Higher-Order Dependency Parsing for Arc-Polynomial Score Functions via
Gradient-Based Methods and Genetic Algorithm

Anonymous ACL submission

Abstract

We present a novel method for higher-order
dependency parsing which takes advantage of
the general form of score functions written
as arc-polynomial functions, a general frame-
work which encompasses common higher-
order score functions, and includes new ones.
This method is based on non-linear optimiza-
tion techniques, namely coordinate ascent and
genetic search where we iteratively update a
candidate parse. Updates are formulated as
gradient-based operations, and are efficiently
computed by auto-differentiation libraries. Ex-
periments show that this method obtains results
matching the recent state-of-the-art second or-
der parsers on three standard datasets.

1 Introduction

The goal of modern graph-based dependency pars-
ing is to find the most adequate parse structure
for the given input sentence by computing a score
for all possible candidate parses, and returning the
highest-scoring one. Since the number of candi-
dates is exponential in the sentence length, the scor-
ing is performed implicitly: after computing scores
for possible parts, the best structure, whose score
is the sum of its various parts, is returned by a
combinatorial algorithm based on either dynamic
programming such as the Eisner algorithm (Eisner,
1997) in the projective case, or duality gap such as
the Chu-Liu-Edmonds algorithm (McDonald et al.,
2005) in the non-projective case.

Graph-based models where parts are restricted to
single arcs are called first-order models, while mod-
els where parts contains k-tuples of arcs are called
k™-order models. For instance models with score
for sibling and grand-parent relations are 2"%-order
models because parts consist of 2 connected arcs.
The connectivity is important since it helps build-
ing efficient dynamic programming algorithms in
the case of projective arborescences (Koo and
Collins, 2010) or efficient approximations in the

non-projective case based on lagrangian heuris-
tics (Koo et al., 2010; Martins et al., 2013) or belief
propagation (Smith and Eisner, 2008). The score
function of first-order models, being a sum of parts
which are simple arcs, is linear in arc variables,
while for second-order, being a sum of parts which
are pair of arcs, the score function is quadratic in
arc variables. More generally k"-order models
have a polynomial score function in arc variables,
with highest degree equal to k.

In this paper we explore the consequences of
treating score functions for higher-order depen-
dency parsing as polynomial functions. This frame-
work can recover most previously defined score
functions and gives a unified framework for graph-
based parsing. Moreover, it can express novel func-
tions since in this setting parts are made of possibly
disconnected tuples of arcs. We call the results
generalized higher-order models, as opposed to
previously connected higher-order models.

On the other hand, polynomial functions are diffi-
cult to manipulate. They are non-convex and so, in
addition to already known problems in higher-order
parsing such as the computation of the partition
function for probabilitic models, MAP decoding is
itself a challenge. We develop an approximate pars-
ing strategy based on coordinate ascent (Bertsekas,
1999), where we iteratively improve a candidate
by flipping arcs. We exploit the polynomial na-
ture of the score function to derive an accurate
and efficient procedure to select arcs to be flipped.
Since coordinate ascent converges to a local min-
imum, we show how this method can be embed-
ded within a meta-heuristics based on genetic anal-
ogy (Schmitt, 2001) to find better optima.

We can learn these models via two methods,
max-margin or probabilitic estimation. Max-
margin is straightforward because it only requires
MAP decoding but is quite fragile since it is sensi-
tive to approximation errors which are inevitable
in our setting. We design a probabilistic loss for

our model where we approximate parse scores via
a first-order Taylor expansion around the MAP so-
lution. We find that this novel method is efficient
and we show empirically that it can outperform
previous higher-order models.

In summary our contributions are the following:

* a general framework for dependency pars-
ing which encompasses previous higher-order
score functions, and includes new ones;

* a new method for higher-order dependency
parsing based on non-linear optimization tech-
niques (coordinate ascent and genetic algo-
rithm) coupling gradient-based methods, and
combinatorial routines;

* an empirical validation of this method which
obtains state-of-the-art results on standard
datasets and is computationally efficient.

2 Related Work

Before the use of powerful neural feature extractors
(e.g. BILSTM or Transformers) dependency pars-
ing with high-order relations was a clear improve-
ment over first-order models. Koo and Collins
(2010) considered efficient third order models for
projective dependency parsing. In order to have
efficient dynamic programming algorithms for de-
coding, only a few limited predefined structures
can be included to the model (e.g. dependency,
sibling, grandchild, grand-sibling, tri-sibling).

Higher-order non-projective parsing is NP-hard
but fast heuristics with good performance have
been proposed based on dual decomposition for
instance. However, efficient subsystems must be
devised to efficiently process complex parts, either
based on dynamic programming algorithms such
as Viterbi (Koo et al., 2010) or on integer linear
programming (Martins et al., 2013). In practice
this restricts parts to connected subgraphs.’

Since the wide adoption of deep feature extrac-
tors, the situation is less clear. (Zhang et al., 2020)
consider a second-order model with dependency
and adjacent sibling, which can guarantee effi-
cient decoding for projective arborescence with
a batchified variant of Eisner algorithm (Eisner,
1996, 1997). The results show that adjacent sibling
is beneficial for the performance of parser compar-
ing with arc-factored model. (Fonseca and Martins,

I"The term sibling often means adjacent sibling, where only
adjacent modifiers on the same side of the head are included.

2We note that Martins et al. (2013) used a 2-arc part called
adjacent modifiers which is not a connected subgraph. But
this was not generalized to 2-arc arbitrary subgraphs.

2020) claim that in the non-projective case, second-
order features help especially in long sentences. On
the other hand, (Falenska and Kuhn, 2019) showed
that in general the impact of consecutive sibling fea-
tures was not substantial, and (Zhang et al., 2021)
showed that the main benefit of these features could
be understood as variance reduction, and vanishes
when ensembles are used.

Closely related to our work, Wang and Tu (2020)
consider a second-order model with score for de-
pendencies, siblings and grandchildren where they
do not constrain siblings to be adjacent. Although
exact estimation is intractable in their setting, an
approximate estimation of probability of arbores-
cences can be calculated efficiently by a message-
passing algorithm. Their experiments seem to con-
firm that second-order relations are beneficial to the
parsing accuracy, even when trained by an approxi-
mate estimation of probability, namely Mean-Field
Variational Inference. Instead we approximate the
partition function using a first-order Taylor approx-
imation around the solution of the MAP solution.
Partition approximations are usually performed via
Bethe’s free energy, see for instance (Martins et al.,
2010; Wiseman and Kim, 2019).

Dozat and Manning (2017) showed that head
selection was a good trade-off during the learning
phase, for first-order models. Our method applies
this principle to the higher-order case, leading to a
coordinate ascent method, well known in the opti-
mization literature (Bertsekas, 1999). In Machine
Learning and NLP, ascent methods are usually
performed in primal-dual algorithms, e.g. (Shalev-
Shwartz and Zhang, 2013) for SVMs.

We use genetic programming to escape local op-
tima when searching for the best parse. Although
this kind of metaheuristics has been used for other
tasks in NLP such as WSD (Decadt et al., 2004) or
summarization (Litvak et al., 2010), it is the first
time it is applied to dependency parsing to the best
of our knowledge. Since genetic algorithms can be
seen as implementing a Markov-Chain (Schmitt,
2001) over candidate solutions, our method resem-
bles MCMC methods, related to Gibbs sampling
for Metropolis-Hastings methods, which have al-
ready been investigated in parsing (Zhang et al.,
2014; Gao and Gormley, 2020). Our method to
choose the best arc to improve the current parse
is inspired by a recent method for sampling in dis-
crete distributions (Grathwohl et al., 2021) where
we replace sampling by MAP inference.

We rely on properties of polynomials to derive
efficient routines for approximate head selection.
Polynomial factors where discussed for higher-
order parsing in (Qian and Liu, 2013).

3 Notations

We write a sentence x = xq, Z1,...,ZIs, With n
the number of words, x; the dummy root symbol
when i = 0, or the i*" word otherwise.

For h,d € [n], with [n] = {0,1,...,n}, (h,d)
represents a direct arc form head z;, to dependent
xq. We note y a parse structure, with (h,d) € y
if (h,d) is an arc of the parse. The set of all valid
parses for sentence x is noted),, with y €)V,
if y is a valid parse for z. When z is clear from
the context, we simplify)V, to). When the parse
structure is important, we will distinguish A, the
set of all valid arborescences for x rooted in g, Py,
the set of all valid projective arborescences for x
rooted in xg, and G, the set of all directed graphs
with vertices in x where each x; has one and only
one entering arc for ¢ > 0, and g has no entering
arc. We note in passing that for all £ we have

For convenience, we will abuse notation and
sometimes interpret a parse y either as a vector
indexed by arcs or by a matrix:

1 if (h,d) is present in parse
Yhd = .
0 otherwise

We note C,, as the set of all possible arcs for
sentence x (the arcs of the complete graph over
vertices in x) or C' when unambiguous.

We say that a non-empty set of arcs A =
{(h1,d1), ... (hk,dy)} is properif Vi, h; # d; and
Vi < j,d; # dj. The first condition asserts that an
arc cannot be a self-loop while the second enforces
that each word has only one head in a proper set.
The two constraints are natural and required for
dependency parsing. We note the set of proper sub-
sets of cardinal k£ which can be constructed from a
set of arcs A as F(A), the set of kM-order polyno-
mial factors. Finally, for (h,d) € y, we use l(y) 4
to represent the label for the arc (h, d), or I,y when
y is clear from the context.

4 Polynomial Score Functions for
Dependency Parsing

In this work, we consider a generalization of pre-
viously proposed score functions for graph-based

dependency parsing. Unlike higher-order models
which consider only limited higher-order relations,
e.g. (Koo and Collins, 2010), the proposed function
can express all possible higher-order relations and
can be viewed as a natural generalization of (Wang
and Tu, 2020; Zhang et al., 2020).

4.1 Score Function

We define K'"-order score functions as:

K K
S@y)=>, >, sr || vna

k=1 Fe(FL(C)NR) (h,d)eF (1)

DI

k=1 FE(Fy.(y)NR)

where s represents the score for the higher-order
factor constructed from arcs in F', and R is set of
authorized structures (the restriction). Remark that
Eq. (1) does not enforce a specific structure for
y € Y and could be applied in G, A, P.

With this general definition we can recover most
previous models for graph-based dependency pars-
ing. For instance, in (Wang and Tu, 2020), a sec-
ond order model (K = 2) is studied where only
sibling and grandchild relations are considered,
which can be expressed with the following R: for
F = {(hy,d1), (he,d2)}, we enforce hy = hy or
d1 = ho. In (Zhang et al., 2020), another second-
order model, the restriction is stricter in order to
limit acceptation to adjacent siblings: h; = hg and
(h1,d1), (he,ds) are adjacent (no arcs from hy, ho
to word between d1, ds).

To demonstrate the generality of this approach,
we also consider a generalized third-order model.
The first-order and the second-order parts are
as (Wang and Tu, 2020), and for third-order factors
F = {(h1,d1), (ha,d2), (hs,ds)}, we add restric-
tions d; < dy < di +3and dy < d3 < dy + 3.
Arcs in F' are not always connected. Instead, we
only force the modifiers of arcs to be close, with
a maximum distance set to 2. This addition of
cubic factors could be a computational bottleneck
since it would naively require computing O(n®)
scores. We avoid this with tensor factorization fol-
lowing (Peng et al., 2017).3

4.2 Score of One-Arc Modifications

Parsing can be framed as finding the highest
S(x,y), or S(y) when z is unambiguous:

y* = argmax S(y) ()
yeY

3See Appendix C for details.

The solution is tractable for X = 1 (first-order
model), i.e. arc-factored model, for all usual parse
structures, such as G, A,P. However, it is in-
tractable without additional constraints for higher-
order models, such as projectivity for parses and
adjacent siblings in scores.

We consider here a simpler problem: how much
can the score change if we change one arc of the
current parse? The idea is that better parses may
be obtained by choosing arcs to be flipped. Thus,
even starting with a bad parse, we may approach
the best parse by modifying one arc at a time.

To solve this simpler problem, the naive method,
i.e. calculate the score of every parse which differs
from the current parse by one arc, is obviously inef-
ficient and unpractical since it requires O(n?) eval-
uations (for each modifier and each head). Instead,
we show that the score change of a one-arc mod-
ification can be efficiently calculated for Eq. (1).
Let us consider the current parse y and an arbitrary
arc a = (h,d) € C (possibly not in y). The partial
derivative of the score to variable y,, is:*

95(y)
0Ya

Z sp 9 Ha/EF Ya’
a

> spl[F\a € Fra(y)]

Fe(Fr(C)NR),
acel

K
=D
k=1 Fe(F(C)NR)
K
=D
k=1

3)

We can interpret this formula for the partial
derivative as the sum of all factors F' including
a which verify (F\a) € Fix_1(y). When a € y,

%ST(QZ”) can be seen as the restriction of S(y) to fac-

tors F' C Fy(y), where a € F. And we can write:’

S(y) = 8§y(ay) + S(y\a) “4)

where the last term is the score of all factors in y
which do not contain a.

When a € y, we note a = (h/,d) while we
assume (h, d) € y.We define y[h — h’,d] as the
parse which modifies y by swapping the head index
for column d from h to i’ while the other columns
remain unchanged, and y[— h’, d] when the cur-
rent head A is unimportant. We can rewrite the
score function of y[h — k', d] with the previously
defined partial derivative, and take advantage of the

“See Appendix B.1 for the detailed derivation.
3See Appendix B.2 for the detailed derivation.

score factorisation to express S(y[h — h’, d]) with
quantities directly available on 1:°

S(ylh— ') = S

+Sy\(h,d)) (S

Remark that the right part of the equation concerns
only the original arborescence y.

We write D(y — R/, d) for the change of score
induced by swapping the head in column d to 1/,
and D(y,h — h',d) when we want to emphasize
that the current head for d is h. From the previous
equations, we can derive:

D(y,h — b',d) = S(y[(h — ', d)]) = S(y)
_05(y) _ 95(y)
OYwa OYnd

(6)

Thus, to have a complete evaluation of change
of scores, we only need one forward and backward
evaluation on the score of the current solution y and
then compute differences for each position d. In the
following section, we build an inference algorithm
based on this observation

5 Inference as Candidate Improvement

5.1 Coordinate Ascent

The main idea of our method is, from an initial
parse ¥, to change the current candidate by picking
a word and swapping its head to improve the score
function. This is repeated until not further improve-
ment is possible. This method is an instance of
coordinate ascent (Bertsekas, 1999) (Chap. 2.7), to
maximize Eq. (1). When parses are arborescences,
such as when working in A and P, this method
must at each step, not only pick an improving arc,
but also assert that the resulting parse has the re-
quired tree structure. This adds complexity that we
propose to avoid by working in G and inserting a
final step of projection to recover a solution in the
desired space (described in Section 6.2).

Remark that when arborescence constraints are
dropped, finding the best parse reduces to head
selection, i.e. choose hg, Vd with yp,, 4 = 1, which
maximizes S(y). To emphasize that this method
works column by column we write:

S(xay) = S(y:,b' ..

®See Appendix B.3 for the detailed derivation.

7y:,|x|)

where y., denotes the one-hot vector where
y.alh] = 1if (h,d) € y.

This is straightforward and tractable for first-
order models, since it amounts to maximizing in-
dependent score functions. However, this becomes
intractable in higher-order models since parts over-
lap. Still, a local optimum can be obtained by
coordinate ascent.

Given a current solution y*, basic coordinate
ascent finds a better next iterate y**! by cycling
through columns and improving the current solu-
tion locally by successive head selections:

h}; = argmax, S(yffl, ey yfcﬁl, &n, yfd_H ... ,yf‘zl)

(7
where &}, is the one-hot vector with 1 at position h.
We set yk*l = py, and the process is repeated for

i

every word until there is no change (y**1 = ¢/%).

5.2 A Gradient-based Method For Coordinate
Ascent

A naive method to solve Eq. (7) requires n evalua-
tions of .S, one per possible head, which is ineffi-
cient. However, from Section 4.2 and Eq. (6), we
can rewrite Eq. (7) since it amounts to finding a
better head at position d from current solution y:

hy = argmax D(y — h,d) 8
h

Thus, one forward and one backward (followed by
|z| substractions) is sufficient to decide the modifi-
cation of arc at each position d.

Still, the gradient-based maximization presented
above requires n forward and backward passes
to determine the new heads for all words of the
sentence. In order to achieve faster convergence,
we want to avoid cycling through each word and
consider the following problem: at each step, find
the pair (h, d) which provides the greatest positive
change in the score function:

(h*,d*) = argmaxy, g S(y:’fl, ce y:’fdfl, &n, y:’fdﬂ .. ’y:]flz\)
)
We set /1 = y¥[— h*, d*] while other columns
are unchanged. This is repeated until y**1 = y/*.
Again, a naive maximization requires O(n?) es-
timations of score for each step and brings in fact
no speed gain. However, as we have already seen,
Eq. (9) is simply equivalent to:

(h*,d*) = argmax D(y, — h,d)
h.d

(10)

which again requires one forward and backward on
the current candidate’s score before substractions.

In summary our algorithm, from an initial parse
1o, iteratively improves a current solution: at step
k we solve Eq. (10) by computing the gradient of
S(y*) over arc variables and then pick the arc (h, d)
whose partial derivative increases the greatest to
set yF1 = y*[— h,d].

5.3 First-Order Linearization

Coordinate ascent changes one arc at a time which
can still be slow. In practice, we found that a sim-
pler greedy method performed at the beginning of
the search, when high precision is not required, can
improve parsing time dramatically. Given a current
solution y/*, we linearize the score function via the
first-order Taylor approximation and apply coordi-
nate ascent to what is now an arc-factored model
where columns can be processed independently.
For each sentence position d:’

oS (y*
hj; = argmax #ﬁ)
h Wiq

We set then y* 1! = &nsVd > 0. We may be able
to change |z| arcs at each step k, and the process is
repeated until S(y**1) < S(y*), which indicates
that the approximation becomes detrimental, after
which we switch to coordinate ascent to provide
more accurate iterations.

5.4 Genetic Algorithm

Due to the non-convexity of function S, the pre-
vious method gives a local optimum, which may
limit the usefulness of higher-order parts. Thus,
to ensure a better approximation, we add genetic
search (Mitchell, 1998).

Genetic Algorithm is an evolutionary algorithm
inspired by the process of natural selection. The
algorithm requires: a solution domain, here G, and
a fitness function, i.e. function S(y). Each step in
our genetic algorithm consists of four consecutive
processes: selection, crossover, mutation and self-
evolution, which are repeated until stabilization.

Selection For a group of parses yi, . . ., Y, €S-
timate scores S(y1),...,S(yw). Select the top-k
candidates (K < w) y7,...,y;.-

Crossover Average candidates y© = % Zle Yi-
Set y;. ; as the probability of having (h, d) in an op-
timal f)arse and sample w — k new parses according

to °. Note them y{, ..., ys .

"See Appendix B.4 for the detailed derivation.

Mutation For every parse in y{,...,y; .
change heads randomly with probability p. Note
mutated parses as y7", ..., ¥,

Self-Evolution On parses y1", ..., y.' ., apply
coordinate ascent. Note the output as y{, ..., ys ;.
Combine new parses with the previous top-k parses
as the group for next iteration.

Selection and self-evolution pick arcs giving
high scores while crossover and mutation can pro-
vide the possibility to jump out of local optima. We
iterate this process until the best parse is unchanged
for ¢ consecutive iterations.

6 Learning and Decoding with
Polynomial Scores

6.1 Learning

We follow recent works (Zhang et al., 2020; Wang
and Tu, 2020) and learn parse structures and arc
labels in a multitask fashion with a shared feature
extractor. Loss is the sum of label and arc losses:

L= Llabel + Larc (1 1)

We write (z*,y*,[*) as the training input sen-
tence and its corresponding parse and labeling.

Label Loss Following (Dozat and Manning,
2017), we use the negative log-likelihood:

Llabel(ﬂf*,?/*,l*) = - Z Ing(l;;d‘l'*)
(h,d)ey*
Hinge Loss Following (Kiperwasser and Gold-

berg, 2016), we can use hinge loss as arc loss:

Larc = ReLU(maXyGy S(I*v y) - S(I*a y*) + A(yv y*))

where A(y, y*) is the Hamming distance.

The inner maximization requires to solve an
inference sub-problem, i.e. to find the cost-
augmented highest-scoring parse:

S *7 +A , *
max (z%,y) (v, y")

(12)

As Hamming distance is not differentiable, we pro-
pose to reformulate it as:

Aly,y*) =D (1= yra)yirg + (1 = Yha)¥na
hod

linear to the variable y. Thus, Eq. (12) can be
solved with the method proposed in Section 5.

Approximate Marginal Estimation In practice
hinge loss may have two issues: each update is
limited to two parses only, which makes learning
slow, and the linear margin may lead to insufficient
learning. We thus propose an approximate proba-
bilistic learning objective inspired by methods such
as Mean-Field Variational Inference (Wang and Tu,
2020). We would like to train our model as an
arc-factored log-linear model:

Lye = — Z logp((h,d)|x*)

(h,d)ey=*

where p((h, d)|z*) is the marginal probability of
arc (h, d) over all parses for z*.

Marginal probabilities are approximated based
on the intuition that the distribution of parses is
usually peaked on few close solutions, hence that
estimating the contribution of arcs at the neighbor-
hood of the highest-scoring parse gives an accept-
able approximation. We use the same reasoning
as in Section 5.3 to derive a linear approximation
of the current model. Given parse ¢ obtained by
coordinate ascent, we set:®

o _ _ p(l= hd)
P dle”) = 5= e,
Zh/ exp(Sh'd)

(13)

where:

(14)

6.2 Approximate MBR Structured Decoding

Inference with coordinate ascent and genetic algo-
rithm cannot guarantee the tree structure of parses,
as they work in solution space G. But we can es-
timate the marginal probability of arcs from a so-
lution y returned by coordinate ascent by reusing
Eq. (13). Then, the Eisner algorithm (Eisner, 1996,
1997) or the Chu-Liu-Edmonds algorithm (McDon-
ald et al., 2005) can be applied to have projective
or non-projective arborescences. We remark that
this is similar to Minimum Bayesian Risk (MBR)
decoding (Smith and Smith, 2007), the difference
being that here marginalization is estimated with
nearest arborescences while for MBR marginaliza-
tion is exact over the parse forest.

8See detailed derivation in Appendix B.5.

bg ca cs de en es fr it nl no ro ru Avg.
CRF20 90.77 9129 91.54 80.46 87.32 90.86 87.96 91.91 88.62 91.02 86.90 93.33 89.33
Local20 90.53 92.83 92.12 81.73 89.72 92.07 88.53 92.78 90.19 91.88 85.88 92.67 90.07
CA+LM 90.79 93.14 91.92 84.45 89.89 92.60 90.14 93.57 89.89 93.85 86.42 93.81 90.87
30+CA+LM 90.80 93.09 9191 84.42 89.75 9250 90.02 93.53 90.13 93.78 86.38 93.86 90.85
GA+CA+LM 90.70 93.17 91.90 84.19 89.77 9250 89.88 93.68 90.13 93.81 86.33 93.88 90.83
+BERT
Local20 91.13 93.34 92.07 81.67 90.43 92.45 89.26 93.50 90.99 91.66 86.09 92.66 90.44
CA+LM 91.93 94.09 9246 85.59 90.97 9342 90.88 94.18 91.49 9457 87.22 9440 91.77
30+4CA+LM 91.87 94.05 92.50 85.22 91.04 93.47 90.79 94.26 91.38 94.62 87.18 9441 91.73
GA+CA+LM 91.86 94.08 9249 8538 90.99 9344 91.05 94.13 91.53 94.56 87.25 9442 91.77
Table 1: LAS on UD 2.2 test data. CRF20: (Zhang et al., 2020); Local20: (Wang and Tu, 2020).
7 Experiments Method PTB CoNLL09
UAS LAS UAS LAS
We present experimental results’ where we evalu- CA-+hinge 0569 93.89 9125 89.52
ate and compare our parsing method where we use GA+CA+hinge 95.71 93.87 91.52 89.80
the score function (Wang and Tu, 2020) and our CA+LM 0567 93.8%8 91.31 89.66
extension with third-order factors (30) with coor- 30+CA+LM 95.64 93.87 91.26 89.61
dinate ascent (CA) and genetic algorithm (GA). GA+CA+LM 95.81 93.99 91.30 89.66
+BERT
7.1 Data CA+LM 96.53 9485 93.18 91.57
Two datasets are used for projective dependency 30+CA+LM 96.47 94.79 93.15 91.53
parsing: the English Penn Treebank (PTB) with GA+CA+LM 96.50 94.82 93.16 91.55

Stanford Dependencies (Marcus et al., 1993) and
CoNLLO09 Chinese data (Hajic et al., 2009). We
use standard train/dev/test splits and evaluate with
UAS/LAS metrics. Punctuation is ignored on PTB
for dev and test. For non-projective dependency
parsing, Universal Dependencies (UD) v2.2 is used.
Following (Wang and Tu, 2020), punctuation is
ignored for all languages.

For experiments with BERT (Devlin et al.,
2019), we use BERT-Large-Uncased for PTB,
BERT-Base-Chinese for CoNLL09 Chinese and
Base-Multilingual-Cased for UD.

7.2 Hyper-Parameters

To ensure fair comparison, and for budget reasons,
we use the same setup (hyper-parameters and pre-
trained embeddings) as (Zhang et al., 2020).'°

For experiments without BERT (Devlin et al.,
2019), pos-tags are used for all datasets'!. For
experiments with BERT, the last 4 layers are com-
bined by scalarmix and linear projection and then
concatenated to the original feature vectors.

Initial candidates are sampled from the the first-
order part of Eq. (1). For genetic algorithm, due

°Our prototype will be publicly available upon publication.

10See Appendix A.

"In (Zhang et al., 2020), pos-tagging used on UD but not
on PTB nor CoNLLO09 Chinese. In (Wang and Tu, 2020),
pos-tagging is used for all datasets.

Table 2: Comparison on dev. CA: Coordinate Ascent;
30: Third order model; GA: Genetic Algorithm; LM:
Linearized Marginalization; hinge: hinge loss

to hardware memory limitations, the number of
candidates is set to 6. Each time, we take the top-
3 candidates in selection, and the genetic loop is
terminated when the best parse remains unchanged
for 3 consecutive iterations. The mutation rate is
set to 0.2 on all datasets.!?

All experiments are run 3 times with random
seed set to current time and averaged. We rerun
also the results of (Wang and Tu, 2020) on PTB
and CoNLLO09 with the authors’ implementation. '3
to have a faire comparison.

7.3 Results on PTB and CoNLL09 Chinese

Table 2 shows results of our different system with
and without BERT. For PTB without BERT we see
that training via coordinate ascent with hinge loss
of marginal estimation give similar results, while
genetic algorithm gives a sensible improvement
when combined with the probabilistic framework.

12We tried mutation rates 0.1, 0.2, 0.3 and the best perfor-
mance is obtained on PTB dev with mutation rate 0.2.

Bhttps://github.com/wangxinyu0922/
Second_Order_Parsing, Note that this implementation
also uses the hyper-parameters of (Zhang et al., 2020)

https://github.com/wangxinyu0922/Second_Order_Parsing
https://github.com/wangxinyu0922/Second_Order_Parsing

Method PTB CoNLL09
UAS LAS UAS LAS
CRF20* 96.14 94.49 89.63 86.52

Local20 95.98 94.34 - -
Local20t 95.90 9425 91.60 89.93
CA-+hinge 95.88 9421 91.27 89.58
GA+CA+hinge 95.93 94.26 91.63 89.89
CA+LM 95.96 94.33 91.62 89.96
30+4CA+LM 95.85 94.27 9159 89.96
GA+CA+LM 9595 94.34 91.65 90.02

+BERT

Local20 96.91 95.34 - -
Local20f 96.68 95.16 93.46 91.87
CA+LM 96.68 9520 93.48 91.91
30+4CA+LM 96.65 95.13 93.47 91.87
GA+CA+LM 96.67 9520 93.42 91.83

Table 3: Comparison on test. *: POS not used. {: Rerun
with official implementation.

We can see that our third-order factors do not im-
prove scores. With BERT probabilistic models,
neither third-order nor genetic algorithm on top
of coordinate ascent gives any improvement. For
CoNLLO09 Chinese without BERT, performance on
dev are similar between settings while genetic al-
gorithm gives an evident boost for hinge loss. With
BERT as for PTB the simple model performs best.

Table 3 gives test results and comparisons with
two recent similiar systems. For PTB without
BERT, the exact projective parser of (Zhang et al.,
2020) has the best performance, which is in ac-
cordance with the reported results in (Wang and
Tu, 2020).'* In comparison with (Wang and Tu,
2020) (Local20), although their system has more
parameters for PTB experiments'>, our coordi-
nate ascent method with genetic algorithm plus
marginalization has achieved the same performance
on LAS. However, the same optimization method
with hinge loss does not show good performances.
For CoNLLO09 Chinese without BERT, the genetic
algorithm seems to help with generalization com-
pared to simple coordinate ascent (similar score on
dev but improvement on test).

With BERT, on both corpora, simple coordinate
ascent gives best performance for our method.

Our best single run gives 94.44 LAS on PTB which is on
a par with their results.

' (Wang and Tu, 2020) uses a bilstm with hidden 600 while
we follow (Zhang et al., 2020) to use a bilstm with hidden
size 400

7.4 Results on UD

Table 1 shows LAS on UD test data. The best aver-
age performances are achieved with coordinate as-
cent and genetic algorithm plus linearized marginal-
ization. For all languages, our method with or with-
out genetic algorithm outperforms (Wang and Tu,
2020) (Local20) except nl without BERT.

Method Train Test
Local20 1133 706

CA 506 399
30+CA 255 249
GA+CA 248 195

Table 4: Speed Comparison on PTB Train and Test
without BERT (sentences per second)

7.5 Speed Comparison

We compare the speed of train and test with Nvidia
Tesla V100 SXM2 16 Go on PTB. The result is
shown in Table 4. For coordinate ascent, training is
2.2 times slower than MFVI while test is 1.8 times
slower than MFVI'®,

8 Conclusion

We presented a novel method for higher-order pars-
ing based on coordinate ascent. Our method relies
on the general form of arc-polynomial score func-
tions. Promising arcs are picked by evaluated by
gradient computations. This method is agnostic to
specific score functions and we showed how we
can recover previously defined functions and de-
sign new ones. Experimentally we showed that,
although this method returns local optima, it can
obtain State-of-the-art results.

Further research could investigate whether the
difference between the search space during learn-
ing and decoding is a cause of performance de-
crease. In particular the coordinate ascent could
be replaced by a structured optimization method
such as the Frank-Wolfe algorithm (see (Pedregosa
et al., 2020) for a recent variant) to obtain a local
optimum in a more restricted search space.

15The speed is measured with Eisner applied over all sen-
tences. It is about 2 times quicker with the faster decoding
strategy of (Zhang et al., 2020) which consists in applying
Eisner only if the coordinate ascent solution does not return a
projective arborescence.

References

D.P. Bertsekas. 1999. Nonlinear Programming. Athena
Scientific.

Bart Decadt, Véronique Hoste, Walter Daelemans, and
Antal van den Bosch. 2004. GAMBL, genetic al-
gorithm optimization of memory-based WSD. In
Proceedings of SENSEVAL-3, the Third International
Workshop on the Evaluation of Systems for the Se-
mantic Analysis of Text, pages 108—112, Barcelona,
Spain. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Jason Eisner. 1996. Efficient normal-form parsing for
Combinatory Categorial Grammar. In 34th Annual
Meeting of the Association for Computational Lin-
guistics, pages 79-86, Santa Cruz, California, USA.
Association for Computational Linguistics.

Jason Eisner. 1997. Bilexical grammars and a cubic-
time probabilistic parser. In Proceedings of the Fifth
International Workshop on Parsing Technologies,
pages 54—-65, Boston/Cambridge, Massachusetts,
USA. Association for Computational Linguistics.

Agnieszka Falenska and Jonas Kuhn. 2019. The (non-
Jutility of structural features in BILSTM-based de-
pendency parsers. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 117-128, Florence, Italy. Association
for Computational Linguistics.

Erick Fonseca and André F. T. Martins. 2020. Revisiting
higher-order dependency parsers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8795-8800, Online.
Association for Computational Linguistics.

Sida Gao and Matthew R. Gormley. 2020. Training for
Gibbs sampling on conditional random fields with
neural scoring factors. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4999-5011, On-
line. Association for Computational Linguistics.

Will Grathwohl, Kevin Swersky, Milad Hashemi, David
Duvenaud, and Chris Maddison. 2021. Oops i took a
gradient: Scalable sampling for discrete distributions.
In Proceedings of the 38th International Conference

on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 3831-3841.
PMLR.

Jan Haji¢, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antonia Marti, Lluis
Marquez, Adam Meyers, Joakim Nivre, Sebastian
Pado, Jan gtépének, Pavel Stranak, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 shared task: Syntactic and semantic depen-
dencies in multiple languages. In Proceedings of
the Thirteenth Conference on Computational Natu-
ral Language Learning (CoNLL 2009): Shared Task,
pages 1-18, Boulder, Colorado. Association for Com-
putational Linguistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple
and accurate dependency parsing using bidirectional
Istm feature representations. Transactions of the As-
sociation for Computational Linguistics, 4:313-327.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 1-11, Uppsala, Sweden. Associa-
tion for Computational Linguistics.

Terry Koo, Alexander M. Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head
automata. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing,
pages 1288-1298, Cambridge, MA. Association for
Computational Linguistics.

Marina Litvak, Mark Last, and Menahem Friedman.
2010. A new approach to improving multilingual
summarization using a genetic algorithm. In Proceed-
ings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 927-936, Uppsala,
Sweden. Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313-330.

André Martins, Miguel Almeida, and Noah A. Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 617—
622, Sofia, Bulgaria. Association for Computational
Linguistics.

André Martins, Noah Smith, Eric Xing, Pedro Aguiar,
and Mdrio Figueiredo. 2010. Turbo parsers: Depen-
dency parsing by approximate variational inference.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 34—
44, Cambridge, MA. Association for Computational
Linguistics.

https://aclanthology.org/W04-0827
https://aclanthology.org/W04-0827
https://aclanthology.org/W04-0827
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.3115/981863.981874
https://doi.org/10.3115/981863.981874
https://doi.org/10.3115/981863.981874
https://www.aclweb.org/anthology/1997.iwpt-1.10
https://www.aclweb.org/anthology/1997.iwpt-1.10
https://www.aclweb.org/anthology/1997.iwpt-1.10
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.18653/v1/2020.emnlp-main.406
https://doi.org/10.18653/v1/2020.emnlp-main.406
https://doi.org/10.18653/v1/2020.emnlp-main.406
https://doi.org/10.18653/v1/2020.emnlp-main.406
https://doi.org/10.18653/v1/2020.emnlp-main.406
https://proceedings.mlr.press/v139/grathwohl21a.html
https://proceedings.mlr.press/v139/grathwohl21a.html
https://proceedings.mlr.press/v139/grathwohl21a.html
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/P10-1001
https://www.aclweb.org/anthology/P10-1001
https://www.aclweb.org/anthology/P10-1001
https://www.aclweb.org/anthology/D10-1125
https://www.aclweb.org/anthology/D10-1125
https://www.aclweb.org/anthology/D10-1125
https://www.aclweb.org/anthology/D10-1125
https://www.aclweb.org/anthology/D10-1125
https://aclanthology.org/P10-1095
https://aclanthology.org/P10-1095
https://aclanthology.org/P10-1095
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://aclanthology.org/P13-2109
https://aclanthology.org/P13-2109
https://aclanthology.org/P13-2109
https://aclanthology.org/D10-1004
https://aclanthology.org/D10-1004
https://aclanthology.org/D10-1004

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Haji¢. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 523-530, Vancouver,
British Columbia, Canada. Association for Computa-
tional Linguistics.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Melanie Mitchell. 1998. An introduction to genetic
algorithms. MIT press.

Fabian Pedregosa, Geoffrey Negiar, Armin Askari, and
Martin Jaggi. 2020. Linearly convergent frank-wolfe
with backtracking line-search. In International Con-
ference on Artificial Intelligence and Statistics, pages

1-10. PMLR.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2037-2048, Vancouver,
Canada. Association for Computational Linguistics.

Xian Qian and Yang Liu. 2013. Branch and bound algo-
rithm for dependency parsing with non-local features.
Transactions of the Association for Computational
Linguistics, 1:37-48.

Lothar M. Schmitt. 2001. Theory of genetic algorithms.
Theoretical Computer Science, 259(1):1-61.

Shai Shalev-Shwartz and Tong Zhang. 2013. Stochas-
tic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning
Research, 14(2).

David A. Smith and Jason Eisner. 2008. Dependency
parsing by belief propagation. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 145-156, Hon-
olulu.

David A. Smith and Noah A. Smith. 2007. Probabilistic
models of nonprojective dependency trees. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 132-140, Prague, Czech Republic.
Association for Computational Linguistics.

Xinyu Wang and Kewei Tu. 2020. Second-order neu-
ral dependency parsing with message passing and
end-to-end training. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 93-99, Suzhou, China. Association
for Computational Linguistics.

10

Sam Wiseman and Yoon Kim. 2019. Amortized bethe
free energy minimization for learning mrfs. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Xudong Zhang, Joseph Le Roux, and Thierry Charnois.
2021. Strength in numbers: Averaging and clustering
effects in mixture of experts for graph-based depen-
dency parsing. In Proceedings of the 17th Interna-
tional Conference on Parsing Technologies and the
IWPT 2021 Shared Task on Parsing into Enhanced
Universal Dependencies (IWPT 2021), pages 106—
118, Online. Association for Computational Linguis-
tics.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3295-3305, Online. Association for Computa-
tional Linguistics.

Yuan Zhang, Tao Lei, Regina Barzilay, Tommi Jaakkola,
and Amir Globerson. 2014. Steps to excellence: Sim-
ple inference with refined scoring of dependency
trees. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 197-207, Baltimore,
Maryland. Association for Computational Linguis-
tics.

https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/H05-1066
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.1162/tacl_a_00208
https://doi.org/10.1162/tacl_a_00208
https://doi.org/10.1162/tacl_a_00208
https://doi.org/https://doi.org/10.1016/S0304-3975(00)00406-0
http://cs.jhu.edu/~jason/papers/#smith-eisner-2008-bp
http://cs.jhu.edu/~jason/papers/#smith-eisner-2008-bp
http://cs.jhu.edu/~jason/papers/#smith-eisner-2008-bp
https://www.aclweb.org/anthology/D07-1014
https://www.aclweb.org/anthology/D07-1014
https://www.aclweb.org/anthology/D07-1014
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://proceedings.neurips.cc/paper/2019/file/dc554706afe4c72a60a25314cbaece80-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc554706afe4c72a60a25314cbaece80-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc554706afe4c72a60a25314cbaece80-Paper.pdf
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2021.iwpt-1.11
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.3115/v1/P14-1019
https://doi.org/10.3115/v1/P14-1019
https://doi.org/10.3115/v1/P14-1019
https://doi.org/10.3115/v1/P14-1019
https://doi.org/10.3115/v1/P14-1019

A Hyper Parameters

Param Value Param Value
WordEMB 100 WordEMB dropout 0.33
CharLSTM 50 CharLSTM dropout 0.00

PosEMB 100 PosEMB dropout 0.33
BERT Linear 100 BERT Linear dropout 0
BiLSTM 400 BiLSTM dropout 0.33
MLPy; 500 LSTMj, dropout 0.33
MLPype1 100 LSTMjype1 dropout 0.33
MLPsib,gp,3O 100 MLP,; dropout 0.33
Learning Rate 2¢4 51, B2 0.90
Annealing 0.755000 Patience 100

Table 5: Hyper-parameters

Remark that when running experiments with
UD, the WordEMB is reset to 300 because we use
300 dimension fasttext embedding (Mikolov et al.,
2018) following (Zhang et al., 2020; Wang and Tu,
2020).

B Complete derivations

B.1 Partial Derivatives

We start with the definition:

DI MRS
Sp——o=t T
83/(1 =1 F Ya
€(Fr(C)NR)
case a ¢ F: we can see that if a ¢ F, then
81_[‘5#‘% 0 since the expression in the nu-

merator does not contain variable .

case a € F: Now suppose that a € F. Remark
that F is a factor from F(C'), and thus is a proper
subset of arcs and consequently all arcs in F' are dif-
ferent. By applying the rule for product derivatives
we can rewrite the partial as:

0 Ha’GF Yao _
a

H Ya/

a’eF\a

Suppose that F' is a factor of k arcs from Fy(C')
that contains a, and that the previous equation
equals 1, we have:

] vw =1 yo=1Vd € F\a

a’€F\a
< d ey,Vd € F\a
> F\a € Fi_1(y)
Conclusion: By plugging this into the definition
we have:

S

k=1 Fe(F(C)NR),
acF

aya srl[F\a € Fi_1(y)]

11

B.2 Substitution Scores 1

We start from equation (1):

ZZ

H Yn' @

mz) (W, d')EF

Similarly, given arc (h,d) € y we have:

S(y\(h,d)) Z > H Yn'
k=1 Fe(Fy()mR) (W,d"er
(h,d)¢F

The score difference is:

S(y) = S(y\(h,d))

S I e

k=1 Fe(]—'k(C)ﬂR) (h’ d)eF
(h,d)eF
K
:Z Z sp1[F € Fi(y)]
k=1 Fe(F,(C)NR)
(h,d)eF

K
=" Y sp1[F\(h,d) € Fr1(y)]
k=1 Fe(Fo(C)NR)

(h.d)e F

where the last line is correct since we assume we
already have (h,d) € y.
By using equation (3), we have directly:

S() = S0\ () = G2
which is
S5) = G+ S(0)\ ()

B.3 Substitution Scores 2

First, note that the set of arc y\ (h, d) is the same as
y[h — h',d]\(h'd). This is because y[h — h’, d|
is constructed by substituting arc (h,d) € y with
arc (h', d). The other arcs are unchanged. Thus we
have:

S(ylh — K, d\(,d)) = S(y\(h,d))
Secondly, consider the condition:

(h',d) € F,F\(I,d) € Fr_1(y[h — ', d])

Remark that F' = {(hl, dl), (hg, dg), . (hk, dk)}
being a proper subset of arcs is required to satisfy:

Vi # j, d; # dj. Thus F\(k/,d) has no arc for
column d. In this case, we can write the previous
condition as:

(W,d) e F,F\(W,d) € Fr_1(y)

since y and y[h — R/, d] only differ in column d.
By using equation (3), we have:

dS(ylh — K, d])
Y’ d

sp1[F\(K,d) € Fy_1(ylh — K, d))

K
— Z Z spl[F\(I,d) € Frp_1(y)
k=1 Fe(F,(C)NR),
(W ,d)eF
_ 05(y)

Oy

To conclude, we have:

S(ylh — h’,d])
_ OSWlh = WodD) | gt s i ap\(',)
OYn d
9S(y)
= s S\)

The first equation is a direct usage of equation (4)
and the second equation comes from the previous
proof.

B.4 First-order Linearization

We want to compute for all word positions d the
highest scoring head:

argmax S(y[h — h',d])
h/

(ylh = W.d] —y)TVS(y)

~ argmax S(y) +
h/

=argmax S(y) + 95(y) _ 95(y)
h! Yn'd Yhd
_ 95(y)
= argmax
h! Yn'd

We go from first to second line by first-order Tay-
lor approximation. Transition from second to third

12

line is based on the fact that y[h — h', d] differs
from y by only two arcs, the addition of (h', d) and
the removal of (h, d) so the inner product can be
expressed as a difference of two partial derivatives.
We go from third to fourth line by noticing that
only one term depends on 2’ hence we can simplify
the argmax.

B.5 Approximate Marginal Estimation

9 is the highest-scoring parse and contains arc
(g,d). We write spq %i(9 for all arc (h,d).
We recall from previous section that first-order
Taylor approximation gives: S(y[g — h,d]) =~

S(4) + Sha — Sqd-

p(glg = h,d))
> P(glg — 1, d])

_ Z ' exp(S(ilg — h,d)))
dow Z texp(S(9lg — W, d]))

exp(S(glg — h,d]))
~ S exp(S(glg — 1. d]))

[
(9
exp(S(9) + Shd — S4d)
(9
) —

p((h,d)|z*) =

Q

> n exp(S(9) + spa — Sgd)

exp(S(9) — s4a) exp(Shd)
exp(S(9) — sgd) D_p €xp(sna)

__ exp(shd)
> exp(sprq)

C Tensor Factorization for Third-Order
Models

For a third order model, a tensor W & R
should be used to calculate the score of F'

{(h1,d1), (h2,d2), (hs, d3)}:

T,T,T
SF = Vjp,Ujy, Upy, W4, Vdy Vg

with vy, , vg, the feature vector of head and modifier
words.

To reduce the memory cost, we simulate the pre-
vious calculation with three tensors of biaffine and
one tensor of triaffine. The score can be calculated
as:

1

h = Uhy © Wb(ia)ffinevdl
2

lQ = Upy © Wb(ia)ffinede
3)

l3 = Unpg © Wb(iaffinevds

SF = lglthriaffinell

with nga ffine IS R™ the tensor of biaffine and

Wiriaf fine € R™ the tensor of triaffine, o repre-

sents the Hadamard product (element-wise product
of vector).

13

	Introduction
	Related Work
	Notations
	Polynomial Score Functions for Dependency Parsing
	Score Function
	Score of One-Arc Modifications

	Inference as Candidate Improvement
	Coordinate Ascent
	A Gradient-based Method For Coordinate Ascent
	First-Order Linearization
	Genetic Algorithm

	Learning and Decoding with Polynomial Scores
	Learning
	Approximate MBR Structured Decoding

	Experiments
	Data
	Hyper-Parameters
	Results on PTB and CoNLL09 Chinese
	Results on UD
	Speed Comparison

	Conclusion
	Hyper Parameters
	Complete derivations
	Partial Derivatives
	Substitution Scores 1
	Substitution Scores 2
	First-order Linearization
	Approximate Marginal Estimation

	Tensor Factorization for Third-Order Models

