
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

POLARIS: SCALING UP INSTRUCTION-GUIDED IM-
AGE GENERATION TOWARDS MILLIONS OF PERSONAL-
IZED NEEDS

Anonymous authors
Paper under double-blind review

Object Blind Spot

Generate an image of
human hand in glove

Generate an image of
beetle car

Character Blind Spot

Generate a picture of
Naruto

Generate an image of
Gena in Cheburashka

Style Blind Spot

Generate a deep space
scene

Generate a 1920s -1930s
carton style spiderman

Functional Blind Spot

Create a 2D DND
battle map

Generate a height map
with Alpen mountains

User’s
Instruction

Polaris

Bagel

① Hand anatomy is malformed

② Car brand not recognized

③ Wrong hairstyle and outfit

④ Completely wrong character creation

⑤ Strange floating objects in the air
⑥ Wrong eyepatch and chest emblem

⑦ Low-resolution DND map

⑧ Misunderstanding of height map

Figure 1: Although large models fine-tuned on trillions of tokens have enhanced their ability to
understand diverse user instructions, such as style generation, they still exhibit significant blind spots.
We introduce Polaris, a retrieval framework over the Stable Diffusion model zoo that automatically
identifies and invokes the most relevant models, addressing these blind spots and enabling diverse,
personalized image generation.

ABSTRACT

Users increasingly expect image generation models to quickly adapt to highly
diverse and personalized requirements, such as producing images with distinc-
tive styles or characteristics. Traditional approaches rely on fine-tuning, which is
costly and difficult to scale. To cope with these limitations, the community has
accumulated a growing library of fine-tuned modules and adapters, where each
component targets specific generation needs and collectively serves as a foundation
for handling new demands. This naturally raises a question: instead of repeatedly
training new models, can we systematically exploit this expanding ecosystem to bet-
ter fulfill user instructions? To this end, we present Polaris, an intelligent retrieval
framework that automatically selects and integrates suitable models from the model
zoo based on a user’s instructions. The key insight is that harnessing such a massive
and heterogeneous pool requires not only finding the most relevant modules among
thousands of candidates, but also aligning them effectively for instruction-driven
generation and editing. Polaris addresses this challenge by indexing over 6,500
checkpoints and 75,000 adapters, and retrieving the most relevant components
given a user’s input and instruction. In doing so, it delivers scalable, controllable,
and well-aligned generation—without any additional training.

1 INTRODUCTION

The field of image generation has witnessed remarkable progress, particularly with the emergence of
diffusion models that demonstrate strong capabilities in producing high-quality, diverse images (Song
et al., 2020; Rombach et al., 2022; Podell et al., 2023; Yang et al., 2023). These models have been
successfully applied to a wide range of practical downstream tasks, including super-resolution (Gao
et al., 2023), image completion (Saharia et al., 2022), style transfer (Qi et al., 2024), image seg-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

mentation (Tian et al., 2024), and image editing (Brooks et al., 2023a). Such advances have made
generative models increasingly accessible to end users.

Users’ needs are often highly diverse and deeply personalized with real-time feedback. For example,
they may wish to generate images in distinctive artistic styles, replicate niche visual domains, or
perform complex editing operations on existing content. However, a single base model frequently
falls short, as it is typically pre-trained on a narrow set of common use cases with high computational
cost. Even parameter-efficient training strategies such as LoRA (Hu et al., 2022) partially alleviate
this issue, they remain costly, demand careful data preparation, struggle to generalize to the long tail
of personalized demands, and fail to scale to the breadth of real-world requirements.

Building on this context, it is important to recognize that many users have already adopted more
lightweight strategies in practice. Instead of training models from scratch, which is costly and
time-consuming, they often start from a base model and leverage community-released checkpoints
or adapters that capture distinctive styles, domains, or editing capabilities. Such components are
openly shared through platforms including Civitai, PixAI, and Tensor.art, which collectively host
tens of thousands of publicly available resources. This ecosystem substantially reduces the cost of
customization and has enabled the rapid prototyping of diverse generative workflows. Motivated by
these observations, we ask whether these community-contributed modules can be systematically har-
nessed to extend and promote the capabilities of our model. If feasible, this paradigm would provide
a lightweight and scalable alternative to traditional personalization methods, while simultaneously
raising important challenges in component selection and integration for downstream tasks such as
instruction-driven generation and editing.

However, systematically exploiting this rich and heterogeneous ecosystem is far from trivial. Two
core challenges arise. First, user queries for controllable image generation are often semantically
complex and multimodal, requiring the system to jointly interpret open-ended natural language
instructions and visual references. Second, as the pool of checkpoints and adapters grows to tens
of thousands, retrieval must be efficient and scalable; naïve search quickly becomes impractical
for interactive generation. To address these challenges, we introduce Polaris, a unified framework
for instruction-driven model selection. Polaris translates user queries into effective model selection
across style, object, and semantic dimensions by formulating the problem as a multimodal retrieval
task. It extends beyond text-only input by integrating large language models (LLMs) as a zero-shot
signal for improved instruction understanding, and further incorporates an efficient reranking strategy
to support large-scale search without sacrificing responsiveness.

With these designs, Polaris systematically harnesses community-contributed checkpoints and adapters
to deliver instruction-driven image generation without requiring any additional training. It can
directly parse user instructions, recommend the most suitable models, and produce high-quality
outputs. Compared with approaches that optimize solely for instructional input, Polaris achieves
substantial gains by leveraging its large-scale model zoo. Moreover, as shown in Figure 1, relative to
large pretrained models, Polaris complements their capabilities by improving performance on blind
spots outside their training distribution, while also enjoying clear advantages in inference efficiency.
Together, these results establish Polaris as a scalable and effective paradigm for controllable image
generation and editing. Our contributions can be summarized as follows:

• We emphasize the need to address highly diverse, user-specific requirements while maintaining
efficiency, and demonstrate that leveraging a large model zoo offers a practical and flexible solution.

• Our Polaris retrieves models using combined text and image queries and incorporates an efficient
reranking strategy, enabling fast and scalable selection from tens of thousands of candidates.

• By harnessing the model zoo, Polaris delivers high-quality outputs that adapt to diverse user
instructions with real-time performance, enabling scalable and customizable image generation.

2 RELATED WORKS

2.1 DIFFUSION-BASED TEXT-TO-IMAGE GENERATION.

Diffusion models generate images by progressively denoising random noise under the guidance of a
learned score function, which enables high-quality and diverse synthesis. Stable Diffusion (Rombach
et al., 2022) further introduced the latent diffusion framework, operating in a compressed latent space

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

to achieve an efficient tradeoff between computational cost and image fidelity. Since its initial release,
multiple versions (v1, v2, SDXL (Podell et al., 2023), and the recent SD3/3.5 (Esser et al., 2024))
have been developed, continually improving resolution, fidelity, and controllability, making diffusion
a dominant paradigm for text-to-image generation.

2.2 MODEL ADAPTATION FOR PERSONALIZED GENERATION

Model adaptation for personalization can be divided into checkpoint-based and adapter-based methods.
The former, such as full fine-tuning (Ruiz et al., 2023b) and DreamBooth (Ruiz et al., 2023a), directly
update model parameters to learn new concepts, producing new checkpoints but often at the cost of
data efficiency and forgetting. The latter, including LoRA (Hu et al., 2022) and Hypernetworks (Ha
et al., 2016), insert lightweight adapters that preserve the base weights and support modular, efficient
customization. In general, checkpoint-level adaptation enables stronger style or domain shifts, while
adapter-based methods are better suited for fine-grained or localized edits.

Early model zoos (Ramesh & Chaudhari, 2021; Falk et al., 2025) were constructed at the checkpoint
level, collecting full model states for reuse and comparison. With the growing adoption of adapters
such as LoRA, recent work has shifted toward adapter-level zoos (Huang et al., 2023; Zhao et al.,
2024; Luo et al., 2024). However, these approaches leave several gaps: they do not establish a
clear index linking checkpoints and their associated adapters, they only support retrieval at a single
granularity (either checkpoints or adapters), and in the image generation domain (e.g., Stylus) adapter
retrieval is restricted to a single modality without support for multimodal search.

3 PRELIMINARIES

In this section, we first revisit the conventional instruction-guided image generation task and discuss
representative approaches. We then introduce our extended formulation with personalized needs,
which targets diverse and user-specific requirements and introduces new challenges.

3.1 INSTRUCTION-GUIDED IMAGE GENERATION

Instruction-guided image generation aims to produce images that follow both a given text instruction
I and, optionally, a reference image T . A common paradigm for this task is based on Stable
Diffusion (SD), where the generation process is controlled by a model configuration. Typically, such
a configuration includes a checkpoint c, which defines the base generative capability, and a LoRA
adapter l, which provides task- or style-specific adaptations corresponding to users’ needs.

To better align generative models with user intent, existing methods mainly take two directions:
enhancing diffusion models with instruction-following ability, and leveraging multimodal large
language models (MLLMs) to unify reasoning with generation. For instance, InstructP2P (Brooks
et al., 2023b) fine-tunes Stable Diffusion on synthetic instruction–image pairs, enabling edits guided
directly by natural language.

More recent work extends LLMs or MLLMs to incorporate image synthesis within a unified frame-
work (Zhang et al., 2025). These approaches either model text and images jointly in an autoregressive
manner (e.g., Emu (Sun et al., 2023), LaVIT (Jin et al., 2023), Chameleon (Team, 2024)), or combine
autoregressive reasoning with diffusion-based generation (e.g., Transfusion (Zhou et al., 2024), LMFu-
sion (Shi et al., 2024)). Such unified designs represent a promising step toward more general-purpose
foundation models for controllable image generation with common user intent.

3.2 INSTRUCTION-GUIDED IMAGE GENERATION WITH PERSONALIZED NEEDS

While existing methods achieve good performance, directly fine-tuning models for each individual
user is impractical in real-world scenarios. User requirements are inherently diverse, and a single
monolithic model cannot adequately capture such variation with high efficiency. A more practical
solution is to leverage the growing ecosystem of community-shared resources, including both base
checkpoints and lightweight adapters for specific needs. We therefore extend the Model Zoo beyond
conventional checkpoints to also include adapters, enabling compositional model configurations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Formally, we define the model zoo Z = C × L, where C = {c1, . . . , cNc
} denotes the set of base

checkpoints and L = {l1, . . . , lNl
} the set of LoRA adapters specialized for different styles, domains,

or objects. In practice, we collect over 6,500 checkpoints and 75,000 adapters from Civitai 1, resulting
in millions of possible model configurations for scalable and highly customizable image generation.

In this setting, our goal is to leverage the Model Zoo to adaptively match user requirements with
suitable model configurations. Specifically, given a user query q = (I, T), we aim to retrieve the
most relevant checkpoint c and adapter l from Z and use them for generation or editing. The process
involves three key steps: (1) obtaining a representation of the query that captures both textual and
visual intent, (2) retrieving the checkpoint and LoRA adapter that best align with this intent, and (3)
performing image generation or editing with the selected model configuration.

Multi-Modal Instruction Embedding. To represent the query, we define an embedding zq that
serves as the input to model retrieval. Rather than fusing I and T in a fixed manner, we select the
dominant modality based on the type of instruction. Formally, we define:

zq =

{
ftext(T), if β(q) = text-dominant,
fimg(I), if β(q) = image-dominant,

where ftext and fimg are the text and image encoders, and β(q) denotes a modality selection rule
defined over the instruction semantics.

This selection reflects a key assumption in our setting: different types of instructions emphasize
different input modalities. For example, style transfer or global transformations rely more on T ,
while object-centric edits guided by image content rely more on I .

Retrieval Objective. Each candidate checkpoint c ∈ C and adapter l ∈ L has a precomputed
embedding ϕc, ϕl. The similarity between the query and each candidate is computed as:

sc(q, c) = ⟨zq, ϕc⟩, sl(q, l) = ⟨zq, ϕl⟩.

We select the most relevant model components by:

c∗ = argmax
c∈C

sc(q, c), l∗ = argmax
l∈L

sl(q, l).

The final image x∗ is synthesized by applying the selected model configuration Θc∗,l∗ under the
guidance of the instruction T :

x∗ = argmax
x

pΘc∗,l∗ (x | ftext(T)).

Through the model zoo paradigm, diverse user needs can be flexibly satisfied by selecting appropriate
checkpoints and adapters. Nevertheless, two core challenges remain: (1) how to construct multi-
modal embeddings that faithfully capture user intent under heterogeneous instructions, and (2) how
to perform retrieval efficiently over a large repository of model components.

4 METHOD

4.1 OVERVIEW OF POLARIS

We aim to enhance instruction-guided image generation within our model zoo, facing two key
challenges. First, user queries are often semantically complex. We address this with an Instruction
Parser, which uses a vision–language model (VLM) to decompose instructions, and a Region Masker,
which generates localized modification masks. Second, the multimodal nature of inputs complicates
checkpoint and adapter retrieval. We tackle this with a Multimodal Retriever across heterogeneous
sources, further accelerated by an LLM Tree Rank strategy. An overview is shown in Figure 2.

1https://civitai.com

4

https://civitai.com

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Replace the cat on
the image by a

water color
painting style cat

Add a pixel art hat
on the dog

Polaris: Scaling Up Instruction-Guided Image Generation Towards Millions of Personalized Needs

User Instructions Instruction Parser

+

+

VLM

"instruction_type": <0 or 1>,
"style_transformation": <0 or 1>,
"subject": "<specific image region or
object to edit>",
"generation_prompt": "<description
of the desired final image>",
"contour_compatibility": <0 or 1>

Multimodal Retriever Adapter Generator

Region Masker

SAM InstructP2P

Replace Add

Instruction type

Generation Adapter Generation Mask

=

+

Generate Mask
based on

Instruction type

Image Editing Task adaption

Input Embedding

Text Embedding

Image Embedding

Checkpoint #1

Checkpoint #2

Checkpoint #3

Checkpoint #4

Coarse Search Fine-grained
Search

Lora #1

Lora #2

Lora #3

Lora #4

User #1

User #2

LLM

Two-Level Index Search Block Reranker Block

Tree Attention Mask

+
=

+

CLIP-guided
Mask Selection

Attention-driven
Mask Generation

Ricecake
Style Ink

Meow Meow Art Studio
Ink cat
Watercolor Style

Dreamshaper
PixelArt

Pixel Survivors Character
Vivi | Dog LoRA

[LuisaP] Pixel art LORA

Adapter
Combination

Figure 2: An overview of Polaris for instruction-guided model selection. The method is divided
into two parts: (1) an Instruction Parser and Region Masker for adapting to image editing, and (2) a
Multimodal Retriever for finding suitable checkpoints and LoRA adapters based on user requirements.
The retrieved adapters and generated masks are combined to guide diffusion-based image generation.

4.2 INSTRUCTION PARSER

Given a user query q = (I, T), where I is an input reference image and T is the textual instruction,
the Instruction Parser is responsible for interpreting the user’s intent and converting it into a structured
representation that can be used for downstream retrieval and generation. To achieve this, we leverage a
vision-language model (VLM) to parse T in the context of I when applicable. The parser decomposes
the instruction into three main elements, which we formally define as a mapping:

P : (I, T) 7→ (t1, t2, t3),

where t1 denotes the instruction subject, i.e., the target object or region to be modified or generated;
t2 denotes the instruction type, specifying the operation (e.g., “modify”, “replace”, “stylize”); and t3
denotes the generation prompt T ′, a refined or reformulated version of T designed to better align
with the conditional diffusion model.

For example, given an instruction such as “Make the dog in this image look cartoonish”, the
parser identifies “dog” as the subject, “stylize” as the type, and generates a prompt like “A cartoon-
style dog with exaggerated features.” This structured understanding ensures that both the retrieval
process and the final generation can be more precisely conditioned on the user’s true intent. In
our implementation, we leverage Qwen2.5-VL-7B (Bai et al., 2025) as the vision-language model
to perform this instruction parsing. For a more detailed description of the prompts used by the
instruction parser, please refer to the Appendix C.1.

4.3 REGION MASKER

The Region Masker grounds the instruction subject t1, identified by the Instruction Parser, onto
the user-provided image I . Its role is to localize the target region that should be modified while
preserving unrelated areas.

General Case (t2 = modify-type). We first apply a pre-trained segmentation model to generate a
set of candidate masks M = {m1,m2, . . . ,mNm}. For each mask, we compute a relevance score
using a value function v(·) that measures the semantic similarity between the mask region and the
parsed subject. The optimal mask is then selected as:

m∗ = arg max
m∈M

v(m, t1).

The selected mask m∗ provides spatial constraints for the Adaptive Editor, ensuring that edits remain
localized. In practice, we use the Segment Anything Model (SAM) (Kirillov et al., 2023) to propose

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

candidate regions, and compute relevance using a CLIP-based similarity function adapted to masked
image inputs (Liang et al., 2023). Here, CLIP (Hessel et al., 2021) refers to a vision–language model
trained to align images and text in a joint embedding space, making it well suited for evaluating
mask–subject correspondence.

Special Case (t2 = add-type). For instructions involving object addition, SAM alone is insufficient.
To better capture the intended region, we intersect the attention map from InstructP2P with the
SAM-generated masks (Li et al., 2024), yielding a refined mask for the most relevant area to insert.

4.4 MULTIMODAL RETRIEVER

We construct two modality-specific indices offline: one for checkpoints C and one for adapters L. Each
item—whether a base checkpoint or a LoRA adapter—is embedded into a shared representation space
that combines textual and visual information using a CLIP encoder. Formally, given a model x (either
a checkpoint c or an adapter l), we compute its text embedding from the associated metadata—such
as name, tags, release notes, or user-provided descriptions—and, if exemplar images Ix,1, . . . , Ix,m
are available, we also compute its average image embedding:

ztextx = CLIPtext(metadatax) and zimg
x = 1

m

m∑
i=1

CLIPimg(Ix,i).

Both components are concatenated to yield the final multimodal representation:

zx = [ztextx ∥ zimg
x] ∈ R2d.

If no exemplar images are provided, we set zimg
x = 0 to preserve dimensional consistency. The

resulting embeddings are stored in the checkpoint index C and adapter index L, enabling unified
retrieval across modalities. To select with a user query q, we adopt a two-stage retrieval strategy:

Level-1: Coarse checkpoint selection. We first identify the most relevant base model by computing
similarity scores sc(q, c) between the query and all entries in C:

c∗ = argmax
c∈C

sc(q, c).

Level-2: Fine-grained adapter selection. Conditioned on the selected checkpoint c∗, we restrict the
adapter search to a local neighborhood Lc∗ ⊆ L and identify the best-matched LoRA:

l∗ = arg max
l∈Lc∗

sl(q, l).

The final pair (c∗, l∗) is then used to generate the output image conditioned on the user instruction
T , and optionally a reference image I . To further improve adapter selection, we incorporate an
LLM-based refinement module inspired by Stylus (Luo et al., 2024). The LLM decomposes user
instructions into sub-tasks and allocates LoRA adapters, which provide more precise control over
global style and object-level edits.

4.5 ADAPTIVE EDITOR

To enable flexible and precise image editing, our system integrates three distinct types of adapters: (1)
a base checkpoint that governs the overall image style, (2) a style LoRA that modulates finer stylistic
elements, and (3) an object-specific LoRA that controls the visual characteristics of specific entities
(e.g., animal breeds or object categories).

The selection strategy for these adapters is conditioned on the nature of the user instruction. For
instructions that focus on object replacement without explicit style control (e.g., “Replace the cat in
the image with another breed”), we retrieve the overall style checkpoint and the fine-grained style
LoRA from the input image to preserve visual consistency with the original scene, while extracting the
object-specific LoRA based on the textual instruction. In contrast, for instructions that involve both
object manipulation and explicit style transformation (e.g., “Replace the cat with a watercolor-style
one”), we retrieve the overall style checkpoint and style LoRA from the textual prompt to reflect
the desired stylistic shift, while still relying on the object-specific LoRA derived from the prompt
to control entity-level appearance. Further details on how we distinguish between these instruction
types and perform retrieval accordingly are provided in the appendix C.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.6 EFFICIENCY OPTIMIZATIONS IN LLM-BASED RERANKING

1

1

1

1

1

1

1

1

1 1

… 1

…

1

… 1

1

…

1

1

11

…

1

1

…1

1

1

1

Evaluation Id
Attention Mask

Evaluation Prompt
Attention Mask

LLM Tree Evaluation

 Evaluation Prompt
For each LoRA, assign a
relevance score from 0
to 9 base on description,
current evaluating Lora:

Id_0, Id_1,
Id_2, Id_3+

Evaluation
Score for

Id_0

Evaluation
Score for

Id_1

Evaluation
Score for

Id_2

Figure 3: An overview of the tree rerank
method. By modifying the attention
mask of the LLM, we enable the model
to evaluate multiple adapters simulta-
neously while generating only a single
token per evaluation.

In the Multimodal Retriever stage, we use LLM to refine
retrieved candidates based on textual compatibility with
user instructions and model metadata, similar to Stylus’s
reranking strategy. However, each LoRA adapter is asso-
ciated with a textual description that must be provided to
the LLM. As a result, when the candidate set is large, the
prompt length can exceed 20000 tokens. This results in
significant computational overhead due to the quadratic
growth of LLM self-attention with sequence length.

To address this, we propose a novel inference acceleration
strategy called Tree Reranking, which balances retrieval
quality and computational cost, making the reranking pro-
cess more efficient and practical for deployment. The key
idea is to modify the LLM’s attention mask so that multiple
branches (representing different adapter candidates) can be
scored in a single forward pass. As illustrated in Figure 3,
the reranker generates scores for multiple LoRAs simulta-
neously, then prunes low-scoring candidates and performs
additional rounds of reranking on the remaining branches.
By progressively narrowing the candidate pool, we dras-
tically reduce the effective input length required at each
stage. This tree-based speculative reranking effectively
reduces redundant computation in attention mechanism,
which would otherwise scale non-linearly with sequence
length. In practice, our Tree Reranking approach yields a
substantial speedup for the reranking module while maintaining high-quality adapter selection.

5 EXPERIMENT

Experimental Setup. In this work, we focus on instruction-guided image generation and propose
to enhance performance through a model zoo. The zoo, consisting of model checkpoints and adapters,
enables retrieval of suitable components according to user instructions. This design improves
generation quality, especially in blind spots beyond the reach of conventional training. Further
construction and implementation details of the model zoo are given in Appendix B.

Evaluation Protocol. To assess instruction-following ability, we evaluate on five tasks from GEDIT-
BENCH (Liu et al., 2025): (i) background change, (ii) style change, (iii) material alteration, (iv) subject
replacement, and (v) subject addition. These tasks cover a broad range of editing challenges, from
appearance-level adjustments to semantic-level modifications. However, we observe that existing
benchmarks often fail to capture the diversity of real user needs.

To bridge this gap, we construct a supplementary benchmark, called User-Bench, derived from
community usage. In practice, users frequently upload the outputs of models to online communities
after applying them to their own prompts, thereby providing both the input (the user prompt) and
the corresponding output (the generated image). Leveraging this process, we curate a natural test set
that reflects authentic user demands, and conduct a series of evaluations based on this dataset. The
dataset construction process is detailed in Appendix D. We referred to GEDIT-BENCH and employed
VLM as the evaluation tool. In contrast to their approach, we applied a more fine-grained evaluation
dimension. The prompts used for the GPT-4o evaluation are provided in Appendix E.

5.1 EVALUATION ON BLIND SPOTS IN IMAGE GENERATION

We evaluate our method on blind spots—cases where existing finetuned models systematically fail
to generate reliable outputs, despite being trained on massive datasets. Such blind spots often arise
from factors such as data imbalance or catastrophic forgetting. To address this challenge, our method
leverages retrieval from a model zoo, avoiding additional finetuning while substantially improving

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1600 M

0.765 M 0

No Training Required for
Polaris

Bagel 191s

Polaris - with
Tree Rerank

InstructP2P

Model Inferencing Cost

9.58s

Image generation - 25.37s

Instruction Parser - 3.82s
Region Masker - 2.10s

Multimodel Retriever - 7.84s
LLM Rerank - 39.28s

78s

Polaris - w/o
Tree Rerank

Model Training Cost

Bagel InstructP2P Polaris

Training Image Pairs (M)

LLM Rerank w/o tree rerank - 58.77s

98s

Figure 4: Comparison of training and inference efficiency across methods. Our approach, Polaris,
requires no additional training and achieves inference time between the two baselines. Furthermore,
by incorporating our proposed LLM Tree Rerank strategy, Polaris attains a 1.50× speedup in reranking,
highlighting its practical efficiency advantage.

performance. We categorize blind spots into four types: object blind spots, character blind spots, style
blind spots, and functional blind spots. As shown in Figure 1, our approach consistently outperforms
the unified multi-modal baseline across all categories, producing more faithful and diverse results.

5.2 EVALUATION: QUANTITATIVE AND QUALITATIVE

Table 1: User-Bench results on two subcategories: Local style change and Style extraction. VQ
(Visual Quality), EQ (Edit Quality), and their geometric mean (Overall) are reported. Polaris achieves
significant gains on local style change compared to InstructP2P and attains competitive performance
with unified multi-modal models, while obtaining the best results on style extraction.

Style extraction Local style change
VQ EQ Overall VQ EQ Overall

InstructP2P 4.41 4.08 4.24 5.11 5.24 5.17
BAGEL 6.86 4.27 5.41 6.20 6.81 6.50
Polaris 7.33 5.50 6.35 5.84 6.19 6.01

Table 2: The experimental results on Gedit-Bench (Liu et al., 2025) demonstrate the effectiveness of
our strategy. Compared with InstructP2P, which relies on finetuning to support instructional inputs,
our approach leverages retrieval from a model zoo to achieve superior performance.

Background
change

Material
alter

Style
change

Subject
add

Subject
replace

InstructP2P 3.70 3.39 4.60 3.18 3.80
BAGEL 7.06 6.40 6.13 8.06 6.71
Polaris 4.31 4.57 5.00 3.23 3.76

Quantitative Evaluation. On our User-Bench, we evaluate two tasks: Local Style Change and
Style Extraction. Local Style Change, which involves editing within about 30 predefined styles, shows
that our method outperforms InstructP2P and is comparable to Bagel, though its advantage is limited
by the small and fixed style set. In contrast, Style Extraction treats each user request as a unique style,
leading to a dramatic increase in style diversity and better reflecting real-world usage. As shown in
Table 1, our method demonstrates clear superiority, particularly in rare or hard-to-describe styles,
since our embedding-based style retrieval captures nuanced user-specific requirements that traditional
text-prompt-driven models often miss.

On GEdit-Bench (Table 2), our framework delivers strong performance on common editing cases,
achieving results on par with instruction-finetuned models such as InstructP2P. Notably, in scenarios
involving substantial style transformations, our approach exhibits clear advantages, underscoring its
effectiveness in handling complex edits. Although large unified multi-modal models achieve higher

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Original BagelInstructP2P Polaris

Style
Change

Material
Alter

Original BagelInstructP2P Polaris

Background
Change

Object
Replace

Convert the image to a Japanese manga style. Modify the image style into line art.

Replace the doctor's coat with a Merino wool sweater. Cutlery is made of food-grade stainless steel.

Change the background to a cartoon park. Change the background to a forest.

Replace the pizza with a croissant. Turn the tree branches in the image into a witch’s magic wand.

Object
Add

Add a tennis ball flying towards her. Add a hot air balloon in the sky.

Figure 5: Qualitative results on different tasks of GEDIT-BENCH (Liu et al., 2025). Polaris achieves
notably higher instruction-following success rates and more faithful outputs than InstructP2P, effec-
tively handling style transformations that remain challenging even after fine-tuning. Moreover, the
knowledge coverage of Polaris is comparable to Bagel, a trillion-token scale pretrained model.

overall scores, our framework—built upon conventional Stable Diffusion—comes remarkably close,
highlighting the competitiveness of our lightweight and modular design.

Qualitative Evaluation. In Figure 5, we present qualitative comparisons o n GEdit-Bench. On
standard editing tests, our approach exhibits much stronger instruction following than InstructP2P,
producing edits that are both faithful and visually coherent. Remarkably, in terms of visual quality,
our results are comparable to those of Bagel, a trillion-token scale pretrained model. Additional
qualitative results on User-Bench are provided in Appendix A.

5.3 EFFICIENCY

We evaluate efficiency from two perspectives: training cost and inference latency, as shown in
Figure 4. Our method is completely training-free, incurring zero training overhead. In contrast,
Bagel and InstructP2P require ∼1.6M and ∼765K image pairs, respectively, making our approach
far more practical and deployment-ready without costly retraining. For inference, our method runs
at ∼78s per image, faster than Bagel (∼191s) though slower than InstructP2P (∼9.5s). Moreover,
by incorporating our LLM-based tree reranking strategy, we further achieve a 1.50x speedup in
the reranking stage. Considering the elimination of training cost, our approach achieves a highly
favorable balance between efficiency and applicability.

6 CONCLUSION

We presented Polaris, a retrieval-based framework that scales instruction-guided image generation
by leveraging large pools of community-contributed models. By unifying multimodal retrieval with
efficient adapter selection, Polaris improves alignment with user intent while remaining efficient and
adaptable. This work demonstrates the potential of retrieval-driven approaches for achieving scalable
and personalized generative systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 18392–18402, 2023a.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 18392–18402, 2023b.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first international conference on machine learning, 2024.

Damian Falk, Léo Meynent, Florence Pfammatter, Konstantin Schürholt, and Damian Borth. A model
zoo of vision transformers. arXiv preprint arXiv:2504.10231, 2025.

Sicheng Gao, Xuhui Liu, Bohan Zeng, Sheng Xu, Yanjing Li, Xiaoyan Luo, Jianzhuang Liu,
Xiantong Zhen, and Baochang Zhang. Implicit diffusion models for continuous super-resolution.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
10021–10030, 2023.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269,
2023.

Yang Jin, Kun Xu, Liwei Chen, Chao Liao, Jianchao Tan, Quzhe Huang, Bin Chen, Chenyi Lei,
An Liu, Chengru Song, et al. Unified language-vision pretraining in llm with dynamic discrete
visual tokenization. arXiv preprint arXiv:2309.04669, 2023.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross Girshick.
Segment anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 4015–4026, October 2023.

Shanglin Li, Bohan Zeng, Yutang Feng, Sicheng Gao, Xiuhui Liu, Jiaming Liu, Lin Li, Xu Tang, Yao
Hu, Jianzhuang Liu, et al. Zone: Zero-shot instruction-guided local editing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6254–6263, 2024.

Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao, Hang Zhang, Peizhao Zhang,
Peter Vajda, and Diana Marculescu. Open-vocabulary semantic segmentation with mask-adapted
clip. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
7061–7070, 2023.

Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming Wang,
Honghao Fu, Chunrui Han, et al. Step1x-edit: A practical framework for general image editing.
arXiv preprint arXiv:2504.17761, 2025.

Michael Luo, Justin Wong, Brandon Trabucco, Yanping Huang, Joseph E Gonzalez, Ruslan Salakhut-
dinov, Ion Stoica, et al. Stylus: Automatic adapter selection for diffusion models. Advances in
Neural Information Processing Systems, 37:32888–32915, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Tianhao Qi, Shancheng Fang, Yanze Wu, Hongtao Xie, Jiawei Liu, Lang Chen, Qian He, and Yong-
dong Zhang. Deadiff: An efficient stylization diffusion model with disentangled representations.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
8693–8702, 2024.

Rahul Ramesh and Pratik Chaudhari. Model zoo: A growing" brain" that learns continually. arXiv
preprint arXiv:2106.03027, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 22500–22510,
2023a.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 22500–22510,
2023b.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet,
and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH 2022
conference proceedings, pp. 1–10, 2022.

Weijia Shi, Xiaochuang Han, Chunting Zhou, Weixin Liang, Xi Victoria Lin, Luke Zettlemoyer,
and Lili Yu. Lmfusion: Adapting pretrained language models for multimodal generation. arXiv
preprint arXiv:2412.15188, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Quan Sun, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, Yueze Wang, Hongcheng Gao,
Jingjing Liu, Tiejun Huang, and Xinlong Wang. Emu: Generative pretraining in multimodality.
arXiv preprint arXiv:2307.05222, 2023.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818, 2024.

Junjiao Tian, Lavisha Aggarwal, Andrea Colaco, Zsolt Kira, and Mar Gonzalez-Franco. Diffuse
attend and segment: Unsupervised zero-shot segmentation using stable diffusion. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3554–3563, 2024.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM computing surveys, 56(4):1–39, 2023.

Xinjie Zhang, Jintao Guo, Shanshan Zhao, Minghao Fu, Lunhao Duan, Jiakui Hu, Yong Xien Chng,
Guo-Hua Wang, Qing-Guo Chen, Zhao Xu, Weihua Luo, and Kaifu Zhang. Unified multimodal
understanding and generation models: Advances, challenges, and opportunities, 2025.

Ziyu Zhao, Leilei Gan, Guoyin Wang, Wangchunshu Zhou, Hongxia Yang, Kun Kuang, and Fei
Wu. Loraretriever: Input-aware lora retrieval and composition for mixed tasks in the wild. arXiv
preprint arXiv:2402.09997, 2024.

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
diffuse images with one multi-modal model. arXiv preprint arXiv:2408.11039, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENT RESULTS

Reference BagelInstructP2P Polaris

Generate an image of wetland based on the style of the input image.

Style extraction

Generate an image of wetland based on the style of the input image.

Local style change

Generate an image of watch based on the style of the input image.

Generate an image of forest based on the style of the input image.

Original BagelInstructP2P Polaris

Apply Steampunk style to the wrench.

Replace the woman's dress with a magical, glowing gown.

Replace the woman's jacket with a pastel-colored one.

Apply Oil Painting style to the woman's jacket.

Figure 6: Experimental results on User-Bench. In the style extraction task, our method outperforms
both baselines in terms of instruction understanding and generation quality. In the local style change
task, our results surpass InstructP2P and are comparable to those of Bagel.

B IMPLEMENTATION DETAILS

We use Stable Diffusion 1.5 (SD 1.5) as the baseline generative model for all experiments, as it
is the most widely adopted open-source backbone with extensive community-contributed adapters.
We collect models from the Civitai platform, excluding those containing NSFW content. To build
our retrieval system, we construct a model zoo comprising approximately 6,700 community-shared
checkpoints, each representing a user-uploaded variant of SD 1.5, together with about 75,000 LoRA
adapters (split following (Luo et al., 2024)). Among these adapters, roughly 9,000 are dedicated
to style generation and 65,000 to object generation, each paired with embeddings that encode their
style or task specifications. For reranking retrieved candidates, we employ Qwen2.5-14B as a
large language model (LLM) reranker, which improves alignment between user instructions and the
selected checkpoints or LoRAs. Both the base diffusion model and all variants in the database are
implemented within the SD 1.5 framework, ensuring compatibility and controllability across the
system.

C METHOD DETAILS

C.1 INSTRUCTION PARSER

To interpret user inputs, we employ a vision–language model (VLM) guided by a tailored prompt.
The parser analyzes the instruction along several dimensions: instruction type (categorizing the
input task), style transformation (whether a style change is required), subject (the target entity of
modification), generation prompt (translating instructions into standard prompts since SD 1.5 does
not support direct instruction inputs), contour compatibility (whether large-scale shape changes are
involved), and foreground elements (which foreground objects are to be edited). The full prompt
design is provided in Table 3.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C.2 ADAPTER EDITOR

During image generation, we employ three types of adapters to influence the final output: style
checkpoints, style LoRAs, and object LoRAs. Depending on the instruction, different modalities are
used for retrieval. For instructions that do not involve style transformation, we aim to preserve the
original style of the edited image. In this case, a style checkpoint and a style LoRA are retrieved
using image embeddings, while the object LoRA is retrieved using text embeddings. For instructions
that explicitly involve style transformation, the original style is not preserved; instead, the style
checkpoint, style LoRA, and object LoRA are all retrieved using text embeddings.

D DATASET GENERATION

The evaluation dataset is constructed from user-uploaded images on Civitai, covering generations
produced by diverse models. To ensure fair testing, we specifically select outputs generated by models
with architectures different from SD 1.5. This structural difference keeps the test data disjoint from
both the training data of the baseline model and the retrieval database, ensuring that neither the base
model nor the retrieved checkpoints and LoRAs have been exposed to the evaluation samples.

We design two types of test cases: style extraction and local style change. For the local style
change task, we employ Qwen2.5-VL-7B to automatically generate prompts conditioned on the
downloaded images. The complete prompt design is summarized in Table 4. For the style extraction
task, we first construct a subject pool and then randomly sample one subject. The resulting textual
instruction is formulated as: “Generate an image of <subject> based on the style of the input image.”

E EVALUATION PROMPT

We use GPT-5o-mini to evaluate the final results on User-Bench. For the two tasks, Local Style
Change and Style Extraction, we design different evaluation prompts to better capture task-specific
objectives. The prompt used for assessing style transformation in image editing is summarized in
Table 5.

F LLM USAGE

Large language models (LLMs) were used only for minor language editing and polishing of the
manuscript. They were not involved in the design of the research, development of methods, exe-
cution of experiments, analysis of results, or generation of scientific content. The authors take full
responsibility for the final content of the paper.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Given a user’s image editing request in natural language, extract the following elements:

1. "instruction_type": Identify the editing intent.

- 0 = Category change
• Condition: The target object’s core category changes to a different class.
Decide only by category, not by verbs like “replace/change”.
If A and B share the same high-level category, do not use 0.
• Examples: "change the cat to a dog", "replace a chair with a table"
• Note: If the target category stays the same but only style/appearance changes
(e.g., "replace the cat by a watercolor cat"), use 2 instead.
- 1 = Add new object
• Condition: A new object/element is introduced into the scene.
• Examples: "add a hat to the person", "put a bird in the sky", "add a tree next to the house"
- 2 = Local style/appearance transformation
• Condition: The object category remains the same, but its style/appearance changes.
• Examples: "make the cloth black and white", "turn the cat into a watercolor cat", "change the shoe into a red shoe"
• Special case: If the modification explicitly targets the "background" (e.g., "adjust the background to a forest", "make the background
blurry"), treat it as type 2, since "background" is a specific region rather than the whole image.
- 3 = Global style/appearance transformation
• Condition: A style/effect is applied to the entire image.
• Examples: "make the image black and white", "apply a watercolor filter to the whole picture"
- 4 = Style transfer from reference image
• Condition: The user provides a reference image and requests generating new content
(objects, scenes, characters, etc.) in the style of that reference image.
• Key difference: Unlike 0–3, this does not edit the original image; the reference serves only as a style source.
• Examples: "generate a cat in the style of the reference image", "create a cityscape with the style from the given artwork".

2. "style_transformation": Binary flag (0 or 1).
- Relevant for instruction_type = 0 or 1.
- 1 = The request explicitly specifies a style or artistic effect.
• Example: "turn the cat into a watercolor dog" → 1
• Example: "add a watercolor cat" → 1
- 0 = No style/effect is mentioned.
• Example: "change the cat to a dog" → 0
• Example: "add a cat" → 0
- For instruction_type = 2 or 3, this value is always 1 by definition.

3. "subject"
Must strictly follow this structure → "<TARGET_TYPE>+ <LOCAL_RANGE>".
- <TARGET_TYPE>: The core object name, no possessive forms.
• Correct: "cloth", "shoe"
• Incorrect: "girl’s cloth", "man’s shoe"
- <LOCAL_RANGE>: Spatial area where the target is located.
• Examples: "on the upper body", "in the foreground", "near the tree"

4. "generation_prompt"
Describe only the final appearance of the object/region.
- Do NOT mention the editing action (replace/change/remove).
- Do NOT add attributes beyond the request.
- Keep it concise, faithful, and specific.

5. "contour_compatibility": Strict binary flag (0 or 1).
- 0 = Contour differs significantly.
• Examples: "flag → hat", "book → vase"
- 1 = Contour is compatible.
• Examples: "apple → orange", "car → bus"

6. "foreground_elements"
A JSON array listing the distinct foreground objects in the image request.
- Each element should be a simple noun phrase (e.g., "dog", "tree", "man", "hat").
- Keep them concise, no extra adjectives unless explicitly requested.
- MUST NOT be empty. If uncertain, infer plausible main foreground objects from the request context.

Respond strictly in the following JSON format:
{

"instruction_type": <0|1|2|3|4>,

"style_transformation": <0|1>,

"subject": "<specific image region or object to edit>",

"generation_prompt": "<final desired description>",

"contour_compatibility": <0|1>,

"foreground_elements": ["<object1>", "<object2>", ...]

}

User’s request: "{prompt}"

Table 3: Analyst prompt specification. The table outlines the schema and annotation rules used to
extract structured representations, including instruction type, style transformation, subject, generation
prompt, contour compatibility, and foreground elements.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

You are given an input image.
The target visual style (S) for this edit is: "{style}". You must apply this style as instructed below. Please follow these instructions
carefully:

1. First, Identify and enumerate ALL main subjects in the image.
A ’subject’ refers to any physically distinct person, animal, object, background/scene, or any major visible part of a person or animal,
such as hair (hairstyle), face, upper body clothing (shirt, jacket, dress), or lower body clothing (pants, skirt, dress). Do not include minor
details like shoes, socks, glasses, or small accessories as separate subjects.
- For any person or animal, list major visible parts as separate subjects if they are visually distinct (for example: (1) person’s hair, (2)
person’s face, (3) person’s shirt, (4) person’s pants, etc.).
- For any object that a person or animal is interacting with (e.g., a guitar being played, a book being held), also include it as a separate
subject.
- Do NOT combine multiple items or persons as one subject. List each main subject and each major visible part separately.
- Example list:
(1) Woman’s hair
(2) Woman’s face
(3) Woman’s dress
(4) Guitar (being played by the woman)
(5) Microphone
(6) The stage background

2.Count the number of subjects you listed, and use this as ’num_subjects’.

3. If num_subjects > 1:
- Randomly select only one subject to edit (for example, choose subject (4): Guitar).
- Replace the selected subject with a different object, entity, or new scene.
- Apply the style "{style}" ONLY to the replaced/new subject. Do NOT apply this style to the entire image. All other subjects and
the rest of the image should keep their original style and appearance.
- Clearly state which subject (by number and description) was chosen in your edit_instruction.

4. If num_subjects = 1:
- Do NOT replace the subject. Only apply the style s̈tyleẗo the subject (and its background if the subject is the background itself).

5. Under no circumstances should you replace or modify more than one subject at a time. Do NOT apply the style globally.

6. Your response must be a JSON object using the following format:
{
"subjects": [<a list of identified subjects as strings>],
"num_subjects": <int>,
"edit_instruction": "<one concise sentence describing the single subject replacement

(if any) and the style change, clearly stating the chosen subject by number and
description>",
"result_prompt": "<a detailed description of the final image after editing, focusing

on what is visually present in the image. The description should not mention any editing
actions or changes. Only describe what can be directly seen in the resulting image.>"
}

Do NOT include markdown, code fences, or commentary — return only the JSON object.

Table 4: Prompt template provided to the VLM during dataset construction. It specifies how the model
should enumerate image subjects, select a single editing target, apply the designated visual style
locally, and output a structured JSON object representing the generated image editing instruction.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

System / Judge Instruction
You are an image evaluation model. The evaluation target is “Image Editing with Style Transformation.”

Important Instruction: You must always return a result, even if it’s not perfect. Ensure that you provide the requested evaluation for the
image modification, including the scores and the reasons.

Task Definition
The user provides a source image (with the object/region to be edited) and a text description. The model must keep the overall structure
of the source image while modifying the specified object/region, transforming it into a new form and/or applying a new style.

Inputs
- Source image: <SRC_IMAGE>
- Candidate image: <CAND_IMAGE>
- User text prompt: <USER_TEXT>

Evaluation Focus
- Style integration: Does the new style of the modified part appear consistent and well integrated with the whole image?
- Structural consistency: Are unmodified regions preserved without unnecessary changes or corruption?
- Image quality: Is the generated image visually clean, stable, and free of major flaws?
- actual_modification: To what extent have real, meaningful modifications been made to the image?

Scoring Rubric (Scores 0–4)

Style integration Structural consistency
0: Style completely wrong
1: Slightly aligned
2: Some correct, poor integration
3: Largely consistent
4: Highly consistent

0: Severe redraw/corruption
1: Most areas degraded
2: Majority preserved, issues
3: Largely preserved
4: Fully preserved

Image quality Actual modification
0: Severe artifacts
1: Major flaws
2: Acceptable
3: Good quality
4: Polished

0: No real modification
1: Minor tweaks only
2: Substantial change
3: Significant changes
4: Major mods, intact structure

Output JSON Schema
{

"style_integration": 0-4,

"structural_consistency": 0-4,

"image_quality": 0-4,

"actual_modification": 0-4,

"reasons": {

"style": "< <=40 words>",

"structure": "< <=40 words>",

"quality": "< <=40 words>",

"modification": "< <=40 words>",

}

}

Table 5: Evaluation prompt specification. The prompt is fed to GPT-5o-mini to verify style-
transformed image edits. It defines the evaluation focus, scoring rubric, and the structured JSON
schema required for standardized reporting of results.

16

	Introduction
	Related Works
	Diffusion-Based Text-to-Image Generation.
	Model Adaptation for Personalized Generation

	Preliminaries
	Instruction-Guided Image Generation
	Instruction-Guided Image Generation with Personalized Needs

	Method
	Overview of Polaris
	Instruction Parser
	Region Masker
	Multimodal Retriever
	Adaptive Editor
	Efficiency Optimizations in LLM-Based Reranking

	Experiment
	Evaluation on Blind Spots in Image Generation
	Evaluation: Quantitative and Qualitative
	Efficiency

	Conclusion
	Additional Experiment Results
	Implementation Details
	Method Details
	Instruction Parser
	Adapter Editor

	Dataset Generation
	Evaluation Prompt
	LLM Usage

