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Abstract
Recent work have shown that deep learn-001
ing models in NLP are highly sensitive to002
low-level correlations between simple features003
and specific output labels, leading to over-004
fitting and lack of generalization. To miti-005
gate this problem, a common practice is to006
balance datasets by adding new instances or007
by filtering out “easy” instances (Sakaguchi008
et al., 2020), culminating in a recent pro-009
posal to eliminate single-word correlations al-010
together (Gardner et al., 2021). In this opin-011
ion paper, we identify that despite these efforts,012
increasingly-powerful models keep exploiting013
ever-smaller spurious correlations, and as a re-014
sult even balancing all single-word features is015
insufficient for mitigating all of these corre-016
lations. In parallel, a truly balanced dataset017
may be bound to “throw the baby out with the018
bathwater” and miss important signal encod-019
ing common sense and world knowledge. We020
highlight several alternatives to dataset balanc-021
ing, focusing on enhancing datasets with richer022
contexts, allowing models to abstain and in-023
teract with users, and turning from large-scale024
fine-tuning to zero- or few-shot setups.025

1 Introduction026

Effective human communication relies on our abil-027

ity to understand extra-textual context based on028

common sense, world knowledge or shared cul-029

tural experiences, a property often cited as Grice’s030

second maxim of quantity: “Do not make your con-031

tribution more informative than is required” (Grice,032

1975, 1989). Studies have estimated that only 12%033

of the information conveyed by text is mentioned034

explicitly (Graesser, 2013; Tandon et al., 2020). To035

illustrate this, consider the question “who is the036

president of the U.S.?”. To answer it, a human037

reader is likely to presume many unstated proposi-038

tions, as exemplified in Tab. 1.039

In contrast to humans, supervised models of-040

ten fail to generalize and understand implicit con-041

text, instead resorting to low-level correlations in042

Figure 1: A high-level overview of the current state
of supervised NLP research. Dataset developers cre-
ate more aggressive filtering techniques (left), leading
to larger models that are able to solve them by finding
more elusive spurious correlations (right).

Who is the president of the U.S.?

Context Answer

∅ Joe Biden
The year 2019 Donald Trump
The West Wing, season 1 Josiah “Jed” Bartlet

Table 1: Context, whether explicit or implicit, matters
in textual understanding, as exemplified by the question
“who is the president of the U.S.?”. E.g., in the first line,
given no other context, a QA system should provide the
most sensible fallback answer (Joe Biden).

the data, leading to amplified bias (Zhao et al., 043

2017; Stanovsky et al., 2019) and brittle perfor- 044

mance (Schwartz et al., 2017; Gururangan et al., 045

2018). To address this, recent approaches have sug- 046

gested mitigating such correlations by balancing 047

the dataset via either adding or removing certain 048

instances (Goyal et al., 2017; Hudson and Man- 049

ning, 2019; Zellers et al., 2018; Sakaguchi et al., 050

2020). In parallel, developers keep building larger 051

and larger pretrained models (Devlin et al., 2019; 052

Liu et al., 2019; Raffel et al., 2020), which, when 053

fine-tuned on these datasets, consistently manage 054

to reach human performance. Taken together, these 055

trends lead to an arms-race between data curation 056

and model development (Fig. 1). 057
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In this position paper, we question the value of058

mitigating spurious correlations via dataset balanc-059

ing, by showing that their existence in large training060

sets is both inevitable and to some extent even de-061

sired, as they are an inherent property of natural062

language understanding. We build on a recent re-063

sult by Gardner et al. (2021), who assumed that064

every single-word feature correlation is spurious,065

i.e., can be used to mislead a model. We extend066

their argument, showing that balancing single-word067

features is insufficient for eliminating all spurious068

correlations, and that balancing feature combina-069

tion is needed for that purpose. On the other hand,070

we show that balancing too much leads to datasets071

that contain no learnable signal either. We conclude072

by questioning whether mitigating all spurious cor-073

relations via dataset balancing is practical.074

Following, we show that this practice is also un-075

desired. We show that ignoring these correlations076

will hinder the learning of fallback options for both077

world knowledge facts (Joe Biden is the president078

of the U.S.) and common sense knowledge (a per-079

son is happy when receiving a gift), thus prevent-080

ing models from using this knowledge in cases081

of uncertainty. We conclude that the existence of082

spurious correlations in training sets should not be083

solved by creating more balanced datasets.1084

We then discuss alternatives to mitigating spuri-085

ous correlations. We argue that models should be086

trained to understand constructions emanating from087

an apriori theory of language, such as negation, sar-088

casm, humor, and metaphors. We also suggest089

adopting modeling approaches that identify when090

the context is insufficient, and the model should091

not fallback to default assumptions, but rather out-092

put an “I don’t know” response (e.g., unanswer-093

able questions, Rajpurkar et al., 2018; Sulem et al.,094

2021) or interact with the user to clear ambiguities.095

We conclude by questioning the basic procedure096

of large-scale fine-tuning, and suggest focusing on097

zero- and few-shot learning.098

2 Dataset-Model Arms Race099

This section provides a view of recent research in100

NLP as an arms race between models and datasets.101

Below we describe the conditions leading to this102

1We emphasize that balancing methods are still useful as
they can lead to mitigation of some spurious correlations,
and therefore better generalization (Le Bras et al., 2020;
Swayamdipta et al., 2020), as well as potentially more ef-
ficient training. We argue that these methods are inherently
limited in their ability to mitigate all spurious correlations.

Figure 2: An example of dataset balancing (adopted
from Goyal et al., 2017). For each (question, image)
pair in the VQA dataset (left), VQA2.0 adds another
image, for which the answer is different (right).

arms race, and present our main research question, 103

challenging its value for making progress in NLP. 104

Dataset balancing via augmentation While 105

pretrained models consistently perform well across 106

multiple tasks, various studies have pointed out that 107

this is often achieved by exploiting spurious cor- 108

relations in datasets, rather than improving on the 109

underlying task (Glockner et al., 2018; Gururangan 110

et al., 2018; Elazar et al., 2021). 111

Various dataset curators have tried to prevent 112

models from learning spurious correlations by mod- 113

ifying their training data via a careful control for 114

the training label distribution, effectively striving 115

for a balanced dataset. One approach, popular in 116

visual question answering datasets, is to add exam- 117

ples in order to balance the dataset (Goyal et al., 118

2017; Hudson and Manning, 2019). For instance, 119

the VQA2.0 dataset (Goyal et al., 2017) is built by 120

taking every (question q, image i, answer a) triplet 121

in the VQA dataset (Antol et al., 2015), and adding 122

another triplet with the same question q, but a dif- 123

ferent image i′, guaranteed to lead to a different 124

answer a′. See Fig. 2 for an example. 125

Filtering as balancing A complementary ap- 126

proach to augmentation is filtering examples out 127

from datasets such that spurious correlations are 128

minimized. This approach was taken in the creation 129

of the SWAG dataset (Zellers et al., 2018), using 130

“adversarial filtering” (AF). In AF, dataset instances 131

that are easily solved by an adversarial model are 132

filtered out. The AF approach was picked up by 133

many follow-up datasets such as DROP (Dua et al., 134

2019), HellaSWAG (Zellers et al., 2019), and Wino- 135

Grande (Sakaguchi et al., 2020). 136

Here we argue that approaches like AF converge 137

to removing all low-level correlations,2 and there- 138

2Indeed, AFLite, an extension of AF, was designed to
“systematically discover and filter any dataset artifact in crowd-
sourced commonsense problems” (Le Bras et al., 2020).
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fore a fully balanced dataset. As this approach139

relies on an external model, applying it with ever140

stronger models with higher capacity, will allow141

these models to pick up on subtler correlations. At142

the extreme, the remaining instances that could not143

be solved by a fully capable model will have no sta-144

tistical signal that can be exploited by that model,145

i.e., a balanced dataset. We henceforth refer to both146

augmentation and filtering as balancing methods.147

Large models solve the new datasets In paral-148

lel to the efforts in dataset balancing, the leading149

modeling approach in recent years in NLP is pre-150

training large language models on raw text cor-151

pora, followed by fine-tuning them on supervised152

downstream applications. These models continue153

to grow in size (Peters et al., 2018; Devlin et al.,154

2019; Liu et al., 2019; Radford et al., 2019; Raf-155

fel et al., 2020), and their fine-tuning performance156

improves accordingly. This in turn leads to more157

aggressive balancing, setting in motion a kind of158

arms race between datasets and models (Fig. 1).159

Evidently, a similar trend emerges for the pre-160

viously mentioned datasets: (1) the first base-161

lines, reflecting the state of the art at the time of162

dataset creation, perform poorly, e.g., 52% accu-163

racy on SWAG, 47 F1 on DROP, 47% on Hel-164

laSWAG, and 53% AUC on WinoGrande; (2)165

model developers introduce increasingly larger and166

heavily-parameterized models, hill-climbing on167

these datasets; and eventually (3) models essen-168

tially solve the dataset within a year or two, often169

outperforming humans: 86% on SWAG (Devlin170

et al., 2019), 90 F1 on DROP (Chen et al., 2020),171

93% on HellaSWAG (He et al., 2020), and 88%172

AUC on WinoGrande (Raffel et al., 2020). (4) new173

large-scale datasets are collected with more aggres-174

sive pruning techniques, thus repeating the cycle.175

Based on these findings, our main research176

question is whether dataset balancing is the most177

promising method for mitigating spurious correla-178

tions. We note that an arms race between models179

and datasets might spur advances. Here we ques-180

tion a specific aspect of this arms race: the improve-181

ment of datasets by using more aggressive filtering182

techniques. Next we turn to present practical and183

conceptual limitations of this practice.184

3 The Lost Battle Against Spurious185

Correlations186

So far we have identified dataset balancing as a187

common way to mitigate spurious correlations.188

Name Description

ingenuine Correlations between features and
output labels for no reason.

ungeneralizable Correlations that do not generalize
to new contexts.

every-word Correlations between every single-
word feature and output label.

Table 2: Different definitions of spurious correlations.

Next, we outline how different works define spu- 189

rious correlations (Sec. 3.1), and then question 190

whether dataset balancing is a viable way for 191

mitigating them; we note that balancing too lit- 192

tle is bound to leave spurious correlations in the 193

data (Sec. 3.2), while balancing too much discards 194

meaningful signal (Sec. 3.3). We finish by question- 195

ing whether this practice is even desired (Sec. 3.4). 196

3.1 What are Spurious Correlations? 197

Mitigating spurious correlations is frequently used 198

as motivation for developing new balancing ap- 199

proaches. However, the term spurious correlations 200

is often not clearly and consistently defined. One 201

conceptual definition, denoted here ingenuine 202

(e.g., Wang and Culotta, 2020; Rogers, 2021) is 203

a feature correlated with some output label for no 204

apparent reason. Such features often result from 205

the annotation process (referred to as annotation 206

artifacts; Gururangan et al., 2018). For instance, 207

Gururangan et al. (2018) have shown that the words 208

“cat” and “sleeping” are correlated with contradic- 209

tions in the SNLI dataset (Bowman et al., 2015). 210

This definition is appealing: we want our models 211

to learn real information about the world, and not 212

properties of a given dataset. However, it is also 213

somewhat subjective, and could include features 214

that might be referred to as genuine, such as the 215

word “not” indicating NLI contradictions. Further, 216

genuine features, i.e., those representing a real phe- 217

nomenon in the world (e.g., “amazing” as a feature 218

for positive sentiment), are also likely to lead mod- 219

els make to erroneous predictions in some contexts 220

(e.g., negation or sarcasm; Gardner et al., 2021). 221

Such features could thus harm generalization, so 222

some might consider them spurious as well. 223

In an alternative definition, denoted 224

ungeneralizable, a spurious feature is 225

one that works well for specific examples but 226

does not hold in general (Chang et al., 2021; 227

Yaghoobzadeh et al., 2021). This definition does 228

not address the nature of the feature (genuine or 229
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Split Text Label

Train

very good +
very bad −
not good −
not bad +

Test not very good −
good +

Table 3: A toy example of a balanced dataset.

not), but does make an implicit assumption that230

such features are of high importance (e.g., high231

pointwise mutual information values with the232

corresponding label; Gururangan et al., 2018).233

This definition is no longer subjective in terms of234

the genuineness of the feature, but is still subjective235

in the level of effect on generalizability (i.e., what236

is a high value of PMI?).237

Gardner et al. (2021) relaxed the last constraint,238

and assumed that every simple correlation between239

single word features and output labels is spurious240

(henceforth every-word). They then defined a241

class of competent datasets, where the marginal242

probability for every feature is uniform over the243

class label, i.e., ∀x ∈ X , y ∈ Y, p(y|x) = 1
|Y | , thus244

limiting models from picking up any correlation245

between single features and output labels.246

We next extend the every-word approach be-247

yond single words, showing that models that can248

exploit single word features can also exploit some249

feature interactions, and therefore these should also250

be considered spurious. Tab. 2 summarizes the dif-251

ferent definitions of spurious correlations.252

3.2 Balancing too Little Leaves some253

Spurious Features254

Gardner et al. (2021) assumed that as each word255

can appear in certain contexts that change its se-256

mantic meaning (e.g., negation, sarcasm), each257

word is potentially spurious. Here we note that258

the same argument can be applied to feature inter-259

actions, such as word n-grams. We start with a toy260

example to illustrate our argument for bigrams, and261

then extend it for larger values of n.262

Consider the toy dataset for the task of senti-263

ment analysis shown in Tab. 3, with vocabulary264

V ={good,bad,not,very}, and label set Y ={+,− }.265

The Train split is balanced with respect to single-266

word features, i.e., ∀w ∈ V, y ∈ Y : p(y|w) = 1
|Y |267

(a balanced or competent dataset). Assume the se-268

mantics of this dataset is that of English, while ‘+’269

means positive sentiment and ‘−’ means negative.270

A model trained on Train can achieve perfect 271

training accuracy by learning the correct semantics. 272

However, achieving perfect training accuracy can 273

also be done by learning correlations between two- 274

word features and the target label (i.e., memorizing 275

all the training examples). In this case, the model 276

would make the wrong prediction for the first test 277

example in Test (as it has learned that very good 278

is a feature that indicates positive sentiment), and 279

similarly, will make a random prediction for the 280

second test example, which does not contain any 281

two-word features seen during training. 282

This example highlights that balancing single- 283

word features does not guarantee resiliency to spu- 284

rious correlations, and therefore in order to miti- 285

gate all spurious correlations, balancing pairs of 286

features is also required. One can construct sim- 287

ilar examples for larger values of n, by similarly 288

considering multi-word expressions and common 289

co-occurrences (e.g., “jaw dropping”, “worst day 290

ever”). These could serve as spurious correlations 291

in the same way single words do. 292

Another example is sarcasm. A model that fails 293

to understand sarcastic contexts will misinterpret 294

statements that appear in such contexts, even if it 295

perfectly understands the base meaning of these 296

statements. Thus, the entire reasoning process of 297

such a model, whether relying on simple features, 298

feature interactions, or other types of understand- 299

ing, will result in mispredictions of certain inputs, 300

and thus can be considered spurious. 301

As a result, to truly mitigate all spurious correla- 302

tions in a dataset, balancing feature combinations is 303

required as well. Accordingly, balancing too little 304

will leave some spurious correlations in the dataset. 305

3.3 Too much Balancing Prevents Learning 306

Valuable Semantic Knowledge 307

We observed that balancing too little does not al- 308

low models to fully eliminate spurious correlations. 309

Here we show that too much balancing can prevent 310

models from learning valuable knowledge. 311

Consider the training data for learning the XOR 312

function presented in Tab. 4 (left). This dataset 313

contains enough learnable signal when consider- 314

ing feature interactions despite being balanced for 315

single words. Nonetheless, balancing this dataset 316

for pairs of features would result in no informa- 317

tion, and thus prevent any model from learning this 318

function (Tab. 4, right). 319

Now consider a given natural language dataset 320
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Original Train Set Augmented Samples
Input Label Input Label

0 0 0 *0 0 1
0 1 1 *0 1 0
1 0 1 *1 0 0
1 1 0 *1 1 1

Table 4: Left: a training set for the XOR function,
balanced for unigrams. Right: requiring that bigrams
are also balanced would prevent models from learning.

D. Define n to be the length of the longest doc-321

ument in D. By definition, balancing every com-322

bination of up to n features (including) leaves no323

learnable signal in D.3 We conclude that balanc-324

ing too much can prevent models from learning325

semantic knowledge.326

Combining the two observations, we are left with327

the question of the potential intersection between328

balancing too much and balancing too little: does a329

sweet spot exist for which no spurious correlations330

are found in the dataset, but enough learnable signal331

is left? And even if so, would a balancing algorithm332

(whether by augmentation or filtering) be able to333

find it? We leave these questions for future work,334

but note that addressing them is a prerequisite for335

the theoretical and practical application of dataset336

balancing for mitigating spurious correlations.337

3.4 Dataset Balancing is Undesired338

Even if a sweet-spot exists between balancing too339

little and too much, do we really want to find340

it? Here we argue that perhaps not. The practice341

of dataset balancing is designed to prevent mod-342

els from learning that some words or expressions343

have a common fallback meaning that can stem344

from dataset idiosyncrasies (e.g., “cat” as an indi-345

cator of contradiction) but also from cultural and346

historical contexts (e.g., Biden is the U.S. presi-347

dent). Fallback meanings are crucial for under-348

standing language, as contexts are often underspec-349

ified (Graesser, 2013). Indeed, relying on fallback350

meanings might make models fail to process some351

inputs correctly, and might not generalize to other352

domains where the fallback meaning is different.353

Here we argue that the ability to use them is a cen-354

tral ability of language understanding.355

For example, substantial efforts are made to356

teach models world knowledge, such as that the357

president of the U.S. is Joe Biden, the capital of358

3We assume the standard data collection process when
using AF, in which the last step is balancing (Zellers et al.,
2018; Dua et al., 2019), and longer instances cannot be added.

Brazil is Brasília, and France is the soccer world 359

champion. These efforts include building world 360

knowledge datasets (Wang et al., 2021), develop- 361

ing methods for enhancing models with this infor- 362

mation (Zhang et al., 2019; Peters et al., 2019), 363

and evaluating how well models capture it (Rubin- 364

stein et al., 2015; Roberts et al., 2020). But many 365

of these world-knowledge facts are context depen- 366

dent: the capital of the Brazil has changed in 1960, 367

the president of the U.S., as well as soccer world 368

champions potentially change every 4 years, etc. 369

Another example is common sense knowledge, 370

such as “people are happy when they receive a gift”, 371

“an elephant is taller than a zebra”, and “a statue that 372

doesn’t fit into a suitcase is too large”. A large body 373

of work has been carried out to create benchmarks 374

that measure the common sense abilities of models 375

(Liu and Singh, 2004; Levesque et al., 2012; Zellers 376

et al., 2018; Sakaguchi et al., 2020; Bisk et al., 377

2020), as well as augmenting models with such 378

abilities (Qin et al., 2020; Bosselut et al., 2021). 379

Common sense reasoning is, by definition, 380

stochastic and reliant on understanding presup- 381

posed, underspecified context. One could imagine 382

a person unhappy to receive a gift (e.g., because 383

it is not what they wanted), a fantastically large 384

zebra compared to a tiny elephant, and a suitcase 385

with multiple compartments which prevent a small 386

statue from fitting in it. 387

These examples illustrate that a model that learns 388

these correlations and relies exclusively on them to 389

make predictions is limited and is bound to make 390

mistakes in some contexts. One way to avoid these 391

mistakes is to balance these correlations out, and 392

prevent models from knowing these assertions to 393

begin with. We argue that this solution is not a 394

desired solution. In essence, an interpreter’s task 395

(be it human or machine) is to infer the most prob- 396

able context in which a statement is made, and as 397

a result, it should have a fallback option for such 398

world knowledge and common sense assertions. 399

Discussion We recognize that a balanced dataset 400

may not be balanced with respect to the appearance 401

of common-sense or world-knowledge assertions 402

in a given context. E.g., a model might balance-out 403

the general fact that Joe Biden is the U.S. president, 404

but not that he is the president in 2022. As in many 405

cases much of the context is unobserved (Graesser, 406

2013), the question is whether we want models to 407

make a prediction in cases of uncertainty based 408

on the fallback option. We argue that doing so 409

5



Current Practice Proposal

Dataset balancing Richer contexts (§4.1)
A closed label set Abstain/interact (§4.2)
Large-scale fine-tuning Few-shot learning (§4.3)

Table 5: Our suggestions for mitigating the effects
of spurious correlations, listing three current practices,
each with an alternative proposal.

is a desired strategy in many cases (though see410

Sections 4.2 and 4.4 for counter-examples).411

We want to stress that balancing methods can re-412

sult in mitigating some of the spurious correlations,413

and therefore lead to increased generalization (Le414

Bras et al., 2020; Swayamdipta et al., 2020). More-415

over, the process of filtering the data naturally re-416

sults in smaller datasets, which leads to lower train-417

ing costs (Swayamdipta et al., 2020). While such418

contribution is meaningful in terms of environmen-419

tal concerns (Strubell et al., 2019; Schwartz et al.,420

2020), it is orthogonal to our research question.421

Overall, despite the important contributions of bal-422

ancing techniques, this paper shows that even the423

perfect balancing method might not mitigate all424

spurious correlations in a satisfying way.425

So how can we make models more resilient to426

spurious correlations without balancing the data?427

Below we discuss several ideas for doing this.428

4 Ways to Move Forward429

So far, we presented limitations of dataset balanc-430

ing as a means to mitigate spurious correlations. In431

this section we discuss several alternatives to this432

practice, summarized in Tab. 5. We note that none433

of these proposals is particularly novel. Rather, we434

intend to survey alternatives proposed in literature435

and argue that these may be promising for address-436

ing the drawbacks of spurious correlations, and that437

more efforts should be put into studying them.438

4.1 Augmenting Datasets with Rich Contexts439

The implicit assumption of dataset balancing is440

that in order to mitigate spurious correlations the441

model has to unlearn them, that is, they should be442

removed altogether from the training set. We argue443

that instead we should be focusing on learning and444

modeling richer contexts.445

As an example, consider negation. A model446

that generalizes well, should learn the meaning of447

words such as not, and should be able to negate new448

words, even those that were seen only in positive449

contexts at training time. For example, if a model 450

only sees during training words like “amazing” or 451

“happy” with positive sentiment, and thus learns 452

that these words bear positive meaning, we would 453

still expect it to interpret their negated appearance 454

(e.g., not amazing) as an indicator of negative sen- 455

timent. Such generalization is crucial for language 456

learning, and should ideally allow models to not 457

rely exclusively on spurious correlations. Despite 458

the immense progress in the field in the past decade, 459

negation still poses a challenge to modern NLP 460

tools (Hossain et al., 2020).4 461

We suggest taking into account different types 462

of contexts during dataset design. In particular, 463

collecting training examples with contexts such 464

as negation (Morante and Blanco, 2012), humor 465

(Weller and Seppi, 2019; Annamoradnejad and 466

Zoghi, 2020), sarcasm (Davidov et al., 2010; Oprea 467

and Magdy, 2020), or metaphors (Tsvetkov et al., 468

2014; Mohammad et al., 2016). This recommenda- 469

tion applies to both supervised tasks, and perhaps 470

more so to pretrained data. We suggest adding 471

documents with such contexts throughout the pre- 472

training corpus, or as a continued pretraining step 473

to existing large-scale models.5 474

To incorporate contexts from a wide range of 475

phenomena, we can leverage the vast literature 476

on broad-coverage semantics (Baker et al., 1998; 477

Steedman and Baldridge, 2007; Banarescu et al., 478

2013; Abend and Rappoport, 2013).6 This line of 479

work proposes theories of language, composing 480

inventories of linguistic constructions with an alge- 481

braic formulation of their inter-relations in terms of 482

truth value, factuality, and more. These inventories 483

often include the phenomena discussed above, such 484

as negation, sarcasm, and presupposition. 485

4.2 Interaction and Abstention to Cope with 486

Underspecified Contexts 487

Most NLP tasks are designed with a closed label set 488

that forces models to make a concrete prediction 489

for each test instance, without an option to abstain 490

or interact with the user to get more information. 491

Even for tasks with a large label set (e.g., language 492

modeling), models still have to output a valid vo- 493

cabulary item. Here we argue that this practice 494

4Though we should continually assess the challenge nega-
tion poses on the most recent models (Bowman, 2021).

5We recognize that editing pretrained corpora poses signif-
icant challenges due to their immense size, as demonstrated
by recent efforts such as corpus analysis (Dodge et al., 2021)
and deduplication (Lee et al., 2021).

6See Abend and Rappoport (2017) for a survey.
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Figure 3: An example of abstention/interaction in cases
of uncertainty. For the task of sentiment analysis, mod-
els currently assign a label to each input, even for am-
biguous or underspecified ones (top). This may lead the
model to over-rely on spurious correlations (marked in
red, bottom left). Models that abstain or interact (bot-
tom right) might learn to rely less on such correlations.

creates an inductive bias towards using spurious495

correlations in cases of uncertainty, as the model496

has “nothing to lose” in case of low uncertainty,497

and is encouraged to always make some prediction,498

potentially relying on spurious correlations.7499

To further illustrate this point, consider the am-500

biguous sentence “To my great surprise, the movie501

turned out different than what I thought.”, in the502

context of sentiment analysis. The reader cannot in-503

fer whether the writer is pleasantly surprised (a pos-504

itive review) or disappointed (a negative review).505

We argue that in such cases models might lean506

towards a positive sentiment based on the words507

“great” and “surprise”, which are typically corre-508

lated with a positive sentiment.509

To test this, we ran a RoBERTa-large model (Liu510

et al., 2019) fine-tuned on SST-2 (Socher et al.,511

2013) on that example.8 As expected, the model512

returns a positive label, with 99.99% confidence.513

Interestingly, three different interpretation meth-514

ods (simple gradient visualization, Simonyan et al.,515

2014; integrated gradient visualization, Sundarara-516

jan et al., 2017; and SmoothGrad, Smilkov et al.,517

2017) all find the word “great” to be one of the two518

most influential words on the model’s prediction.519

While this example does not prove the prevalence520

of this problem, it does demonstrate its existence.521

To address this problem, we suggest adopting ap-522

7We recognize that in some cases we do want the model
to make a prediction under cases of uncertainty (see Sec. 3.4).
The ability to detect when is it reasonable and when it is not
to make an educated guess is an important property of an
intelligent agent, and an exciting research question.

8We used the AllenNLP demo
(https://demo.allennlp.org/sentiment-analysis/).

proaches that allow models to abstain and interact 523

when they cannot make a decision with high confi- 524

dence (Chow, 1957; Hellman, 1970; Laidlaw and 525

Feizi, 2019; Balcan et al., 2020). See Fig. 3. This 526

can be achieved by building datasets with unan- 527

swerable questions (Ray et al., 2016; Rajpurkar 528

et al., 2018; Sulem et al., 2021), but also by design- 529

ing models that abstain in cases of low certainty for 530

all inputs, even those with an unambiguous gold 531

label.9 We hypothesize that encouraging the model 532

to provide this output when it is unsure, rather than 533

making a semi-educated guess, potentially based 534

on spurious correlations, could reduce its depen- 535

dency on such correlations. 536

4.3 The End of Large-Scale Fine-Tuning? 537

This paper has demonstrated the limitations of mit- 538

igating spurious correlations via dataset balancing. 539

A naive way to eliminate spurious correlations is 540

to stop using large-scale datasets altogether. We 541

argue that for supervised learning (i.e., large-scale 542

fine-tuning), recent advances in zero- and few-shot 543

learning might make this option possible. 544

Large pretrained models such as T5 (Raffel et al., 545

2020) or GPT-3 (Brown et al., 2020), trained on 546

vast amounts of data, arguably learn enough about 547

the world to acquire many of the skills currently 548

learned through supervised datasets. Indeed, the 549

large increase in the size and capacity of pretrained 550

language models has led to a new wave of few-shot 551

and zero-shot methods (Schick and Schütze, 2021; 552

Shin et al., 2020; Gu et al., 2021), which are able to 553

reach human-level performance on certain tasks us- 554

ing only a few dozens of training examples (Schick 555

and Schütze, 2021). Given these impressive results, 556

it is not clear whether there is still value in fine- 557

tuning models on large-scale datasets for all tasks. 558

In the context of this work, focusing on few-shot 559

learning might allow models to not learn some of 560

the correlations that result from manual annotation 561

(Schwartz et al., 2017; Gururangan et al., 2018; 562

Poliak et al., 2018), as they will not be exposed to 563

many of them to begin with. 564

We note that this proposal is not a perfect so- 565

lution. First, some spurious correlations may be 566

picked up by the small number of examples. This 567

is less of a problem in the zero-shot setting, or in 568

9Model calibration techniques (DeGroot and Fienberg,
1983; Guo et al., 2017; Card and Smith, 2018) are often
used both for allowing models to abstain (Cortes et al., 2016;
Shrikumar et al., 2019) and identifying unanswerable ques-
tions (Kamath et al., 2020; Zhang et al., 2021).
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cases where the model parameters are not updated569

in few-shot settings (Brown et al., 2020), but study-570

ing the extent to which spurious correlations are571

picked up in other few-shot settings is an important572

avenue for future research. Second, some spurious573

correlations might be picked up during the pre-574

training stage (Gehman et al., 2020; Birhane et al.,575

2021; Dodge et al., 2021). Continuing to quantify576

this phenomenon and finding ways to mitigate it is577

another important line of research.578

An important question in this context is the tasks579

for which supervised learning is still needed. It580

seems possible the excelling in language model-581

ing tasks requires mastering the skills that stand582

in the base of many NLP tasks, such as sentiment583

analysis, syntactic parsing, and NER. However, it584

is similarly possible that this is not the case for585

other tasks, e.g., summarization, simplification and586

dialogue. We are cautious to make concrete recom-587

mendations for which tasks to apply this principle,588

but suggest the following intuitive rule of thumb:589

for datasets or tasks for which the state of the art590

is close to or surpasses the human baseline, we591

should consider moving to few-shot setups.592

Finally, dataset creation is still a valuable and593

important line of research. Our recommendation to594

stop building large scale training sets does not make595

this task redundant, to both spur the design of better596

models, and to better test their capabilities. We597

suggest instead of building large training sets and598

small validation and tests, authors should consider599

building large test sets, as a means for achieving600

improved statistical power (Card et al., 2020).601

4.4 A Note on Social-Bias Correlations602

So far, we discussed the problems with unlearning603

spurious correlations, and advocated instead for604

more elaborate context modeling. One exception605

might be the case of social biases. Textual data606

often reflects human stereotypes such as spurious607

correlations between labels and protected group at-608

tributes, e.g., alignments between professions and609

gender or race. Unlike other types of knowledge610

discussed in Sec. 3.4, in this case there is an in-611

centive to prevent models from learning this type612

of correlation as means for actively reducing the613

harms of such biases, especially in commercial and614

public-facing applications, such as machine transla-615

tion (Stanovsky et al., 2019) or automated financial616

decision-making (Bartlett et al., 2021). As a result,617

methods for dataset balancing are no longer unde-618

sired for mitigating such spurious correlations. 619

Nonetheless, as demonstrated in Sec. 3, methods 620

for dataset balancing are a limited solution for mit- 621

igating spurious correlations, including social-bias 622

ones. In contrast, the methods proposed in this sec- 623

tion for mitigating spurious correlations might also 624

assist in mitigating social biases, or at least slow 625

down their amplification (Zhao et al., 2017). 626

5 Related Work 627

This paper discussed the arms-race between mod- 628

els and datasets. Previous works criticized one 629

side of this arms race—the increasing size of pre- 630

trained models—due to ethical and environmen- 631

tal concerns (Schwartz et al., 2020; Bender et al., 632

2021), or questioning its ability to learn meaning- 633

ful abstractions from raw text (Bender and Koller, 634

2020; Merrill et al., 2021). This work studies the 635

second part of this arms race, regarding the efforts 636

to mitigate spurious correlations through dataset 637

balancing. The release of such datasets is often 638

motivated by their potential to spur progress in 639

modeling, and to help tease apart qualitative differ- 640

ences between models. Liu et al. (2021) showed 641

that this is not necessarily the case, by observing 642

that the ranking of reading comprehension models 643

on small and synthetic benchmarks is similar to 644

that of the SQuAD dataset (Rajpurkar et al., 2016). 645

Finally, Raji et al. (2021) recently criticized the 646

concept of benchmarks as a whole, arguing that 647

they are only capturing specific skills and not “gen- 648

eral” capabilities. Our paper raises relates concerns 649

about training sets implicitly containing spurious 650

correlations, and suggests reconsidering the prac- 651

tice of building large-scale training sets. 652

6 Conclusion 653

Spurious correlations in large textual corpora can 654

result in model brittleness, lack of generalization, 655

and an inflated sense of the state of the art. Mit- 656

igating their negative side-effects is an important 657

research goal of the NLP community. In this paper 658

we presented practical and conceptual limitations 659

of dataset balancing as a means for doing so. We 660

proposed alternative ways for mitigating spurious 661

correlations, including adding richer contexts to 662

textual corpora, and allowing models to abstain or 663

interact in cases of uncertainty. We concluded by 664

suggesting to reconsider the practice of fine-tuning 665

pretrained models on large-scale training sets. 666
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7 Broader Impact and Ethical667

Consideration668

Our work did not involve any new data or annota-669

tion collection, and as such did not require crowd-670

sourced or in-house workers, or introduces any671

new models and related risks. Instead, we examine672

existing resources and common data balancing ap-673

proaches. In Section 4.4 we specifically discuss the674

relation between these practices and implications675

on social bias in models.676
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Agnew, Gabriel Ilharco, Dirk Groeneveld, Margaret777
Mitchell, and Matt Gardner. 2021. Documenting778
large webtext corpora: A case study on the colossal779
clean crawled corpus. In Proc. of EMNLP.780

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel781
Stanovsky, Sameer Singh, and Matt Gardner. 2019.782
DROP: A reading comprehension benchmark requir-783
ing discrete reasoning over paragraphs. In Proc. of784
NAACL-HLT.785

Yanai Elazar, Hongming Zhang, Yoav Goldberg, and786
Dan Roth. 2021. Back to square one: Artifact detec-787
tion, training and commonsense disentanglement in788
the Winograd schema. In Proc. of EMNLP.789

Matt Gardner, William Merrill, Jesse Dodge,790
Matthew E. Peters, Alexis Ross, Sameer Singh, and791
Noah A. Smith. 2021. Competency problems: On792
finding and removing artifacts in language data. In793
Proc. of EMNLP.794

Samuel Gehman, Suchin Gururangan, Maarten Sap,795
Yejin Choi, and Noah A. Smith. 2020. RealToxic-796
ityPrompts: Evaluating neural toxic degeneration in797
language models. In Findings of EMNLP.798

Max Glockner, Vered Shwartz, and Yoav Goldberg.799
2018. Breaking NLI systems with sentences that re-800
quire simple lexical inferences. In Proc. of ACL.801

Yash Goyal, Tejas Khot, Douglas Summers-Stay,802
Dhruv Batra, and Devi Parikh. 2017. Making the803
V in VQA matter: Elevating the role of image under-804
standing in visual question answering. In Proc. of805
CVPR.806

Arthur C Graesser. 2013. Prose comprehension beyond807
the word.808

Herbert P Grice. 1975. Logic and conversation. In809
Speech acts.810

Paul Grice. 1989. Studies in the Way of Words.811

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.812
2021. Ppt: Pre-trained prompt tuning for few-shot813
learning. arXiv:2109.04332.814

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-815
berger. 2017. On calibration of modern neural net-816
works. In Proc. of ICML.817

Suchin Gururangan, Swabha Swayamdipta, Omer818
Levy, Roy Schwartz, Samuel Bowman, and Noah A.819
Smith. 2018. Annotation artifacts in natural lan-820
guage inference data. In Proc. of NAACL-HLT.821

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and822
Weizhu Chen. 2020. DeBERTa: Decoding-823
enhanced bert with disentangled attention.824
arXiv:2006.03654.825

Martin E. Hellman. 1970. The nearest neighbor classi- 826
fication rule with a reject option. IEEE Trans. Syst. 827
Sci. Cybern., 6:179–185. 828

Md Mosharaf Hossain, Antonios Anastasopoulos, Ed- 829
uardo Blanco, and Alexis Palmer. 2020. It’s not a 830
non-issue: Negation as a source of error in machine 831
translation. In Findings of EMNLP. 832

Drew A. Hudson and Christopher D. Manning. 2019. 833
GQA: A new dataset for real-world visual reasoning 834
and compositional question answering. In Proc. of 835
CVPR. 836

Amita Kamath, Robin Jia, and Percy Liang. 2020. Se- 837
lective question answering under domain shift. In 838
Proc. of ACL. 839

Cassidy Laidlaw and Soheil Feizi. 2019. Playing it 840
safe: Adversarial robustness with an abstain option. 841
arXiv:1911.11253. 842

Ronan Le Bras, Swabha Swayamdipta, Chandra Bha- 843
gavatula, Rowan Zellers, Matthew E. Peters, Ashish 844
Sabharwal, and Yejin Choi. 2020. Adversarial filters 845
of dataset biases. In Proc. of ICML. 846

Katherine Lee, Daphne Ippolito, Andrew Nystrom, 847
Chiyuan Zhang, Douglas Eck, Chris Callison- 848
Burch, and Nicholas Carlini. 2021. Deduplicat- 849
ing training data makes language models better. 850
arXiv:2107.06499. 851

Hector Levesque, Ernest Davis, and Leora Morgen- 852
stern. 2012. The winograd schema challenge. In 853
Proc. of KR. 854

H. Liu and P. Singh. 2004. Conceptnet: A practi- 855
cal commonsense reasoning toolkit. BT Technology 856
Journal, 22(4). 857

Nelson F. Liu, Tony Lee, Robin Jia, and Percy 858
Liang. 2021. Can small and synthetic bench- 859
marks drive modeling innovation? a retrospective 860
study of question answering modeling approaches. 861
arXiv:2102.01065. 862

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 863
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 864
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 865
RoBERTa: A robustly optimized bert pretraining ap- 866
proach. arXiv:1907.11692. 867

Will Merrill, Yoav Goldberg, Roy Schwartz, and 868
Noah A. Smith. 2021. Provable limitations of acquir- 869
ing meaning from ungrounded form:what will future 870
language models understand? TACL. 871

Saif Mohammad, Ekaterina Shutova, and Peter Turney. 872
2016. Metaphor as a medium for emotion: An em- 873
pirical study. In Proc. of *SEM. 874

Roser Morante and Eduardo Blanco. 2012. *SEM 875
2012 shared task: Resolving the scope and focus of 876
negation. In Proc. of *SEM. 877

10

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2021.emnlp-main.98
https://aclanthology.org/2021.emnlp-main.98
https://aclanthology.org/2021.emnlp-main.98
https://aclanthology.org/2021.emnlp-main.98
https://aclanthology.org/2021.emnlp-main.98
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/N19-1246
https://aclanthology.org/2021.emnlp-main.819
https://aclanthology.org/2021.emnlp-main.819
https://aclanthology.org/2021.emnlp-main.819
https://aclanthology.org/2021.emnlp-main.819
https://aclanthology.org/2021.emnlp-main.819
https://arxiv.org/abs/2104.08646
https://arxiv.org/abs/2104.08646
https://arxiv.org/abs/2104.08646
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
https://doi.org/10.1109/CVPR.2017.670
http://arxiv.org/abs/2109.04332
http://arxiv.org/abs/2109.04332
http://arxiv.org/abs/2109.04332
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.03654
https://doi.org/10.18653/v1/2020.findings-emnlp.345
https://doi.org/10.18653/v1/2020.findings-emnlp.345
https://doi.org/10.18653/v1/2020.findings-emnlp.345
https://doi.org/10.18653/v1/2020.findings-emnlp.345
https://doi.org/10.18653/v1/2020.findings-emnlp.345
https://doi.org/10.1109/CVPR.2019.00686
https://doi.org/10.1109/CVPR.2019.00686
https://doi.org/10.1109/CVPR.2019.00686
https://doi.org/10.18653/v1/2020.acl-main.503
https://doi.org/10.18653/v1/2020.acl-main.503
https://doi.org/10.18653/v1/2020.acl-main.503
https://arxiv.org/abs/1911.11253
https://arxiv.org/abs/1911.11253
https://arxiv.org/abs/1911.11253
http://proceedings.mlr.press/v119/bras20a.html
http://proceedings.mlr.press/v119/bras20a.html
http://proceedings.mlr.press/v119/bras20a.html
http://arxiv.org/abs/2107.06499
http://arxiv.org/abs/2107.06499
http://arxiv.org/abs/2107.06499
http://citeseer.ist.psu.edu/liu04conceptnet.html
http://citeseer.ist.psu.edu/liu04conceptnet.html
http://citeseer.ist.psu.edu/liu04conceptnet.html
https://arxiv.org/abs/2102.01065
https://arxiv.org/abs/2102.01065
https://arxiv.org/abs/2102.01065
https://arxiv.org/abs/2102.01065
https://arxiv.org/abs/2102.01065
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2104.10809
https://arxiv.org/abs/2104.10809
https://arxiv.org/abs/2104.10809
https://arxiv.org/abs/2104.10809
https://arxiv.org/abs/2104.10809
https://doi.org/10.18653/v1/S16-2003
https://doi.org/10.18653/v1/S16-2003
https://doi.org/10.18653/v1/S16-2003
https://aclanthology.org/S12-1035
https://aclanthology.org/S12-1035
https://aclanthology.org/S12-1035
https://aclanthology.org/S12-1035
https://aclanthology.org/S12-1035


Silviu Oprea and Walid Magdy. 2020. iSarcasm: A878
dataset of intended sarcasm. In Proc. of ACL.879

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt880
Gardner, Christopher Clark, Kenton Lee, and Luke881
Zettlemoyer. 2018. Deep contextualized word repre-882
sentations. In Proc. of NAACL-HLT.883

Matthew E. Peters, Mark Neumann, Robert Logan, Roy884
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.885
Smith. 2019. Knowledge enhanced contextual word886
representations. In Proc. of EMNLP.887

Adam Poliak, Jason Naradowsky, Aparajita Haldar,888
Rachel Rudinger, and Benjamin Van Durme. 2018.889
Hypothesis only baselines in natural language infer-890
ence. In Proc. of *SEM.891

Lianhui Qin, Vered Shwartz, Peter West, Chandra Bha-892
gavatula, Jena D. Hwang, Ronan Le Bras, Antoine893
Bosselut, and Yejin Choi. 2020. Back to the future:894
Unsupervised backprop-based decoding for counter-895
factual and abductive commonsense reasoning. In896
Proc. of EMNLP.897

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,898
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-899
guage models are unsupervised multitask learners.900
OpenAI blog, 1(8).901

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine902
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,903
Wei Li, and Peter J. Liu. 2020. Exploring the limits904
of transfer learning with a unified text-to-text trans-905
former. JMLR, 21(140):1–67.906

Inioluwa Deborah Raji, Emily M. Bender, Amanda-907
lynne Paullada, Emily Denton, and Alex Hanna.908
2021. AI and the everything in the whole wide world909
benchmark. arXiv:2111.15366.910

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.911
Know what you don’t know: Unanswerable ques-912
tions for SQuAD. In Proc. of ACL.913

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and914
Percy Liang. 2016. SQuAD: 100,000+ questions915
for machine comprehension of text. In Proc. of916
EMNLP.917

Arijit Ray, Gordon Christie, Mohit Bansal, Dhruv Ba-918
tra, and Devi Parikh. 2016. Question relevance919
in VQA: Identifying non-visual and false-premise920
questions. In Proc. of EMNLP.921

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.922
How much knowledge can you pack into the param-923
eters of a language model? In Proc. of EMNLP.924

Anna Rogers. 2021. Changing the world by changing925
the data. In Proc. of ACL.926

Dana Rubinstein, Effi Levi, Roy Schwartz, and Ari927
Rappoport. 2015. How well do distributional mod-928
els capture different types of semantic knowledge?929
In Proc. of ACL.930

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 931
ula, and Yejin Choi. 2020. WinoGrande: An adver- 932
sarial winograd schema challenge at scale. In Proc. 933
of AAAI. 934

Timo Schick and Hinrich Schütze. 2021. It’s not just 935
size that matters: Small language models are also 936
few-shot learners. In Proc. of NAACL. 937

Timo Schick and Hinrich Schütze. 2021. True few- 938
shot learning with prompts – a real-world perspec- 939
tive. arXiv:2111.13440. 940

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren 941
Etzioni. 2020. Green AI. CACM, 63(12). 942

Roy Schwartz, Maarten Sap, Ioannis Konstas, Leila 943
Zilles, Yejin Choi, and Noah A. Smith. 2017. The 944
effect of different writing tasks on linguistic style: A 945
case study of the ROC story cloze task. In Proc. of 946
CoNLL. 947

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, 948
Eric Wallace, and Sameer Singh. 2020. Auto- 949
Prompt: Eliciting Knowledge from Language Mod- 950
els with Automatically Generated Prompts. In Proc. 951
of EMNLP. 952

Avanti Shrikumar, Amr Alexandari, and Anshul Kun- 953
daje. 2019. A flexible and adaptive framework for 954
abstention under class imbalance. 955

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser- 956
man. 2014. Deep inside convolutional networks: Vi- 957
sualising image classification models and saliency 958
maps. arXiv:1312.6034. 959

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda 960
Viégas, and Martin Wattenberg. 2017. SmoothGrad: 961
removing noise by adding noise. arXiv:1706.03825. 962

Richard Socher, Alex Perelygin, Jean Wu, Jason 963
Chuang, Christopher D. Manning, Andrew Ng, and 964
Christopher Potts. 2013. Recursive deep models 965
for semantic compositionality over a sentiment tree- 966
bank. In Proc. of EMNLP. 967

Gabriel Stanovsky, Noah A. Smith, and Luke Zettle- 968
moyer. 2019. Evaluating gender bias in machine 969
translation. In Proc. of ACL. 970

Mark Steedman and Jason Baldridge. 2007. Combina- 971
tory categorial grammar. 972

Emma Strubell, Ananya Ganesh, and Andrew McCal- 973
lum. 2019. Energy and policy considerations for 974
deep learning in NLP. In Proc. of ACL. 975

Elior Sulem, Jamaal Hay, and Dan Roth. 2021. Do 976
we know what we don’t know? studying unanswer- 977
able questions beyond SQuAD 2.0. In Findings of 978
EMNLP. 979

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. 980
Axiomatic attribution for deep networks. In Proc. of 981
ICML. 982

11

https://doi.org/10.18653/v1/2020.acl-main.118
https://doi.org/10.18653/v1/2020.acl-main.118
https://doi.org/10.18653/v1/2020.acl-main.118
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/S18-2023
https://doi.org/10.18653/v1/S18-2023
https://doi.org/10.18653/v1/S18-2023
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2111.15366
https://arxiv.org/abs/2111.15366
https://arxiv.org/abs/2111.15366
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1090
https://doi.org/10.18653/v1/D16-1090
https://doi.org/10.18653/v1/D16-1090
https://doi.org/10.18653/v1/D16-1090
https://doi.org/10.18653/v1/D16-1090
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2021.acl-long.170
https://doi.org/10.18653/v1/2021.acl-long.170
https://doi.org/10.18653/v1/2021.acl-long.170
https://doi.org/10.3115/v1/P15-2119
https://doi.org/10.3115/v1/P15-2119
https://doi.org/10.3115/v1/P15-2119
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://arxiv.org/abs/2111.13440
https://arxiv.org/abs/2111.13440
https://arxiv.org/abs/2111.13440
https://arxiv.org/abs/2111.13440
https://arxiv.org/abs/2111.13440
https://doi.org/10.1145/3381831
https://doi.org/10.18653/v1/K17-1004
https://doi.org/10.18653/v1/K17-1004
https://doi.org/10.18653/v1/K17-1004
https://doi.org/10.18653/v1/K17-1004
https://doi.org/10.18653/v1/K17-1004
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
http://arxiv.org/abs/1802.07024
http://arxiv.org/abs/1802.07024
http://arxiv.org/abs/1802.07024
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1706.03825
https://arxiv.org/abs/1706.03825
https://arxiv.org/abs/1706.03825
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/P19-1164
https://doi.org/10.18653/v1/P19-1164
https://doi.org/10.18653/v1/P19-1164
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://aclanthology.org/2021.findings-emnlp.385
https://aclanthology.org/2021.findings-emnlp.385
https://aclanthology.org/2021.findings-emnlp.385
https://aclanthology.org/2021.findings-emnlp.385
https://aclanthology.org/2021.findings-emnlp.385
http://proceedings.mlr.press/v70/sundararajan17a.html


Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,983
Yizhong Wang, Hannaneh Hajishirzi, Noah A.984
Smith, and Yejin Choi. 2020. Dataset cartography:985
Mapping and diagnosing datasets with training dy-986
namics. In Proc. of EMNLP.987

Niket Tandon, Keisuke Sakaguchi, Bhavana Dalvi,988
Dheeraj Rajagopal, Peter Clark, Michal Guerquin,989
Kyle Richardson, and Eduard Hovy. 2020. A dataset990
for tracking entities in open domain procedural text.991
In Proc. of EMNLP.992

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman,993
Eric Nyberg, and Chris Dyer. 2014. Metaphor de-994
tection with cross-lingual model transfer. In Proc.995
of ACL.996

Luyu Wang, Yujia Li, Ozlem Aslan, and Oriol Vinyals.997
2021. WikiGraphs: A Wikipedia text - knowledge998
graph paired dataset. In Proc. of TextGraphs.999

Zhao Wang and Aron Culotta. 2020. Identifying spu-1000
rious correlations for robust text classification. In1001
Findings of EMNLP, pages 3431–3440.1002

Orion Weller and Kevin Seppi. 2019. Humor detec-1003
tion: A transformer gets the last laugh. In Proc. of1004
EMNLP.1005

Yadollah Yaghoobzadeh, Soroush Mehri, Remi Ta-1006
chet des Combes, T. J. Hazen, and Alessandro Sor-1007
doni. 2021. Increasing robustness to spurious cor-1008
relations using forgettable examples. In Proc. of1009
EACL.1010

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and1011
Yejin Choi. 2018. SWAG: A large-scale adversar-1012
ial dataset for grounded commonsense inference. In1013
Proc. of EMNLP.1014

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali1015
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a1016
machine really finish your sentence? In Proc. of1017
ACL.1018

Shujian Zhang, Chengyue Gong, and Eunsol Choi.1019
2021. Knowing more about questions can help: Im-1020
proving calibration in question answering. In Find-1021
ings of ACL.1022

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,1023
Maosong Sun, and Qun Liu. 2019. ERNIE: En-1024
hanced language representation with informative en-1025
tities. In Proc. of ACL.1026

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-1027
donez, and Kai-Wei Chang. 2017. Men also like1028
shopping: Reducing gender bias amplification using1029
corpus-level constraints. In Proc. of EMNLP.1030

12

https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.3115/v1/P14-1024
https://doi.org/10.3115/v1/P14-1024
https://doi.org/10.3115/v1/P14-1024
https://aclanthology.org/2021.textgraphs-1.7
https://aclanthology.org/2021.textgraphs-1.7
https://aclanthology.org/2021.textgraphs-1.7
https://doi.org/10.18653/v1/2020.findings-emnlp.308
https://doi.org/10.18653/v1/2020.findings-emnlp.308
https://doi.org/10.18653/v1/2020.findings-emnlp.308
https://doi.org/10.18653/v1/D19-1372
https://doi.org/10.18653/v1/D19-1372
https://doi.org/10.18653/v1/D19-1372
https://doi.org/10.18653/v1/2021.eacl-main.291
https://doi.org/10.18653/v1/2021.eacl-main.291
https://doi.org/10.18653/v1/2021.eacl-main.291
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/2021.findings-acl.172
https://doi.org/10.18653/v1/2021.findings-acl.172
https://doi.org/10.18653/v1/2021.findings-acl.172
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/D17-1323
https://doi.org/10.18653/v1/D17-1323
https://doi.org/10.18653/v1/D17-1323
https://doi.org/10.18653/v1/D17-1323
https://doi.org/10.18653/v1/D17-1323

