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Abstract
Latent Diffusion Models (LDMs) enable fine-
tuning with only a few images and have become
widely used on the Internet. However, it can also
be misused to generate fake images, leading to
privacy violations and social risks. Existing ad-
versarial attack methods primarily introduce noise
distortions to generated images but fail to com-
pletely erase identity semantics. In this work, we
identify the variance of VAE latent code as a key
factor that influences image distortion. Specifi-
cally, larger variances result in stronger distortions
and ultimately erase semantic information. Based
on this finding, we propose a Laplace-based (LA)
loss function that optimizes along the fastest vari-
ance growth direction, ensuring each optimiza-
tion step is locally optimal. Additionally, we ana-
lyze the limitations of existing methods and reveal
that their loss functions often fail to align gradi-
ent signs with the direction of variance growth.
They also struggle to ensure efficient optimiza-
tion under different variance distributions. To
address these issues, we further propose a novel
Lagrange Entropy-based (LE) loss function. Ex-
perimental results demonstrate that our methods
achieve state-of-the-art performance on CelebA-
HQ and VGGFace2. Both proposed loss func-
tions effectively lead diffusion models to generate
pure-noise images with identity semantics com-
pletely erased. Furthermore, our methods exhibit
strong transferability across diverse models and
efficiently complete attacks with minimal compu-
tational resources. Our work provides a practical
and efficient solution for privacy protection.
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1. Introduction
Latent Diffusion Models (LDMs) have revolutionized the
field of generative models (Song & Ermon, 2019; Ho et al.,
2020; Nichol & Dhariwal, 2021). They enable generate high-
quality and diverse images that closely resemble human-
generated content (Rombach et al., 2022; Peebles & Xie,
2023; Podell et al., 2024; Labs, 2023; Esser et al., 2024).
This breakthrough in generative modeling is largely at-
tributed to the ability of LDMs to perform few-shot fine-
tuning (Gal et al., 2022; Hu et al., 2021; Ruiz et al., 2023;
Kumari et al., 2023; Ye et al., 2023). With as few as 4 to
5 images, LDMs can learn new concepts, such as specific
human faces or unique artistic styles. This capability has
enabled their widespread use in academia and industry, driv-
ing advancements in image synthesis, personalization, and
artistic creation. However, this powerful capability has also
raised significant privacy concerns. Malicious users can
exploit LDMs to generate fake images using a small set of
personal data, such as photos from social media. This poses
serious risks to individual privacy and reputation (Higgins,
2023). These risks underscore the urgent need for mitigation
strategies to address this growing issue.

Under these challenges, researchers have proposed adversar-
ial attacks on diffusion models to prevent them from learn-
ing data features. These attacks can be divided into three
categories: maximizing the training loss of UNet (Liang
et al., 2023; Van Le et al., 2023; Xue et al., 2023; Wang
et al., 2024; Liu et al., 2024b), targeting the cross-attention
module within UNet (Xu et al., 2024; Liu et al., 2024a;
Lo et al., 2024), and attacking the VAE encoder (Salman
et al., 2023; Shan et al., 2023; Liang & Wu, 2023; Li et al.,
2024). The first two types often rely on specific prompts and
model architectures when designing perturbations, which
limits their transferability. Furthermore, due to the large
number of parameters in UNet, these methods are com-
putationally expensive and time-consuming. These limita-
tions make them impractical for rapidly evolving models or
resource-constrained scenarios. In contrast, VAE-based at-
tacks are generally prompt-independent since the VAE does
not participate in encoding prompts during image genera-
tion. However, these methods mainly focus on maximizing
the distribution differences of latent codes between clean
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Figure 1. We find that larger variances in the VAE latent code improve the effectiveness of protection methods. Smaller variances, as in
ASPL and Mist, still preserve identity semantics, while larger variances, as in SimAC and PID, remove most of them. Our proposed
Laplace Loss (LA) and Lagrange Entropy Loss (LE) achieve even higher variances, generating pure-noise images with semantics
completely erased.

and adversarial images or optimizing their mean and vari-
ance. As a result, they only introduce varying levels of noise
to the generated images but fail to effectively remove facial
semantic information.

To address the aforementioned issues, we perform an in-
depth investigation of the VAE encoder. PID (Li et al.,
2024) observes that the mean of the VAE latent code in-
fluences the structure and texture of the generated image,
while the variance governs the model’s ability to capture
core concepts and affects semantic diversity. They suggest
that targeting both mean and variance is essential for achiev-
ing optimal attack performance. However, through a further
analysis of VAE properties, we find that variance is the
key factor determining the level of distortion and iden-
tity semantic erasure in generated images. As shown in
Figure 1, we encode images protected by various methods
into their respective latent codes and analyze their variances.
For methods causing minimal distortion, such as ASPL and
Mist, the variances of their latent codes closely resemble
that of the clean image, thereby preserving most facial se-
mantics. In contrast, methods with medium variances, such
as SimAC and PID, introduce significant distortion but still
fail to completely erase identity semantics.

Building on this observation, we investigate how the per-
turbation matrix in the pixel space influences the variance
matrix in the latent space through the VAE encoder. We find
that the direction of variance growth is closely related to

the gradient sign of the loss function with respect to vari-
ance. Existing methods like Mist (Liang & Wu, 2023) uses
Mean Squared Error (MSE) to maximize the variance gap
between clean images and adversarial examples. However,
this approach misaligns the gradient sign with the direc-
tion of variance growth, causing local optimization traps in
the early stages and hindering effective variance increase.
PID (Li et al., 2024) addresses this issue by applying a
logarithmic transformation to the variance, ensuring bet-
ter alignment between the gradient direction and variance
growth. Despite this improvement, PID faces diminishing
optimization space as variance becomes more uniform, lead-
ing to slow optimization. In its original work, PID requires
900 steps to remove most identity semantics. It lacks an
in-depth theoretical analysis to uncover the root cause of
this issue, leaving the problem unexplored. To address these
limitations, we propose two novel loss functions: Laplace
Loss (LA) and Lagrange-Entropy Loss (LE). LA consis-
tently optimizes toward increasing variance regardless of its
distribution, making each update locally optimal. LE com-
bines entropy and Lagrange terms to balance optimization,
ensuring alignment with variance growth while maintaining
sufficient optimization space. Both methods can completely
erase identity semantics and generate pure noise images
in 30 steps, achieving a 30× speedup over PID. Our main
contributions are summarized as follows:

• We observe that the variance of latent codes directly
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affects the semantic integrity of generated images. Fur-
thermore, we find that the optimization direction of the
variance is closely tied to the gradient sign of the loss
function with respect to the variance.

• We analyze prior methods and identify that their gra-
dient signs often misalign with the variance growth or
that the optimization space of variance becomes pro-
gressively compressed. To overcome these issues, we
propose two novel loss functions: LA and LE.

• Our methods achieve state-of-the-art performance on
two facial image datasets. They not only generate
pure-noise images with completely erased identity se-
mantics, but also offer better transferability, lower com-
putational cost, and faster attack speeds.

2. Related Work
2.1. Diffusion Models

Diffusion models consist of two main phases: the diffusion
process and the reverse diffusion process. Given an image
x0, the diffusion process progressively adds noise to the data
distribution based on a predefined noise schedule {βt}Tt=1.
As noise accumulates, the image xT becomes increasingly
noisy. When T is sufficiently large, the image ultimately
transforms into pure Gaussian noise. This process is for-
mally described as follows:

xt =
√

1− βtxt−1 +
√
βtϵt =

√
ᾱtx0 +

√
1− ᾱtϵ

(1)
where αt = 1 − βt, ᾱt =

∏t
i=1 αi and ϵ ∼ N (0, I) is the

noise sampled from a normal distribution.

The reverse process aims to predict the noise ϵt added at the
time step t with a denoising model ϵθ(xt+1, t). Through this
multi-step denoising process, the model gradually recovers
the input image x0. Consequently, the training goal of
the reverse process is to minimize the error between the
estimated noise with prompt c and the true noise.

Lcond(θ, x0) = Ex0,t,c,ϵ∼N (0,1) ∥ϵ− ϵθ(xt+1, t, c)∥22 (2)

2.2. Personalized Systhesis

DreamBooth (Ruiz et al., 2023) personalizes text-to-image
models for a target concept by learning from a few refer-
ence images with a customized prompt like ”a photo of sks
person”, where ”sks” represents the learned concept. It
uses a generic prompt cp, ”a photo of person”, and a prior
preservation loss with a hyperparameter λ to balance per-
sonalization and generic information, addressing overfitting
and text-shifting. The training combines two objectives:

Ldb(θ, x0) = Ex0,t,t′,ϵ,ϵ′∼N (0,1) ∥ϵ− ϵθ(xt+1, t, c)∥22
+ λ

∥∥ϵ′ − ϵθ(x
′
t+1, t

′, cp)
∥∥2
2

(3)

In addition to DreamBooth, lightweight personalization
techniques such as Textual Inversion (Gal et al., 2022),
LoRA (Hu et al., 2021), and IP-Adapter (Ye et al., 2023)
have gained popularity. Notably, LoRA is widely adopted in
online communities for creating character portraits and imi-
tating artworks. However, its use raises significant privacy
concerns and art copyright infringement issues.

2.3. Adversarial Attacks for Diffusion Models

Traditional adversarial attacks primarily target classification
models (Goodfellow et al., 2015; Madry et al., 2018). To
mitigate the risks of misuse in personalized generation, re-
cent studies propose adversarial attacks to prevent LDMs
from learning unauthorized images. These works can be
mainly divided into three categories. The first category aims
to maximize the training loss of diffusion model and force
the predicted noise to deviate from the real noise (Liang
et al., 2023; Van Le et al., 2023; Liang & Wu, 2023; Xue
et al., 2023; Wang et al., 2024; Liu et al., 2024b). The
second manipulates cross-attention in UNet to weaken the
weight of identity keywords in prompts, such as ”sks” in the
prompt ”a photo of sks person,” in the cross-attention map.
This reduces the connection between the prompt and pixel
distribution of the generated images (Xu et al., 2024; Liu
et al., 2024a; Lo et al., 2024). However, both approaches
depend on UNet gradients and specific prompts, leading to
poor transferability and high computational costs. The third
targets the VAE module, which operates independently of
the diffusion model. These methods either maximize the
divergence between the latent distributions of clean images
and adversarial examples (Salman et al., 2023; Shan et al.,
2023; Liang & Wu, 2023) or jointly attack the latent mean
and variance (Li et al., 2024). Although these methods can
generate distorted images with varying levels of noise, they
fail to completely erase identity semantic features.

3. Method
3.1. In-deep Analysis of VAE Encoder

Adversarial attacks for diffusion models predominantly rely
on Projected Gradient Descent (PGD) (Madry et al., 2018)
to iteratively update the perturbations. PGD optimizes the
perturbation δ added to the input x, aiming to maximize a
loss function L under the constraint ∥δ∥p ≤ ϵ. The PGD
update rule at step t with step size α is given as:

δt+1 = ΠBϵ

(
δt + α · sign

(
∂L
∂δ

))
, (4)

In PGD, sign
(
∂L
∂δ

)
determines the update direction of per-

turbation δ. Therefore, when analyzing the effect of pertur-
bation δ on the variance σ2, we decompose ∂L

∂δ using the
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chain rule as follows:

∂L
∂δ

=
∂L
∂σ2
· ∂σ

2

∂δ
(5)

The term ∂σ2

∂δ directly reflects the relationship between the
perturbation matrix δ and the change in variance matrix σ2.
Aligning with its sign direction offers the most straightfor-
ward path to increasing variance. Then, we further decom-
pose this term into the following chain form with the hidden
state ϕ = f(x′) = f(x+ δ) of VAE encoder hidden layer:

∂L
∂δ

=
∂L
∂σ2
· ∂σ

2

∂δ
=

∂L
∂σ2
· ∂σ

2

∂ϕ
· ∂ϕ
∂δ

(6)

The VAE encoder is nonlinear, making it difficult to directly
analyze the effect of δ on the hidden state ϕ. However, when
δ is small, the relationship can be locally approximated as
linear. Specifically, for small perturbations ∥δ∥p ≤ ϵ, the
first-order Taylor expansion of the VAE encoder f(x) at x
provides:

ϕ = f(x′) = f(x+ δ) ≈ f(x) + Jf · δ, (7)

The Jacobian matrix Jf of f with respect to the input x cap-
tures the first-order partial derivatives of each hidden state
ϕk with respect to each input pixel δi. Intuitively, Jf pro-
vides a local linear mapping, describing how small changes
on perturbations δ in image space propagate to the hidden
state ϕ in latent space. The product Jf · δ represents the
locally linearized effect of perturbations δ on each feature
component of the hidden state matrix ϕ. Given the small
magnitude of δ, its effect on the hidden state in latent space
can be approximated as:

∂ϕk

∂δi
≈ J⊤

f(i,k)
(8)

The Jacobian matrix Jf(i,k)
represents the mapping rela-

tionship between the i-th perturbation component in the
perturbation matrix δ and the k-th hidden state component
in the hidden state matrix ϕ. Similarly, the mapping from
the hidden state matrix ϕ to the variance matrix σ2 is gov-
erned by another neural network. This mapping can be
linearized using the Jacobian matrix Jg, which quantifies
how changes in the k-th component of ϕ affect the j-th vari-
ance component σ2

j . The Jacobian matrix Jg characterizes
this relationship as follows:

∂σ2
j

∂ϕk
≈ J⊤

g(k,j)
(9)

where Jg(k,j)
quantifies the influence of the k-th hidden state

ϕk on the j-th variance component σ2
j in the latent space.

Consequently, ∂σ2

∂δ can be approximated as the product of
two Jacobian matrices:

Mi,j =
∂σ2

j

∂δi
=

∑
k

J⊤
g(k,j)

· J⊤
f(i,k)

(10)

where Mi,j represents the influence of the i-th perturbation
component in δ on the j-th variance component in σ2. Using
the chain rule, the gradient of the loss L with respect to the
i-th perturbation δi can be expressed as:

∂L
∂δi

=
∑
j

∂L
∂σ2

j

·
∂σ2

j

∂δi
=

∑
j

∂L
∂σ2

j

·Mi,j (11)

Building upon Equation 4, we observe that the update direc-
tion of the i-th perturbation component in the perturbation
matrix is determined by sign

(
∂L
∂δ

)
and the linear combina-

tion of two matrices Mi,j .

3.2. Laplace Approximation is Local Optimum

From Equations 5 and 10, we observe that the sign of
∂σ2

j

∂δi
represents the direction in which the i-th perturbation di-
rectly affects the increase of the j-th variance component.
This allows the optimization process to be simplified by
assigning a constant gradient to ∂L

∂σ2
j

, ensuring a direct re-
lationship with variance growth. Based on this insight, we
propose a Laplace-based (LA) loss function defined as:

LLaplace =
|σ2 − µ|

b
, (12)

where µ is the target mean (usually 0), and b is a scaling
factor (usually 1). The gradient of this loss function with
respect to σ2 is a constant value 1

b . This constant gradient
ensures that the optimization direction is solely determined

by
∂σ2

j

∂δi
, which reflects the inherent relationship between the

perturbation and the variance growth direction. Specifically,
1
b uniformly scales the gradient across all dimensions, pre-
serving the alignment of optimization with variance growth.
Consequently, the LA loss ensures consistent alignment
with the variance growth direction, enabling each PGD step
to achieve a locally optimal update.

3.3. Limitations of Previous Work

Adversarial attacks for variance manipulation rely on loss
function, which dictates the gradient direction ∂L

∂δ and di-
rectly impacts optimization. In this section, we analyze two
common methods for variance optimization: Mean Squared
Error (MSE) (Liang & Wu, 2023) and PID (Li et al., 2024),
revealing their limitations. The MSE loss is defined as:

LMSE =
∑
j

(
σ2
j − σ2

clean

)2
(13)

where σ2
j is the j-th variance component in the latent space,

and σ2
clean represents the variance of clean latent distribu-

tions. Its gradient with respect to σ2
j is:

∂LMSE

∂σ2
j

= 2
(
σ2
j − σ2

clean

)
(14)
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Figure 2. Variance growth trends of latent code within 100 steps.
MSE is trapped in a local optimum, with variance remaining at
the 1e−6 level. PID increases variance but at a very slow rate. In
contrast, our methods, LA and LE, rapidly amplify variance to the
1e5 level within just 30 to 50 steps.

MSE loss maximizes the squared distance between σ2
j and

σ2
clean. However, it suffers from notable limitations. When

variance components are perturbed, the initial variance dis-
tribution becomes uneven. In the early stages of optimiza-
tion, MSE mistakenly prioritizes the few large variance
components while neglecting the majority of small variance
components. This behavior causes MSE to prioritize large
variances, disrupting the optimization process. Specifically,
the product of ∂LMSE

∂σ2
j

and Mi,j can result in a negative
value for certain perturbations. This misalignment reverses
the gradient direction, leading to ineffective variance growth.
This issue can be formally expressed as:

sign(
∂LMSE

∂δi
) = sign(

∑
j

∂LMSE

∂σ2
j

·Mi,j) ̸= sign(
∑
j

Mi,j)

(15)
As shown in Figure 2, at an optimization step of 100, MSE
only increases the variance to 3 × 10−6, which remains
nearly identical to σ2

clean. This indicates that MSE falls
into a local trap at the start of optimization. It fails to
effectively amplify the larger variance components it targets
and neglects to expand the smaller variance components that
require growth. For PID, the loss of variance and gradient
are defined as:

LPID =
∑
j

(
log σ2

j − log σ2
clean

)2
,

∂LPID

∂σ2
j

=
2

σ2
j

(
log σ2

j − log σ2
clean

)
.

(16)

PID prioritizes the optimization of small variance compo-

nents due to its larger gradient values at lower variances.
This ensures that the gradient sign ∂LPID

∂σ2
j

aligns with the
variance growth direction Mi,j . However, PID is less re-
sponsive to large variance components. Once small vari-
ances are optimized, the variance distribution becomes more
uniform, which reduces the optimization space and leads to
slow convergence. As illustrated in Figure 2, although PID
effectively increases variance at step 100, its growth rate is
significantly slower compared to our proposed LA Loss.

3.4. Lagrange Entropy Loss

To overcome the limitations of MSE and PID, we propose
the Lagrange Entropy (LE) Loss, which integrates an en-
tropy term and a Lagrange constraint to balance variance
optimization:

LLE = −
∑
j

σ2
j log(σ

2
j ) + λ

∑
j

σ2
j − c

2

(17)

The entropy term promotes the growth of small variance
components and the Lagrange constraint ensures overall
variance remains balanced. λ = 0.1 controls the trade-off
between the two terms, and c = 1 sets the target variance.
The gradient of LLE with respect to σ2 is expressed as:

∂LLE

∂σ2
j

= −
(
log(σ2

j ) + 1
)
+ 2λ

∑
j

σ2
j − c

 (18)

This gradient ensures that small variance components are
optimized more strongly at the beginning, driven by the
entropy term. As the distribution grows, the Lagrange term
maintains sufficient optimization space for larger variances.
As shown in Figure 2, LE loss enables efficient variance
growth. Both LE and LA losses can completely remove
identity semantics within 30–50 steps, significantly outper-
forming the 900-step requirement of PID.

4. Experiments
4.1. Experimental Setup

Datasets: We compare LA and LE with several representa-
tive methods on the CelebA-HQ (Karras et al., 2018) and
VGGFace2 (Cao et al., 2018) datasets. We select 50 differ-
ent identities from each dataset and use 4 reference images
per identity as training data. We apply the PGD (Madry
et al., 2018) to update the perturbations, setting the pertur-
bation budget η to 0.05 and the step size α to 1/255 for all
methods. Baseline methods use default settings, and Stable
Diffusion v1.5 serves as the base model.

Evaluation Metrics: Our goal is to prevent diffusion mod-
els from learning core concepts of training images, generat-
ing pure noise with erased facial semantics. We generate 100
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Table 1. Comparing the performance of our method with baselines against DreamBooth (Ruiz et al., 2023) on CelebA-HQ and VGGFace2.
The best result under each metric is marked with bold. The prompt used is ”a photo of a sks person.”

Method CelebA-HQ VGGFace2
ISM ↓ FDFR ↑ Brisque ↑ LPIPS ↑ ISM ↓ FDFR ↑ Brisque ↑ LPIPS ↑

No Defense 0.608 0.041 17.896 0.662 0.638 0.025 18.193 0.724
AdvDM (Liang et al., 2023) 0.424 0.307 24.215 0.798 0.142 0.944 47.862 0.868
ASPL (Van Le et al., 2023) 0.406 0.287 24.419 0.805 0.158 0.906 46.142 0.865
Mist (Liang & Wu, 2023) 0.249 0.169 13.981 0.707 0.246 0.257 18.324 0.756

MetaCloak (Liu et al., 2024b) 0.593 0.051 36.325 0.712 0.525 0.059 36.771 0.747
SimAC (Wang et al., 2024) 0.253 0.865 51.059 0.823 0.196 0.981 51.874 0.836
DisDiff (Liu et al., 2024a) 0.605 0.116 29.361 0.695 0.263 0.902 43.623 0.758

SDS- (Xue et al., 2023) 0.655 0.005 38.519 0.743 0.591 0.002 37.325 0.781
PID (Li et al., 2024) 0.069 0.938 85.533 0.899 0.046 0.968 86.946 0.945

LE(ours) 0 1 155.804 1.021 0 1 154.494 1.028
LA(ours) 0 1 155.845 0.959 0 1 155.845 1.031

Figure 3. Visualization of our methods and baselines against DreamBooth on CelebA-HQ and VGGFace2. The first and third rows show
reference images, while the second and fourth rows display generated images from fine-tuned models.

images for each fine-tuned model and evaluate them using
four metrics. Face Detection Failure Rate (FDFR) mea-
sures whether the RetinaFace detector (Deng et al., 2020)
recognizes the images as faces; higher FDFR indicates bet-
ter protection. For detected faces, Identity Score Matching
(ISM) calculates the distance between facial embeddings
of generated and reference images; smaller ISM means
weaker identity correlation. Brisque measures image natu-
ralness; higher scores indicate greater deviation and distor-
tion. LPIPS quantifies perceptual differences; higher scores
reflect stronger semantic erasure.

4.2. Main Results

Results againt DreamBooth (Ruiz et al., 2023): Table 1
and Figure 3 show that our methods outperform baselines

on CelebA-HQ and VGGFace2. They achieve ISM of 0 and
FDFR of 1 on both datasets, completely removing identity
semantics. Figure 3 further demonstrates that our methods
generate pure noise images, while baselines retain partial
semantics. Higher Brisque and LPIPS scores (155.804 and
1.021) confirm significant image degradation, making the
images highly unnatural and unrecognizable.

Cross-model Transferability against LoRA (Hu et al.,
2021): To evaluate the transferability of our methods across
different diffusion model architectures, we use adversar-
ial examples generated on SD1.5 as training data for other
models. We test two similar models (SD2.1 and SDXL)
and two with significantly different architectures (SD3.5
and FLUX.1-dev). Tables 2 and 3 demonstrate that our
methods achieve superior transferability across diverse dif-
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Table 2. Comparing the transferability of our method with other approaches against LoRA (Hu et al., 2021) on CelebA-HQ. The best
result under each metric is marked with bold.

Method SD2.1 SDXL
ISM ↓ FDFR ↑ Brisque ↑ LPIPS ↑ ISM ↓ FDFR ↑ Brisque ↑ LPIPS ↑

No Defense 0.729 0.073 16.409 0.669 0.791 0.001 13.483 0.515
AdvDM (Liang et al., 2023) 0.532 0.313 39.369 0.704 0.765 0.019 18.419 0.539
ASPL (Van Le et al., 2023) 0.519 0.331 39.226 0.709 0.766 0.002 20.589 0.524
Mist (Liang & Wu, 2023) 0.179 0.231 18.097 0.677 0.583 0.126 24.143 0.622

MetaCloak (Liu et al., 2024b) 0.635 0.087 41.381 0.699 0.738 0.002 22.766 0.517
SimAC (Wang et al., 2024) 0.401 0.642 41.409 0.733 0.746 0.018 10.459 0.546
DisDiff (Liu et al., 2024a) 0.627 0.166 40.127 0.709 0.782 0 17.366 0.519

SDS- (Xue et al., 2023) 0.673 0.016 52.108 0.711 0.732 0 8.103 0.569
PID (Li et al., 2024) 0.089 0.887 91.461 0.949 0.602 0 17.848 0.545

LE(ours) 0 1 151.089 0.947 0.171 0.649 126.369 0.893
LA(ours) 0 1 154.724 0.955 0.178 0.401 102.815 0.822

Table 3. Comparing the transferability of our method with other approaches against LoRA (Hu et al., 2021) on CelebA-HQ. SD3.5 and
FLUX.1-dev uses a more advanced text encoder and replaces the UNet with MM-DiT as the denoising network. The best performance
under each metric is marked with bold.

Method SD3.5 FLUX.1-dev
ISM ↓ FDFR ↑ Brisque ↑ LPIPS ↑ ISM ↓ FDFR ↑ Brisque ↑ LPIPS ↑

No Defense 0.587 0.001 0.699 0.589 0.705 0.001 7.722 0.598
AdvDM (Liang et al., 2023) 0.532 0.002 11.755 0.612 0.739 0.009 13.268 0.651
ASPL (Van Le et al., 2023) 0.543 0.001 11.541 0.621 0.743 0.004 12.991 0.641
Mist (Liang & Wu, 2023) 0.456 0.003 18.712 0.629 0.736 0.005 25.182 0.587

MetaCloak (Liu et al., 2024b) 0.469 0 21.861 0.599 0.727 0.007 23.027 0.618
SimAC (Wang et al., 2024) 0.495 0 9.251 0.606 0.735 0.004 3.601 0.645
DisDiff (Liu et al., 2024a) 0.535 0.003 10.252 0.601 0.708 0.021 13.488 0.639

SDS- (Xue et al., 2023) 0.499 0 46.701 0.617 0.741 0.003 24.258 0.609
PID (Li et al., 2024) 0.484 0.013 15.434 0.605 0.729 0.001 15.326 0.596

LE(ours) 0.217 0.241 65.903 0.803 0.257 0.204 58.423 0.828
LA(ours) 0.235 0.214 71.873 0.793 0.282 0.269 52.554 0.845

fusion model architectures. On SD2.1 and SDXL, our meth-
ods consistently outperform baselines, achieving the lowest
ISM scores (e.g., 0 on SD2.1 and 0.171 on SDXL) and
the highest FDFR values (e.g., 1 on SD2.1 and 0.649 on
SDXL). This indicates their effectiveness in completely eras-
ing identity semantics while maintaining strong robustness.
On models with more advanced architectures like SD3.5
and FLUX.1-dev, which utilize MM-DiT as the denoising
network, our methods consistently demonstrate strong per-
formance, achieving significantly lower ISM scores (e.g.,
0.211 on SD3.5) and higher Brisque values (e.g., 58.423 on
FLUX.1-dev) compared to baselines. These results highlight
the adaptability of our methods in handling both traditional
UNet-based and advanced denoising architectures, ensuring
consistent semantic erasure under various model structures.

Time and GPU memory consumption: Considering the
limited GPU resources of individual users, we compare the
time and GPU memory required by different methods to
protect a single image. Table 4 shows that our method uses

only 4.5 GB of GPU memory and completes protection in
8 seconds. In contrast, other methods demand significantly
more resources and time. For example, ASPL and SimAC
consume over 24 GB of GPU memory, while MetaCloak
takes 1843 seconds per image. These results demonstrate
the efficiency and practicality of our approach, making it
accessible to users with standard setups.

4.3. Ablation Experiments

In this section, we present the major ablation experiments.
Additional ablation results and visualizations are pro-
vided in the appendix C and D.

Attack Step: Table 5 shows that our methods generate pure
noise images with completely erased identity semantics
within 30 steps. After 50 steps, the protection behavior
changes. The images transition from pure noise to chaotic
scene-like visuals, still retaining their ability to erase identity
semantics but showing a decline in metric performance.
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Table 4. Comparison of the time and GPU memory consumption
incurred by our method and other approaches to protect a 512×512
image on A100 GPU.

Method Time/s ↓ GPU/MB ↓
AdvDM (Liang et al., 2023) 18.63 8278.63
ASPL (Van Le et al., 2023) 189.95 34366.92
Mist (Liang & Wu, 2023) 18.81 8278.63

MetaCloak (Liu et al., 2024b) 1843.47 16955.00
SimAC (Wang et al., 2024) 124.57 38640.00
DisDiff (Liu et al., 2024a) 65.54 25960.50

SDS- (Xue et al., 2023) 18.61 8278.63
PID (Li et al., 2024) 241.31 4581.93

LE(ours) 7.34 4469.80
LA(ours) 8.47 4469.80

Table 5. Comparison of defense effectiveness with different itera-
tion steps on CelebA-HQ. “*” is default.

Step IMS ↓ FDFR ↑ Brisque ↑ LPIPS ↑
20 0.549 0.322 56.186 0.808
25 0.068 0.965 123.411 1.001

30* 0 1 155.845 1.021
50 0 1 155.692 1.019
75 0.022 0.993 58.244 0.933

100 0.019 0.997 33.288 0.912

Table 6. Ablation study on LE loss terms in CelebA-HQ.
Lentropy Llagrange IMS ↓ FDFR ↑ Brisque ↑ LPIPS ↑
× × 0.61 0.04 17.89 0.66
× ✓ 0.68 0.03 17.62 0.72
✓ × 0.69 0.02 23.82 0.71
✓ ✓ 0 1 155.81 1.02

Therefore, we terminate the optimization at 30 steps. The
appendix C.1 provides detailed analysis and visualizations
of this behavior.

Module of LE: We conduct an ablation experiment on the
proposed LE method by testing its performance when the
Lagrangian term or the entropy term is removed. As shown
in Table 6, using either loss term alone fails to achieve the
ideal attack effectiveness. This result demonstrates that the
LE loss function is not a simple combination of multiple loss
terms but is carefully designed to ensure that the gradient
direction aligns with the variance growth direction.

Noise Budget η: We evaluate the impact of the noise budget
η on the performance of LE on the CelebA-HQ dataset. Ta-
ble 7 shows that η=8/255 is sufficient to fully erase identity
semantics and produce low-quality images. Increasing η to
0.05 raises the Brisque score, suggesting further deviation
from natural image characteristics, but without significant
visual degradation of adversarial examples. Thus, we set

Table 7. Comparison of defense effectiveness and visual quality
with different noise budgets η on CelebA-HQ. “*” is default.

η
Defense Quality Visual Quality

IMS ↓ Brisque ↑ PSNR ↑ SSIM ↑
4/255 0.631 22.385 14.244 0.414
8/255 0 122.266 13.771 0.361
0.05* 0 155.804 13.664 0.313

16/255 0 155.845 12.301 0.271

Table 8. Comparing the robustness of our methods against image
preprocessing and adaptive attack on CelebA-HQ.

Method IMS ↓ FDFR ↑ Brisque ↑ LPIPS ↑
Clean 0.608 0.041 17.896 0.662
Crop 0.356 0.743 79.369 0.879

Gaussin Filter 0.369 0.697 79.607 0.913
JPEG Comp. 0.451 0.358 62.541 0.821

DiffPure 0.435 0.244 46.880 0.804
GrIDPure 0.456 0.231 49.071 0.769
Fixed σ 0.503 0.255 37.920 0.823

Clipped σ 0.512 0.205 39.468 0.795

η = 0.05 as the default noise budget.

Image Preprocessing and Adaptive Attack: We evaluate
the robustness of our methods against image preprocessing
and adaptive attacks. For preprocessing, we test traditional
methods (Cropping, Gaussian filtering, and JPEG compres-
sion), and advanced purification techniques (DiffPure (Nie
et al., 2022) and GrIDPure (Zhao et al., 2024)). For adap-
tive attacks, we simulate scenarios where attackers fix or
clip latent variance during fine-tuning to bypass protection.
Table 8 shows that our methods still demonstrate notable
robustness in these cases. They reduce face detection in
generated images (higher FDFR) and lower identity-related
similarity (lower IMS). Additionally, the higher Brisque and
LPIPS scores indicate a decline in image quality. Although
purification and bypassing techniques affect performance,
they cannot fully remove our perturbations.

5. Conclusion
In this paper, we discuss the relationship between the vari-
ance of VAE encoders and the effectiveness of adversarial
attacks in disrupting generative diffusion models. We iden-
tify variance as key to image distortion and propose two
novel loss functions, LA and LE, to overcome limitations
of existing methods. These loss functions completely erase
identity semantics, generating pure-noise images resistant
to misuse. Our methods also excel in transferability and
efficiency, requiring fewer resources and achieving faster
protection, making them practical for rapidly evolving mod-
els and resource-constrained devices.
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Impact Statement
Our work aims to prevent unauthorized images from be-
ing exploited by malicious users to generate fake images
through personalized generative techniques. While existing
approaches attempt to address this issue, they suffer from
several limitations, including slow protection speed, high
computational resource requirements, and poor transferabil-
ity. These drawbacks make them impractical for real-world
applications where models undergo rapid iterations or oper-
ate in resource-constrained environments. Moreover, most
existing methods fail to provide robust identity protection,
as they still produce images that retain identity semantics,
leaving them vulnerable to misuse. In contrast, our methods
effectively remove identity semantics by generating pure
noise images, ensuring strong protection against unautho-
rized identity synthesis while maintaining computational ef-
ficiency and transferability across different generative mod-
els. Beyond identity protection, our approaches are also
applicable to copyright protection in the artistic domain, an
increasingly critical issue given the rapid advancement of
personalized generative techniques. As AI models become
more adept at learning and replicating artistic styles, the
risk of unauthorized reproduction and commercialization
of artworks grows. Our methods provide proactive defense
against such risks by preventing AI models from adapting
to protected artistic content. By offering a robust defense
mechanism against the unauthorized use of both identity and
artistic content, our work contributes to the development of
responsible AI, ensuring ethical and secure deployment of
generative models.
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A. Deep Analysis of Our Work
A.1. Rationale for Neglecting Higher-Order Terms under Small Perturbations

In adversarial scenarios, we often examine how a small perturbation δ ∈ Rn propagates through a deep network (e.g., the
VAE encoder in Stable Diffusion) and affects the final loss. A common strategy is to linearize the network around the clean
input x, effectively discarding higher-order (nonlinear) terms. In the following, we provide a step-by-step justification for
ignoring these higher-order corrections when ∥δ∥ ≤ ϵ is sufficiently small.

Second-Order Taylor Expansion. Let f : Rn → Rm denote the VAE encoder, mapping an input x to a latent
representation z = f(x). A second-order Taylor expansion around x yields:

f(x+ δ) = f(x) + Jf (x) δ +
1
2 δ

⊤Hf

(
x+ θδ

)
δ, 0 ≤ θ ≤ 1, (19)

where Jf (x) = ∇xf(x) is the Jacobian matrix, and Hf (·) is the Hessian. The remainder term 1
2 δ

⊤Hf (·) δ represents
second-order (and beyond) corrections.

β-Smoothness Assumption. A standard assumption in optimization is that f is β-smooth (or has Lipschitz continuous
gradients) within a local neighborhood of x (Nesterov, 2013). Concretely,

∥∇f(u)−∇f(v)∥ ≤ β ∥u− v∥, ∀u, v ∈ N (x). (20)

Equivalently, the Hessian operator norm satisfies ∥Hf (z)∥ ≤ β. Under this assumption, we can bound the second-order
remainder in (19) by ∥∥ 1

2 δ
⊤Hf (x+ θδ) δ

∥∥ ≤ β
2 ∥δ∥

2. (21)

Hence, if ∥δ∥ ≤ ϵ is small, the contribution from higher-order terms scales as O(ϵ2), which is typically negligible compared
to the first-order term O(ϵ).

Influence on the Loss Gradient. In adversarial settings, the primary concern is often∇δ L
(
f(x+ δ)

)
. By the chain rule,

∇δL
(
f(x+ δ)

)
=

[
∇z L(z)

]
z=f(x+δ)

· ∇δf(x+ δ). (22)

With the β-smooth assumption, one can show the discrepancy between the exact gradient and its first-order approximation is
bounded by O(∥δ∥) (Goodfellow et al., 2015). Therefore, in a sufficiently small neighborhood, ignoring higher-order terms
does not significantly alter the gradient direction that guides adversarial perturbations.

Consistency with Iterative Attacks. Projected Gradient Descent (PGD) (Madry et al., 2018) updates δ in small increments,

δ ← Π∥δ∥≤ϵ

(
δ + α∇δL

(
f(x+ δ)

))
, (23)

ensuring that the input x+ δ remains within the local region ∥δ∥ ≤ ϵ. Such small-step iterative methods naturally align with
a local linear approximation, as they do not abruptly jump outside the domain where β-smoothness is valid. Hence, the
ignored second-order terms remain bounded throughout the attack process.

Empirical Observations. Many adversarial methods, including PGD (Madry et al., 2018) and C&W (Carlini & Wagner,
2017), rely almost exclusively on first-order information yet demonstrate highly effective attacks in small-∥δ∥ regimes.
Empirical comparisons further suggest that the angle between the exact gradient and the first-order approximation remains
small (Goodfellow et al., 2015), reinforcing the idea that higher-order terms can be safely neglected for small perturbations.

Conclusion. Under the β-smoothness hypothesis and for perturbations constrained by ∥δ∥ ≤ ϵ, the second-order remainder
in (19) contributes only O(ϵ2), hence can be dismissed relative to the O(ϵ) first-order effect. Consequently, linearizing the
VAE encoder (or other neural components) is both a common heuristic and a theoretically supported practice in adversarial
analysis.
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A.2. Jacobian Computation: Practical Challenges and Mitigation

In our theoretical derivations (see Eqs.8–10), we decompose how a perturbation δ propagates through the VAE encoder
using Jacobian matrices. However, explicitly computing these Jacobians in practice can face several challenges:

High Dimensionality and Computation Costs. For inputs of size H×W ×3 (e.g., color images) and a high-dimensional
latent space in the VAE, the Jacobian matrix can be extremely large. Storing or multiplying such matrices directly would
require substantial memory and computation. When either the input resolution or the latent-space dimension grows, the
overall Jacobian can easily scale to millions of parameters.

No Need for Exact Elementwise Computation. In our formulation, the purpose of these Jacobians is primarily theoretical
to show how a perturbation flows through successive layers and eventually affects the variance term σ2 and the final loss. We
do not advocate explicit elementwise computation or storage of such high-dimensional matrices in actual implementations.
Instead, we mainly rely on the chain structure of the Jacobian product to reveal how each layer’s local derivatives combine.
In practice, automatic differentiation typically yields the end-to-end gradient without needing to expand the intermediate
Jacobians. Moreover, as demonstrated in Table 4, our method only requires approximately 4.5 GB of GPU memory on an
NVIDIA A100 to protect a single 512×512 image in about 8 seconds, underscoring that we do not need to hold the entire
Jacobian in memory to achieve efficient and feasible runtime.

Gradient Stability (See Section C.1). Deep networks are known to exhibit exploding or vanishing gradients, especially
when certain activation functions saturate or become inactive. Although this phenomenon is not strictly caused by explicitly
handling the Jacobian, it can affect the numerical stability of Jacobian-based products. Moreover, gradient masking can
sometimes occur when the network’s gradient pathways are obstructed or improperly managed (e.g., due to overly aggressive
regularization or non-differentiable structures). To mitigate these issues, we employ an early-stopping strategy during the
optimization steps (see Section C.1). This early-stopping procedure helps avoid practical pitfalls such as exploding or
vanishing gradients and reduces the risk of artificially masking the true gradient signals.

Summary. In short, the Jacobians in Eqs. 8-10 primarily serve an analytical role: they illustrate how perturbations impact
each stage of the encoder in a chain-of-influence manner. These do not imply that one must explicitly compute or store the
entire Jacobian in a real-world scenario. Our experimental results indicate that our method requires only about 4.5 GB
of GPU memory on an NVIDIA A100 to protect a single 512×512 image in roughly 8 seconds, underscoring that it is
unnecessary to hold the full Jacobian in memory to achieve efficient and feasible runtime performance.

A.3. Illustrative Example for Gradient Sign Reversal

Before we delve into how the Laplace Approximation (LA) maintains a consistent variance-growth direction, let us first
consider a concrete numerical example to illustrate how the gradient direction (as computed via Eq. 11) can be influenced
by the loss derivatives ∂L

∂σ2
j

in MSE, PID, LA and LE. To illustrate how each loss behaves when certain variances already

exceed the clean variance σ2
clean, consider a simple three-dimensional scenario:

σ2 =
[
σ2
1 , σ

2
2 , σ

2
3

]
= [0.001, 0.001, 0.006], σ2

clean ≪ {0.001, 0.006}. (24)

Furthermore, let the Jacobian for a single perturbation dimension δi be

∂σ2
j

∂δi
= Mi,j = [1, 1, −1]. (25)

Note that σ2
3 is notably larger than σ2

clean and also has a negative sensitivity −1. The emergence of such an extreme variance
component like σ2

3 = 0.006 can be attributed to the influence of the initial perturbation. Initially, the variance matrix is
uniformly distributed. However, the perturbation disrupts this balance, causing the variance distribution to become uneven.

(1) MSE Loss. We define

LMSE =
∑
j

(
σ2
j − σ2

clean

)2
,

∂LMSE

∂σ2
j

= 2
(
σ2
j − σ2

clean

)
. (26)
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Substituting σ2
1 = 0.001, σ2

2 = 0.001, σ2
3 = 0.006 and assuming σ2

clean is much smaller (effectively zero compared to these
values), yields partial derivatives 2× 0.001, 2× 0.001, 2× 0.006 =0.002, 0.002, 0.012. Hence,

∂LMSE

∂δi
=

3∑
j=1

[
2(σ2

j − σ2
clean)

]
× (Mi,j) = 0.002 · 1 + 0.002 · 1 + 0.012 · (−1) = −0.008, (27)

which is negative. Although each σ2
j term is larger than σ2

clean, the third component’s combination of a larger partial
derivative (0.012) and negative Jacobian factor (−1) dominates, reversing the overall gradient sign.

Therefore, MSE prioritizes optimizing large variance components (e.g., 0.006) while neglecting smaller variance components
(e.g., 0.001). As a result, the gradient sign of MSE is often misaligned with the direction of increasing variance Mi,j . This
misalignment causes MSE to fall into a local optimization trap, where it fails to effectively increase either its targeted large
variance components or the smaller variance components that require growth.

(2) PID Loss. Define

LPID =
∑
j

(
log σ2

j − log σ2
clean

)2
,

∂LPID

∂σ2
j

=
2

σ2
j

(
log σ2

j − log σ2
clean

)
. (28)

For σ2
3 = 0.006 ≫ σ2

clean, the term log(σ2
3) − log(σ2

clean) is positive, ensuring that ∂LPID

∂σ2
3

> 0. Thus, PID maintains a

positive contribution to ∂L
∂δi

unless the negative Jacobian factor is extremely large. This means that PID correctly prioritizes
small variance components during the initial optimization, where gradients are larger for smaller variances due to the 1/σ2

j

factor.

However, as small variance components are optimized and their values grow, the variance matrix becomes more uniform.
This uniformity reduces the optimization space, as the differences between variance components shrink. Additionally,
the PID gradient ∂LPID

∂σ2
j

weakens over time because the 1
σ2
j

term diminishes as σ2
j increases. Consequently, PID requires

significantly more steps to achieve sufficiently large variance. This slow convergence is reflected in its original work, where
PID requires 900 steps to remove most identity semantics, compared to the 30–50 steps required by our proposed methods.

(3) LA (Laplace Approx.) Loss. The Laplace Approximation (LA) Loss is defined as:

LLA =
|σ2 − µ|

b
,

∂LLA

∂σ2
j

=
1

b
, (29)

where µ is typically set to 0, and b is a scaling factor, typically set to 1. Importantly, the gradient with respect to σ2
j is

constant and independent of the variance values, meaning the optimization direction is determined solely by the mapping
relationship Mi,j .

For the example where Mi,j = [1, 1,−1], the contribution to ∂L
∂δi

becomes:

∂LLA

∂δi
=

∑
j

∂LLA

∂σ2
j

·Mi,j =
1

b
·
∑
j

Mi,j =
1

b
(1 + 1− 1) =

1

b
. (30)

Here, ∂LLA

∂δi
is guaranteed to remain positive since b > 0. Unlike MSE or PID, LA loss maintains a consistent alignment

with the variance growth direction, as the sign of the gradient depends only on the structure of Mi,j , and there are no
cancellations caused by varying magnitudes of σ2

j or ∂L
∂σ2

j
.

Moreover, this constant gradient ensures simultaneous and balanced growth of variance across all dimensions. Unlike PID,
which prioritizes small variances but slows down as variance grows, or MSE, which prioritizes large variances but may
reverse gradient direction, LA Loss provides consistent updates in the direction of increasing variance for all components.
This makes LA Loss robust and efficient, avoiding the pitfalls of gradient misalignment or diminishing optimization space.

In addition to its consistent direction, LA Loss maintains a large optimization space throughout the process. The constant
gradient ∂LLA

∂σ2
j

= 1
b ensures equal optimization for all variance components, regardless of their initial magnitudes. Unlike
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PID, where the gradient diminishes as variance grows, LA Loss sustains fixed optimization strength across both small
and large variances, preventing stagnation or bias toward specific components. This balanced optimization accelerates
variance growth by enabling simultaneous updates across all components. As a result, LA Loss rapidly amplifies variance
and removes identity semantics within 30–50 steps, significantly outperforming PID’s 900-step optimization.

(4) LE Loss Recall that our Lagrange Entropy (LE) Loss is given by

LLE(σ
2) = −

∑
j

σ2
j log(σ

2
j ) + λ

(∑
j

σ2
j − c

)2

. (31)

When c = 1,

LLE(σ
2) = −

∑
j

σ2
j log(σ

2
j ) + λ

(∑
j

σ2
j − 1

)2

, (32)

whose partial derivative reads
∂LLE

∂σ2
j

= −
[
log(σ2

j ) + 1
]
+ 2λ

(∑
k

σ2
k − 1

)
. (33)

We can interpret the first part −
[
log(σ2

j ) + 1
]

as an entropy-driven term acting on each dimension, while 2λ(
∑

k σ
2
k − 1)

acts as a global Lagrange penalty controlling the sum of variances.

Note on logarithms. Throughout this paper (and in our code), log(·) refers to the natural logarithm ln(·).

Case 1: When
∑

j σ
2
j < 1, the entropy term dominates (positive) while the Lagrange penalty is negative. If σ2

j < 1,
then log(σ2

j ) < 0, so −
[
log(σ2

j ) + 1
]

is a significantly positive quantity. For example, if σ2
j = 0.01, log(0.01) ≈ −4.605

and−[log(0.01)+1] ≈ +3.605, giving a strong boost to that dimension. Meanwhile, because
∑

j σ
2
j −1 < 0, the Lagrange

term 2λ(
∑

j σ
2
j − 1) is negative, partially offsetting the entropy push. However, while the total variance is still well below

1, most dimensions have σ2
j < 1, so multiple positive entropy terms outweigh this negative penalty overall. Thus, the net

gradient remains positive, continuing to increase σ2
j without flipping sign or stalling.

Case 2: When
∑

j σ
2
j > 1, the Lagrange penalty dominates (positive) while the entropy term can be negative. For

dimensions whose σ2
j > 1, log(σ2

j ) + 1 is positive, so −
[
log(σ2

j ) + 1
]

becomes negative, preventing any single dimension
from growing unboundedly. On the other hand, if

∑
j σ

2
j − 1 > 0, 2λ(

∑
j σ

2
j − 1) is a positive addition. A sufficiently

large positive penalty can override the negative entropy factor. For example, if log(σ2
j ) + 1 = 1.693 (for σ2

j ≈ 2), then the
negative part is −1.693, but if 2λ(

∑
j σ

2
j − 1) = +3, the sum is still +1.307, ensuring a net positive gradient. As a result,

even large variances do not cause the update direction to flip to negative. The global Lagrange term ensures a consistent
push if the total variance is meant to exceed 1.

Implications for Optimization Space and Speed.

• No severe compression: A common pitfall in PID is that ∂LPID

∂σ2
j
∝ 1

σ2
j

diminishes severely for large σ2
j , slowing

down further variance increases. In contrast, LE’s entropy part −σ2 log(σ2) varies only logarithmically with σ2. As
σ2
j grows from 0.1 to 1 or even 5, log(σ2

j ) changes moderately, so −
[
log(σ2

j ) + 1
]

remains in a range that does not
collapse to near-zero magnitude. Furthermore, the Lagrange term λ(

∑
j σ

2
j − 1)2 adds a finite amount, but does not

drastically shrink the net gradient. Thus, LE avoids the late-stage gradient exhaustion seen in PID and also avoids
MSE’s extreme sign flips caused by large outlier variances.

• Minimal risk of sign inversion: MSE can create large partial derivatives that, if multiplied by negative
∂σ2

j

∂δ , flip the
total sign. In LE Loss, the interplay of a negative entropy term (for big σ2

j ) and a positive Lagrange term often cancels
out in favor of a mild positive net gradient.

• LA-like speed: LA uses a constant gradient independent of σ2
j , quickly boosting variances in 30–50 steps. LE, with

the two-phase dominance (entropy vs. Lagrange), similarly avoids any late-stage slowdown or early-stage stalling.
Thus, it can achieve variance expansion nearly as swiftly as LA.
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Conclusion. In this three-dimensional example, MSE can yield a negative overall gradient (despite σ2
j > σ2

clean) due to
the mismatch with the negative Jacobian in the third dimension. PID does avoid sign flips but loses momentum for larger
variances, thus requiring many iterations to further increase σ2. LA, by contrast, keeps a constant gradient that remains
aligned with the “increase-variance” direction at every step. Meanwhile, LE combines the advantages of LA’s stable gradient
with an additional entropy and Lagrange-based balancing. It achieves near-constant or steadily positive updates while
regulating extreme growth in any single variance dimension. Hence, LE can match LA’s rapid speed of variance expansion
and avoid both MSE’s sign flips and PID’s late-stage slowdown.

A.4. Why Only Attack Variance Rather Than Mean?

PID (Li et al., 2024)) observes that attacking the mean µ of the VAE encoder primarily introduces noisy artifacts or textures
into the generated images. Although these artifacts become more pronounced with additional attack steps, they do not
effectively remove identity or semantic information. In contrast, attacking the variance σ2 directly impacts the diffusion
model’s ability to extract semantic concepts. As documented by PID, increasing the variance optimization steps (from 0 to
300, 600, or even 900 steps) gradually erase the identity semantics in the generated image until it is fully obfuscated.

Hence, to remove high-level semantics (e.g., identity), it is sufficient to focus on ∂L
∂σ2 and ignore the mean. The mean

perturbation adds little to semantic destruction besides additional noise-like artifacts. Therefore, in our chain-rule analysis,
we primarily consider how σ2 evolves under adversarial perturbations δ, rather than factoring in the mean term.

Table 9. Comparing the performance of our method with baselines against DreamBooth (Ruiz et al., 2023) on CelebA-HQ and VGGFace2.
The best result under each metric is marked with bold. The prompt used is ”a dslr portrait of sks person.”

Method CelebA-HQ VGGFace2
ISM ↓ FDFR ↑ Brisque ↑ LPIPS ↑ ISM ↓ FDFR ↑ Brisque ↑ LPIPS ↑

No Defense 0.419 0.085 7.506 0.748 0.459 0.048 9.496 0.769
AdvDM (Liang et al., 2023) 0.319 0.067 11.461 0.796 0.263 0.139 15.288 0.821
ASPL (Van Le et al., 2023) 0.316 0.064 11.381 0.802 0.289 0.113 14.195 0.819
Mist (Liang & Wu, 2023) 0.071 0.095 13.338 0.864 0.153 0.078 17.497 0.857

MetaCloak (Liu et al., 2024b) 0.358 0.117 25.51 0.781 0.377 0.062 20.102 0.803
SimAC (Wang et al., 2024) 0.328 0.298 18.143 0.776 0.384 0.263 19.618 0.787
DisDiff (Liu et al., 2024a) 0.396 0.049 48.672 0.749 0.376 0.254 17.863 0.821
SDS- (Liu et al., 2024a) 0.378 0.028 9.435 0.805 0.414 0.033 37.508 0.825

PID (Li et al., 2024) 0.077 0.631 35.317 0.899 0.077 0.791 48.318 0.928
LE(ours) 0.031 0.918 103.004 0.968 0.044 0.849 91.221 0.967
LA(ours) 0.034 0.827 96.181 0.959 0.056 0.867 86.236 0.974

Table 10. Comparison of our method with other approaches against Textual Inversion and IP-Adapter on CelebA-HQ. The best-performing
defense under each metric is marked with bold.

Method Textual Inversion IP-Adapter
ISM ↓ FDFR ↑ Brisque ↑ LPIPS ↑ ISM ↓ FDFR ↑ Brisque ↑ LPIPS ↑

No Defense 0.567 0.014 21.432 0.512 0.341 0.025 18.436 0.689
AdvDM (Liang et al., 2023) 0.292 0.358 43.309 0.818 0.319 0.021 40.057 0.768
ASPL (Van Le et al., 2023) 0.332 0.268 40.235 0.812 0.328 0.017 40.941 0.768
Mist (Liang & Wu, 2023) 0.106 0.795 28.514 0.743 0.311 0.026 32.229 0.834

MetaCloak (Liu et al., 2024b) 0.231 0.221 42.588 0.755 0.305 0.028 37.003 0.785
SimAC (Wang et al., 2024) 0.122 0.792 67.545 0.843 0.317 0.028 41.338 0.753
DisDiff (Liu et al., 2024a) 0.345 0.251 35.038 0.770 0.319 0.018 21.866 0.747

SDS- (Xue et al., 2023) 0.452 0.057 44.240 0.764 0.296 0.022 29.968 0.806
PID (Li et al., 2024) 0.054 0.938 82.314 0.926 0.296 0.018 21.568 0.819

LE(ours) 0.017 0.988 89.537 0.958 0.078 0.248 47.937 0.875
LA(ours) 0.014 0.958 87.349 0.943 0.091 0.232 45.796 0.893
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B. More Quantitative Results
B.1. Quantitative Results for mismatch prompt against DreamBooth

We simulate a scenario where a user, after training a DreamBooth model, employs an inference prompt ”a dslr portrait of
sks person,” which differs from the training prompt ”a photo of a sks person.” The specific results are presented in Table 9
and Figure 6. We observe that when the inference prompt does not match the training prompt, the identity similarity metric
(ISM) of the baselines decreases. Meanwhile, the noise in the generated images is significantly reduced, as reflected in
the Brisque and LPIPS scores of the baselines, which become similar to those of the No Defense method. In contrast, our
approaches consistently produce pure noise images, demonstrating greater robustness.

B.2. Quantitative Results for Textual Inversion and IP-Adapter

We report the results of using Textual Inversion (Gal et al., 2022) and IP-Adapter (Ye et al., 2023) as personalization
algorithms on the CelebA-HQ dataset in Table 10. Our methods outperform other methods in resisting Textual Inversion and
IP-Adapter. For Textual Inversion, we consistently maintain extremely low ISM scores and high FDFR scores, demonstrating
that the generated images contain almost no recognizable facial semantics. When applied to IP-Adapter, only our methods
achieve an ISM score below 0.1 and an FDFR score above 0.2. These results confirm that our methods are well-suited to
resist various mainstream personalization generation algorithms.

C. More Ablation Experiments
C.1. Attack step

Gradient Explosion and Unstable Oscillations. We conduct an ablation study on the number of optimization steps
for LE and LA and observe a notable phenomenon in Figure 4(a): ∂LLE

∂δ experiences a gradient explosion after 30 steps,
whereas ∂LLA

∂δ begins to oscillate unstably around 50 steps. We hypothesize that these instabilities arise from the product
of the two Jacobians (Jf mapping δ to hidden feature ϕ and Jg mapping ϕ to σ2), amplified by the nonlinearities in the
network. Once certain activation functions saturate or shift during high-dimensional updates, the gradients can grow or
fluctuate dramatically as the number of steps increases. Figure 4(b) illustrates the generated images at various optimization
steps. Between 30 and 75 steps, both LE and LA produce nearly pure noise. When the step count exceeds 100, the latent
distribution drifts further, resulting in chaotic “scene-like” patterns. As reported in Table 5, while such images exhibit
degraded metrics they nonetheless fully remove identity semantics, thus providing effective protection.

C.2. Uncontrolled Settings:

Our methods introduce carefully crafted perturbations to images to prevent diffusion models from learning their features,
and these perturbations are applied to all images in our experiments. In this section, we assume that malicious users can
access some clean images and mix them with the protected ones as the training set. Table 11 demonstrates that even under
different protection ratios, our methods remain effective.

Table 11. Comparison between perturbed images and clean images at different ratios on CelebA-HQ.
Perturbed Clean IMS ↓ FDFR ↑ Brisque ↑ LPIPS ↑

0 4 0.608 0.041 17.896 0.662
1 3 0.536 0.148 26.449 0.771
2 2 0.481 0.191 44.075 0.821
3 1 0.227 0.916 123.387 0.972
4 0 0 1 155.804 1.021

C.3. On WikiArt

We further evaluate the effectiveness of our methods in protecting artistic works. We select five different styles from the
WikiArt dataset (Saleh & Elgammal, 2015): Baroque, Cubism, Expressionism, Fauvism, and Romanticism. For each style,
we use four paintings as the training set for DreamBooth, with the training prompt set to ”a photo of sks picture”. As shown
in Figure 13, both our LA and LE methods successfully generate pure noise images, effectively preventing the imitation of
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(a) Trend of ∂L
∂δ

for LE and LA

(b) Visualization of generated images under different optimization steps for LE and LA Loss.

Figure 4. (a) Trend of ∂L
∂δ

for LE and LA as optimization steps increase. The gradient of LE explodes after step 30, while the gradient of
LA becomes unstable after step 50. (b) Adversarial effects of LE and LA at different steps. Since both LE and LA generate pure noise
images by step 30, we apply an early-stopping strategy to prevent gradient issues and reduce unnecessary computational overhead.
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artistic styles. This demonstrates that our approach can be extended beyond identity protection and applied to safeguarding
artistic creations from unauthorized style replication.

D. More Visualization
D.1. Visualization of Transferability

We present visualizations in Figures 7-10, demonstrating the transferability of adversarial examples generated by our
methods and baselines on Stable Diffusion v1.5 to other models. Specifically, we fine-tune LoRA using these adversarial
examples as the training set on Stable Diffusion 2.1 (SD2.1), SDXL (Podell et al., 2024), Stable Diffusion 3.5 Medium
(SD3.5) (Esser et al., 2024), and FLUX.1-dev (Labs, 2023), and analyze the resulting images. As shown in Figure 7,
since SD2.1 shares a nearly identical architecture with SD1.5, both our methods and baselines maintain strong protective
effects. The baselines introduce distortions and partially remove semantic content, while our method completely eliminates
identity semantics, generating pure noise images. However, the protection effectiveness decreases with SDXL, SD3.5, and
FLUX.1-dev due to significant architectural differences from SD1.5.

Architectural Differences:

SDXL vs. SD1.5: Unlike SD1.5, which uses a single UNet, SDXL adopts a two-stage UNet architecture with a base UNet
followed by a refiner UNet for improved image quality. Additionally, SDXL employs a larger text encoder (CLIP ViT-L/14)
and improved conditioning mechanisms, making it more resistant to perturbations designed for SD1.5.

SD3.5 and FLUX.1-dev: These models replace the traditional UNet with a more advanced Multi-Modal Diffusion
Transformer (MM-DiT) architecture, which significantly alters the way latent representations are processed. MM-DiT
improves efficiency, handles multimodal inputs, and leverages self-attention across broader spatial contexts, reducing the
impact of attacks targeting UNet structures.

Due to these changes, methods that rely on UNet gradient information (e.g., AdvDM (Liang et al., 2023), ASPL (Van Le
et al., 2023), MetaCloak (Liu et al., 2024b), SimAC (Wang et al., 2024), SDS- (Xue et al., 2023)) or cross-attention
manipulation (e.g., DisDiff (Liu et al., 2024a)) largely fail to maintain protection, with even noticeable noise artifacts
disappearing. On the other hand, Mist (Liang & Wu, 2023) and PID (Li et al., 2024), which attack the VAE module, retain
some protective effects by introducing visible noise distortions. However, the generated images still preserve identity
semantics, limiting their effectiveness.

In contrast, our methods continue to eliminate most identity semantics, demonstrating superior transferability and practical
applicability across different model architectures.

D.2. Against ControlNet-based Image Edit

We evaluate our methods and baselines in resisting ControlNet-based (Zhang et al., 2023) image editing. Specifically, we
used ControlNet v1.1 with Depth Map, SoftEdge, OpenPose, Normal Map, and Segmentation as conditional guidance for
image editing. The visualization results are presented in Figure 12. As observed, baselines continue to add varying levels of
noise to the generated images, whereas our method completely removes identity semantics, producing pure noise images
that cannot be used for unauthorized purposes.
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Figure 5. More visualization of our methods and baselines against DreamBooth on CelebA-HQ and VGGFace2. The odd-numbered rows
show reference images, while the even-numbered rows display generated images. The inference prompt used is ”a photo of a sks person.”
All baselines add different levels of noise to the generated images, while only our methods completely remove identity semantics and
generate pure noise images.
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Figure 6. More visualization of our methods and baselines against DreamBooth on CelebA-HQ and VGGFace2. The odd-numbered rows
show reference images, while the even-numbered rows display generated images. The inference prompt used is ”a dlsr portrait of sks
person.” The performance of baselines is affected by the mismatch between the inference prompt and the training prompt, while our
methods still completely remove identity semantics and generate pure noise images. Best viewd in zoom.
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Figure 7. More visualization of our methods and baselines against LoRA on CelebA-HQ. The odd-numbered rows show reference images,
while the even-numbered rows display generated images. Adversarial examples generated on SD1.5 are transferred to SD2 as the training
set. The noise originally added by the baselines is largely removed, indicating poor transferability. In contrast, our method still generates
images that are unrelated to identity semantics, demonstrating better transferability. Best viewd in zoom.
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Figure 8. More visualization of our methods and baselines against LoRA on CelebA-HQ. The odd-numbered rows show reference images,
while the even-numbered rows display generated images. Adversarial examples generated on SD1.5 are transferred to SDXL as the
training set. The noise originally added by the baselines is largely removed, indicating poor transferability. In contrast, our method still
generates images that are unrelated to identity semantics, demonstrating better transferability. Best viewd in zoom.
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Figure 9. More visualization of our methods and baselines against LoRA on CelebA-HQ. The odd-numbered rows show reference images,
while the even-numbered rows display generated images. Adversarial examples generated on SD1.5 are transferred to SD3.5 Medium as
the training set. The noise originally added by the baselines is largely removed, indicating poor transferability. In contrast, our method
still generates images that are unrelated to identity semantics, demonstrating better transferability. Best viewd in zoom.
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Figure 10. More visualization of our methods and baselines against LoRA on CelebA-HQ. The odd-numbered rows show reference images,
while the even-numbered rows display generated images. Adversarial examples generated on SD1.5 are transferred to FLUX.1-dev as the
training set. The noise originally added by the baselines is largely removed, indicating poor transferability. In contrast, our method still
generates images that are unrelated to identity semantics, demonstrating better transferability. Best viewd in zoom.
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Figure 11. More visualization of our methods and baselines against Textual Inversion on CelebA-HQ. The odd-numbered rows show
reference images, while the even-numbered rows display generated images. All baselines add different levels of noise to the generated
images, while only our methods completely remove identity semantics and generate pure noise images.
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Figure 12. Visualization of our methods and baselines against ControlNet-based Image Editing (Zhang et al., 2023) on CelebA-HQ.
We evaluate five image editing applications: Depth Map, SoftEdge, Openpose, Normal Map, and Segmentation. The prompt used is ”a
man”. All baselines add different levels of noise to the generated images, while only our method completely removes identity semantics
and generates pure noise images.
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Figure 13. Visualization of our methods and baselines against DreamBooth on WikiArt. We experiment with five different artistic
styles: Baroque, Cubism, Expressionism, Fauvism, and Romanticism. Our method consistently generates pure noise images, effectively
protecting artistic styles from unauthorized imitation.
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