
Published as a conference paper at ICLR 2023

ON THE SPECIALIZATION OF NEURAL MODULES

Devon Jarvis1,2,∗ , Richard Klein1, Benjamin Rosman1,3 & Andrew M. Saxe2,3
1School of Computer Science and Applied Mathematics, University of the Witwatersrand
2Gatsby Computational Neuroscience Unit & Sainsbury Wellcome Centre, UCL
3CIFAR Azrieli Global Scholar, CIFAR
{devon.jarvis,richard.klein,benjamin.rosman1}@wits.ac.za
a.saxe@ucl.ac.uk

ABSTRACT

A number of machine learning models have been proposed with the goal of achiev-
ing systematic generalization: the ability to reason about new situations by com-
bining aspects of previous experiences. These models leverage compositional
architectures which aim to learn specialized modules dedicated to structures in a
task that can be composed to solve novel problems with similar structures. While
the compositionality of these architectures is guaranteed by design, the modules
specializing is not. Here we theoretically study the ability of network modules
to specialize to useful structures in a dataset and achieve systematic generaliza-
tion. To this end we introduce a minimal space of datasets motivated by practical
systematic generalization benchmarks. From this space of datasets we present a
mathematical definition of systematicity and study the learning dynamics of linear
neural modules when solving components of the task. Our results shed light on the
difficulty of module specialization, what is required for modules to successfully
specialize, and the necessity of modular architectures to achieve systematicity.
Finally, we confirm that the theoretical results in our tractable setting generalize to
more complex datasets and non-linear architectures.

1 INTRODUCTION

Humans frequently display the ability to systematically generalize, that is, to leverage specific learning
experiences in diverse new settings (Lake et al., 2019). For instance, exploiting the approximate
compositionality of natural language, humans can combine a finite set of words or phonemes into a
near-infinite set of sentences, words, and meanings. Someone who understands “brown dog” and
“black cat” also likely understands “brown cat,” to take one example from Szabó (2012). The result is
that a human’s ability to reason about situations or phenomena extends far beyond their ability to
directly experience and learn from all such situations or phenomena.

Deep learning techniques have made great strides in tasks like machine translation and language
prediction, providing proof of principle that they can succeed in quasi-compositional domains. How-
ever, these methods are typically data hungry and the same networks often fail to generalize in even
simple settings when training data are scarce (Lake & Baroni, 2018b; Lake et al., 2019). Empirically,
the degree of systematicity in deep networks is influenced by many factors. One possibility is that
the learning dynamics in a deep network could impart an implicit inductive bias toward systematic
structure (Hupkes et al., 2020); however, a number of studies have identified situations where depth
alone is insufficient for structured generalization (Pollack, 1990; Niklasson & Sharkey, 1992; Phillips
& Wiles, 1993; Lake & Baroni, 2018b; Mittal et al., 2022). Another significant factor is architectural
modularity, which can enable a system to generalize when modules are appropriately configured
(Vani et al., 2021; Phillips, 1995). However, identifying the right modularity through learning remains
challenging (Mittal et al., 2022). In spite of these (and many other) possibilities for improving
systematicity (Hupkes et al., 2020), it remains unclear when standard deep neural networks will
exhibit systematic generalization (Dankers et al., 2021), reflecting a long-standing theoretical debate
stretching back to the first wave of connectionist deep networks (Rumelhart & McClelland, 1986;
Pollack, 1990; Fodor & Pylyshyn, 1988; Smolensky, 1991; 1990; Hadley, 1993; 1994).

In this work we theoretically study the ability of neural modules to specialize to structures in a dataset.
Our goal is to provide a formalism for systematic generalization and to begin to concretize some of

∗Corresponding author

1

Published as a conference paper at ICLR 2023

the intuitions and concepts in the systematic generalization literature. To begin we make a careful
distinction between the compositionality and systematicity of a neural network architecture. Specif-
ically, in this work we maintain that compositionality is a feature of an architecture, such as a Neural
Module Network (Andreas et al., 2016; Andreas, 2018), or dataset where modules or components
can be composed by design. Systematicity is a property of a (potentially compositional) architecture
exploiting structure in the world (dataset) such as the compositional structure of natural language
from the Szabó (2012) example. Intuitively, if a dataset does not have structure which can be exploited
for generalization then no compositional architecture will be able to systematically generalize. As
a result in this work we are concerned with formalizing both the dataset and neural network learning
dynamics to study this interplay between domain and architecture. The main approach of this work
can be summarized as follows: we introduce a reflective space of datasets that contain composi-
tional and non-compositional features, and examine the impact of implicit biases and architectural
modularity on the learned input-output mappings of deep linear network modules. In particular,

• We derive exact training dynamics for deep linear network modules as a function of the
dataset parameters. This is a novel, theoretical means of analysing the effect of dataset
structure on neural network learning dynamics.

• We formalize the goal of modularity as finding lower-rank sub-structure within a dataset
that can be exploited to improve generalization.

• We show that for all datasets in the space, despite the possibility of learning a systematic
mapping, non-modular networks do not do so under gradient descent dynamics.

• We show that modular network architectures can learn fully systematic network mappings,
but only when the modularity perfectly segregates the underlying lower-rank sub-structure
in the dataset.

In Section 7 we show that our findings, which rely on a simplified setting for mathematical tractability,
generalize to more complicated datasets and non-linear architectures by training a convolutional
neural network to label handwritten digits between 0 and 999. Overall, our results help clarify
the interplay between dataset structure and architectural biases which can facilitate systematic
generalization when neural modules specialize.

2 BACKGROUND

Systematic generalization has been proposed as a key feature of intelligent learning agents which can
generalize to novel stimuli in their environment (Hockett & Hockett, 1960; Fodor & Pylyshyn, 1988;
Hadley, 1993; Kirby et al., 2015; Lake et al., 2017; Mittal et al., 2022). In particular, the closely
related concept of compositional structure has been shown to have benefits for both learning speed
(Shalev-Shwartz & Shashua, 2016; Ren et al., 2019) and generalizability (Lazaridou et al., 2018).
There are, however, counter-examples which find only a weak correlation between compositionality
and generalization (Andreas, 2018) or learning speed (Kharitonov & Baroni, 2020). In most cases
neural networks do not manage to generalize systematically (Ruis et al., 2020; Mittal et al., 2022),
or systematic generalization occurs only with the addition of explicit regularizers or a degree of
supervision on the learned features (Shalev-Shwartz et al., 2017; Wies et al., 2022) which is also
termed “mediated perception” (Shalev-Shwartz & Shashua, 2016).

Neural Module Networks (NMNs) (Andreas et al., 2016; Hu et al., 2017; 2018) have become one
successful method of creating network architectures which generalize systematically. By (jointly)
training individual neural modules on particular subsets of data or to perform particular subtasks,
the modules will specialize. These modules can then be combined in new ways when an unseen
data point is input to the model. Thus, through the composition of the modules, the model will
systematically generalize, assuming that the correct modules can be structured together. Bahdanau
et al. (2019b) show, however, that strong regularizers are required for the correct module structures to
be learned. Specifically, it was shown that neural modules become coupled and as a result do not
specialize in a manner which can be useful to the compositional design of the architecture. Thus,
without task-specific regularizers, systematic mappings did not emerge with NMNs.

Similar problems arise with other models which are compositional in nature. Tensor Product Networks
(Smolensky et al., 2022) for example aim to learn an encoding of place and content for features in
a data point. These encodings are then tensor-producted and summed. By the nature of separating

2

Published as a conference paper at ICLR 2023

L_
tu

rn
 v

s

R

_t
u
rn

L_
tu

rn
 v

s

R

_t
u
rn

L_
tu

rn
 v

s

R

_t
u
rn

B
e
h
a
v
io

u
r

1

B
e
h
a
v
io

u
r

2

B
e
h
a
v
io

u
r

3

B
e
h
a
v
io

u
r

4

B
e
h
a
v
io

u
r

5

B
e
h
a
v
io

u
r

6

B
e
h
a
v
io

u
r

7

B
e
h
a
v
io

u
r

8

0 0 0 020 0 0

0 0 0 000 0 2

0 2 0 000 0 0

-1

1

-1
-1 2 0 0 000 0 0

0 0 0 002 0 0
0 0 2 000 0 0

0 0 0 200 0 0

1
1

1

1
-1

-1

-1

-1
1

1

-1
1 0 0 0 000 2 0

a b c d e f g hv
s

0 0 0 00 0 0

0 0 0 000 0

0 0 000 0 0

1

1 1 1

1
0 0 000 0 0

1 0 0 0 00 0 0
0 0 000 0 0

0 0 0 00 0 0

1
1

1
1 1

1
-1-1

-1
-1

-1
-1 -1

-1
-1 -1

-1
-1 0 0 0 000

2

2

2
2

2
2

2
2 0

Command

v
s

v
s

1

1

1
1

-1
-1

-1
-1

(a) (b) Actions Key
: Num Comp Inputs

: Num Comp Outputs

: Num Id matrices Input

: Num Id matrices Output

: Scale of Id matrices

: Comp Input Matrix

: Comp Output Matrix

: Non-comp Input Matrix

: Non-comp Output Matrix

a b c d e f g h

RRL

Option 1:
Systematic

Option 2:
Non-systematic

Behaviour
7

gg
Command

Figure 1: Problem setting and dataset space. (a) When navigating a maze towards a target, an agent
might extract various input features, mapping these to a sequence of actions. (b) We schematize this
setting with a space of datasets containing compositional (Ω) and non-compositional (Γ) features
in the input (middle panel) and output (right panel). Rows contain examples and columns contain
features. In this case objects are identified with both a compositional component (based on features:
size, shape and colour) and non-compositional component (based on absolute position).

“what” and “where” it is possible to systematically generalize when seen objects appear in unseen
positions. For example, in language a noun which has only been seen as the subject in a sentence
can be easily understood as the object of a novel sentence as the word meaning is separate from its
position. These models, however, require coherent encodings to be learned for similar unseen objects
which is conceptually similar to requiring neural modules to specialize and not guaranteed. Similarly,
Recurrent Independent Mechanisms (RIMs) (Goyal et al., 2019) and Compositional Recursive
Learners (CRLs) (Chang et al., 2018) experience difficulties with the network modules becoming
coupled and only worked consistently when paired with the same modules that were used for the
training data. Thus, a number of questions remain unanswered. What is required for neural modules
to specialize? Is there a natural tendency for neural modules to specialize in the absence of strong
regularizers? How much does the dataset structure matter for systematic generalization? These are
all questions we aim to help address in this work. To this end we now define the space of datasets
used in our analysis and provide a definition of systematicity for this space.

3 A SPACE OF DATASETS WITH COMPOSITIONAL SUB-STRUCTURE

The notion of systematic generalization is broad, and has been assessed using a variety of datasets
and paradigms (Hupkes et al., 2020). Here we introduce a simple setting motivated by the SCAN
(Lake & Baroni, 2018a) and grounded-SCAN (gSCAN) datasets (Ruis et al., 2020) commonly used
to evaluate systematic generalization with practical neural models. Other similar benchmarks have
also been used in prior work (Hupkes et al., 2019; Bahdanau et al., 2019a). In the SCAN and gSCAN
datasets a command is given to an agent such as “jump left twice” or “walk to the red small circle
cautiously”. In the case of gSCAN an image of a grid-world is also presented depicting the agent and
a number of objects sharing similar features. These features include small vs large, red vs blue vs
green vs yellow, circle vs square vs rhombus. The agent is then tasked with producing a sequence of
primitive actions such as “L turn”, “R turn”, “WALK”. In the case where an agent is told to carry out
an action in a specific manner (an adverb is used in the command) a sequence of memorized actions
must also be completed. For example to perform an action “cautiously” means that the action string
“L turn, R turn, R turn, L turn” must be output before each step forward.

For our space of datasets we aimed to imitate the primary features of these established benchmarks
while making sure the task remains linearly solvable to allow for our theoretical analysis. An example
of one dataset from the space of datasets is depicted in Fig. 1. Conceptually the task is for an agent
to navigate a series of paths to reach the desired object in the domain as specified by a command.
The command which is input to the model specifies the features of the object to be found where the
features are “large vs small”, “square vs circle”, “red vs blue”. The agent is also told the index of
the object in the 1-dimensional space of objects and so it also knows the absolute position in the
environment. The agent must then output a string of three actions where each action is either “L turn”
or “R turn”. Finally, in the agent’s output we also include a set of unique actions which correspond
to the agent executing an entire memorized behaviour (one per object in the environment). These
full-behaviour outputs are reminiscent of the agent in gSCAN remembering that the “cautiously”
command maps to a sequence of four actions (looking left and right).

3

Published as a conference paper at ICLR 2023

To formalize this setting, we define a parametric space of datasets with input and output matrices X =
[Ωx Γx]

T and Y = [Ωy Γy]
T respectively, where nx, ny, kx, ky, r ∈ Z+ are the parameters that define

a specific dataset. Figure 1(b) visualizes one of the simpler datasets in the space. The compositional
input feature matrix Ωx ∈ {−1, 1}2nx×nx consists of all binary patterns with nx bits. Here nx is
a key parameter determining the number of bits in the compositional input structure. Overall, the
dataset contains 2nx examples. The compositional output feature matrix Ωy ∈ {−1, 1}2nx×ny is a
uniform sampling (although any sampling method would work) of ny features (columns) from Ωx,
and is the compositional component of the output matrix. By using only a sampling of Ωx features
for Ωy we account for the case where some visually distinct features are not necessary for navigation.
Next, the non-compositional input feature matrix Γx = [rI1 ... rIkx

] consists of kx scaled identity
matrices, Ii ∈ {0, 1}2nx×2nx . Similarly, the non-compositional output matrix Γy = [rI1 ... rIky]

has ky scaled identity matrices Ii ∈ {0, 1}2nx×2nx with scale factor r. These identity matrices
provide a single feature for each pattern which is only on for that pattern. This space of datasets is
consistent with numerical notions of compositionality in previous works (Andreas, 2018), which
define compositionality as a homomorphism between the observation space and the naming space
(since the input-output mappings are linear they are homomorphic). Crucially for our analysis, the
amount of compositional structure can be titrated by adjusting nx and ny. Similarly, kx, ky and r
control the frequency and intensity of the non-compositional features, which are both factors that can
promote non-compositional language being used by humans (Rogers et al., 2004).

3.1 SYSTEMATICITY AS EXPLOITING LOWER-RANK SUB-STRUCTURE

Novel to our analysis, datasets in this space allow redundant solutions: the compositional output com-
ponent can be generated based on compositional input features alone (systematic mappings), but they
can equally be generated using non-compositional features alone, or some mixture of the two (non-
systematic mappings). This formalization of the datasets is motivated by common systematicity bench-
marks, but it is also reflective of a more general fact: that in many settings there are multiple ways to
solve a problem. However, it is not the case that all approaches generalize equally well. This means
that the inductive biases placed upon a model which influence the kinds of mappings it learns is a key
consideration, even if the difference is not apparent on training data. In Sections 5 and 6 we aim to for-
malize and study the architectural inductive biases which push a model towards systematic mappings.
We begin in this section with a mathematical definition of systematicity for our space of datasets.

While some prior theoretical works have defined systematic generalization, such as the grading from
weak to semantic systematicity (Hadley, 1994; Bodén & Niklasson, 2000), these works have remained
behavioural and relied on linguistic notions of syntax. Thus, a general mathematical definition of
systematicity has remained elusive. In more recent empirical studies (Bahdanau et al., 2019b; Lake
& Baroni, 2018b) it is intuitive based on the domain what systematicity would be. However, this
context dependent nature of systematicity is the root of the difficulty in defining it. Thus, Definition
3.1 offers a formal definition of systematicity for our space of datasets.
Definition 3.1. Systematic generalization is the identification and learning of lower-rank sub-structure
(Ωx,Ωy) in the full dataset (X,Y) such that the rank of the population covariance on the sub-structure:
E[ΩxΩ

T
x], E[ΩyΩ

T
x] is lower than the rank of the population covariance on the dataset as a whole:

E[XXT], E[Y XT]. Consequently, it is more probable that a training sample will be full rank on the
sub-structure than on the full dataset, which facilitates generalization on the sub-structure.

The definition above relies on the rank of the covariance matrix to define systematicity. It is important
then to note that by partitioning portions of the feature or output space it is possible to change the
rank of the sub-problems which emerge. Take for example the dataset shown in Figure 1. The rank
of the entire dataset covariance matrix is 8 due to the identity block being orthogonal. Thus, for the
network to learn the full mapping it must see all 8 data points. However, if we only consider the
compositional inputs and outputs the rank of this portion of the covariance matrix (the compositional
covariance) is 3. Thus, even though there are 8 unique data points a model would only need to see
3 data points which are not linearly independent to learn that portion of the mapping if learned in
isolation. For 3 binary variables the probability of obtaining a full-rank compositional covariance
matrix from 3 samples is 57% and from 4 samples is 91% (see Appendix B for the calculation of
the sample probabilities for 3 and 4 compositional features). Thus, if the model were to learn the
mapping between compositional sub-structures in isolation it would be nearly certain to generalize to
the entire dataset having seen only half of the data points in the training set. This is our notion of
systematicity: the ability to learn portions of a mapping with lower-rank sub-structure distinct from

4

Published as a conference paper at ICLR 2023

the rest of the mapping which increases the rank of the problem. The benefit of this is that the network
will generalize far better on the structured portions of the input or output space (see Appendix A
for a motivating example of this point and for more intuition on Definition 3.1). This benefit also
grows with the number of compositional features since adding more compositional features results
in an exponential increase in the number of data points which can be generalized to, relative to the
number training examples needed (shown in Appendix B). With the space of datasets defined, we
now describe the primary theoretical tool in this work. That is to calculate the training dynamics of
both shallow and deep linear networks for all datasets in our space.

4 LEARNING DYNAMICS IN SHALLOW AND DEEP LINEAR NETWORKS

While deep linear networks can only represent linear input-output mappings, the dynamics of learning
change dramatically with the introduction of one or more hidden layers (Fukumizu, 1998; Saxe et al.,
2014; 2019; Arora et al., 2018; Lampinen & Ganguli, 2019), and the learning problem becomes
non-convex (Baldi & Hornik, 1989). They therefore serve as a tractable model of the influence of
depth specifically on learning dynamics, which prior work has shown to impart a low-rank inductive
bias on the linear mapping (Huh et al., 2021).

We leverage known exact solutions to the dynamics of learning from small random weights in deep
linear networks (Saxe et al., 2014; 2019) to describe the full learning trajectory analytically for every
dataset in our space. We take the novel theoretical approach of writing these dynamics in terms of the
dataset parameters for our space of datasets (Equations 4-9 and 11-12). This allows us to analyse
the effect of dataset structure on the training dynamics and learned mappings. In particular, consider
a single hidden layer network computing output ŷ = W 2W 1x in response to an input x, trained to
minimize the mean squared error loss using full batch gradient descent with small learning rate ϵ (full
details and technical assumptions are given in Appendix C). The network’s total input-output map
after t epochs of training is

W 2(t)W 1(t) = UA(t)V T , (1)
where A(t) is a diagonal matrix of singular values. The dynamics of A(t), as well as the orthogonal
matrices U and V , depend on the singular value decomposition of the input- and input-output
correlations in the dataset. If the input- and input-output correlations can be expressed as

Σx = E[XXT] = V DV T , Σyx = E[Y XT] = USV T (2)

where U and V are orthogonal matrices of singular vectors and S,D are diagonal matrices of singular
values/eigenvalues, then the diagonal elements of A(t)αα = πα(t) evolve through time as

πα(t) =
λα/δα

1−
(
1− λα

δαπ0

)
exp

(−2λα

τ t
) , (3)

where λα and δα are the associated input-output singular value and input eigenvalue (Sαα and Dαα

respectively), π0 denotes the singular value at initialization, and τ = 1
2nx ϵ is the learning time

constant. These dynamics describe a trajectory which begins at the initial value π0 when t = 0 and
increases to the correct asymptotic value π∗

α = λα/δα as t → ∞. This trajectory corresponds to the
network learning the covariance between the input and output data - the correct mapping.

In essence, the network’s total input-output mapping at all times in training is a function of the
singular value decomposition of the dataset statistics. We find that there are three distinct input-output
singular values which we denote λ1, λ2 and λ3; two distinct input singular values δ1 and δ2; and
therefore three asymptotes π∗

1 , π
∗
2 and π∗

3 (the final point for each SV trajectory π1, π2 and π3):

λ1 =

(
(kxr

2 + 2nx)(kyr
2 + 2nx)

22nx

) 1
2

(4) π∗
1 = λ1/δ1 =

(
kyr

2 + 2nx

kxr2 + 2nx

) 1
2

(5)

λ2 =

(
(kxr

2 + 2nx)(kyr
2)

22nx

) 1
2

(6) π∗
2 = λ2/δ1 =

(
kyr

2

kxr2 + 2nx

) 1
2

(7)

λ3 =

(
kxkyr

4

22nx

) 1
2

(8) π∗
3 = λ3/δ2 =

(
ky
kx

) 1
2

(9)

5

Published as a conference paper at ICLR 2023

By writing this decomposition in terms of the dataset parameters, substituting these expressions
into the dynamics equation (Equation 3) gives equations for the networks mapping and full learning
trajectories at all times during training for all datasets in the space. Full derivations, including explicit
expressions for singular vectors, are deferred to Appendix D.

A similar derivation for a shallow network (no hidden layer) shows that the singular values of the
model’s mapping follow the trajectory

πα(t) = λα/δα (1− exp (−δαt/τ)) + π0 exp (−δαt/τ) , (10)

such that the time course depends on the singular values of the input covariance matrix, Σx. The
unique singular values are

δ1 =
(kxr

2 + 2nx)

2nx
(11) δ2 =

kxr
2

2nx
. (12)

To empirically verify our theoretical results in Equations 4 to 9 we simulate the full training dynamics
for deep and shallow linear networks trained using gradient descent on an instantiation from the space
of datasets in Figure 2. While training, we compute the singular values of the network after each
epoch of training. These simulations of the training dynamics for each unique singular value are then
compared to the predicted dynamics. We see close agreement between the predicted and simulated
trajectories.1 In the following sections we utilise these equations for the training dynamics to analyse
to what extent neural networks naturally specialise and display systematicity.

0 50 100 150 200 250 300
Epoch number

0.0

0.2

0.4

0.6

0.8

S
in

gu
la

r
V

al
u

e

Real π1

Real π2

Real π3

Prediction π1

Prediction π2

Prediction π3

(a)

0 50 100 150 200 250 300
Epoch number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

F
ro

b
en

iu
s

N
or

m

ΩxΩy-Norm

ΓxΩy-Norm

ΩxΓy-Norm

ΓxΓy-Norm

Predicted ΩxΩy-Norm

Predicted ΓxΩy-Norm

Predicted ΩxΓy-Norm

Predicted ΓxΓy-Norm

(b)

0 50 100 150 200 250 300
Epoch number

0.0

0.2

0.4

0.6

0.8

S
in

gu
la

r
V

al
u

e

Real π1

Real π2

Real π3

Prediction π1

Prediction π2

Prediction π3

(c)

0 50 100 150 200 250 300
Epoch number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

F
ro

b
en

iu
s

N
or

m

ΩxΩy-Norm

ΓxΩy-Norm

ΩxΓy-Norm

ΓxΓy-Norm

Predicted ΩxΩy-Norm

Predicted ΓxΩy-Norm

Predicted ΩxΓy-Norm

Predicted ΓxΓy-Norm

(d)
Figure 2: Unlike shallow networks, deep networks show distinct stages of improvement over learning.
(Panels a-d): Analytical learning dynamics for deep (a,b) and shallow (c,d) linear networks. (a,c) Com-
parisons of predicted (dotted) and actual (solid) singular value trajectories over learning, for one
dataset’s singular values. (b,d) Comparisons of predicted (dotted) and actual (solid) Frobenius norms
of the input-output mapping to/from compositional (Ωx,Ωy) and non-compositional (Γx,Γy) features.
Parameters: nx = 3, kx = 3, ny = 1, ky = 1, r = 1.

5 THE EVOLUTION OF SYSTEMATICITY OVER LEARNING

With the decomposition of the training dynamics and a definition of systematicity for our space of
datasets in hand we now look to understand the extent to which a network comes to rely on lower-
rank sub-structure in a dataset to generalize systematically. To do this we calculate the Frobenius
norm of the network’s mapping (the function implemented by the network transforming inputs to
outputs) between different subsets of input and output components. To account for all datasets in
the space and obtain the full dynamics over training, the norms are expressed in terms of the modes
of variation. In particular we split the input-output mapping into four partitions: compositional inputs
(Ωx) to compositional outputs (Ωy); non-compositional inputs (Γx) to compositional outputs (Ωy);
compositional inputs (Ωx) to non-compositional outputs (Γy); and non-compositional inputs (Γx) to
non-compositional outputs (Γy). These norms provide a precise measure of the network’s association
between input and output blocks. For example, ΓxΩy-Norm depicts how much the network relies on
the non-compositional input component (Γx) to label the compositional output component (Ωy). Thus,
by analysing the partitioned norms we are able to determine how much the model is relying on certain
sub-structures in the data, and as a result, how systematic the model is at all times during training.

Analytical expressions for these norms over training (which rely on both singular value dynamics and
the structure of the singular vectors) are given in Appendix E Eqns. 17-20 due to space constraints.

1All experiments are run using the Jax library (Bradbury et al., 2018). Full code for reproducing all figures
can be found at: https://github.com/raillab/specialization_of_neural_modules.

6

https://github.com/raillab/specialization_of_neural_modules

Published as a conference paper at ICLR 2023

However, Figure 2(b),(d) depicts these dynamics for one specific dataset and Figure 3(a) summarizes
the mappings between each input-output partition as well as which modes of variation contribute to
each mapping. This leads to Observation 5.1 and the corresponding proof presented in Appendix H.1.

Observation 5.1. For all datasets in the space it is impossible for a dense architecture to learn a
systematic mapping between compositional components.

Proof Sketch: For a network to be systematic the compositional output needs to be independent
of the non-compositional input. Similarly, the compositional input should not influence the non-
compositional output (to avoid the non-compositional output influencing the features learned by the
systematic mapping). However, in Figure 3(a) we see that the mode π1 contributes to all partitions
of the network mapping. This shows that non-compositional components affect the compositional
mappings (ΓxΩy-Norm> 0 and ΩxΓy-Norm> 0). Because of this the mapping is not systematic.

In sum, the implicit bias arising from depth, small random initialization, and gradient descent
(Appendix I considers alternate learning rules to GD which do not change the outcome of the
analysis) is insufficient to learn fully systematic mappings for any dataset in the space, since the
mapping between compositional components shares a mode of variation with mappings involving
non-compositional components. Thus, we note a necessary condition for systematicity: the mapping
between lower-rank (compositional) sub-structure must be orthogonal (rely on different modes of
variation) from the rest of the network mapping. In dense networks this is not the case as any
correlation between sub-structures in the dataset will couple the mappings. Thus, we also consider
whether modular architectures may form decoupled mappings between sub-structures.

Output Partitioned Fully PartitionedSystematic MappingDense Network

(a) (b)

Non-systematic Mapping

(c)

Figure 3: Graphical representation of the deep network mapping. The dynamical modes π1, π2, and
π3 contain contributions from compositional and non-compositional input components and they make
contributions to compositional and non-compositional output components. Systematic portions of the
mapping which rely only on compositional sub-structure are depicted as green. To be able to learn a
systematic mapping all modes connected to the compositional output (input) component must not con-
nect to the non-compositional input (output) component. (a) For the dense network we see that mode
π1 is the only mode which impacts the mapping to the compositional output (corresponds to the ΩxΩy

and ΓxΩy norms in Figure 2b being learned at the same time as the π1 mode in Figure 2a), however π1

also contributes to the non-compositional output mapping (ΩxΓy and ΓxΓy norms also rise with π1).
Thus by learning the systematic mapping some non-systematic mapping is also being learned. (b and
c) Impact of architectural biases. Architectures that partition compositional and non-compositional
features in different ways with the corresponding graphical representation of the resulting network
mappings. The output partitioned network is able to remove the impact of non-compositional output
features on mode π1 but does not result in a systematic mapping. Only the fully partitioned network
achieves systematicity. Comparing to Figure 3(a) both graphical representations have less connections,
particularly to/from the π1 mode, reflecting the inductive bias imposed by modular architectures.

6 MODULARITY AND NETWORK ARCHITECTURE

We now turn to modularity and network architecture as a prominent approach for promoting
systematicity in a network’s mapping (Bahdanau et al., 2019b; Vani et al., 2021). Architectures
such as NMNs (Andreas et al., 2016; Hu et al., 2017; 2018) learn re-configurable modules that
implement specialized (lower-rank in accordance with Definition 3.1) aspects of a larger problem. By
rearranging existing modules to process a novel input, they can generalize far beyond their training
set. Here we investigate whether simple forms of additional architectural structure can aid in module

7

Published as a conference paper at ICLR 2023

specialization and yield strong enough inductive biases to learn systematic mappings. From our
results in Section 5 we know that a necessary inductive bias is for the partitioned norms to rely on
different modes of variation in the data.

Instead of a dense network, we consider architectures in which compositional and non-compositional
components are processed in separate processing streams, as depicted by the partitioned networks
of Figure 3(b) and (c). The norm equations for the architecture which only partitions along output
structure is summarized in Figure 3(b) (equations are presented in Appendix F). From this we make
Observation 6.1 with a corresponding proof in Appendix H.2.

Observation 6.1. Modularity does impose some form of bias towards systematicity but if any
non-compositional structure is considered in the input then a systematic mapping will not be learned.

Proof Sketch: We note that by separating the hidden layers from portions of the input and output
space network modules will be learning on special cases of the datasets. For example, a module with
no hidden layer connections to the non-compositional output components is learning on a dataset
with ky = 0. Thus, our norm equations from Section 5 still hold, just with the additional structure in
the network limiting the potential datasets a module may see (the range of full input-output mappings
is the same as before). In Figure 3(b) we see that the mode π1 connects non-compositional input
components to compositional output components (ΓxΩy-Norm> 0). Because of this the mapping
is not systematic. We note that modularity has removed the connection between the compositional
input and non-compositional output (ΩxΓy-Norm= 0). Because of this there is a step towards
systematicity.

Finally, we consider the case where two modules are used and fully partition the compositional and
non-compositional structure in the input-output mapping (the strategy employed by NMNs). The
norms are summarized in Figure 3(c). From these equations we make Observation 6.2 and prove the
result in Appendix H.3:

Observation 6.2. The fully partitioned network achieves systematicity by learning the lower-rank
(compositional) sub-structure in isolation of the rest of the mapping.

Proof Sketch: In Figure 3(c) we see that compositional input only connects to compositional output
(ΓxΩy-Norm= 0). Similarly, non-compositional input only connects to non-compositional output
(ΩxΓy-Norm= 0). The portion of the network mapping from compositional input to compositional
output is solving a lower rank problem than if the full feature spaces were considered. Because of this
the network will generalise on this portion of the mapping and is systematic in terms of Definition 3.1.

Finally, partitioning hidden layers is not possible for shallow networks, and so we are unable to obtain
partial benefits from modularity with shallow networks. Thus, shallow networks also require the
perfect architectural biases to partition the input and output structure to become systematic. Hence we
find that architectural biases (modularity) can enforce systematicity, when the bias perfectly segregates
compositional and non-compositional information. How to achieve the correct segregation remains
an open question in the NMNs literature, where reinforcement learning is often used (Hu et al., 2017;
2018), and we do not discuss this here. We merely aim to show the necessity of modularity, which
has been hypothesized (Hadley, 1994) and demonstrated (Andreas et al., 2016) but not theoretically
shown. In Appendix G we consider the effects of imperfect output partitions and find that if any non-
compositional components are grouped with compositional components then the network will behave
the same as in Section 5 and no longer be able to learn a systematic mapping. Taken together, the ob-
servations of this section demonstrate the difficulty of learning specialized neural modules, as if any in-
formation not of the desired lower-rank sub-structure is seen by a module then it will fail to specialize.
We now empirically verify if this generalises to a more naturalistic setting and non-linear architectures.

7 COMPOSITIONAL MNIST (CMNIST)

To evaluate how well our results generalize to non-linear networks and more complex datasets, in
this section we train a deep Convolutional Neural Network (CNN) to learn a compositional variant
of MNIST (CMNIST) shown in Figure 4a. In this dataset three digits from MNIST are stacked
horizontally, resulting in a value between 0 and 999. The systematic output encodes each digit in
a 10-way one-hot vector, resulting in a 30-dimensional vector. The non-systematic output encodes
the number as a whole with a 1000-dimensional one-hot vector. This task is similar to the SVHN
dataset (Netzer et al., 2011) with added non-systematic labels.

8

Published as a conference paper at ICLR 2023

Inputs Network Labels
5
5
7
557

(a)

0 50 100 150 200 250 300
Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
rr

or

Dense Compositional Error
Dense Non-compositional Error
Split Compositional Error
Split Non-compositional Error

(b)

0 50 100 150 200 250 300
Epoch Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 E
rr

or

Dense Compositional Error
Dense Non-compositional Error
Split Compositional Error
Split Non-compositional Error

(c)

Figure 4: (a) Visual descrip-
tion of the CMNIST task,
(b-c) normalized training loss
(b) and test loss (c) of a deep
CNN with ReLU activation
on the Compositional-MNIST
dataset averaged over 10
runs. Error bars reflect one
standard-deviation.

We compare results of using a single dense CNN and a split CNN,
in which two parallel sets of convolutional layers with half the
convolutional filters of the dense network each connect separately
to systematic and non-systematic labels. Full details of the two
network architectures and hyper-parameters used for the CMNIST
experiments are given in Appendix J. The effect predicted by our
theoretical work is that the non-compositional 1000-dimensional
one-hot label will interfere with the network’s learned hidden rep-
resentations for the compositional 30-dimensional label. This will
decrease the compositional generalizability of the network on this
structured portion of the output. This prediction is shown to be true
in Figure 4, which shows the mean-squared error for the composi-
tional and non-compositional network predictions over the course
of training, normalized so that the initial error is at 1.0. Firstly, in
dense networks the error of the compositional mapping is tied to
the error of the non-compositional mapping. This is seen in Figure
4b where the blue curve cannot converge until the orange curve has
become sufficiently low. This effect is not observed with the split
network. Secondly, comparing Figure 4b and 4c we demonstrate the
lack of generalization which occurs when using non-compositional
components. This is seen as the orange and red curves achieving a
lower training error while the test error increases. Lastly, again by
comparing Figure 4b and 4c, we see that the compositional mapping
of the split architecture is the only mapping which generalizes well
(near 0 training and test error). Thus, even in this more complex
setting, we see the negative effect a shared hidden layer has on the
generalization of the network (comparing the blue and green curves).

8 DISCUSSION

In this work we have theoretically and empirically studied the
ability of simple NN modules to specialize and acquire systematic
knowledge. We found that this ability is challenging even in our
simple setting. Neither implicit biases in learning dynamics, nor
all but the most stringent task-specific modularity, caused networks
to exploit compositional sub-structure in the data. Our results

complement recent empirical studies, helping to highlight the complex factors influencing systematic
generalization. For example, in more complex datasets such as CLEVR (Johnson et al., 2017), a
module which should specialise to identifying the colour red would not specialise if a Ferrari logo (a
non-compositional identifying feature) was present in many of these images – the network would not
identify sub-structure in Σx. Similarly, if many images containing red features mapped to a particular
label, for example the “car” label, this would also affect which features the module specialised to.
When the module is then used to “find the red ball” it would be looking for stereotypical car features
to identify the colour red – it does not identify sub-structure in Σyx. Thus, in more natural settings
our proposed notion of rank extends to describing the complexity of the correlations being learned.
Identifying and using the colour red in images is less complex than identifying and using the presence
of a Ferrari; requiring many different input features (higher rank Σx) to be identified and correlated to
a certain label (higher rank Σyx). Importantly for Definition 3.1, if a task is specific to Ferraris, then
having a specialised Ferrari module is useful (all test images will also contain a Ferrari). But in gen-
eral scene description tasks it is not. Consequently, Definition 3.1 describes systematicity in terms of
the task structure at hand: Σx and Σyx. Thus, as our theoretical module-centric perspective displays,
modules must be allocated perfectly; such that the only consistent correlation presented to a module is
the one it must specialise to. A natural question emerges: which inductive biases are flexible enough
to achieve systematicity without being tailored to a specific problem? A neuroscientific perspective
is that sparsity plays a role in producing systematic representations, particularly in the cerebellum
(Cayco-Gajic & Silver, 2019). Thus, exploring the utility of sparsity for systematicity is an important
direction of future work. We hope that the formal perspective provided in this work will lead to
greater understanding of these phenomena and aid the design of improved, modular, learning systems.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

We would like to thank the reviewers for their time and careful consideration of this manuscript.
We sincerely appreciate all their valuable comments and suggestions, which helped us in improving
the quality of the manuscript. This work was supported by a Sir Henry Dale Fellowship from the
Wellcome Trust and Royal Society (216386/Z/19/Z) to A.S., and the Sainsbury Wellcome Centre
Core Grant from Wellcome (219627/Z/19/Z) and the Gatsby Charitable Foundation (GAT3755).
D.J. is a Google PhD Fellow and Commonwealth Scholar. A.S. and B.R. are CIFAR Azrieli Global
Scholars in the Learning in Machines & Brains program.

REFERENCES

Jacob Andreas. Measuring compositionality in representation learning. In International Conference
on Learning Representations, 2018.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 39–48, 2016.

S. Arora, N. Cohen, and E. Hazan. On the optimization of deep networks: Implicit acceleration
by overparameterization. 35th International Conference on Machine Learning, ICML 2018, 1:
372–389, 2018. arXiv: 1802.06509 ISBN: 9781510867963.

Dzmitry Bahdanau, Harm de Vries, Timothy J O’Donnell, Shikhar Murty, Philippe Beaudoin, Yoshua
Bengio, and Aaron Courville. Closure: Assessing systematic generalization of clevr models. arXiv
preprint arXiv:1912.05783, 2019a.

Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries,
and Aaron Courville. Systematic generalization: What is required and can it be learned? In
International Conference on Learning Representations, 2019b.

P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples
without local minima. Neural Networks, 2(1):53–58, January 1989. ISSN 08936080. doi: 10.1016/
0893-6080(89)90014-2. URL http://linkinghub.elsevier.com/retrieve/pii/
0893608089900142.

Mikael Bodén and Lars Niklasson. Semantic systematicity and context in connectionist networks.
Connection Science, 12(2):111–142, 2000.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Yinan Cao, Christopher Summerfield, and Andrew Saxe. Characterizing emergent representations in
a space of candidate learning rules for deep networks. Advances in Neural Information Processing
Systems, 33, 2020.

N Alex Cayco-Gajic and R Angus Silver. Re-evaluating circuit mechanisms underlying pattern
separation. Neuron, 101(4):584–602, 2019.

Michael B Chang, Abhishek Gupta, Sergey Levine, and Thomas L Griffiths. Automatically composing
representation transformations as a means for generalization. arXiv preprint arXiv:1807.04640,
2018.

Verna Dankers, Elia Bruni, and Dieuwke Hupkes. The paradox of the compositionality of natural
language: a neural machine translation case study. arXiv preprint arXiv:2108.05885, 2021. URL
https://arxiv.org/abs/2108.05885.

Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2):3–71, 1988.

K. Fukumizu. Effect of Batch Learning In Multilayer Neural Networks. In Proceedings of the 5th
International Conference on Neural Information Processing, pp. 67–70, 1998.

10

http://linkinghub.elsevier.com/retrieve/pii/0893608089900142
http://linkinghub.elsevier.com/retrieve/pii/0893608089900142
http://github.com/google/jax
https://arxiv.org/abs/2108.05885

Published as a conference paper at ICLR 2023

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and lazy
training in deep neural networks. Journal of Statistical Mechanics: Theory and Experiment, 2020
(11):113301, 2020.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and
Bernhard Schölkopf. Recurrent independent mechanisms. arXiv preprint arXiv:1909.10893, 2019.

Robert F Hadley. Connectionism, explicit rules, and symbolic manipulation. Minds and machines, 3
(2):183–200, 1993.

Robert F Hadley. Systematicity in connectionist language learning. Mind & Language, 9(3):247–272,
1994.

Charles F Hockett and Charles D Hockett. The origin of speech. Scientific American, 203(3):88–97,
1960.

Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning to
reason: End-to-end module networks for visual question answering. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 804–813, 2017.

Ronghang Hu, Jacob Andreas, Trevor Darrell, and Kate Saenko. Explainable neural computation via
stack neural module networks. In Proceedings of the European conference on computer vision
(ECCV), pp. 53–69, 2018.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola.
The low-rank simplicity bias in deep networks. arXiv preprint arXiv:2103.10427, 2021.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. The compositionality of neural
networks: integrating symbolism and connectionism. arXiv preprint arXiv:1908.08351, 3, 2019.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2901–2910, 2017.

Eugene Kharitonov and Marco Baroni. Emergent language generalization and acquisition speed are
not tied to compositionality. arXiv preprint arXiv:2004.03420, 2020.

Simon Kirby, Monica Tamariz, Hannah Cornish, and Kenny Smith. Compression and communication
in the cultural evolution of linguistic structure. Cognition, 141:87–102, 2015.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning, pp.
2873–2882. PMLR, 2018a.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Proceedings of the 35th International Conference
on Machine Learning, pp. 4487–4499. International Machine Learning Society (IMLS), 2018b.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40, 2017.

Brenden M Lake, Tal Linzen, and Marco Baroni. Human few-shot learning of compositional
instructions. In Proceedings of the 41st Annual Conference of the Cognitive Science Society, 2019.

A.K. Lampinen and S. Ganguli. An analytic theory of generalization dynamics and transfer learning
in deep linear networks. In T. Sainath (ed.), International Conference on Learning Representations,
2019. ISBN 0311-5518. doi: 10.1080/03115519808619195. URL http://arxiv.org/abs/
1809.10374. arXiv: 1809.10374.

11

http://arxiv.org/abs/1809.10374
http://arxiv.org/abs/1809.10374

Published as a conference paper at ICLR 2023

Angeliki Lazaridou, Karl Moritz Hermann, Karl Tuyls, and Stephen Clark. Emergence of linguistic
communication from referential games with symbolic and pixel input. In International Conference
on Learning Representations, 2018.

Sarthak Mittal, Yoshua Bengio, and Guillaume Lajoie. Is a modular architecture enough? arXiv
preprint arXiv:2206.02713, 2022.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Lars Niklasson and Noel Sharkey. Systematicity and generalisation in connectionist compositional
representations. Citeseer, 1992.

Steven Phillips and Janet Wiles. Exponential generalizations from a polynomial number of examples
in a combinatorial domain. In Proceedings of 1993 International Conference on Neural Networks
(IJCNN-93-Nagoya, Japan), volume 1, pp. 505–508. IEEE, 1993.

Steven Andrew Phillips. Connectionism and the problem of systematicity. PhD thesis, University of
Queensland, 1995.

Jordan B Pollack. Recursive distributed representations. Artificial Intelligence, 46(1-2):77–105,
1990.

Yi Ren, Shangmin Guo, Matthieu Labeau, Shay B Cohen, and Simon Kirby. Compositional lan-
guages emerge in a neural iterated learning model. In International Conference on Learning
Representations, 2019.

Timothy T Rogers, James L McClelland, et al. Semantic cognition: A parallel distributed processing
approach. MIT press, 2004.

Laura Ruis, Jacob Andreas, Marco Baroni, Diane Bouchacourt, and Brenden M Lake. A benchmark
for systematic generalization in grounded language understanding. Advances in Neural Information
Processing Systems, 33, 2020.

D. E. Rumelhart and J. L. McClelland. On Learning the Past Tenses of English Verbs, volume II, pp.
216–271. MIT Press, Cambridge, MA, USA, 1986. ISBN 0262132184.

A.M. Saxe, J.L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning
in deep linear neural networks. In Y. Bengio and Y. LeCun (eds.), International Conference on
Learning Representations, Banff, Canada, 2014. Oral presentation. arXiv: 1312.6120v3.

Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):
11537–11546, 2019.

Shai Shalev-Shwartz and Amnon Shashua. On the sample complexity of end-to-end training vs.
semantic abstraction training. arXiv preprint arXiv:1604.06915, 2016.

Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep learning.
In International Conference on Machine Learning, pp. 3067–3075. PMLR, 2017.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: A law of
large numbers. SIAM Journal on Applied Mathematics, 80(2):725–752, 2020.

Paul Smolensky. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial intelligence, 46(1-2):159–216, 1990.

Paul Smolensky. Connectionism, constituency, and the language of thought. In Barry M. Loewer and
Georges Rey (eds.), Meaning in Mind: Fodor and His Critics. Blackwell, 1991.

Paul Smolensky, R Thomas McCoy, Roland Fernandez, Matthew Goldrick, and Jianfeng Gao.
Neurocompositional computing: From the central paradox of cognition to a new generation of ai
systems. arXiv preprint arXiv:2205.01128, 2022.

12

Published as a conference paper at ICLR 2023

Zoltan Szabó. The case for compositionality. The Oxford handbook of compositionality, 64:80, 2012.

Ankit Vani, Max Schwarzer, Yuchen Lu, Eeshan Dhekane, and Aaron Courville. Iterated learning for
emergent systematicity in vqa. In International Conference on Learning Representations, 2021.

Noam Wies, Yoav Levine, and Amnon Shashua. Sub-task decomposition enables learning in sequence
to sequence tasks. arXiv preprint arXiv:2204.02892, 2022.

A MOTIVATING EXAMPLE

0 0 0 00 0 0

0 0 0 000 0

0 0 000 0 0

1

1 1 1

1
0 0 000 0 0

1 0 0 0 00 0 0
0 0 000 0 0

0 0 0 00 0 0

1
1

1
1 1

1
-1-1

-1
-1

-1
-1 -1

-1
-1 -1

-1
-1 0 0 0 000

2

2

2
2

2
2

2
2 0

1

1 1 1

1

11
1

1
1 1

1
-1-1

-1
-1

-1
-1 -1

-1
-1 -1

-1
-1

1 1

1

11
1

1
1
-1-1

-1
-1 -1

-1

-1
-1

0 0 0 020 0 0

0 0 0 000 0 2

0 2 0 000 0 0
2 0 0 000 0 0

0 0 0 002 0 0
0 0 2 000 0 0

0 0 0 200 0 0
0 0 0 000 2 0

0 0 0 00 0 0

0 0 0 000 0

0 0 000 0 0
0 0 000 0 0

0 0 0 00 0 0
0 0 000 0 0

0 0 0 00 0 0
0 0 0 000

2

2

2
2

2
2

2
2 0

0

0

1

1

0

0

2

3

0

0

2

3 0

0

2

3

0 0 0 00 0 0

0 0 0 000 0

0 0 000 0 0
0 0 000 0 0

0 0 0 00 0 0
0 0 000 0 0

0 0 0 00 0 0
0 0 0 000

2

2

2
2

2
2

2
2 0

1

1 1 1

1

11
1

1
1 1

1
-1-1

-1
-1

-1
-1 -1

-1
-1 -1

-1
-1

0 0 0 00 0 0

0 0 0 000 0

0 0 000 0 0
0 0 000 0 0

0 0 0 00 0 0
0 0 000 0 0

0 0 0 00 0 0
0 0 0 000

2

2

2
2

2
2

2
2 0

1

1 1 1

1

11
1

1
1 1

1
-1-1

-1
-1

-1
-1 -1

-1
-1 -1

-1
-1

1 1

1

11
1

1
1
-1-1

-1
-1 -1

-1

-1
-1

0 0 0 020 0 0

0 0 0 000 0 2

0 2 0 000 0 0
2 0 0 000 0 0

0 0 0 002 0 0
0 0 2 000 0 0

0 0 0 200 0 0
0 0 0 000 2 0

1 1

1

11
1

1
1
-1-1

-1
-1 -1

-1

-1
-1

0 0 0 020 0 0

0 0 0 000 0 2

0 2 0 000 0 0
2 0 0 000 0 0

0 0 0 002 0 0
0 0 2 000 0 0

0 0 0 200 0 0
0 0 0 000 2 0

A

B

C

D

E

Figure 5: Example of the space of datasets with five exemplar datasets. Datasets range in the number
of compositional components (the inner axes of nx and ny) and the number of non-compositional
identity blocks (outer axis of kx and ky). Note nx and ny vary the number of compositional features,
while kx and ky vary the number of non-compositional blocks of features. In this case the scale
parameter of the identity blocks r is fixed at 2.

In this section we present a motivating example which is designed to provide more intuition on the
space of datasets presented in Section 3 and our definition of systematicity: Definition 3.1. We
consider five different exemplar datasets from the space, depicted in Figure 5, present the empirical
training and test accuracy of a simulated linear network and take note of the generalisation of each
trained network. Ultimately, we demonstrate that systematic generalisation, in accordance with
Definition 3.1, does not just imply an ability to correctly label unseen data points; but also relies on
identifying sub-structure in the feature space to do so.

For these simulated trainings we use the first 3 out of a total 8 data points as training data, leaving the
remaining 5 data points as a test dataset. We term these as the “training dataset” and “test dataset”
respectively and term the combination of both with all 8 data points as the “full dataset”. All networks
contain 50 hidden neurons, are trained with a learning rate of 0.02 and are initialised with a 0 centered
normal distribution with standard deviation 0.001. We emphasise that we are presenting just five
possible datasets in our entire space and have chosen these datasets to make the images and arguments
convenient and intuitive. Whether a trained network will effectively generalise to the test dataset

13

Published as a conference paper at ICLR 2023

0 10 20 30 40 50 60
Epoch number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Qu
ad

ra
tic

 L
os

s

Compositional Training Loss

(a)

0 10 20 30 40 50 60
Epoch number

0

1

2

3

4

5

Qu
ad

ra
tic

 L
os

s

Compositional Test Loss

(b)

Figure 6: Training (a) and Test (b) loss of a linear network trained on dataset A (nx = 3, kx =
0, ny = 2, ky = 0, r = 0) with a 3 : 5 train-test split of the dataset averaged over 50 runs.

0 5 10 15 20 25 30
Epoch number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Qu
ad

ra
tic

 L
os

s

Non-compositional Training Loss

(a)

0 5 10 15 20 25 30
Epoch number

0.0

0.5

1.0

1.5

2.0

2.5

Qu
ad

ra
tic

 L
os

s

Non-compositional Test Loss

(b)

Figure 7: Training (a) and Test (b) loss of a linear network trained on dataset B (nx = 0, kx =
1, ny = 0, ky = 1, r = 2) with a 3 : 5 train-test split of the dataset averaged over 50 runs.

depends on the rank of the full dataset and number of training data points it observes. Simply put:
the network must be trained on as many (unique) data points as the rank of the full dataset. We now
demonstrate this point with the examples and simulations.

Take for example our first dataset with only compositional input and output components corresponding
to point A in Figure 5 (nx = 3, kx = 0, ny = 2, ky = 0, r = 0). In this case there are 8 data points
in the full dataset but the covariance matrices Σx ∈ R3×3, Σyx ∈ R2×3 have ranks of 3 and 2
respectively. Thus, by using a training set of 3 data points the network will effectively learn the input-
output mapping: W 2W 1 = ΣyxΣx−1. As a result the network has learned the correct input-output
mapping for the full dataset. Thus, the network will generalise to the test dataset. This is displayed
for a simulated training in Figure 6. Importantly, even though the network generalises, this is not yet
systematic generalisation as we have defined it in Definition 3.1.

In comparison, consider a dataset with 8 data points of only non-compositional input and output
components corresponding to point B in Figure 5 (nx = 0, kx = 1, ny = 0, ky = 1, r = 2). In this
case the covariance matrices Σx ∈ R8×8, Σyx ∈ R8×8 both have a rank of 8 and if a training dataset
of 3 data points is use then network will fail to learn the covariance matrix (and mapping) appropriate
for the full dataset. As a result the network trained on the training set will not generalise. Since there
are only 8 data points to learn the rank 8 covariance matrices, generalisation is not possible for this
dataset (the network needs to be trained on the full dataset). Figure 7 displays the simulation for this
case. Note that the test error does not decrease during training.

Now consider putting the two settings together (nx = 3, kx = 1, ny = 2, ky = 1, r = 2) which
corresponds to point C in Figure 5. We have the compositional dataset being appended with a
non-compositional dataset to arrive at a dataset of 8 data points with both compositional and non-
compositional sub-structure (on both the input and the output). If we were to calculate the covariance
matrices (Σx ∈ R11×11, Σyx ∈ R10×11) for this full dataset we would see that both have a rank
of 8 due to the non-compositional sub-structure being of rank 8. Thus, for the same reasons as
above generalisation from a training dataset of 3 data points is not possible. This case is displayed
in Figure 8. Note than, even though compositional features are present on the input and output the
network does not generalise well, even when considering the test performance for compositional

14

Published as a conference paper at ICLR 2023

0 5 10 15 20 25 30
Epoch number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Qu
ad

ra
tic

 L
os

s

Compositional Training Loss
Non-compositional Training Loss

(a)

0 5 10 15 20 25 30
Epoch number

0

1

2

3

4

5

Qu
ad

ra
tic

 L
os

s

Compositional Test Loss
Non-compositional Test Loss

(b)

Figure 8: Training (a) and Test (b) loss of a linear network trained on dataset C (nx = 3, kx =
1, ny = 2, ky = 1, r = 2) with a 3 : 5 train-test split of the dataset averaged over 50 runs.

0 5 10 15 20 25 30
Epoch number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Qu
ad

ra
tic

 L
os

s

Non-compositional Training Loss

(a)

0 5 10 15 20 25 30
Epoch number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Qu
ad

ra
tic

 L
os

s

Non-compositional Test Loss

(b)

Figure 9: Training (a) and Test (b) loss of a linear network trained on dataset D (nx = 3, kx =
1, ny = 0, ky = 1, r = 2) with a 3 : 5 train-test split of the dataset averaged over 50 runs.

outputs in isolation. However, we know that if we were to consider the compositional sub-structure
independently it would be a rank 3 problem and would support generalisation. The easier task of
mapping compositional input to compositional output (the first dataset we considered) exists within
the larger problem of learning the full input-output mapping of this combined dataset. This was just
obscured by the inclusion of the non-compositional components. This is our notion of systematic
generalisation: identifying sub-structure in a larger problem (which does not support generalisation)
such that we can learn the sub-structure separately to support generalisation. Thus, our definition of
systematicity requires finding the sub-structure as much as exploiting it for generalisation.

We display two more cases corresponding to points D (nx = 3, kx = 1, ny = 0, ky = 1, r = 2)
and E (nx = 3, kx = 1, ny = 2, ky = 0, r = 2) in Figure 5. The simulations for each dataset are
presented in Figures 9 and 10 respectively. In both cases non-compositional input components are
present and the network does not learn to rely solely on the lower-rank compositional sub-structure.
As a result the network does not systematically generalise.

0 5 10 15 20 25 30
Epoch number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Qu
ad

ra
tic

 L
os

s

Compositional Training Loss

(a)

0 5 10 15 20 25 30
Epoch number

0

1

2

3

4

5

Qu
ad

ra
tic

 L
os

s

Compositional Test Loss

(b)

Figure 10: Training (a) and Test (b) loss of a linear network trained on dataset E (nx = 3, kx =
1, ny = 2, ky = 0, r = 2) with a 3 : 5 train-test split of the dataset averaged over 50 runs.

15

Published as a conference paper at ICLR 2023

B RANK OF COMPOSITIONAL DATASET SUB-STRUCTURES

In this section we provide the calculations of the chance of sampling a full-rank matrix for the
compositional partition of the input and output space. We will begin by considering the case where
the number of compositional input and output features are both d = 3. We emphasize that this section
aims to demonstrate the benefit of relying on compositional sub-structure to learn a network mapping
and is not meant to be general to all forms of binary matrices. Since we are using three input and
output features there are 23 = 8 unique data points in the input and output. We are concerned then
with the rank of the empirical covariance matrix Σ̂yx ∈ R3×3. We use the empirical covariance
matrix since we only use samples of the dataset to train a network and not the full dataset.

For a neural network to learn a generalizable mapping it needs to learn from a batch of data with
a full-rank covariance matrix that has the same rank as the full dataset. If this is the case then the
network will learn the same mapping from the training sample as it would on the full dataset and will
generalize to all unseen data points from the same space. We note that for sample sizes of n = 1 and
n = 2 it is impossible to obtain a full-rank empirical covariance. Thus, we first consider a sample size
of n = 3. In the 3-dimensional case the only way to obtain a singular matrix from 3 samples is if the
opposite data point to an earlier data point is sampled. For example, for the data point [−1,−1, 1] the
opposite will be [1, 1,−1]. With this observation we can determine the probability of not sampling
an opposite data point as follows:

P (fullrank|n = 3, d = 3) =P (throw3|throw1, throw2)P (throw2|throw1)P (throw1)

=(4/6)(6/7)(8/8) = 0.57

For a sample of n = 4 data points a similar procedure applies, except we need to account for the fact
that we are able to sample one opposite data point now. Thus, there are four cases: the second data
point is an opposite, the third data point is an opposite, the fourth data point is an opposite, or there
are no opposites (we also drop P (throw1) = 8/8 to lighten notation):

P (fullrank|n = 4, d = 3) =

P (throw4|throw1, throw2, throw3)P (throw3|throw1, throw2)P (¬throw2|throw1)

+P (throw4|throw1, throw2, throw3)P (¬throw3|throw1, throw2)P (throw2|throw1)

+P (¬ throw4|throw1, throw2, throw3)P (throw3|throw1, throw2)P (throw2|throw1)

+P (throw4|throw1, throw2, throw3)P (throw3|throw1, throw2)P (throw2|throw1)

=(4/5)(6/6)(1/7) + (4/5)(2/6)(6/7) + (3/5)(4/6)(6/7) + (2/5)(4/6)(6/7)

=0.91

For a sample size of n = 5 or more we are guaranteed to have at least 3 linearly independent data
points and a full-rank covariance matrix. Thus, the network module trained on this sub-structure
will always generalize. A similar set of calculation can be done for the case of 4 compositional
features and the same conclusions hold. The calculations, however, become large due to larger sample
sizes being used and more possibilities to sample linearly dependent vectors. Thus, we present the
probabilities from empirical results for the 3 features and 4 feature cases in Tables 1 and 2 respectively.
For these empirical results 5000 samplings from the dataset are used for each sample size to calculate
a covariance matrix and determine if it is singular.

Sample Size Probability of Full-Rank Covariance

3 57.5%
4 91.9%

{5,...,8} 100%

Table 1: Probability of sampling a full-rank covariance matrix for the binary compositional component
of the input and output with 3 features each (nx = ny = 3)

16

Published as a conference paper at ICLR 2023

Sample Size Probability of Full-Rank Covariance

4 29.74%
5 84.76%
6 93.82%
7 99.2%
8 99.72%

{9,...,16} 100%

Table 2: Probability of sampling a full-rank covariance matrix for the binary compositional component
of the input and output with 4 features each (nx = ny = 4)

C LEARNING DYNAMICS IN DEEP LINEAR NETWORKS

The dynamics of learning for shallow and deep linear networks are derived in Saxe et al. (2019).
We state full details of our specific setting here. We train a linear network with one hidden layer
to minimize the quadratic loss L(W 1,W 2) = 1

2nx ||Y −W 2W 1X||22 using gradient descent. This
gives the learning rules E[∆W 1] = ϵ

2nx W
2T (Y − W 2W 1X)XT and E[∆W 2] = ϵ

2nx (Y −
W 2W 1X)(W 1X)T . By using a small learning rate ϵ and taking the continuous time limit, the
mean change in weights is given by τ d

dtW
1 = W 2T (Σyx − W 2W 1Σx) and τ d

dtW
2 = (Σyx −

W 2W 1Σx)W 1T where Σx = E[XXT] is the input correlation matrix, Σyx = E[Y XT] is the input-
output correlation matrix and τ = 1

2nx ϵ . Here, t measures units of learning epochs. It is helpful to
note that since we are using a small learning rate the full batch gradient descent and stochastic gradient
descent dynamics will be the same. Saxe et al. (2019) has shown that the learning dynamics depend
on the singular value decomposition of Σyx = USV T =

∑2nx
α=1 λαu

αvα
T

and Σx = V DV T =∑2nx

α=1 δαu
αvα

T

. To solve for the dynamics we require that the right singular vectors V of Σyx are
also the singular vectors of Σx. This is the case for any dataset in our space, as shown in Appendix D.
Note, we assume that the network has at least 2nx hidden neurons (the number of singular values in
the input-output covariance matrix) so that it can learn the desired mapping perfectly. If this is not
the case then the model will learn the top nh singular values of the input-output mapping where nh is
the number of hidden neurons (Saxe et al., 2014). Given the SVDs of the two correlation matrices the
learning dynamics can be described explicitly as W 2(t)W 1(t) = UA(t)V T =

∑2nx

α=1 πα(t)u
αvαT

where A(t) is the effective singular value matrix of the network’s mapping. The trajectory of each
singular value in A(t) is described as πα(t) =

λα/δα
1−(1− λα

δαπ0
) exp(−2λα

τ t)
. From these dynamics it is

helpful to note that the time-course of the trajectory is only dependent on the Σyx singular values.
Thus, Σx affects the stable point of the network singular values but not the time-course of learning.

We have chosen our datasets to be simple and interpretable for clarity and tractability. However,
fundamentally, our analysis with deep linear networks applies to a more general situation for which
other theoretical techniques relying on random initialisation fail (Geiger et al., 2020; Jacot et al.,
2018; Sirignano & Spiliopoulos, 2020). In particular, consider the broader space of datasets in which
compositional inputs, compositional outputs, non-compositional inputs, and non-compositional
outputs are each rotated by individual orthogonal mappings. As one specific example, consider the
dataset formed by applying a permutation to the compositional outputs. This change affects only
the singular vectors of the task (also permuting them relative to the original task), not the singular
values. This dataset can no longer be solved by learning an identity transformation (which is a
possible solution for all datasets in the original space), as the network must learn to implement the
required permutation–but it will do so with identical learning dynamics and systematicity properties.
A random initialisation cannot know this desired permutation, which can only be learned through
error feedback. This, further, motivates the use of the linear network dynamics which incorporates
feature learning into the analysis.

17

Published as a conference paper at ICLR 2023

D SINGULAR VALUE DECOMPOSITION EQUATIONS

In this section we provide the general formulas for the singular value decomposition of the Σx and
Σyx covariance matrices for any dataset in the space of datasets. As stated in Section 4 the right
singular vectors of Σyx must match the singular vectors of Σx which is the V matrix below. Thus,
Σx = V DV T and Σyx = USV T .

Let:
A = (ΩyΩ

T
x)

TΩyΩ
T
x

B = ΩT
y ΩyΩ

T
x

C = ΩT
xΩxΩ

T
x

THPT = (1
kxky

)
1
2 I2nx×2nx − (1

kxky
)

1
2 (1

2nx)Ω
T
xΩx

Where THPT is the SVD of (1
kxky

)
1
2 I2nx×2nx −(1

kxky
)

1
2 (1

2nx)Ω
T
xΩx, and H = (1

kxky
)

1
2 I2nx×2nx .

Then the following are the matrix formulas for the components of the SVD for Σyx and Σx.

U =


(

1
2nx (kyr2+2nx)

) 1
2

ΩyΩ
T
x 0ny×kx2nx(

r2

23nx (kyr2+2nx)

) 1
2

B +
(

r2

23nx (kyr2)

) 1
2

(C −B) (1
ky
)

1
2T

 (13)

V T =

(2nx

(kxr2+2nx)

) 1
2

Inx×nx

(
r2

2nx (kxr2+2nx)

) 1
2

Ωx

0kx2nx×nx (1
kx
)

1
2PT

 (14)

S =

((kxr
2+2nx)(kyr

2+2nx)
26nx

) 1
2

A+
(

(kxr
2+2nx)(kyr

2)
22nx

) 1
2

(I − 1
22nx A) 0nx×kx2nx

0kx2nx×nx (kxky)
1
2

r2

2nx Ikx2nx×kx2nx


(15)

D =

((kxr
2+2nx)
2nx

) 1
2

Inx×nx 0nx×kx2nx

0kx2nx×nx

kxr
2

2nx I2nx×2nx

 (16)

We note that each distinct singular value occurs multiple times in the dataset: λ1 has multiplicity
nx−ny , λ2 has multiplicity ny , and λ3 has multiplicity 2nx−nx. Correspondingly δ1 has multiplicity
nx and δ2 has multiplicity 2nx − nx.

D.1 PROVING THE CORRECTNESS OF THE SVD

Proving the correctness of the above SVD is easier than deriving it. Thus we do so here by showing
that Σyx = USV T :

SV T =

((kxr
2+2nx)(kyr

2+2nx)
26nx

) 1
2

A+
(

(kxr
2+2nx)(kyr

2)
22nx

) 1
2

(I − 1
22nx A) 0nx×kx2nx

0kx2nx×nx (kxky)
1
2

r2

2nx Ikx2nx×kx2nx


(2nx

(kxr2+2nx)

) 1
2

Inx×nx

(
r2

2nx (kxr2+2nx)

) 1
2

Ωx

0kx2nx×nx (1
kx
)

1
2PT


SV T =

(kyr
2+2nx

25nx

) 1
2

A+
(

kyr
2

2nx

) 1
2

(I − 1
22nx A)

(
r2(kyr

2+2nx)
27nx

) 1
2

AΩx +
(

kyr
4

23nx

) 1
2

(I − 1
22nx A)Ωx

0nx×kx2nx (ky)
1
2

r2

2nx P
T


USV T =


(

1
2nx (kyr2+2nx)

) 1
2

ΩyΩ
T
x 0ny×kx2nx(

r2

23nx (kyr2+2nx)

) 1
2

B +
(

r2

23nx (kyr2)

) 1
2

(C −B) (1
ky
)

1
2T


(kyr

2+2nx

25nx

) 1
2

A+
(

kyr
2

2nx

) 1
2

(I − 1
22nx A)

(
r2(kyr

2+2nx)
27nx

) 1
2

AΩx +
(

kyr
4

23nx

) 1
2

(I − 1
22nx A)Ωx

0nx×kx2nx (ky)
1
2

r2

2nx P
T



18

Published as a conference paper at ICLR 2023

From here we will solve each quadrant separately (Q1 to Q4 below). Firstly, we mention some useful
identities:

A =(ΩyΩ
T
x)

TΩyΩ
T
x

B =ΩT
y ΩyΩ

T
x

C =ΩT
xΩxΩ

T
x

ΩyΩ
T
x (ΩyΩ

T
x)

T =22nxIny×ny

ΩyΩ
T
xA = ΩyΩ

T
x (ΩyΩ

T
x)

TΩyΩ
T
x =22nxΩyΩ

T
x

BA = ΩT
y ΩyΩ

T
x (ΩyΩ

T
x)

TΩyΩ
T
x = ΩT

y 2
2nxΩyΩ

T
x =22nxB

CA = ΩT
xΩxΩ

T
x (ΩyΩ

T
x)

TΩyΩ
T
x = ΩT

x 2
2nxΩyΩ

T
x =22nxB

We now solve for each quadrant of the USV T matrix:

Q1 =

(
1

26nx

) 1
2

ΩyΩ
T
xA+

(
kyr

2

22nx(kyr2 + 2nx)

) 1
2

ΩyΩ
T
x (I −

1

22nx
A)

=
1

2nx
ΩyΩ

T
x +

(
kyr

2

22nx(kyr2 + 2nx)

) 1
2

ΩyΩ
T
x −

(
kyr

2

kyr2 + 2nx

) 1
2

ΩyΩ
T
x

=
1

2nx
ΩyΩ

T
x

Q2 =

(
r2

28nx

) 1
2

ΩyΩ
T
xAΩx +

(
kyr

4

24nx(kyr2 + 2nx)

) 1
2

ΩyΩ
T
x (I −

1

22nx
A)Ωx

=
r

24nx
ΩyΩ

T
xAΩx +

(
kyr

4

24nx(kyr2 + 2nx)

) 1
2

ΩyΩ
T
xΩx −

(
kyr

4

28nx(kyr2 + 2nx)

) 1
2

ΩyΩ
T
xAΩx

=
r

22nx
ΩyΩ

T
xΩx +

(
kyr

4

24nx(kyr2 + 2nx)

) 1
2

ΩyΩ
T
xΩx −

(
kyr

4

24nx(kyr2 + 2nx)

) 1
2

ΩyΩ
T
xΩx

=
r

22nx
ΩyΩ

T
xΩx =

r

2nx
Ωy

Q3 =

[(
r2

23nx(kyr2 + 2nx)

) 1
2

B +

(
r2

23nx(kyr2)

) 1
2

(C −B)

][(
kyr

2 + 2nx

25nx

) 1
2

A+

(
kyr

2

2nx

) 1
2

(I − 1

22nx
A)

]

=

[(
r2

23nx(kyr2 + 2nx)

) 1
2

B +

(
r2

23nx(kyr2)

) 1
2

(C −B)

](
kyr

2 + 2nx

25nx

) 1
2

A

+

[(
r2

23nx(kyr2 + 2nx)

) 1
2

B +

(
r2

23nx(kyr2)

) 1
2

(C −B)

](
kyr

2

2nx

) 1
2

(I − 1

22nx
A)

=

(
r2

28nx

) 1
2

BA+

(
r2(kyr

2 + 2nx)

28nx(kyr2)

) 1
2

(C −B)A

+

(
kyr

4

24nx(kyr2 + 2nx)

) 1
2

B(I − 1

22nx
A) +

(
r2

24nx

) 1
2

(C −B)(I − 1

22nx
A)

=

(
r2

28nx

) 1
2

BA+

(
r2(kyr

2 + 2nx)

28nx(kyr2)

) 1
2

CA−
(
r2(kyr

2 + 2nx)

28nx(kyr2)

) 1
2

BA

+

(
kyr

4

24nx(kyr2 + 2nx)

) 1
2

B −
(

kyr
4

28nx(kyr2 + 2nx)

) 1
2

BA

19

Published as a conference paper at ICLR 2023

+

(
r2

24nx

) 1
2

C(I − 1

22nx
A)−

(
r2

24nx

) 1
2

B(I − 1

22nx
A)

=

(
r2

24nx

) 1
2

B +

(
r2(kyr

2 + 2nx)

24nx(kyr2)

) 1
2

B −
(
r2(kyr

2 + 2nx)

24nx(kyr2)

) 1
2

B

+

(
kyr

4

24nx(kyr2 + 2nx)

) 1
2

B −
(

kyr
4

24nx(kyr2 + 2nx)

) 1
2

B

+

(
r2

24nx

) 1
2

C(I − 1

22nx
A)−

(
r2

24nx

) 1
2

B(I − 1

22nx
A)

=

(
r2

24nx

) 1
2

B +

(
r2

24nx

) 1
2

C −
(

r2

24nx

) 1
2

CA

−
(

r2

24nx

) 1
2

B +

(
r2

24nx

) 1
2

BA

=

(
r2

24nx

) 1
2

C − rB + rB

=
r

22nx
ΩT

xΩxΩ
T
x =

r

2nx
ΩT

x

Q4 =

[(
r2

23nx(kyr2 + 2nx)

) 1
2

B +

(
r2

23nx(kyr2)

) 1
2

(C −B)

]
[(

r2(kyr
2 + 2nx)

27nx

) 1
2

AΩx +

(
kyr

4

23nx

) 1
2

(I − 1

22nx
A)Ωx

]
+ T

r2

2nx
PT

=

[(
r2

23nx(kyr2 + 2nx)

) 1
2

B +

(
r2

23nx(kyr2)

) 1
2

(C −B)

](
r2(kyr

2 + 2nx)

27nx

) 1
2

AΩx

+

[(
r2

23nx(kyr2 + 2nx)

) 1
2

B +

(
r2

23nx(kyr2)

) 1
2

(C −B)

](
kyr

4

23nx

) 1
2

(I − 1

22nx
A)Ωx

+ T
r2

2nx
PT

=

(
r4

210nx

) 1
2

BAΩx +

(
r4(kyr

2 + 2nx)

210nx(kyr2)

) 1
2

(C −B)AΩx

+

(
kyr

6

26nx(kyr2 + 2nx)

) 1
2

B(I − 1

22nx
A)Ωx

+

(
r4

26nx

) 1
2

(C −B)(I − 1

22nx
A)Ωx + T

r2

2nx
PT

=

(
r4

210nx

) 1
2

BAΩx +

(
r4(kyr

2 + 2nx)

210nx(kyr2)

) 1
2

CAΩx −
(
r4(kyr

2 + 2nx)

210nx(kyr2)

) 1
2

BAΩx

+

(
kyr

6

26nx(kyr2 + 2nx)

) 1
2

BΩx −
(

kyr
6

210nx(kyr2 + 2nx)

) 1
2

BAΩx

+

(
r4

26nx

) 1
2

C(I − 1

22nx
A)Ωx −

(
r4

26nx

) 1
2

B(I − 1

22nx
A)Ωx + T

r2

2nx
PT

=

(
r4

26nx

) 1
2

BΩx +

(
r4(kyr

2 + 2nx)

26nx(kyr2)

) 1
2

BΩx −
(
r4(kyr

2 + 2nx)

26nx(kyr2)

) 1
2

BΩx

20

Published as a conference paper at ICLR 2023

+

(
kyr

6

26nx(kyr2 + 2nx)

) 1
2

BΩx −
(

kyr
6

26nx(kyr2 + 2nx)

) 1
2

BΩx

+

(
r4

26nx

) 1
2

C(I − 1

22nx
A)Ωx −

(
r4

26nx

) 1
2

B(I − 1

22nx
A)Ωx + T

r2

2nx
PT

=

(
r4

26nx

) 1
2

BΩx +

(
r4

26nx

) 1
2

CΩx −
(

r4

26nx

) 1
2 1

22nx
CAΩx

−
(

r4

26nx

) 1
2

BΩx +

(
r4

26nx

) 1
2 1

22nx
BAΩx + T

r2

2nx
PT

=

(
r4

26nx

) 1
2

BΩx +

(
r4

26nx

) 1
2

CΩx −
(

r4

26nx

) 1
2

BΩx

−
(

r4

26nx

) 1
2

BΩx +

(
r4

26nx

) 1
2

BΩx + T
r2

2nx
PT

=
r2

23nx
CΩx + T

r2

2nx
PT

=
r2

23nx
ΩT

xΩxΩ
T
xΩx + T

r2

2nx
PT

=
r2

22nx
ΩT

xΩx + T
r2

2nx
PT

=
r2

22nx
ΩT

xΩx +
r2(kxky)

2nx
T (

1

kxky
)

1
2PT

=
r2

22nx
ΩT

xΩx +
r2(kxky)

1
2

2nx
(

1

kxky
)

1
2 I2nx×2nx − r2(kxky)

1
2

2nx
(

1

kxky
)

1
2 (

1

2nx
)ΩT

xΩx

=
r2

22nx
ΩT

xΩx +
r2

2nx
I2nx×2nx − r2

22nx
ΩT

xΩx =
r2

2nx
I2nx×2nx

Thus the final SVD of Σyx is (note that quadrants 2,3 and 4 repeat based on the values of kx and ky):

USV T =


1

2nx ΩyΩ
T
x

r
2nx Ωy . . . r

2nx Ωy

...
...

. . .
r

2nx Ω
T
x

r2

2nx I2nx×2nx . . . r2

2nx I2nx×2nx

 =
1

2nx
Y XT

We now show that the V and U matrices are orthogonal:

V TV =

(2nx

(kxr2+2nx)

) 1
2

Inx×nx

(
r2

2nx (kxr2+2nx)

) 1
2

Ωx

0kx2nx×nx (1
kx
)

1
2PT



(

2nx

(kxr2+2nx)

) 1
2

Inx×nx 0nx×kx2nx(
r2

2nx (kxr2+2nx)

) 1
2

ΩT
x (1

kx
)

1
2P


=

 2nx

(kxr2+2nx)Inx×nx + kx

(
r2

2nx (kxr2+2nx)

)
ΩxΩ

T
x

(
r2

2nx (kxr2+2nx)(kx)

) 1
2

ΩxP(
r2

2nx (kxr2+2nx)(kx)

) 1
2

PTΩT
x (kx)(

1
kx
)PTP


=

 2nx

(kxr2+2nx)Inx×nx +
(

kxr
2

(kxr2+2nx)

)
Inx×nx

(
r2

2nx (kxr2+2nx)(kx)

) 1
2

ΩxP(
r2

2nx (kxr2+2nx)(kx)

) 1
2

PTΩT
x I2nx×2nx


=

[
Inx×nx 0nx×2nx

02nx×nx I2nx×2nx

]

21

Published as a conference paper at ICLR 2023

UTU =

(1
2nx (kyr2+2nx)

) 1
2

ΩxΩ
T
y

(
r2

23nx (kyr2+2nx)

) 1
2

BT +
(

r2

23nx (kyr2)

) 1
2

(C −B)T

0ky2nx×ny (1
ky
)

1
2TT




(
1

2nx (kyr2+2nx)

) 1
2

ΩyΩ
T
x 0ny×kx2nx(

r2

23nx (kyr2+2nx)

) 1
2

B +
(

r2

23nx (kyr2)

) 1
2

(C −B) (1
ky
)

1
2T


We first consider Quadrant 1:

Q1 =

(
1

2nx(kyr2 + 2nx)

)
ΩxΩ

T
y ΩyΩ

T
x

+ ky

[(
r2

23nx(kyr2 + 2nx)

) 1
2

BT +

(
r2

23nx(kyr2)

) 1
2

(C −B)T

]
[(

r2

23nx(kyr2 + 2nx)

) 1
2

B +

(
r2

23nx(kyr2)

) 1
2

(C −B)

]

=

(
1

2nx(kyr2 + 2nx)

)
ΩxΩ

T
y ΩyΩ

T
x

+ ky

[(
r2

23nx(kyr2 + 2nx)

) 1
2

BT +

(
r2

23nx(kyr2)

) 1
2

(C −B)T

](
r2

23nx(kyr2 + 2nx)

) 1
2

B

+ ky

[(
r2

23nx(kyr2 + 2nx)

) 1
2

BT +

(
r2

23nx(kyr2)

) 1
2

(C −B)T

](
r2

23nx(kyr2)

) 1
2

(C −B)

=

(
1

2nx(kyr2 + 2nx)

)
ΩxΩ

T
y ΩyΩ

T
x

+ ky
r2

23nx(kyr2 + 2nx)
BTB + ky

(
r4

26nx(kyr2)(kykyr2 + 2nx)

) 1
2

(C −B)TB

+ ky

(
r4

26nx(kyr2)(kyr2 + 2nx)

) 1
2

BT (C −B)

+ ky

(
r2

23nx(kyr2)

)
(C −B)T (C −B)

It is helpful to note that (C −B)TB = 0nx×nx and ΩxΩ
T
y ΩyΩ

T
x = (1

2nx)B
TB

Q1 =

(
2nx

23nx(kyr2 + 2nx)

)
BTB +

kyr
2

23nx(kyr2 + 2nx)
BTB

+

(
kyr

2

23nx(kyr2)

)
(C −B)T (C −B)

Q1 =

(
kyr

2 + 2nx

23nx(kyr2 + 2nx)

)
BTB +

(
1

23nx

)
(C −B)T (C −B)

Q1 =

(
1

23nx

)
BTB +

(
1

23nx

)
(C −B)T (C −B)

Q1 =Inx×nx

Where we used the fact that BTB + (C −B)T (C −B) = 23nxInx×nx .
Thus:

UTU =

(1
2nx (kyr2+2nx)

) 1
2

ΩxΩ
T
y

(
r2

23nx (kyr2+2nx)

) 1
2

BT +
(

r2

23nx (kyr2)

) 1
2

(C −B)T

0kx2nx×ny (1
ky
)

1
2TT


22

Published as a conference paper at ICLR 2023


(

1
2nx (kyr2+2nx)

) 1
2

ΩyΩ
T
x 0ny×kx2nx(

r2

23nx (kyr2+2nx)

) 1
2

B +
(

r2

23nx (kyr2)

) 1
2

(C −B) (1
ky
)

1
2T


=

 Inx×nx

(
kyr

2

23nx (kyr2+2nx)

) 1
2

BTT +
(

1
23nx

) 1
2 (C −B)TT(

kyr
2

23nx (k2
yr

2+2nx)

) 1
2

TTB +
(

1
23nx

) 1
2 TT (C −B) ky(

1
ky
)TTT


=

 Inx×nx

(
kyr

2

23nx (kyr2+2nx)

) 1
2

BTT +
(

1
23nx

) 1
2 (C −B)TT(

kyr
2

23nx (k2
yr

2+2nx)

) 1
2

TTB +
(

1
23nx

) 1
2 TT (C −B) ky(

1
ky
)TTT


=

[
Inx×nx 0nx×2nx

02nx×nx I2nx×2nx

]

Thus, the we have proven that USV T = Σyx and that the singular vector matrices are or-
thogonal. Since the SVD of the Σx matrix is a special case of Σyx with ny = nx then this also
proves that the SVD for Σx = V DV T with orthogonal singular vector matrices.

E INPUT AND OUTPUT PARTITIONED FROBENIUS NORMS

We partition the input-output mapping along the compositional and non-compositional input and
output components. Figure 11 shows this partitioning and how it relates to the SVD of the covariance
matrix, while the time-courses for these norms can be seen in Equations 17 to 20. From these
equations we see that the mappings to both components of the output rely on all inputs. Thus, the
non-compositional inputs still offer some benefit to the compositional output and are used in the
network mapping. Likewise the compositional inputs are used for the non-compositional mapping.

ΩxΩy-Norm =

(
22nxny

(kxr2 + 2nx)(kyr2 + 2nx)
π2
1(t)

) 1
2

(17)

ΓxΩy-Norm =

(
2nxnykxr

2

(kxr2 + 2nx)(kyr2 + 2nx)
π2
1(t)

) 1
2

(18)

ΩxΓy-Norm =

(
2nxkynyr

2

(kxr2 + 2nx)(kyr2 + 2nx)
π2
1(t) +

2nx(nx − ny)

kxr2 + 2nx
π2
2(t)

) 1
2

(19)

ΓxΓy-Norm =

(
kxkynyr

4

(kxr2 + 2nx)(kyr2 + 2nx)
π2
1(t) +

(nx − ny)kxr
2

kxr2 + 2nx
π2
2(t) + (2nx − nx)π

2
3(t)

) 1
2

(20)

Figure 12 shows the simulated and predicted training dynamics for these norms on a deep linear
network. We note that the mapping to the compositional output relies evenly on both the compositional
and non-compositional inputs, with a slight preference to the compositional inputs. Similarly, the
mapping to the non-compositional outputs also uses the compositional and non-compositional inputs
evenly, with a preference towards the non-compositional inputs towards the end of training. In
Appendix F we consider the same norm equations for the split network architectures.

23

Published as a conference paper at ICLR 2023

Multiply
 Weight
Matrices

a b

c d

a b

c d

a b

c d

a b

c d

aa

c cc

bb

d d dd

Figure 11: Representation of the partitioned norms and their relation to the SVD of the covariance
matrix. Specifically, we consider the norm of pieces of the network mapping individually, but these
pieces only depend on certain modes of variation. By analysing the time-scale of learning and final
value of the norms we can determine the network’s ability to systematically generalise.

0 50 100 150 200 250 300
Epoch number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

F
ro

b
en

iu
s

N
or

m

ΩxΩy-Norm

ΓxΩy-Norm

ΩxΓy-Norm

ΓxΓy-Norm

Predicted ΩxΩy-Norm

Predicted ΓxΩy-Norm

Predicted ΩxΓy-Norm

Predicted ΓxΓy-Norm

Figure 12: Frobenius norms of the deep network mapping partitioned by the compositional and
non-compositional inputs and output on a dense linear neural module.

F MODULARITY AND ARCHITECTURE

In this Section we now consider the norm equations for the modular network architectures. In Figure
13b we depict the Frobenius norms of the mapping for the output-partitioned network (the network’s
Singular Values are shown in Figure 13a). The dynamics of this case can equally be seen as using
one neural module responsible for the compositional output (Ωy) mapping and another for the
non-compositional output (Γy) mapping. From the perspective of the Γy mapping the compositional
output features (Ωy) are not present (ny is effectively set to 0 for this module), and the mapping
will no longer be dependent on π1. The compositional output mapping is still only dependent on
the π1 effective singular value. The time-courses for the resultant Frobenius norms for the module

24

Published as a conference paper at ICLR 2023

mapping to the compositional output are given in Equations 21 and 22 (by substituting ky = 0 in
the norm Equation from Appendix E). Similarly, the time-courses for the resultant Frobenius norms
for the module mapping to the non-compositional output are given in Equations 23 and 24 (by
substituting ny = 0 in the norm Equation from Appendix E). From these equations we see that the
two mappings use entirely different modes of variation, and as a result the learning of one mapping
does not imply any progress in the learning of the other. However, even with the output partitioning,
the norm connecting non-compositional input to compositional output is not 0. Nor is the norm for
the compositional input to non-compositional output mapping. Thus the output partitioned network
will still not learn a systematic mapping for all datasets in the space.

ΩxΩy-Norm =

(
2nxny

kxr2 + 2nx
π2
1(t)

) 1
2

(21)

ΓxΩy-Norm =

(
nykxr

2

kxr2 + 2nx
π2
1(t)

) 1
2

(22)

ΩxΓy-Norm =

(
2nxnx

kxr2 + 2nx
π2
2(t)

) 1
2

(23)

ΓxΓy-Norm =

(
nxkxr

2

kxr2 + 2nx
π2
2(t) + (2nx − nx)π

2
3(t)

) 1
2

(24)

Finally, we consider the fully partitioned network. In this case there are two modules, one connecting
compositional input and output components and another connecting the non-compositional input
and output components. The module connecting the compositional components is now restricted to
working with effective datasets with the hyper-parameters of kx = ky = 0. Substituting this into the
norm equations from Appendix E produces a single norm shown in Equation 25. Similarly, the non-
compositional module trains on effective datasets with nx = ny = 0 and has a single norm shown in
Equation 26. We note that this, very strict architectural bias of a perfect partitioning of compositional
and non-compositional components, is enough for the network to systematically generalize, since no
non-compositional components affect mappings to/from compositional components. Thus, only the
most perfect modularity is able to achieve systematicity as defined by Definition 3.1. We consider the
case of imperfect output partitions in Appendix G and find the network will no longer be systematic.

ΩxΩy-Norm =
√
nyπ1(t) (25)

ΓxΓy-Norm = π3(t) (26)

0 50 100 150 200 250 300
Epoch number

0.0

0.2

0.4

0.6

0.8

S
in

gu
la

r
V

al
u

e

Real π1

Real π2

Real π3

Prediction π1

Prediction π2

Prediction π3

(a)

0 50 100 150 200 250 300
Epoch number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

F
ro

b
en

iu
s

N
or

m

ΩxΩy-Norm

ΓxΩy-Norm

ΩxΓy-Norm

ΓxΓy-Norm

Predicted ΩxΩy-Norm

Predicted ΓxΩy-Norm

Predicted ΩxΓy-Norm

Predicted ΓxΓy-Norm

(b)

Figure 13: Training dynamics of the deep network mapping partitioned by the compositional and
non-compositional inputs and output on two linear neural modules. One module maps exclusively
to the compositional output, while the other maps exclusively to the non-compositional output. a)
Learning trajectories of the three unique Singular Values learned by the output-split network. b)
Frobenius norms of the output partitioned network.

25

Published as a conference paper at ICLR 2023

G IMPERFECT OUTPUT PARTITIONS

We now investigate the case where the split network architecture does not perfectly partition the
output into the compositional and non-compositional components. In this case some of the non-
compositional identity output blocks are grouped with the compositional outputs (we only consider
partitioning along the compositional and non-compositional blocks to keep the closed form solutions
tractable). Thus, we separate the number of non-compositional outputs ky into the number of non-
compositional outputs of the left network branch kleft

y and right network branch kright
y , such that

kleft
y + kright

y = ky .

Equations 27 to 32 show the set of norms which emerge. In the extreme cases when kleft
y = ky we

recover the dense network equations shown in Equations 17 to 20, since π2 = π3 = 0 for Equations
31 and 32. This is apparent from the singular value equations for π2 and π3 shown in Equations 7
and 9 with ky in the numerator which is replaced by kright

y = 0 for the right module. Thus, Equation
31 and 32 fall away completely. In the other extreme case of kright

y = ky we recover the split network
equations shown in Equations 21 to 24. This is again because π2 = π3 = 0 but this time from the left
network branch’s perspective. By definition kleft

y = 0 in this case and so all components of Equations
29 and 30 fall away, leaving just Equations 27 and 28 with Equations 31 and 32. The most important
conclusion to be drawn, however, is that if any non-compositional components are partitioned with
compositional components then the module will behave similarly to the dense network of Section 5.
This can be shown the same way as in the proof for Observation 5.1, by noting that Equations 29 and
30 will be non-zero for any case where the compositional input to compositional output is learned
(due to a shared mode of variation). Thus, only the most stringent and perfectly allocated network
modules will be able to specialize.

ΩxΩy-Norm =

(
22nxny

(kxr2 + 2nx)(klefty r2 + 2nx)
π2
1(t)

) 1
2

(27)

ΓxΩy-Norm =

(
2nxnykxr

2

(kxr2 + 2nx)(klefty r2 + 2nx)
π2
1(t)

) 1
2

(28)

ΩxΓ
left
y -Norm =

(
2nxklefty nyr

2

(kxr2 + 2nx)(klefty r2 + 2nx)
π2
1(t) +

2nx(nx − ny)

kxr2 + 2nx
π2
2(t)

) 1
2

(29)

ΓxΓ
left
y -Norm =

(
kxk

left
y nyr

4

(kxr2 + 2nx)(klefty r2 + 2nx)
π2
1(t) +

(nx − ny)kxr
2

kxr2 + 2nx
π2
2(t) + (2nx − nx)π

2
3(t)

) 1
2

(30)

ΩxΓ
right
y -Norm =

(
2nxnx

kxr2 + 2nx
π2
2(t)

) 1
2

(31)

ΓxΓ
right
y -Norm =

(
nxkxr

2

kxr2 + 2nx
π2
2(t) + (2nx − nx)π

2
3(t)

) 1
2

(32)

H PROOFS OF OBSERVATIONS

H.1 PROOF OF OBSERVATION 5.1

In this section we prove Observation 5.1.: For all datasets in the space it is impossible for a dense
architecture to learn a systematic mapping between compositional components.

Proof: To prove this we are required to show that: For all points in the space of datasets:
nx, ny, kx, ky, r ∈ Z+ that ΩxΩy-Norm> 0 ⇒ ΓxΩy-Norm> 0 and ΩxΓy-Norm> 0 for t ∈ Z+.

26

Published as a conference paper at ICLR 2023

Thus, we assume that ΩxΩy-Norm> 0 and use the fact that singular values are positive semi-definite
to show that:

ΩxΩy-Norm2 =
22nxny

(kxr2 + 2nx)(kyr2 + 2nx)
π2
1(t)

=aπ2
1(t)

>0

since a =
22nxny

(kxr2+2nx)(kyr2+2nx) > 0. Given that π2
1(t) > 0 and nx, ny, kx, ky, r ∈ Z+ then for the

ΓxΩy and ΩxΓy-Norms:

ΓxΩy-Norm2 =
2nxnykxr

2

(kxr2 + 2nx)(kyr2 + 2nx)
π2
1(t)

=bπ2
1(t)

>0

→ ΓxΩy-Norm >0.

and

ΩxΓy-Norm2 =
2nxkynyr

2

(kxr2 + 2nx)(kyr2 + 2nx)
π2
1(t) +

2nx(nx − ny)

kxr2 + 2nx
π2
2(t)

>
2nxkynyr

2

(kxr2 + 2nx)(kyr2 + 2nx)
π2
1(t)

=cπ2
1(t)

>0

→ ΩxΓy-Norm >0

where b =
2nxnykxr

2

(kxr2+2nx)(kyr2+2nx) > 0 and c =
2nxkynyr

2

(kxr2+2nx)(kyr2+2nx) > 0

H.2 PROOF OF OBSERVATION 6.1

In this section we prove Observation 6.1.: Modularity does impose some form of bias towards
systematicity but if any non-compositional structure is considered in the input then a systematic
mapping will not be learned.

Proof: To prove this we are required to show that: For all points in the space of datasets with the
output partitioned network: nx, ny, kx, ky, r ∈ Z+ that ΩxΩy-Norm > 0 ⇏ ΩxΓy-Norm > 0 for
t ∈ Z+ and ΩxΩy-Norm > 0 ⇒ ΓxΩy-Norm > 0 for t ∈ Z+. This shows that, while modularity
removes the guaranteed association between compositional input and non-compositional output it is
still impossible to remove the association of non-compositional input and compositional output.

We assume that ΩxΩy-Norm> 0 and use that the singular values are positive semi-definite to show:

ΩxΩy-Norm2 =
2nxny

kxr2 + 2nx
π2
1(t)

=aπ2
1(t)

>0

since a =
2nxny

kxr2+2nx > 0. Given that π2
1(t) > 0 and nx, ny, kx, ky, r ∈ Z+ then for the ΓxΩy-Norm:

ΓxΩy-Norm2 =
nykxr

2

kxr2 + 2nx
π2
1(t)

=bπ2
1(t)

>0

→ ΓxΩy-Norm >0

where b =
nykxr

2

kxr2+2nx > 0.

27

Published as a conference paper at ICLR 2023

However for the ΩxΓy-Norm:

ΩxΓy-Norm2 =
2nxnx

kxr2 + 2nx
π2
2(t)

=cπ2
2(t)

The value of π2
2(t) is not certain at time t just from knowing that ΩxΩy-Norm > 0. Thus, ΩxΩy-

Norm > 0 ⇏ ΩxΓy-Norm > 0 for t ∈ Z+. However, it is still the case that ΩxΩy-Norm > 0 ⇒
ΓxΩy-Norm > 0 for t ∈ Z+. Thus, the network will still not learn a systematic mapping from the
compositional input to compositional output.

H.3 PROOF OF OBSERVATION 6.2

Finally we prove Observation 6.2: The fully partitioned network achieves systematicity by learning
the lower-rank (compositional) sub-structure in isolation of the rest of the mapping.

Proof: To do this we show that: For all points in the space of datasets with the fully partitioned
network: nx, ny, kx, ky, r ∈ Z+ that ΓxΩy-Norm = ΩxΓy-Norm = 0 ∀ t ∈ Z+.

The norm equations for the fully split network are shown in Equations 25 to 26. Clearly from these
equations there are no ΓxΩy and ΩxΓy-Norms. More specifically, the neural modules learn on
restricted datasets based on their connectivity. For example by substituting kx = ky = 0 for the left
module into the full norm equations shown in Equations 17 to 20 the ΓxΩy , ΩxΓy and ΓxΓy-Norms
in Equations 18, 19 and 20 become 0. Similarly, the right module is restricted to nx = ny = 0. Thus,
the only norm equations which are not 0 will be the ΩxΩy -Norm for the left module and the ΓxΓy

-Norm for the right module. The compositional mapping then is not affected by non-compositional
components of the data. As a result the fully-partitioned network is systematic by Definition 3.1.

I ALTERNATIVE LEARNING RULES TO GRADIENT DESCENT

In this work we have relied on gradient descent dynamics since it is the most widely used optimization
algorithm for training neural networks. However, a number of alternatives exist and previous work
(Cao et al., 2020) has characterized a two-dimensional space of learning rules. The two dimensions
correspond to the two parameters γ and η which determine which optimization algorithm is used.
The update equations for the algorithms in the space for a one-hidden layer network are given by
Equations 33 and 34, where ||W1n||2 depicts the L2 norm is taken along the rows of the W1 matrix,
leaving a column vector of dimension equal to the number of hidden neurons.

∆W1 =

{
(1/τ)WT

2 (Σyx −W2W1Σxx) + η(W1X)(XT −XTWT
1 W1) if η > 0

(1/τ)WT
2 (Σyx −W2W1Σxx) + η(1/(1− ||W1n||22))T (W1XXT) otherwise

(33)

∆W2 = (Σyx −W2W1Σxx)W
T
1 + γ(Y Y T − Ŷ Ŷ T)W2 (34)

As in (Cao et al., 2020) we focus on four learning rules within this space of learning rules, namely
anti-hebbian (γ → 0, η < 0), contrastive hebbian (γ = 1, η = 0), hebbian (γ → 0, η > 0) and
quasi-predictive coding (γ = −1, η = 0). It is helpful to note that gradient descent is also defined in
the space of learning rules with γ = 0 and η = 0. Figure 14 depicts the singular value trajectories
and the systematic/non-systematic input/output norms for each learning rule compared to gradient
descent. From these results we see one primary conclusion, while they cause the network to learn at
different speeds, all learning rules result in the network learning along the same modes of variation as
with gradient descent. This is evident since all networks achieve a near 0 training error and converge
to the same singular values and Frobenius norm values. Thus, they are ultimately learning the same
mapping and confined to the dataset statistics. This means that regardless of the learning rule used,
from any rule in the whole space defined in (Cao et al., 2020), a dense network will share the π1

mode of variation between the compositional and non-compositional components. Thus modularity
is required for the same reasons as in Section 6.

28

Published as a conference paper at ICLR 2023

0 250 500 750 1000 1250 1500
Epoch number

0.0

0.2

0.4

0.6

0.8

S
in

gu
la

r
V

al
u

e

Real π1

Real π2

Real π3

Prediction π1

Prediction π2

Prediction π3

0 250 500 750 1000 1250 1500
Epoch number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

F
ro

b
en

iu
s

N
or

m

ΩxΩy-Norm

ΓxΩy-Norm

ΩxΓy-Norm

ΓxΓy-Norm

Predicted ΩxΩy-Norm

Predicted ΓxΩy-Norm

Predicted ΩxΓy-Norm

Predicted ΓxΓy-Norm

(a) Simulated singular value and norm trajectories for the anti-hebbian (AH) learning rule
(γ → 0, η < 0) compared to the predicted gradient descent (GD) trajectories and norms.

0 250 500 750 1000 1250 1500
Epoch number

0.0

0.2

0.4

0.6

0.8

S
in

gu
la

r
V

al
u

e

Real π1

Real π2

Real π3

Prediction π1

Prediction π2

Prediction π3

0 250 500 750 1000 1250 1500
Epoch number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

F
ro

b
en

iu
s

N
or

m

ΩxΩy-Norm

ΓxΩy-Norm

ΩxΓy-Norm

ΓxΓy-Norm

Predicted ΩxΩy-Norm

Predicted ΓxΩy-Norm

Predicted ΩxΓy-Norm

Predicted ΓxΓy-Norm

(b) Simulated singular value and norm trajectories for the contrastive hebbian (CH) learning
rule (γ = 1, η = 0) compared to the predicted gradient descent (GD) trajectories and norms.

0 250 500 750 1000 1250 1500
Epoch number

0.0

0.2

0.4

0.6

0.8

S
in

gu
la

r
V

al
u

e

Real π1

Real π2

Real π3

Prediction π1

Prediction π2

Prediction π3

0 250 500 750 1000 1250 1500
Epoch number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

F
ro

b
en

iu
s

N
or

m

ΩxΩy-Norm

ΓxΩy-Norm

ΩxΓy-Norm

ΓxΓy-Norm

Predicted ΩxΩy-Norm

Predicted ΓxΩy-Norm

Predicted ΩxΓy-Norm

Predicted ΓxΓy-Norm

(c) Simulated singular value and norm trajectories for the hebbian (Hebb) learning rule (γ →
0, η > 0) compared to the predicted gradient descent (GD) trajectories and norms.

0 500 1000 1500 2000 2500 3000
Epoch number

0.0

0.2

0.4

0.6

0.8

S
in

gu
la

r
V

al
u

e

Real π1

Real π2

Real π3

Prediction π1

Prediction π2

Prediction π3

0 500 1000 1500 2000 2500 3000
Epoch number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

F
ro

b
en

iu
s

N
or

m

ΩxΩy-Norm

ΓxΩy-Norm

ΩxΓy-Norm

ΓxΓy-Norm

Predicted ΩxΩy-Norm

Predicted ΓxΩy-Norm

Predicted ΩxΓy-Norm

Predicted ΓxΓy-Norm

(d) Simulated singular value and norm trajectories for the quasi-predictive coding (PC) learning
rule (γ = −1, η = 0) compared to the predicted gradient descent (GD) trajectories and norms.

Figure 14: Simulated singular value trajectories and systematic/non-systematic input/output
partitioned norms for the four alternative learning rules compared to the predicted gradient descent
trajectories and norms.

29

Published as a conference paper at ICLR 2023

J CMNIST ARCHITECTURE AND HYPER-PARAMETERS

In this section we provide the network architectures for the CMNIST experiments as well as other
details of the experimental setup. We scale the non-systematic output labels to help the network
learn these labels. For the results of this section a scale of 10 was applied, however, the results
are consistent for a wide range of scale values. Increasing or decreasing the scale merely changes
the time taken for the same effects to occur. Both the dense and split networks are trained using
stochastic gradient descent from small random initial weights sampled from an isotropic normal
distribution. No regularization, learning rate decay or momentum is used. We aim to keep the
setup as simple as possible while reducing the effects of other implicit or explicit regularizers on
the results, since we are comparing the systematic generalization of the networks. The simplicity
also aids the comparison between the dense and split network architectures which is the goal of the
experiment. Table 3 shows the hyper-parameters used to train both networks, which have the same
hyper-parameters, and the two architectures are shown in Figures 15 (dense architecture) and 16
(split architecture).

Table 3: Table showing the hyper-parameters used for the CMNIST experiments.

Hyper-parameter Value

Step Size 2e−3

Batch Size 16
Initialization Variance 0.01

We describe some further observations in addition to the discussion presented in Section 7 of the
main text. Consistent with results in linear networks, when training a dense network there is a portion
of the compositional output mapping which is learned at the same time as the non-compositional
output mapping (particularly from around epoch 150). In contrast, when using a split architecture the
compositional output mapping is learned independently of the non-compositional output mapping and
faster, while the non-compositional output mapping struggles to learn. The non-compositional output
mapping fails to reach a near-zero error and plateaus around 0.4 regardless of how long training lasts.
Thus, without a compositional output mapping sharing the same hidden layer and helping learning,
the non-compositional output mapping is ineffective even at fitting the training data in a reasonable
amount of time.

Turning to Figure 4c, we see that for both the dense and split networks the non-compositional output
mapping does not generalize to test data. This is to be expected as it is unlikely that the same numbers
in the training data would ever appear in the test data. Notably, comparing the compositional output
mappings we see that the converged dense network generalizes far worse than the converged split
network. It is interesting to note that initially both networks generalize equally well, however, in
agreement with our theoretical findings, the dense network is not able to fully learn the compositional
output mapping while still maintaining a low generalization error. By learning the non-compositional
output mapping the network’s hidden layer will become worse for generalization, even for the learned
compositional output mapping. In contrast, the split network architecture sees no generalization gap
and maintains a near-zero test error from early on in the training. Thus, it is clear that the benefit of
using the split network architecture is that it avoids the conflict in its hidden layers from learning to
accommodate both the compositional output and non-compositional output mappings.

30

Published as a conference paper at ICLR 2023

Figure 15: Dense network architecture trained to perform the CMNIST classification task.

Figure 16: Split network architecture trained to perform the CMNIST classification task.

31

	Introduction
	Background
	A Space of Datasets with Compositional Sub-structure
	Systematicity as Exploiting Lower-rank Sub-structure

	Learning Dynamics in Shallow and Deep Linear Networks
	The evolution of systematicity over learning
	Modularity and Network Architecture
	Compositional MNIST (CMNIST)
	Discussion
	Motivating Example
	Rank of Compositional Dataset Sub-structures
	Learning Dynamics in Deep Linear Networks
	Singular Value Decomposition Equations
	Proving the Correctness of the SVD

	Input and Output Partitioned Frobenius Norms
	Modularity and Architecture
	Imperfect Output Partitions
	Proofs of Observations
	Proof of Observation 5.1
	Proof of Observation 6.1
	Proof of Observation 6.2

	Alternative Learning Rules to Gradient Descent
	CMNIST Architecture and Hyper-parameters

