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ABSTRACT

Transformer is popular in recent 3D human pose estimation,
which utilizes long-term modeling to lift 2D keypoints into
the 3D space. However, current transformer-based methods
do not fully exploit the prior knowledge of the human skele-
ton provided by the kinematic structure. In this paper, we
propose a novel transformer-based model EvoPose to intro-
duce the human body prior knowledge for 3D human pose
estimation effectively. Specifically, a Structural Priors Repre-
sentation (SPR) module represents human priors as structural
features carrying rich body patterns, e.g. joint relationships.
The structural features are interacted with 2D pose sequences
and help the model to achieve more informative spatiotempo-
ral features. Moreover, a Recursive Refinement (RR) module
is applied to refine the 3D pose outputs by utilizing estimated
results and further injects human priors simultaneously. Ex-
tensive experiments demonstrate the effectiveness of EvoPose
which achieves a new state of the art on two most popular
benchmarks, Human3.6M and MPI-INF-3DHP.

Index Terms— 3D human pose estimation, Transformer,
kinematic structure, recursive refinement

1. INTRODUCTION

Monocular 3D human pose estimation (HPE) aims to estimate
3D joint positions of the human skeleton from given videos,
which has rich practical application scenarios, such as motion
capture [1, 2] and virtual reality [3]. An effective pipeline
is separating the 3D HPE as a two-stage system consisting
of 2D keypoints detection and 3D joints lifting [4]. Between
them, the key barrier is the 3D joints lifting because of the ill-
posed property caused by the depth leakage. Existing state-
of-the-art 3D HPE methods [5, 6, 7] solve the lifting problem
by modeling long-term and fine-grained spatiotemporal infor-
mation with Transformer [8] and achieve advanced results.
But they often merely extract features for 2D pose sequences,
which misses the human priors and limits their performances.

We believe that human priors, also called kinematic struc-
tural information, can provide much more useful information
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to constrain the estimated human poses, which has the poten-
tial to lead to more reliable results. In particular, kinematic
cues of human skeleton [9] provide body structural knowl-
edge that indicates the category of each joint and the connec-
tivities [9] for every joint pair, which results in more plausible
3D poses in physical. To allocate that prior knowledge more
effectively in the Transformer model for 3D HPE, we propose
a novel transformer lifting model EvoPose.

EvoPose includes a Structural Priors Representation
(SPR) module, a SpatioTemporal Enhancement (STE) mod-
ule, and a Recursive Refinement (RR) module to introduce
human priors effectively. Firstly, the SPR extracts structural
features from the kinematic tree to introduce human priors
initially. And then in the STE module, the 2D pose sequence
is combined with the structural features in a STEvo block to
inject the kinematic constraint in the spatiotemporal modeling
process, leading to more informative spatiotemporal sequence
features. Finally, the RR module estimates 3D poses based
on these sequence and structural features recursively to fur-
ther incorporate the human priors. With the aforementioned
processes, the human priors have been introduced to 3D HPE
step-by-step. Our main contributions are as follows:

• We present a novel transformer method, EvoPose, for
monocular 3D HPE using three modules to introduce
kinematic structure priors effectively step-by-step.

• Our EvoPose achieves state-of-the-art performance on
two datasets, surpassing existing methods by 10.3mm
under MPJPE on MPI-INF-3DHP especially.

2. METHODS

The overview of our proposed EvoPose is illustrated in Fig. 1.
Firstly, a Structural Priors Representation (SPR) module for-
mulates the kinematic tree as structural features P to indicate
the high-level relations in each joint pair. Then, a transformer
module SpatioTemporal Enhancement (STE) guides S and P
to interact with each other and extracts stronger sequence and
structural features (defined as Se and P e) for further usage.
Finally, a Recursive Refinement (RR) module estimates 3D
poses by modeling on Se and P e recursively.
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Fig. 1: (a) Overview of the proposed EvoPose. Structural Priors Representation (SPR) derives structural features from the
kinematic tree. SpatioTemporal Enhancement (STE) models spatiotemporal relations and enhances structural features. (b)
Overview of STEvo in STE. (c) Overview of the Recursive Refinement (RR) which refines the estimated result auto-regressively.

2.1. Structural Priors Representation

To introduce the human priors into our model, the SPR first
builds a joint map M ∈ RJ×J×1 as Fig. 1(a) shows and J is
the total number of body joints. Specifically, if joint i and j
are connected in the kinematic tree, then Mij = Mji = 1,
otherwise Mij = Mji = 0. This map represents joints con-
nection in the kinematic tree, indicating the local relationships
in the human body. We further use a Spatial Positional Em-
bedding (SPE) to introduce the global kinematic cues. Be-
cause the ordering of joints follows the rules of the kinematic
tree, the gap of joint number can reflect the category differ-
ence in each joint pair, providing more global relationships.
We formulate these gaps into one-hot vectors and map them
to SPE as a tensor with the shape of J × J × dp, where dp is
the structural feature dimension. After that, the joint map is
fed into a linear layer to expand its dimension and added with
the SPE to get the structural features P ∈ RJ×J×dp .

2.2. SpatioTemporal Enhancement

When the SPR processes human body priors, the 2D pose se-
quence is also transferred to initial features S ∈ RN×J×ds ,
where N is the frame number and ds is the sequence feature
dimension. To integrate human priors into the spatiotemporal
modeling process, we propose a SpatioTemporal Evoformer
(STEvo) block into the STE module to incorporate the human
priors P and the sequence features S effectively.

2.2.1. SpatioTemporal Evoformer

The original Evoformer [10] has two input heads, a multi-
ple sequence alignment (MSA) representation one, and a pair
representation one. In the STEvo, we send the temporal fea-
tures S to the MSA head and the human structural features P
to the pair representation head, which is shown in Fig. 1(b).
Obviously, our inputs have quite different meanings from the
original Evoformer, but they share the same dimension for-

mats. Specifically, the pose features S, sent to the MSA head,
have the shape of N × J × ds, and the structural features P ,
fed to the pair representation head, possess J × J × dp shape
in our STEvo. The message interactions of S in STEvo can
be interpreted as two levels: the spatial level on J joints and
the temporal level across N frames. In this process, human
priors provided by P can be injected into the pose features S
effectively and P are also interacted with S, leading to more
expressive spatiotemporal features Se and further enhanced
structural features P e.

2.2.2. Details of SpatioTemporal Evoformer

In this subsection, we give further insights and details of
STEvo. Its details are shown in the Fig. 1(b). We denote the
branch processing S as the SpatioTemporal Modeling branch.
And the branch for P is the Structural Enhancement branch.
SpatioTemporal Modeling. Following the original Evo-
former, our STEvo also uses row- and column-wise self-
attention (RSA and CSA) [10] to treat the MSA head input–
pose features S. The RSA means the self-attention for each
row of S. Note that S has the shape of N × J × ds and its
row is a J × ds matrix which means the human pose features
in one frame. So the RSA is essential to the spatial message
interaction and can be written as follows:

Attni = Softmax(QiK
T
i /

√
ds + Linear(P ))Vi, (1)

where Qi ∈ RJ×ds , Ki ∈ RJ×ds and Vi ∈ RJ×ds denote
query, key and value [8] respectively, which are computed
by pose features Si ∈ RJ×ds of the i-th frame. Compared
to the vanilla transformer [8], RSA injects human priors P
into the affinities to constrain relationships between different
joints, which makes the spatial information interaction more
reliable. The CSA is the vanilla self-attention for each col-
umn (RN×ds ) of S, which is obviously corresponding to the
temporal interaction for each joint. So the cascade of RSA
and CSA can model the spatiotemporal patterns with human
kinematic priors and lead to enhanced pose features Se.



Structural Enhancement. The structural features P are up-
dated by the enhanced pose features Se. The outer product
mean (OPM) [10] is first applied on different rows of Se:

Fij =
1

N

N−1∑
n=0

Se
n,i ⊗ Se

n,j , (2)

where Se
n,i ∈ RN×ds denotes the features of the i-th joint at

the n-th frame. The output Fij ∈ Rds×ds means the tempo-
ral averaged outer product matrix along the whole N frames,
indicating the high-order features of the relationship between
the i-th and j-th joints. And then, these high-order features
F ∈ RJ×J×ds×ds are used to update P as follows:

P̃ = P + Linear(F ). (3)
This Linear(·) is a fully-connect layer operated on the chan-
nel level: Rds×ds → Rdp , which makes the dimension of F
matched with P . After that, several non-attention and atten-
tion modules, including triangular updates using outgoing and
incoming edges (OTU and ITU) and triangular self-attention
around starting and ending node (STA and ETA) [10] which
are utilized in the original Evoformer, are operated on P̃ to
get the final refined P e. These refined structural features in-
corporate two kinds of human priors. One is extracted by the
kinematic tree and the other is derived from the given pose se-
quence, leading to stronger human pose prior knowledge and
improving the final 3D pose estimation accuracy.

2.3. Recursive Refinement

After obtaining the enhanced spatiotemporal and structural
features Se and P e, the Recursive Refinement module esti-
mates the 3D poses by the following recursive pipeline:

Sr
t = FeatRe(Se

t , Xt−1), Xt = RegHead(Sr
t ), (4)

where Xt is the 3D pose estimation results at t-th round and
Se
t = Sr

t−1. Note that, Se
1 = Se, X0 = 0, and the pipeline is

shown in Fig. 1(c). The FeatRe refines the pose features Se

by introducing the last round pose estimation results Xt−1:
Sr
t = FeatRe(Se

t , Xt−1)

= RSA(Se
t , P

e)− MLP(Xt−1)︸ ︷︷ ︸
residual term

+Se
t . (5)

The residual term estimates the corresponding gap between
Se
t and Xt−1, reflecting new information that the Xt−1 lack

but Se
t provide. The MLP(·) means a 3 layer multi-layer per-

ception. This new information is added on the Se
t to get the

refined one Sr
t . The Sr

t has the shape of N ×J ×ds, express-
ing each joint as a ds-dimensional vector. So the RegHead is
a joint-level convolutional module that maps each joint to its
3D coordinates. The last round estimation results are defined
as X3d ∈ RN×J×3, storing the (x, y, z) coordinate value for
each joint across all frames. The recursive estimation pipeline
further injects the human priors in the final 3D pose estima-
tion, leading to more reliable results.

2.4. Loss Function

The model is trained end-to-end with several types of loss
functions. We first compute a coordinate loss Lc by the Mean

Squared Error between estimated and ground truth 3D poses
coordinates to constrain spatial error. Additionally, we com-
pute the joint velocity loss [11] Lv and acceleration loss [12]
La, which measure the gap of the first-order and second-order
derivative of the 3D pose coordinates, respectively. Moreover,
we also project predicted 3D poses to 2D and compute the re-
projection error between them and the ground truth 2D pose
as the reprojection loss Lp. Finally, these losses are combined
together into a total one: L = Lc+λv ·Lv+λa ·La+λp ·Lp,
where λ• is the weight of each loss term.

3. EXPERIMENTS

Implementation details. In our implementation, we set λv =
λa = 0.2 and λp = 0.1. The RR module is conducted for
L = 2 times. The proposed EvoPose is implemented by Py-
Torch on Tesla V100 GPU. We use Amsgrad optimizer with
an initial learning rate of 0.001 which decays by 5% after each
epoch and 50% after every 5 epochs. For fair comparisons, we
also adopt horizontal flip augmentation following [6, 11, 15].
Note that, we only use the center frame of the final results as
the prediction in inference.

3.1. Datasets and Evaluation Metrics

Human3.6M. The Human3.6M [16] is the largest indoor
dataset for 3D HPE, containing 3.6 million video frames with
15 scenarios recorded by four calibrated cameras. Follow-
ing [15, 6, 13, 14], we train our model on five subjects and
test on two subjects with 17 joints. We report the mean per
joint position error (MPJPE).
MPI-INF-3DHP. The MPI-INF-3DHP [17] is a large chal-
lenging 3D pose dataset with both indoor and outdoor scenar-
ios. Following the settings in previous works [6, 13, 14], we
use eight subjects for training and six subjects for testing on
valid frames captured by eight cameras. We use three evalua-
tion metrics: MPJPE, percentage of correct keypoints (PCK)
under the threshold of 150mm, and area under curve (AUC).

3.2. Comparison with State-of-the-Art Methods

Results on Human3.6M. We compare our model with state-
of-the-art methods. Cascaded pyramid network (CPN) [18] is
used to estimate 2D poses from video frames, following [6,
13, 14, 11]. We report the results in Table 1 (top) with in-
puts of 243 frames and achieve 42.83mm under MPJPE. It
can be seen that our EvoPose is competitive to P-STMO [14].
To further explore the lower bound of our method, the results
with ground truth 2D poses are reported in Table 1 (bottom).
EvoPose surpasses all the other methods by a large margin,
demonstrating the effectiveness of our method. When the in-
put 2D poses are more accurate to be consistent with human
kinematic, the performance of our method becomes better.
Results on MPI-INF-3DHP. To evaluate the ability of our
model in the real world, we also report the performance on



Table 1: Results comparison with state-of-the-art methods on Human3.6M under MPJPE(mm). Top: 2D poses detected by
CPN; Bottom: ground truth 2D poses. Bold: the best; Underline: the second.
Method Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

PoseFormer (ICCV’21)[6] 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
MHFormer (CVPR’22)[13] 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
P-STMO (ECCV’22)[14] 38.9 42.7 40.4 41.1 45.6 49.7 40.9 39.9 55.5 59.4 44.9 42.2 42.7 29.4 29.4 42.88

EvoPose (Ours) 41.7 43.0 38.1 40.7 44.2 52.5 41.3 42.6 52.7 56.8 45.3 41.5 42.9 28.8 29.6 42.83

Method Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

PoseFormer (ICCV’21)[6] 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3
MHFormer (CVPR’22)[13] 27.7 32.1 29.1 28.9 30.0 33.9 33.0 31.2 37.0 39.3 30.0 31.0 29.4 22.2 23.0 30.5
P-STMO (ECCV’22)[14] 28.5 30.1 28.6 27.9 29.8 33.2 31.3 27.8 36.0 37.4 29.7 29.5 28.1 21.0 21.0 29.3

EvoPose (Ours) 24.3 24.8 23.1 23.4 24.6 25.9 28.3 24.6 30.1 31.4 25.3 24.1 23.7 18.7 20.1 24.8

Input MHFormer P-STMO EvoPose Ground Truth Input MHFormer P-STMO EvoPose Ground Truth

Fig. 2: Qualitative comparison with two state-of-the-art methods on both Human3.6M (left) and MPI-INF-3DHP (right) dataset.

Table 2: Results comparison with state-of-the-art methods on
MPI-INF-3DHP. Bold: the best; Underline: the second.

Methods N PCK↑ AUC↑ MPJPE↓

PoseFormer (ICCV’21)[6] 9 88.6 56.4 77.1
MHFormer (CVPR’22)[13] 9 93.8 63.3 58.0
P-STMO (ECCV’22)[14] 81 97.9 75.8 32.2

EvoPose (Ours) 9 97.8 81.9 24.2
EvoPose (Ours) 27 97.8 83.7 21.9

Table 3: Ablation study on model components: SPR and the
recursive pipeline in RR.

SPR Recursive Pipeline (RR) MPJPE

% % 57.3
! % 47.9
% ! 55.5
! ! 45.8

MPI-INF-3DHP compared to state-of-the-art methods. Fol-
lowing [15, 13, 14], we use ground truth 2D poses as inputs.
Due to the sequence lengths of this dataset being shorter than
Human3.6M, we adopt the setting of 27 frames. The results
are shown in Table 2. It can be seen that our method performs
much well compared to all the other methods with improve-
ments of 10.3mm in MPJPE and 7.9 in AUC over the pre-
vious best method, P-STMO, and achieves competitive per-
formance in PCK with it by using smaller input length. This
indicates the great power of our method in the real world.
Qualitative Results. We also show several visualization re-
sults in Fig. 2 on both Human3.6M and MPI-INF-3DHP with
two state-of-the-art methods, MHFormer and P-SMTO. It is
obvious that our model achieves excellent performance with
more accurate angles on these two challenging datasets.

3.3. Ablation Study

The number of input frames is an important cause influencing
the accuracy. We present the results with both CPN detected

Table 4: Ablation study on the number of input frames with
MPJPE. CPN: cascaded pyramid network; GT: ground truth.

2D Inputs 9 27 81 243

CPN 48.3 45.8 43.7 42.8
GT 34.6 33.1 28.0 24.8

and ground truth 2D poses in Table 4. With the increase of
the frame number, the results become more accurate.

To further explore the effectiveness of components in
our model, we conduct an additional ablation study on Hu-
man3.6M under MPJPE. Considering the time efficiency, we
choose the number of 27 frames. As the results shown in
Table 3, the structural features derived from the kinematic
cues in SPR and enhanced in STE improve the accuracy by
9.4mm, while the reuse of estimated results can refine the
performance to 55.5mm without the help of human priors.
When the structural features get enhanced and work with RR
to interact with estimated results iteratively, the performance
is improved by a large margin of 11.5mm to 45.8mm. These
indicate that the structural features effectively introduce hu-
man priors and can be better utilized by the recursive pipeline
in RR to further improve the performance.

4. CONCLUSION

In this paper, we propose EvoPose, a novel recursive trans-
former for 3D HPE with kinematic structure priors. Evo-
Pose first extracts structural features from the kinematic tree
to introduce human priors and builds interactions between
these features and 2D pose sequences to estimate 3D poses.
Then EvoPose reuses previous estimations combined with the
structural features to further utilize human priors for refine-
ment. Extensive experiments show that the proposed EvoPose
has a large performance advantage in real-world scenarios.
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