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ABSTRACT

The genome sequence contains the blueprint for governing cellular processes.
While the availability of genomes has vastly increased over the last decades, ex-
perimental annotation of the various functional, non-coding and regulatory ele-
ments encoded in the DNA sequence remains both expensive and challenging.
This has sparked interest in unsupervised language modeling of genomic DNA,
a paradigm that has seen great success for protein sequence data. Although
various DNA language models have been proposed, evaluation tasks often dif-
fer between individual works, and might not fully recapitulate the fundamen-
tal challenges of genome annotation, including the length, scale and sparsity of
the data. In this study, we introduce BEND, a Benchmark for DNA language
models, featuring a collection of realistic and biologically meaningful down-
stream tasks defined on the human genome. We find that embeddings from cur-
rent DNA LMs can approach performance of expert methods on some tasks, but
only capture limited information about long-range features. BEND is available at
https://anonymous.4open.science/r/BEND-8C42/README.md.

1 INTRODUCTION

Within the last two decades, the cost of sequencing whole genomes has significantly decreased,
having led to an extraordinary wealth in the availability of genomic DNA sequences. This has
improved our understanding of genetic variation among human genomes and introduced genomes
of hitherto understudied species. However, the generation of experimental data to annotate and
understand these genomic sequences has not kept pace.

At the same time, Natural Language Processing (NLP) has demonstrated the power of large-scale
models to capture signals in sequences by masking and reconstructing them in a self-supervised
manner. The success of masked language modeling (MLM) has extended to the biological domain
Rao et al. (2019); Bepler & Berger (2021); Madani et al. (2023); Rives et al. (2019), with protein
language models (pLMs) now being widely used for prediction tasks on protein sequences. The
availability of unlabeled genomic sequences and limited labeled data appear to make language mod-
eling a natural fit for DNA. DNA language models (LMs) have indeed started to emerge, but while
the paradigms of NLP have been easy to transfer to proteins, the same may not be true for model-
ing genomes, as they present unique challenges: signals can have an extremely long length range,
high-signal regions are sparse, and even in those regions the density of signal is lower compared to
proteins.

In this paper, we present BEND, a Benchmark for DNA Language Models, a collection of realistic
and biologically meaningful downstream tasks. BEND aims to provide a standardized set of tasks
that measure the ability of LMs to capture the intricacies of genomic data, and to help advance this
nascent field. In summary, BEND contributes:

• Six curated tasks and datasets, probing understanding of different DNA functional elements
over a variety of length scales.

• Experiments covering DNA LMs from six different sources. To our knowledge, this represents
first evaluation of all publicly available self-supervised DNA LMs suitable for the human genome
together with appropriate baseline methods.

• An adaptable benchmarking framework for preparing embeddings and training lightweight
supervised models.
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• Result: DNA LMs approach expert method performance on some tasks. However, no LM
consistently outperforms all others, and reasoning over very long contexts, as e.g. required for
findind enhancers, is still challenging.

• Result: DNA LMs can learn distinct features in masked language modeling. Some LMs’
embeddings primarily capture information about gene structure, while others focus on noncoding
regions.

2 BACKGROUND

2.1 DNA ORGANIZATION AND TERMINOLOGY

In order to facilitate understanding how different prediction tasks relate to various aspects of the
genome, we briefly discuss the fundamental structure and function of eukaryotic genomic DNA
(Figure 1). DNA is a linear polymer of four nucleotide bases, which are represented by the four
letters A, C, G and T. It consists of two complementary strands that form a double helix by base
pairing the bases A, T, and C, G respectively.

Genomic DNA is physically organized in a hierarchical manner. The DNA polymer is coiled around
histone proteins, which reduces its physical length and plays a role in regulation. A complex of 8
histone proteins together with coiled DNA is called a nucleosome. Nucleosomes further condense
to form chromatin fibers, which occur in compact (closed) or loose (open) form. This controls
the accessibility of the involved DNA sequence to the transcriptional machinery, a process tightly
regulated by chemical modifications of the histones (Bannister & Kouzarides, 2011). Chromatin
can form loops, which allows regions distant in the sequence to be close in physical space. DNA
appears in independent modules called chromosomes, which are typically millions of base pairs (bp)
in length.

The genome contains genes, segments that are transcribed to RNA molecules and potentially trans-
lated to proteins. Protein-coding genes are structured as introns and exons. For expression, a gene is
first transcribed to a pre-mRNA molecule, and introns are removed via splicing. This combines the
exons to one contiguous sequence that encodes the protein. Flanking nucleotides in the RNA that
do not code for the protein are called untranslated regions (UTRs) and can have regulatory function.
In addition, genes are associated with regulatory regions such as promoters, enhancers, silencers
and insulators that modulate their expression. Some elements, such as promoters, may lie in close
proximity to the start of the gene, the transcription start site (TSS). Others can appear multiple
thousands bp away from the gene, but mediate their effect by physical proximity. Gene-adjacent
regulatory elements are referred to as cis, and distant ones as trans.

Figure 1: The organization of eukaryotic genomic DNA. The numbers are indicative examples for
the human genome. Genes are structured as introns and exons, and have a promoter regulatory
element before their transcription start site. Enhancer regulatory elements can be present multiple
thousands bases away from the gene. DNA is wrapped around histone proteins (yellow cylinders)
and densely packed as a chromosome.

2.2 LANGUAGE MODELING FOR BIOMOLECULAR SEQUENCES: FROM PROTEINS TO DNA
Over the last years, language modeling has achieved breakthroughs in representation learning for
protein property and structure prediction, with transformer-based pLMs emerging as powerful foun-
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dation models, capable of learning long-range interactions fully unsupervised (Rives et al., 2019;
Elnaggar et al., 2022; Lin et al., 2023). The development of pLMs benefitted from the availability
of standardized, representative benchmarks, such as TAPE (Rao et al., 2019) and PEER (Xu et al.,
2022), as well as long-running protein machine learning tasks with an emphasis on fair benchmark-
ing to measure progress (Kryshtafovych et al., 2021; Zhou et al., 2019).

While LMs have been extremely successful for modeling proteins, key differences between the two
types of macromolecules hinder their widespread adoption for DNA. A typical protein consists of
400-500 amino acids, which are usually represented as tokens from an alphabet of size 20. The
analogy of amino acid tokens with word tokens in NLP, as well as the fact that size of inputs to
pLMs and NLP models are on the same order of magnitude, made methods developed for NLP
directly transferable to protein data, with little to no methodological adaption required (Rao et al.,
2020; Elnaggar et al., 2022). The alphabet of DNA is significantly smaller (4 tokens) than that of
proteins, while at the same time sequences, such as those of genes, are considerably longer and have
no naturally defined border, as e.g. the position of the most distant relevant regulatory element is
typically unknown. In contrast, protein sequences are naturally self-contained and, being the final
gene product, have a significantly higher information density. Together, sparsity and long sequences
pose unique challenges to DNA LMs.

2.3 RELATED WORKS

2.3.1 DNA LANGUAGE MODELS

The first available DNA LM was DNABERT (Ji et al., 2021), a 12-layer BERT (Devlin et al., 2018)
model trained on sequences of length 512 from the human genome. Sequences were tokenized
as k-mers using a sliding window. DNABERT was evaluated by fine-tuning on tasks comprising
promoter, transcription factor (TF) binding site and splice site (SS) prediction.

A growing number of DNA LMs has been proposed since the release of DNABERT. These include
the Genomic Pretrained Network (GPN) (Benegas et al., 2023), FloraBERT (Levy et al., 2022), the
Nucleotide Transformer (NT) (Dalla-Torre et al., 2023), Species-aware LM (Gankin et al., 2023),
GENA-LM (Fishman et al., 2023), DNABERT-2 (Zhou et al., 2023) and HyenaDNA (Poli et al.,
2023). With the exception of HyenaDNA, models were trained using the MLM objective, but differ
in their model architectures, tokenization strategies and training data.

GPN uses dilated convolution layers rather than a transformer model. It showed strong performance
for zero-shot prediction of variant effects in the A. thaliana genome it was trained on. Qualitative
results showed that GPN captures information about gene structure and motifs of binding sites.

Nucleotide Transformer introduced the first large-scale transformer-based DNA LMs. All NT mod-
els share the same architecture, but differ in their number of training genomes and model parameters.
Models were trained on either the human reference genome, 3,202 different genetically diverse hu-
man genomes or a selection of 850 genomes from a range of species. To increase the receptive field
of the model, sequences were tokenized as 6-mers, allowing for processing sequences of up to 5,994
bp in length. The NT models were evaluated on tasks comprising promoter, SS, histone modification
and enhancer prediction with a context length of up to 600 bp.

GENA-LM (Fishman et al., 2023) proposed multiple medium-size LMs trained on human and multi-
species genomes based on BERT and the BigBird (Zaheer et al., 2020) architecture for long se-
quences. Byte-Pair Encoding (BPE) was used for tokenization to further increase the receptive field,
enabling an input length of about 36,000 bp. Models were evaluated on supervised tasks compris-
ing promoter, SS, enhancer, chromatin profile and polyadenylation site prediction. While covering
the same biological phenomena, tasks were defined differently than in NT. Similarly, DNABERT-2
(Zhou et al., 2023) replaced DNABERT’s k-mer tokenizer with BPE and pre-trained on multi-species
genomes.

Predating NT and GENA-LM, FloraBERT (Levy et al., 2022) proposed pre-training on 93 differ-
ent plant genomes to enable transfer learning for the gene expression prediction task. However,
FloraBERT was trained exclusively on promoter-containing sequences. As this requires features to
already be annotated in the genome, it can be considered a departure from the paradigm of fully
self-supervised learning. Similarly, Gankin et al. (2023) pre-trained on 3’ untranslated regions of
genes from 1,500 fungal genomes. Species information was made explicit by providing a species
label with each sequence to the model.
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HyenaDNA (Nguyen et al., 2023) introduced a collection of autoregressive LMs, trained using the
next token prediction objective at single-nucleotide resolution on the human genome. The Hyena
LM architecture (Poli et al., 2023) enabled scaling to input lengths of up to 1 million nucleotides.
HyenaDNA models were evaluated by fine-tuning on NT’s supervised tasks and the Genomic Bench-
marks (Grešová et al., 2023) collection, outperforming NT on the majority of tasks.

A number of DNA LMs were proposed without making trained models available. These comprise
the original BigBird transformer (Zaheer et al., 2020), GeneBERT, which includes the prediction of
ATAC-seq signals in the pre-training stage, MoDNA (An et al., 2022), with a motif prediction task
as an additional objective, the BERT-based LOGO (Yang et al., 2021), and Revolution (Cheng et al.,
2023), which adopts convolutions with circular padding.

2.3.2 SUPERVISED LEARNING ON DNA
Developing models on genomic DNA sequences for the prediction of properties and understanding
of transcriptional regulation has long been a central task of computational genomics research. The
availability of large-scale functional genomics data and advancements in deep learning techniques
have brought progress in predicting various genomic features directly from DNA sequences. Deep-
Bind (Alipanahi et al., 2015) was one of the first methods to leverage a shallow CNN architecture for
predicting TF and RNA-binding protein binding sites from DNA and RNA sequence, respectively.
DeepCpG (Angermueller et al., 2017) predicts DNA methylation via a CNN/GRU architecture. Bas-
set (Kelley et al., 2016) and ChromTransfer (Salvatore et al., 2023) model chromatin state in a cell
type specific manner by predicting the presence or absence of DNase-I peaks. Using chromatin state
as an auxiliary input, DeepChrome (Singh et al., 2016) predicts gene expression via multi-modal
learning on DNA sequence and histone mark information.

Recently, methods for predicting gene expression have leveraged information across thousands of
functional genomic tracks by training in a large-scale, multi-task fashion. Basenji (Kelley et al.,
2018) and Enformer (Avsec et al., 2021) demonstrated state-of-the-art performance for gene expres-
sion prediction from DNA sequence alone, by integrating genomic information across up to 200
kilobases and multi-task training across several genome-wide functional tasks, including DNase-I
activity and CAGE signal prediction. Similarly, DeepSEA (Zhou & Troyanskaya, 2015) and Sei
(Chen et al., 2022) models cis-regulatory TF binding, chromatin accessibility and histone modifica-
tion profiles across a large range of cell types.

All mentioned current models for the prediction of functional genomics tracks are trained in a su-
pervised manner and do not leverage pre-trained DNA LMs.

2.3.3 BENCHMARK COLLECTIONS ON DNA
Genomic Benchmarks (Grešová et al., 2023) features a collection of balanced classification tasks
on DNA sequences with a median length ranging from 200 to 2,381 bp. The benchmark covers
the classification of DNA elements and the prediction of a sequence’s origin. For each task, only
performance of a baseline supervised neural network model was reported.

DNABERT-2 (Zhou et al., 2023) introduced Genome Understanding Evaluation (GUE), a collection
of classification tasks ranging from 70 to 1,000 bp. On the human genome, it includes classification
of promoter, SS and TF binding sequences. It covers other species with a TF binding task on mouse,
a histone modification task on yeast and a Covid variant classification task on viruses. DNABERT,
DNABERT-2 and NT were evaluated. No non-LM baselines are included in GUE.

2.3.4 MOTIVATION OF BEND
While existing DNA LMs have reported good performance on the tasks on which they were evalu-
ated, evaluation strategies to date have shown limited consistency across individual works, with GUE
constituting the most recent attempt at benchmarking on equal terms. Beyond comparability, it is
important to ensure that benchmark tasks reflect the complexity and characteristics of real-world
genome analysis. In practice, genomes are vast, and functional regions are sparsely distributed
throughout the genome. While there are tasks on DNA that are inherently local, such as classifying
functional regions (e.g. classifying TF binding sites), it needs to be recognized that such tasks do
not allow us to evaluate a model’s understanding of the genome over longer ranges.

Therefore, focusing solely on tasks on short sequences, such as distinguishing promoter from non-
promoter sequences, falls short of evaluating the extent to which a model’s representations capture
complex features of genomic organization, preventing us from measuring benefits of modeling the
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Table 1: Overview of the tasks included in the benchmark. Nucleotide-wise tasks require the pre-
diction of a sequence of labels with the same length as the input. In sequence-wise tasks the whole
input sequence is to be classified. In binned tasks, multiple nucleotides share a label.

Task Type # Samples Length range Evaluation
(#train/val/test) Metric Source

Gene finding Nucleotide-wise
Multiclass 5,976 1,433 -

14,000 bp 4780/598/598 MCC GENCODE
(Frankish et al., 2021)

Enhancer annotation Binned (128bp)
Binary 285 100,096 bp 10-fold CV AUPRC

Fulco et al. (2019),
Gasperini et al. (2019),

Enformer (Avsec et al., 2021)

Histone modification Sequence-wise
Multilabel 612,081 512 bp 420,713/

70,801/120,567 AUROC ENCODE (ENCODE Project Consortium, 2012)

CpG methylation Sequence-wise
Multilabel 959,039 512 bp 743,095/

109,717/106,227 AUROC ENCODE (ENCODE Project Consortium, 2012)

Noncoding variant
effects (expression)

Sequence-wise
Binary 106,221 512 bp zero-shot AUROC DeepSEA

(Zhou & Troyanskaya, 2015)
Noncoding variant

effects (disease)
Sequence-wise

Binary 295,495 512 bp zero-shot AUROC ClinVar
(Landrum et al., 2020)

genome with larger context windows. Moreover, there are cases in which a short-sequence task
represents a simplification compared to real-world applications, as exemplified by SS-containing
sequences. In genome annotation, classifying SSs is a subproblem of the gene finding task and
would typically not be performed on its own.

To provide a more comprehensive assessment, BEND proposes genomic tasks that rely less on prior
knowledge of feature positions and require reasoning over potentially long contexts. The tasks
cover a range of length scales, selected to be both biologically relevant and to cover a variety of
DNA properties. The tasks explore representations at different resolutions, requiring modelling of
DNA at single bp resolution as well as over longer stretches (Table 1). We establish our benchmark
on the human genome, as it offers ample experimental data for the derivation of tasks, has a complex
organization, and was the focus of most published DNA LMs.

3 TASKS AND DATASETS

We introduce the collection of tasks included in BEND. For each task, we additionally provide a
Datasheet (Gebru et al., 2018) in section A.1. All tasks are provided in bed format, listing the
genome coordinates of samples (A.2). This makes it convenient to include more flanking context
without reprocessing the data, should future works find it useful to take more bp into account.

3.1 GENE FINDING

Definition Gene finding is a multiclass problem where each nucleotide is classified as being either
in an exon (EF/R), intron (IF/R), a donor (DF/R) or acceptor (AF/R) splice site or a noncoding
region (NC). The F/R subscript denotes whether the gene is located on the forward or reverse
strand.

Biological relevance Annotating genes and identifying coding sequences is a key step in genome
annotation and protein discovery. It requires a model to use local context to identify correct reading
frames and codon structure, while using longer range signals to propagate the location of SS to
distant bp between SS, and correctly annotate them as lying in introns or exons. Introns can vary
in length from a few hundred to several thousand bp, requiring an LM to understand long-range
dependencies.

Data GENCODE (Frankish et al., 2021) gene annotations were processed to construct sequences
of nucleotide labels y 2 {EF , DF , IF , AF , ER, DR, IR, AR, NC} for each gene. Detailed pro-
cessing is laid out in A.1.1. Samples were partitioned at 80% identity following AUGUSTUS’
recommendations (Stanke & Waack, 2003).

Metric We compute the multi-class Matthews correlation coefficient (MCC) (Gorodkin, 2004)
over all bp. The MCC is used as it is robust to the inherently highly uneven label ratios of this task.

3.2 ENHANCER ANNOTATION

Definition Enhancer annotation is the problem of finding enhancer regions for a given gene. We
define enhancer annotation as a binary classification task. Given a sequence of gene-adjacent ge-
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nomic DNA that contains an enhancer, a binary label indicating whether it contains an enhancer
needs to be predicted for each segment of 128bp.

Biological relevance Enhancers are short, noncoding segments that contribute to regulating gene
expression. They can be located anywhere from a few thousand to a million bp away from their target
gene and work by being brought into physical proximity to the gene’s promoter. Their annotation is
a highly challenging task that requires detection of long-range interactions.

Data Experimentally validated enhancer-gene pairs were taken from CRISPR interference exper-
iments (Fulco et al. (2019); Gasperini et al. (2019) and paired with the main TSS of each gene from
Avsec et al. (2021). We extracted a sequence of 100,096 bp centered on the TSS for each gene.
Each 128bp were annotated with a binary label y 2 {0, 1} indicating whether the bin contains an
enhancer, yielding a label sequence of length 782. Detailed processing is laid out in A.1.3. Samples
were partitioned based on chromosomes.

Metric The AUPRC for binary classification is computed over all labels. As the number of sam-
ples is too limited for measuring performance robustly on a single test split, we perform 10-fold
cross-validation in order to be able to evaluate performance over all samples.

3.3 HISTONE MODIFICATION PREDICTION

Definition Histone modification prediction is a multi-label classification task, where the histones
which are part of the nucleosomes of a given DNA sequence are labeled with one or more histone
marks.

Biological relevance Histone proteins are key to the organisation of DNA into chromatin. Mod-
ifications of histones modulate chromatin structure and thus contribute to regulating chromatin ac-
cessibility and gene expression. Histone modification prediction requires modeling local binding of
TFs as well as long-range regulation, such as by distant enhancers.

Data Histone ChIP-seq data for 11 histone marks and 19 replicates in the K562 cell line was ob-
tained from ENCODE (ENCODE Project Consortium, 2012; Luo et al., 2020). Detailed processing
is laid out in A.1.4 and follows the methodology of ??. Each sample is a sequence of length 512
bp with a label vector y 2 {0, 1}19, such that yi = 1 if a histone bound to this sequence carries
modificaton i. Samples were partitioned based on chromosomes.

Metric The AUROC is computed for each label and subsequently averaged.

3.4 CPG METHYLATION PREDICTION

Definition CpG methylation prediction is a multi-label classification task, where a given CpG site
is either methylated or unmethylated in different cell lines.

Biological relevance Methylation of cytosine nucleotides in CpG sites is a prominent form of
epigenetic modification and plays a key role in the repression of gene expression.

Data Bisulfite sequencing data for 7 human cell lines was obtained from ENCODE (ENCODE
Project Consortium, 2012). Detailed processing is laid out in A.1.5. Each sample is a sequence of
length 512 bp centered on the CpG site with a label vector y 2 {0, 1}7, such that yi = 1 if the C is
methylated. Samples were partitioned based on chromosomes.

Metric The AUROC is computed for each label and averaged.

3.5 NONCODING VARIANT EFFECTS (EXPRESSION AND DISEASE)
Definition Predicting variant effects is a binary problem, where single-bp mutations are classified
as either having an effect or not. We treat classification as a zero-shot task, using the cosine distance
in embedding space between a variant nucleotide and its reference nucleotide as the prediction score.

Biological relevance Single-bp variants in noncoding regions can have functional consequences
by altering gene expression levels or causing disease. This task probes the LM’s understanding of
local context and potentially the structure of regulatory motifs. We focus on noncoding regions, as
coding variant effects can be predicted with high accuracy by modeling the mutation in the resulting
protein sequence (Frazer et al., 2021).
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Table 2: Overview of the LMs included in the benchmark. Models from all works proposing DNA
LMs applicable to the human genome were considered.

Model Seq length Trained on Architecture Source

AWD-LSTM Infinitea Multispecies RNN This work
Dilated ResNet 10,000 Human Refc CNN This work

DNABERT 512 Human Refc BERT Ji et al. (2021)
Nucleotide Transformer 5,994 Multispecies BERT Dalla-Torre et al. (2023)
Nucleotide Transformer 5,994 Human Refc BERT Dalla-Torre et al. (2023)

GENA-LM 4500 1000 Genomes projectd BERT Fishman et al. (2023)
GENA-LM 36,000 1000 Genomes projectd BigBird Fishman et al. (2023)

DNABERT-2 Infiniteb Multispecies BERT Zhou et al. (2023)
HyenaDNA 1,000,000 Human Refc Hyena Nguyen et al. (2023)
HyenaDNA 1,000 Human Refc Hyena Nguyen et al. (2023)

a As the LSTM compresses all preceding tokens into a single hidden state, it can technically process infinite sequences,
even though it was trained at finite lengths and might not have learnt to exploit such long contexts.
b DNABERT-2 uses ALiBi (Press et al., 2022) to encode position, which can technically scale to any sequence length. In
practice, the model was trained on finite lengths and the authors embedding sequences below 10,000 bp.
c (Schneider et al., 2017)
d (McVean et al., 2012)

Data For expression variants, we adapt the DeepSEA dataset (Zhou & Troyanskaya, 2015). For
disease-associated variants, we process ClinVar (Landrum et al., 2020), We apply Ensembl VEP
(McLaren et al., 2016) to categorize variants by genomic regions into consequence types. Detailed
processing is laid out in A.1.6 and A.1.7. Each variant is a genomic position with a mutation x 2
{A, C. G, T} and a label y 2 {0, 1}. The adjacent 512 bp serve as embedding context.

Metric We compute the AUROC. Additionally, we report separate AUROCs for the variant con-
sequence types to gain further insight into what genomic features are driving performance.

4 MODELING

Language Models We benchmark available LMs suitable for the human genome (Table 2).
Checkpoint selection criteria are laid out in A.6.2. Additionally, we train two simple baseline DNA
LMs: An AWD-LSTM (Merity et al., 2017) model trained on three species, and a dilated CNN
similar to GPN (Benegas et al., 2023), trained on the human genome. The model differs from GPN
in the parameter count and the length of training sequences (A.6.1).

Downstream model We train a lightweight supervised two-layer CNN model with 64 channels
on top of the LM embeddings for each task. LM weights are kept frozen and are not fine-tuned.
For LMs with reduced output sequence length due to tokenization, embeddings are upsampled to
the original sequence length (A.6.3). For sequence-level tasks, we apply average pooling after the
last convolutional layer. For the enhancer annotation task, the number of channels was reduced to
prevent overfitting.

Supervised baselines For each task, we train two supervised models without pre-training. For
a fair comparison between raw and embedded DNA sequences, we train both the two-layer CNN
model, as well as the dilated ResNet CNN directly on one-hot encoded DNA. The latter model is
used for all tasks except chromatin accessibility and histone modification, where we instead train
the Basset model which was specifically designed and developed for the task.

5 RESULTS

Gene finding DNA LMs show promising performance for gene finding (Table 3). The two-layer
CNN baseline fails to learn, possibly due to its inherent limitation to local context. However, the
same CNN is able to achieve varying levels of performance when using LM embeddings, suggesting
that embeddings capture some long-range information. NT-MS outperforms all models by a wide
margin, approaching the performance of the highly specialized AUGUSTUS (Stanke & Waack,
2003) gene finding model. HyenaDNA-large, although being the only LM whose context length
fully covers the input length of the task, only shows modest performance.

7



Under review as a conference paper at ICLR 2024

Table 3: Results on all tasks. The best performing DNA LM for each task is highlighted in bold.
Gene

finding
Chromatin
accessibility

Enhancer
annotation

Histone
modification

CpG
Methylation

Variant effects
(expression)

Variant effects
(disease)

Literature 0.78
AUGUSTUS

0.85
Basset

0.07 ± 0.04
Enformer

0.72
Basset

- 0.70
DeepSEA

0.56
DeepSEA

fully supervised ResNet 0.53 - 0.06 - - - -
CNN 0.00 0.76 0.03 0.71 0.84 - -

pre-trained

ResNet-LM 0.35 0.81 0.06 0.73 0.87 0.56 0.55
AWD-LSTM 0.09 0.74 0.05 0.70 0.81 0.51 0.48
NT-H 0.41 0.75 0.07 0.72 0.88 0.55 0.48
NT-MS 0.76 0.80 0.09 0.74 0.92 0.55 0.77
NT-H-1000G 0.31 - - - 0.89 0.45 0.49
DNABERT 0.21 0.84 0.07 0.74 0.91 0.60 0.56
GENA-LM BERT 0.23 0.05 0.72 0.91 0.49 0.55
GENA-LM BigBird 0.31 0.07 0.74 0.91 0.49 0.52
DNABERT-2 0.29 0.06 0.72 0.90 0.49 0.51
HyenaDNA large 0.36 0.07 0.67 0.91 0.45 0.51
HyenaDNA tiny 0.09 0.79 0.04 0.72 0.86 0.47 0.44

Chromatin accessibility prediction Supervised training on one-hot encoded sequences using the
Basset (Kelley et al., 2016) architecture shows highest performance (0.85), followed by DNABERT
(0.84). AWD-LSTM and NT-H show considerably lower performances of 0.74 and 0.75, respec-
tively, which is below the baseline CNN (0.76). This could be due to the large size of the training
set, limiting the utility of pre-trained embeddings.

Histone modification NT-MS and DNABERT show the highest performance (0.74), outperform-
ing the Basset (0.72) model. This suggests that LM embeddings can improve performance for
histone modification prediction, albeit at marginal levels.

CpG methylation NT-MS performs best on all included cell lines (Table 11). DNABERT, GENA-
LM and HyenaDNA-large also perform competitively, indicating that embeddings capture informa-
tion about CpG island methylation patterns.

Variant effect prediction DNA LMs show some signal for unsupervised prediction of noncoding
variant effects. As the two datasets focus on different genomic regions, we only see limited con-
sistency between the expression and disease variant tasks, with DNABERT and NT-MS performing
best respectively. While being worse than the supervised DeepSEA method, DNABERT matches
DeepSEA’s unsupervised performance on the expression dataset (AUROC 0.6, A.7). On the dis-
ease dataset, multiple LMs approach DeepSEA’s Disease Impact Score, with NT-MS outperforming
it. When dissecting performance by variant consequence types, we find that the performance of
NT-MS is driven by variants affecting splice sites and introns (Table 13). While splice sites can
be considered noncoding DNA, they are not the focus of DeepSEA, which models chromatin fea-
tures. In UTRs and up- or downstream regions, NT-MS does not outperform DeepSEA. Similar to
the results on the expression dataset, we find that DNABERT outperforms NT-MS in such regions,
suggesting that the two LMs learned distinct sequence features during pre-training. As all other NT
models show weaker performance on variants affecting gene structure, this could be a consequence
of multi-species training. However, we do not see similarly strong performance in the multi-species
DNABERT-2.

Enhancer annotation All investigated models perform poorly on this task. Enhancer annotation
is an extremely difficult task due to the length scale, sparsity of the signal, and small dataset, which
pose challenges for all investigated models. As we chose to frame it as a sequence annotation prob-
lem, rather than classifying matching pre-defined sequence pairs, it is a particularly stringent task.
Although the supervised baseline has a large enough receptive field to detect the long-range inter-
action, the size of the dataset is prohibitive for performance. The Enformer Avsec et al. (2021)
performance is comparable on this task, but it must be noted that this is an unsupervised method that
was not trained directly on enhancer data. Rather, it infers their locations from learning to predict
other genome annotations. While this task already proves to be highly challenging for current mod-
els at the given length scales, we note that biology is even more complex, with enhancers potentially
being millions of bp away.
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6 DISCUSSION

We introduce BEND, a benchmark collection for DNA LMs that aims at better recapitulating the
fundamental aspects of genomic sequence data. We find that currently available DNA LMs already
show promising performance on some tasks over fully supervised baselines, but do not offer consis-
tent improvements over all included tasks and can fall short of beating specialized existing prediction
methods. Overall, we find that NT-MS is a strong default LM, but is in some tasks inferior to the
much smaller DNABERT. Interestingly, while both models trained using the MLM objective, we
find that they learned distinct genomic features during pre-training. With the pre-training data and
the tokenization strategy being the key architectural difference, these choices may deserve more
attention in future DNA LMs.

On the gene finding task, we observe that the combination of NT-MS with a simple two-layer CNN
reaches a performance level close to AUGUSTUS which was found to be the state of the art in a
recent benchmark (Scalzitti et al., 2020), suggesting that future more sophisticated LM-based gene
finders might become a method of choice for this problem. This result also indicates that current
DNA LMs are capable of modeling long-range dependencies to some extent.

Probing LMs at even longer ranges in the enhancer annotation task reveals that long-range under-
standing still needs improvement for sparse problems with limited data. This highlights a key issue
facing DNA LMs: Not only is there a need for long-range modeling to improve our understanding
of the genome, as demonstrated by Avsec et al. (2021), but it also raises a fundamental question
as to whether current LM training objectives will lead to the incorporation of such distant, sparse
signals, or whether the local sequence context is all that is required for sequence reconstruction and
some level of supervision is needed. Since BEND is not inherently tied to an LM objective, our
standardized benchmark may also prove useful for evaluating eventual DNA representation models
that follow a different paradigm.

7 LIMITATIONS AND OUTLOOK

As the curation of a comprehensive benchmark task collection requires experimental ground-truth
data to be available, and most published models are trained on human data, we focused BEND on
the human genome. BEND aims at comparing the effectiveness of different model architectures
and training strategies for learning representations from genomic data, under the assumption that
other, similarly structured genomes should behave comparably under self-supervision. However, an
important question that remains unanswered is whether DNA LMs can aid with generalization across
different organisms. In the future, we hope to extend the benchmark to other, diverse organisms, so
that generalization power can be tested in a transfer-learning setting, i.e. by training a task on a
given organism, and evaluating performance on another.

In BEND, we benchmarked to what extent embeddings capture features that can be leveraged by
downstream models for prediction. This approach is fully agnostic regarding the underlying LM’s
methodology and scales to models of any size. Other works proposed to fine-tune LMs on tasks
directly. While this potentially conflates a representation’s content with the inductive bias of a model
architecture for a given task, fine-tuning may yield performance gains beyond the results observed
in this work (Nguyen et al., 2023; Zhou et al., 2023). Another aspect to be investigated in the future
is to dive deeper into how LMs learn features during pre-training, as done previously for protein
LMs (Vig et al., 2021).
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