08 × 104 )
≤ 785.05%

1.67 × 105

(1.34)
1.67 × 105

(1.97 × 10−1 )
2.77 × 105

(5.32 × 103 )

IRIS 150 4 8.40 × 101

(1.57 × 10−1 )
8.46 × 101

(2.51 × 101 )
≤ 27.1%

8.45 × 101

(2.51 × 10−3 )
8.45 × 101

(1.03 × 10−3 )
1.57 × 102

(2.32 × 10−1 )

SEEDS 210 7 5.98 × 102

(2.85 × 10−1 )
5.98 × 102

(2.42 × 101 )
≤ 0.1%

5.98 × 102

(1.14 × 10−3 )
5.98 × 102

(3.59 × 10−3 )
1.12 × 103

(7.82 × 10−1 )

GLASS 214 9 6.29 × 102

(2.90 × 10−1 )
6.29 × 102

(3.13 × 101 )
≤ 0.1%

6.29 × 102

(1.01 × 10−3 )
6.29 × 102

(1.62 × 10−3 )
1.04 × 103

(2.27)

BM 249 6 8.63 × 105

(3.96 × 10−1 )
8.63 × 105

(1.19 × 102 )
≤ 0.1%

8.76 × 105

(4.12 × 10−3 )
8.63 × 105

(1.61 × 10−3 )
1.33 × 106

(1.02 × 101 )

HF 299 12 7.83 × 1011

(6.26 × 10−1 )
7.83 × 1011

(5.20 × 101 )
0%

7.83 × 1011

(1.00 × 10−3 )
7.83 × 1011

(4.87 × 10−3 )
1.88 × 1012

(6.55 × 10−1 )

WHO 440 7 8.33 × 1010

(1.98)
8.33 × 1010

(3.71 × 102 )
≤ 0.1%

8.33 × 1010

(5.62 × 10−3 )
8.33 × 1010

(2.81 × 10−3 )
1.21 × 1011

(8.12)

UK 258 5 5.08 × 101

(3.78 × 10−1 )
5.08 × 101

(1.43 × 103 )
≤ 0.1%

5.08 × 101

(2.47 × 10−3 )
5.08 × 101

(2.47 × 10−3 )
6.89 × 101

(2.67 × 101 )

HCV 572 12 2.75 × 106

(5.48)
2.75 × 106

(8.59 × 101 )
≤ 0.1%

2.75 × 106

(5.79 × 10−3 )
2.75 × 106

(2.21 × 10−3 )
4.75 × 106

(6.89 × 101 )

ABS 740 19 2.32 × 106

(1.17 × 101 )
2.32 × 106

(6.23 × 102 )
≤ 0.1%

2.32 × 106

(2.11 × 10−2 )
2.38 × 106

(5.00 × 10−3 )
2.96 × 106

(7.80 × 101 )

TR 980 10 1.13 × 103

(2.53 × 101 )
1.14 × 103

(1.08 × 104 )
≤ 89%

1.13 × 103

(5.14 × 10−2 )
1.13 × 103

(1.14 × 10−2 )
1.38 × 103

(2.59 × 102 )

SGC 1000 21 1.28 × 109

(3.87 × 101 )
1.28 × 109

(1.75 × 102 )
≤ 0.1%

1.28 × 109

(1.71 × 10−1 )
1.28 × 109

(4.22 × 10−2 )
2.52 × 109

(2.24)

HEMI 1995 7 9.91 × 106

(9.00 × 102 )
9.91 × 106

(3.92 × 102 )
≤ 0.1%

9.91 × 106

(3.64 × 10−1 )
9.91 × 106

(6.99 × 10−2 )
1.66 × 107

(9.53)

PR2392 2392 2 2.13 × 1010

(1.29 × 103 )
2.13 × 1010

(1.54 × 103 )≤
0.1%

2.13 × 1010

(3.66 × 10−1 )
2.13 × 1010

(8.38 × 10−2 )
3.47 × 1010

(1.15 × 102 )

et al., 2022) for solving the K-medoids problem will have
exponential time complexity even for fixed K in the worst-
case. In our implementation, the matrix operations required
at every recursive step are batch processed on a single GPU.
We executed all the experiments on an Intel Core i9 CPU,
with 24 cores, 2.4-6 GHz, 32 GB RAM and GeForce RTX
4060 Ti GPU.

Remarks, all comparsion about the time complexity is exe-
cuted in the sequential version of our algorithm over CPU
only.

3.1. Performance on real-world datasets

We test the performance of our EKM algorithm against the
approximate algorithms partition around medoids (PAM),
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Faster-PAM and Clustering Large Applications based on
RANdomized Search (CLARANS)2 on 18 datasets from
the UCI Machine Learning Repository, two datasets from
Ren et al. (2022) (UK, HCV), and two open-source datasets
(PR2392, HEMI) from (Wang et al., 2022; Padberg & Ri-
naldi, 1991; Ren et al., 2022). We show that, as expected, no
other algorithms can achieve better objective function values
(see Table 1), except in cases where Ren et al. (2022)’s BnB
algorithm returned incorrect solutions, which were clearly
invalid as they were several orders of magnitude lower than
our exact solutions.

Our experiments included real-world datasets with a max-
imum size of N = 5, 000. To the best of our knowledge,
the largest dataset for which an exact solution has been pre-
viously obtained is N = 150, as documented by Ceselli
& Righini (2005) with K = 3. Existing literature on the
K-medoids problem has only reported exact solutions on
very small datasets, primarily due to the use of BnB algo-
rithms. Given their unpredictable run-time and worst-case
exponential time complexity, most reported usage of BnB
algorithms impose a hard computational time limit to avoid
memory overflow or intractable run times.

In summary, Ren et al. (2022)’s algorithm returned only
approximate solutions (with an optimality gap greater than
zero), whereas our algorithm consistently produced prov-
ably exact solutions in significantly less time. Furthermore,
for challenging datasets, such as WDG, Ren et al. (2022)’s
algorithm produced a solution with an optimality gap of
800% even after running for three hours! Moreover, in
nearly all datasets tested in our experiments but not in-
cluded in Ren et al. (2022) (e.g. IC, Yearst, WDG, wine,
LD, VC, UKM and LM), their algorithm produces obvious
errorness solutions where upper bounds that were lower
than our exact solutions, which is fundamentally incorrect
as an upper bound cannot be lower than the exact solution.

The only reason that Ren et al. (2022) claim their algorithm
can handle datasets with over a million instances is that
they test on datasets that are inherently easy to classify—so
that even approximate algorithms can obtain exact solutions.
As we have demonstrated, almost all the datasets they use
can be solved exactly using PAM or Faster-PAM, which
achieve exact solutions with significantly fewer resources.
In contrast, Ren et al. (2022)’s algorithm requires an ex-
cessive amount of computational power (6,000 CPU cores)
compared to approximate algorithms.

Moreover, we observed that Ren et al. (2022)’s algorithm
exhibits exponential complexity even when K is fixed. This
is evident from the non-polynomial growth in running time
for experiments on datasets such as UK, BM, and Seeds.

2We set the maximum number of neighbors examined as 4, and
the number of iteration as 5.

Although these datasets have nearly identical sizes, their
running time differs significantly in Ren et al. (2022)’s al-
gorithm. In the following section, we provide an empirical
analysis of their algorithm to further investigate this behav-
ior.

3.2. Time complexity analysis without parallelization

Figure 2. Log-log wall-clock run time (seconds) for our algorithm
(EKM) tested on synthetic datasets (left panel). The run-time
curves from left to right (corresponding to K = 2, 3, 4, 5 re-
spectively), have slopes 3.005, 4.006, 5.018, and 5.995, an ex-
cellent match to the predicted worst-case run-time complexity of
O
(
N3

)
, O

(
N4

)
, O

(
N5

)
, and O

(
N6

)
respectively. Log-linear

wall-clock run-time (seconds) comparing EKM algorithm against
Ren et al. (2022)’s algorithm by sampling UK dataset with K = 3
(right panel). On this log-linear scale, exponential run-time ap-
pears as a linear function of problem size N , whereas polynomial
run-time is a logarithmic function of N .

We test the wall-clock time of our novel EKM algorithm on
a synthetic dataset with cluster sizes ranging from K = 2
to 5. When K = 2, the data size N ranges from 150 to
2,500, K = 3 ranges from 50 to 530, K = 4 ranges from
25 to 160, and K = 5 ranges from 30 to 200. The worst-
case predictions are well-matched empirically (Figure 2, left
panel).

As predicted, Ren et al. (2022)’s algorithm exhibits worst-
case exponential time complexity even for a fixed K =
3 (Figure 2, right panel), whereas our algorithm runs in
polynomial time in the worst case.

3.3. Performance compared with one-by-one
enumeration

It is easy to confuse our algorithm with the one-by-one enu-
meration strategy, as both share a worst-case time complex-
ity O

(
NK+1

)
time complexity in the worst-case. However,

this classical approach of modeling algorithm performance
using big-O notation is inaccurate in the context of combi-
natorial generation, as it ignores constant factors, which can
significantly impact the actual performance of an algorithm
in practice.

To provide a more detailed analysis, it is crucial to examine
the wall-clock runtime of different generators in actual im-
plementation. In this section, we compare our approach with

6
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the classical combination generator often used in the ma-
chine learning community, the itertools package, which
is based on the lexicographical generation algorithm (Kre-
her & Stinson, 1999). We demonstrate that although both
generators have the same asymptotic complexity, the con-
stant factors hidden in the big-O notation differ significantly,
leading to a substantial disparity in performance.

Both experiments are based on CPU, but our algorithm is
designed for easy implementation on a GPU. The perfor-
mance difference would likely be even more pronounced
with the additional speedup provided by GPU acceleration.

In Figure 3, the Python implementation of our algorithm
achieves performance improvements of up to 10-fold for
the task of exhaustive generation and up to 1000-fold for
solving the K-medoids problem, compared to the C-based
itertools library on CPU. Furthermore, the performance
gap continues to expand as the combinatorial complexity
of the problem increases. For exhaustive generation, the
performance improvement grows from 3-fold to 10-fold,
while for solving the K-medoids problem, it increases from
300-fold to 1000-fold.

4. Discussion
In this paper, we derived EKM, a novel exact algorithm
for the K-medoids clustering problem with worst-case
O
(
NK+1

)
time complexity. One immediate objection to

our algorithm might be that it shares the same worst-case
complexity as the naive one-by-one enumeration strategy.
However, our algorithm demonstrates significantly better
performance in optimization tasks and offers the potential
for further speed-ups through fusion—an advantage that
is unattainable with the one-by-one enumeration approach.
Since the K-medoids problem is NP-hard, it is unlikely that
the K in the exponent can be eliminated in the worst case.
Therefore, our focus shifts to designing an efficient recur-
sive algorithm suitable for modern hardware, such as GPUs.
This approach paves the way for future acceleration through
bounding techniques based on efficient recursion, rather
than attempting to improve existing BnB algorithms, which
exhibit exponential worst-case complexity. The bounding
techniques used in BnB algorithms cannot improve the
worst-case complexity, as no acceleration can be employed
in the worst cases.

Besides presenting our novel EKM algorithm, we aim to
prompt researchers to reconsider the metric for assessing
the efficiency of exact algorithms to account for subtleties
beyond simple problem scale. In discussing the “goodness”
of exact algorithms for ML, it is critical to recognize that
focusing solely on the scalability of these algorithms—for
instance, their capacity to handle large datasets—does not
provide a comprehensive assessment of their utility. This

inclination to prioritize scalability when assessing exact
algorithms arises from the perceived intractable combina-
torics of many ML problems, and most of these problems
are classified as NP-hard, so that no known algorithm can
solve all instances of the problem in polynomial time.

Although many ML problems may be NP-hard in their most
general form, they are often not specified in full general-
ity. In such cases (which are quite common in practice),
polynomial-time solutions may be available. Therefore,
comparing algorithms solely on the basis of problem scale
is neither fair nor accurate, as it ignores variations in ac-
tual run-times, such as the tightness of upper bounds, or
parameters independent of problem scale.

However, for many ML problems, the problems specified
for proving NP-hardness are not the same as their original
definitions used in practical ML applications. Apart from
the K-medoids problem, polynomial-time algorithms for
solving the 0-1 loss classification problem (He & Little,
2023) and other K-clustering problems (Inaba et al., 1994;
Tı̂rnăucă et al., 2018) have also been developed in the liter-
ature. If a polynomial-time algorithm does exist for these
seemingly intractable problems, overemphasizing scalabil-
ity can mislead scientific development, diverting attention
from important measures such as memory usage, worst-case
time complexity, and the practical applicability of the algo-
rithm in real-world scenarios. For example, by setting the
cluster size to one, the K-medoids problem can be solved
exactly by choosing the closest data item to the mean of
the data set, a strategy with O (N) time complexity in the
worst-case. While this O (N) time algorithm can efficiently
handle very large scale datasets, it does little to advance our
understanding of the fundamental principles involved.

Therefore, judging an algorithm implementation solely by
the scale of the dataset it can process is not an adequate mea-
sure of its effectiveness. Indeed, for large datasets, the use
of exact algorithms may often be unnecessary as many high-
quality approximate algorithms provide very good results,
supported by solid theoretical assurances. If the clustering
model closely aligns with the ground truth, the discrepancy
between approximate and exact solutions should not be sig-
nificant, provided the dataset is sufficiently large. Thus,
it is not surprising that Ren et al. (2022)’s algorithm can
achieve excellent approximate solutions with more than one
million data points, a typical occurrence in studies involving
exact algorithms. Past research has shown that while exact
algorithms can quickly find solutions, most of the effort is
expended on verifying their optimality (Dunn, 2018; Ustun,
2017). It is possible that the first configuration generated by
the algorithm is optimal, but proving its optimality without
exploring the entire solution space S is impossible (unless
additional information is provided).

For the study of the K-medoids problem, while algorithms
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Figure 3. The running time comparison between the itertools library—a widely used Python library for generating combinations—and
our combination generator for the task of exhaustive generation (The panels are arranged from left to right and top to bottom from K = 5
to K=8) and the task of solving the K-medoids problem (K = 3 to K = 6) demonstrates that our Python implementation achieves
performance improvements of up to 10-fold and 1000-fold, respectively, over the C-based itertools library on the CPU.

presented in Ren et al. (2022); Ceselli & Righini (2005);
Elloumi (2010); Christofides & Beasley (1982) are exact in
principle, experiments reported by the authors do not demon-
strate the actual computation of exact solutions, nor do they
provide any theoretical guarantee on the computational time
required to achieve satisfactory approximate solutions. If
the application of the problem is concerned with only the
approximate solution, it may be more beneficial to concen-
trate on developing more efficient or more robust heuristic
algorithms. This could potentially offer more practical value
in scenarios where approximate solutions are adequate.

5. Conclusions and future work
As our predictions and experiments show, our novel EKM
algorithm clearly outperforms all other algorithms which
can be guaranteed to obtain the exact globally optimal solu-
tion to the K-medoids problem. Whereas the approximate
algorithms and the BnB algorithm designed by Ren et al.
(2022) can only obtain approximate solutions (or wrong
solutions) and use significantly more time.

Moreover, precise time and space complexity anlysis of the
EKM algorithm precise prediction of time and space re-
quirements before attempting to solve a clustering problem,
in contrast to existing BnB algorithms which in practice
require a hard computation time limit to prevent memory
overflow or bypass the exponential worst-case run time. In
our experiments we were able to process datasets of up to
N = 5, 000 data items, a considerable increase from the pre-
vious maximum of around N = 150. We have also shown
that the state-of-the-art BnB algorithm, while claimed to
be optimal, produces erroneous solutions on many datasets.
Additionally, it only returns approximate solutions, requir-

ing significantly more time across all datasets we tested.
For difficult datasets, the algorithm by Ren et al. (2022)’s
algorithm exhibits exponential complexity, even for fixed
K.

The main disadvantage of our algorithm is that its space
and time complexity is exponential in K. Thus for prob-
lems that involve a large number of medoids, our algorithm
quickly becomes intractable. Currently, we only employs
the plain form of our algorithm, in other words, we have
not yet consider the speed-up by using bounding techniques.
In the future, a more sophisticated bounding techniques
could be developed; the inherently recursive structure of
our combination generator makes this a relatively simple
prospect.

With exact solutions for combinatorial ML problems, the
memory-computation trade-off is always present. However,
with BnB algorithms and MIP solvers, space complexity
analysis is often omitted making it difficult to ascertain the
actual memory requirements. Specifically, when using off-
the-shelf MIP solvers, the memory required just to specify
the problem can be substantial. For instance, to describe the
K-medoids problem in MIP form (1), a constraint matrix3

of size
(
N2 +N + 1

)
× N is required (Ren et al., 2022;

Vinod, 1969). Indeed, memory overflow issues have been
reported in almost all practical usage of BnB algorithms
(Ceselli & Righini, 2005; Elloumi, 2010; Christofides &
Beasley, 1982). Therefore, setting a computation time limit
is a necessary restriction for BnB algorithms, a restriction
which only applies to EKM at large values of K or N .

3There are N2 constraints to ensure each point is assigned to
exactly one cluster, N constraints to identify which data items are
medoids, and one additional constraint for the number of medoids
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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