
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WHICH TASKS SHOULD BE COMPRESSED TOGETHER?
A CAUSAL DISCOVERY APPROACH FOR EFFICIENT
MULTI-TASK REPRESENTATION COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Conventional image compression methods are inadequate for intelligent analysis,
as they overemphasize pixel-level precision while neglecting semantic significance
and the interaction among multiple tasks. This paper introduces a Taskonomy-
Aware Multi-Task Compression framework comprising (1) inter-coherent task
grouping, which organizes synergistic tasks into shared representations to improve
multi-task accuracy and reduce encoding volume, and (2) a conditional entropy-
based directed acyclic graph (DAG) that captures causal dependencies among
grouped representations. By leveraging parent representations as contextual priors
for child representations, the framework effectively utilizes cross-task information
to improve entropy model accuracy. Experiments on diverse vision tasks, includ-
ing Keypoint 2D, Depth Zbuffer, Semantic Segmentation, Surface Normal, Edge
Texture, and Autoencoder, demonstrate significant bitrate-performance gains, vali-
dating the method’s capability to reduce system entropy uncertainty. These findings
underscore the potential of leveraging representation disentanglement, synergy, and
causal modelling for compact representation learning, enabling efficient multi-task
compression in intelligent systems. Code will be available.
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Figure 1: Motivation of Taskonomy-Aware Multi-Task Compression. (a) Multi-task Compression
Performance: Normalized performance (0=worst, 1=best for clarity) of compressors in diverse tasks.
(b) Necessity of Task Grouping: Relative performance (%) when compressors are trained on one
task and tested on another. Positive values indicate collaboration, negative values highlight conflicts,
underscoring the need for task grouping. (c) Necessity of Taskonomy-Aware Causal Modeling:
Visualization of local context correlation (middle) and global channel-wise correlation (right) of
Semantic Seg. and Surface Normal tasks, indicating the potential for capturing redundancy and
achieving bit savings through task-aware causal modeling. The ■ indicates the current decoding
point, while the ▲ represents the most similar reference positions.
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1 INTRODUCTION

Multimodal models like CLIP (Radford et al., 2021), GPT-4 (Achiam et al., 2023), and Sora (Liu
et al., 2024a) exhibit human-level comprehension and reasoning(Achiam et al., 2023; Chang et al.,
2024; Zheng et al., 2023; Laskar et al., 2023), making them potential consumers of visual and
multimedia content. This highlights the need for semantic representation compression to support
efficient multi-task processing. However, current compression techniques, including both handcrafted
video codecs (Bross et al., 2021; Pennebaker & Mitchell, 1992; Si & Shen, 2016) and end-to-end
learning-based approaches (Jiang et al., 2023; He et al., 2022; Zou et al., 2022; Chen et al., 2021; Ballé
et al., 2017), primarily focus on rate-distortion optimization (Shannon et al., 1959), i.e., constraining
the entropy model to accurately estimate the probability distribution of latent space symbols while
simultaneously maximizing the pixel-level likelihood between the reconstructed and original images.
Nevertheless, conventional compression methods lack semantic representation constraints, limiting
their ability to preserve task-relevant information while reducing redundancy. As illustrated in
Fig. 1a, assessment on MS-COCO (Lin et al., 2014) tasks with images compressed at 0.15 bpp shows
learning-based methods MLIC++ (Jiang et al., 2023) and ELIC (He et al., 2022) exhibited a notable
superiority compared to the handcrafted WebP (Si & Shen, 2016) and VTM-17.0 (Bross et al., 2021),
particularly in multimodal tasks like Video Question Answering (Zhang et al., 2023), highlighting
their potential to capture richer semantics for intelligent multimedia analysis.

In response to these limitations, the paradigm of Video Coding for Machines (VCM) (Yang et al.,
2024; Choi & Bajić, 2022; Duan et al., 2020) has emerged as a promising solution. VCM integrates
image compression with feature representation to achieve both compactness and efficiency, aiming to
meet the dual objectives of high-fidelity human vision and high-precision machine vision(Ge et al.,
2024; Li et al., 2024; Liu et al., 2023b; Bai et al., 2022).

Despite advancements in VCM, most methods still treat tasks in isolation (Liu et al., 2021; Bai et al.,
2022) or focus only on predefined tasks (Liu et al., 2023b; Li et al., 2024), overlooking the benefits
of grouping supportive tasks or the complex relationships across task feature spaces. Preliminary
studies (Shi et al., 2023; Fifty et al., 2021; Standley et al., 2020; Zamir et al., 2018) and our findings
in Fig. 1b reveal statistically significant correlations among tasks, both positive and negative. These
correlations highlight the synergies and conflicts in multi-task compression. Therefore, identifying
task groups that leverage synergies and reduce conflicts is essential for improved multi-task learning
and optimized compression performance. Furthermore, Fig. 1c demonstrates the existence of local and
global causal contextual relationships across tasks with different semantic granularities. Exploiting
conditional relationships in representations enables more accurate prediction of symbol distributions
through conditional entropy, thereby improving compression efficiency. Conventional methods,
however, process tasks independently, ignoring inter-task dependencies, which leads to redundancy.

Thus, an essential question arises: How can we discern and exploit the interdependencies among
tasks to achieve efficient multi-task representation compression? Addressing this question requires
models that can (1) discern mutually beneficial and conflicting tasks to group them effectively, and
(2) disentangle intricate sub-task relationships.

To address this challenge, we propose a paradigm shift with Taskonomy-Aware Multi-Task Com-
pression (TAMC), which integrates task grouping and causal discovery for compact multi-task
representation compression. By leveraging causal relationships between tasks, TAMC enhances
task performance and improves overall compression efficiency. Our approach consists of two key
components. First, we cluster inter-coherent tasks into groups that share a universal representation,
leveraging synergies among mutually beneficial tasks to improve accuracy and reduce encoding
volume. This is the first work to systematically group tasks for compression, mitigating conflicts and
preventing performance degradation. Second, we construct a directed acyclic graph (DAG) based
on conditional entropy to capture causal relationships among task representations. This approach
identifies task dependencies across different abstraction levels, uncovering inter-task relationships
and mapping information flow through directed graphs. By traversing causal paths, parent task repre-
sentations provide informative cross-task contexts for child tasks, as dedicated in Fig. 2, reducing
uncertainty, improving compression efficiency, and enhancing scalability.

Our contributions: 1. We demonstrate that leveraging intricate inter-task relationships significantly
improves rate-performance efficiency by clustering tasks for collective compression and establishing
causal links between clusters. 2. We introduce a DAG-based causal discovery framework via
conditional entropy, which captures semantic dependencies across abstraction levels to enhance
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Figure 2: The proposed cross-task causal context compression framework. Gray components represent
the original model, and black solid-lined components show the proposed extensions. The parent yp
provides an adjacent local and global causal context for the child yc.

system certainty and reduce information entropy, thereby improving compression compactness. 3.
The proposed TAMC achieves superior performance across diverse downstream task benchmarks
while remaining competitive in universal image reconstruction. Extensive experiments on key
computer vision tasks using the Taskonomy dataset validate the effectiveness of our approach.

2 RELATED WORK

Multi-Task Learning. Multi-task learning (MTL) improves performance by introducing inductive
biases and emphasizing relevant features (Zhang & Yang, 2021). However, task competition for
model capacity and ineffective shared representations often hinder MTL. Grouping compatible tasks
is crucial for reducing conflicts and boosting performance (Lu et al., 2020; Yu et al., 2020; Chen
et al., 2020; Kendall et al., 2018), yet current approaches often rely on human intuition (Zhang &
Yang, 2021). Recent studies (Fifty et al., 2021; Wu et al., 2020; Standley et al., 2020) highlight the
need for systematic task grouping to advance the field.

End-to-End Image Compression for Human and Machine Tasks. Gray components in Fig. 2
provide a high-level overview of E2E-learned image compression (Ballé et al., 2017), an image x is
first encoded into latent representations y using an analysis transform ga(x;θe), then quantized to
discrete values ŷ. With a learned probability model pŷ(ŷ), ŷ can be losslessly coded using arithmetic
coding. On the decoder side, a synthesis transform gs(ŷ;θd) reconstructs the image x̂ from ŷ:

y = ga(x;θe), ŷ = Q(y), x̂ = gs(ŷ;θd). (1)

To improve compression efficiency by decorrelating the latent space and estimating symbol proba-
bilities, Ballé et al. (2018) introduces a hyperprior model that reduces spatial redundancies among
latent variables, adding a few extra bits to convey spatial structure. This hyperprior model enables a
more accurate entropy model and better estimation of pŷ(ŷ). It can be divided into a hyper analysis
transform ha(y;θhe) and a synthesis transform hs(ẑ;θhd):

z = ha(y;θhe), ẑ = Q(z), pŷ|ẑ(ŷ|ẑ) = hs(ẑ;θhd). (2)

Minnen et al. (2018) proposed a more accurate entropy model which jointly utilizes an autoregressive
context model gcm. The predicted Gaussian parameters N(µ, σ) of the distribution pŷ(ŷ) are
functions of the learned parameters of the hyper-decoder, context model, and entropy parameter
networks (θhd, θcm, and θep, respectively):

pŷ(ŷ | ẑ,θhd,θcm,θep) =
∏
i

(
N (µi, σ

2
i ) ∗ U

(
−1

2
,
1

2

))
(ŷi), (3)

with µi, σi = gep(ψ, ϕi;θep), ψ = gh(ẑ;θhd), and ϕi = gcm(ŷ<i;θcm), U
(
− 1

2 ,
1
2

)
is a uniform

noise to approximate quantization during training. The overall loss function is:

L = R(ŷ) +R(ẑ) + λ · D(x, x̂) = E
[
− log2(pŷ|ẑ(ŷ|ẑ))

]︸ ︷︷ ︸
rate(latents)

+E [− log2(pẑ(ẑ))]︸ ︷︷ ︸
rate(hyper-latents)

+λ · D(x, x̂︸ ︷︷ ︸
distrotion

),

(4)
where λ controls the rate-distortion tradeoff. The first term is the rate that corresponds to the cross
entropy between the natural (marginal) distribution and the learned entropy model. The second term
is the rate to transmit hyperprior. The third term measures the reconstruction quality according to the
given distortion metric d (e.g., PSNR or MS-SSIM). Recent advancements include architectures such
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Figure 3: Overview of TAMC. Given a series of tasks, how can we effectively cluster them
in the latent semantic space and construct a causal graph to optimize bitrate-performance
simultaneously? To find a feasible solution, we follow these steps: (I): Group tasks based on
inter-task coherence under bitrate constraints. (II): Construct a DAG via conditional entropy to
capture causal relationships. (III): Compress grouped representations according to DAG in a scalable
manner.

as residual networks (Theis et al., 2017; Mentzer et al., 2018; Rippel & Bourdev, 2017; Nakanishi
et al., 2019; Cheng et al., 2020; He et al., 2022), self-attention (Chen et al., 2021; Cheng et al., 2020;
Guo et al., 2021), ConvNext (Duan et al., 2023), invertible modules (Xu & Zhang, 2021; Xie et al.,
2021; Ma et al., 2020), Generative Adversarial Networks (GANs)(Agustsson et al., 2019; Santurkar
et al., 2018; Tschannen et al., 2018; Mentzer et al., 2020), and transformers(Lu et al., 2022; Xiang
et al., 2022; Zhu et al., 2021; Zou et al., 2022; Liu et al., 2023a). These advancements, combined
with improved entropy models (e.g., hierarchical (Ballé et al., 2018), auto-regressive (Minnen
et al., 2018; He et al., 2021; Xiang et al., 2022)), multireference entropy (Qian et al., 2020), and
innovations such as channel-wise and spatial-wise acceleration (Minnen & Singh, 2020; He et al.,
2021; Jiang et al., 2023; He et al., 2022), codebooks and vector quantization (Zhu et al., 2022), and
hierarchical VAEs (Duan et al., 2023), have significantly improved compression performance. Many
existing techniques overlook their impact on downstream tasks like classification, detection, and
segmentation, which require task-specific feature retention. Task-aware paradigms such as Video
Coding for Machines (VCM)(Yang et al., 2024; Choi & Bajić, 2022) focus on machine vision-targeted
compression(Li et al., 2024; Liu et al., 2023b), including feature-assisted coding(Liu et al., 2024b),
scalable coding(Liu et al., 2021), and intermediate feature compression(Kim et al., 2023; Chen et al.,
2021). While effective for individual tasks(Liu et al., 2021), these methods often neglect multi-task
interactions. Partial solutions, such as "Coding for Human Perception" and "Coding for Machine" (Li
et al., 2024; Liu et al., 2023b), fall short in capturing complex multi-task relationships, underscoring
the need for better multi-task compression.

3 APPROACH

3.1 ARCHITECTURE

An overview of TAMC is provided in Fig. 3. It comprises three key components: (1) a inter-
coherent task cluster that groups mutually coherent tasks into a shared representation space; (2) a
conditional entropy graph, constructed using causal discovery to reveal dependencies; and (3) a
scalable compressor, which compresses multiple feature layers along graph paths.

Components (1) and (2) draw inspiration from the lookahead stage in traditional video encoding (Li,
2003; He & Mitra, 2002; Wang & Kwong, 2008; Ma et al., 2005), which performs preliminary analysis
to optimize the encoding performance of Component (3) under bitrate constraints. In Component (1),
2× downsampled low-resolution images are used as inputs, combined with a low-complexity feature
extraction and decoding backbone (Standley et al., 2020), to efficiently pre-analyze task grouping
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performance under the constraint of bitrate consumption. The task grouping strategy leverages
gradient coherence to cluster tasks based on mutual information, maximizing shared information
while minimizing redundancy. In Component (2), a conditional entropy graph organizes the grouped
tasks hierarchically, facilitating information transfer from parent tasks to child tasks. This hierarchical
structure improves representation certainty and encoding efficiency by providing a more precise
cross-task entropy estimation model.

3.2 GROUP INTER-COHERENT TASKS

The objective of task grouping is to cluster tasks that can share representations, thereby optimizing
the performance of multiple tasks under a given bitrate budget b. As task grouping is conducted in
the pre-analysis module, the bitrate budget b is loosely approximated ∝ the number of task groups.1.
Formally, a set of n tasks T = {τ1, . . . , τn}, which is partitioned into k subgroups C = {c1, . . . , ck},
where each task τi ∈ T belongs to at least one subgroup, i.e., ∀τ ∈ T ,∃cg ∈ C | τ ∈ cg2. k ≤ n
and each subgroup cg ⊆ T shares a feature extractor (encoder) ga(x;θe), as defined in Eq. 1. To
distinguish between the lookahead and formal encoding stages, the set of shared feature extractors
is denoted as E = {la1 , . . . , lak

}. For a raw image x, the encoder lag in subgroup cg generates a
shared representation yg = lag (x;θeg ). Each task τi is associated with a unique decoder lsi(y;θdi),
corresponding to the synthesis transform gs(ŷ;θd) in Eq. 1. The decoders D = {ls1 , ls2 , . . . , lsn}
map the latent feature yg(i) into task space, where g(i) denotes the subgroup index for τi. The
predicted output x̂i = lsi(yg(i);θdi

) is then compared with the ground truth for evaluation.

Task performance is measured using task-specific loss functions Li(τi), e.g. PSNR/MS-SSIM for
pixel reconstruction and cross-entropy loss for segmentation. For a given grouping strategy C, the
overall performance of the task grouping is aggregated as

∑n
i=1 Li(τi|C). The bitrateR required to

transmit the latent feature yg for each group cg is approximated by bg = B(yg), where B is ∝ the
amount of data transmitted, with each shared representation consuming a unit cost of 1. Our goal is
to minimize the total loss subject to the total bitrate constraint b:

L =

n∑
i=1

λi Li(τi|C) +
k∑

j=1

B(yj), s.t.
k∑

j=1

B(yj) ≤ b. (5)

To achieve this, we evaluate the impact of task gradients on one another to determine the subgroup
formation. Tasks within the same group share gradient updates, encoding parameters, and feature
representations, enabling mutual learning. Gradient consistency is used to guide task grouping.
Consider a multi-task model with shared parameters Θg = {θeg} for group cg , while Θu represents
task specific parameters for τu . We determine whether to add τu to group cg by evaluating the
gradient consistency between Θu and Θg. Specifically, given a batch of inputs x, we optimize the
following total loss to measure the effect of task gradients:

Ltotal =
∑

i∈cg∪u

Li(τi | x,Θg,Θu). (6)

At time step t, for input batch xt , the gradient descent update at step t+ 1 is computed as:

Θt+1
g|u ← Θg − α∇Θt

g
Lu(τu | xt,Θt

g,Θ
t
u), (7)

where Θt+1
g|u denotes the updated parameters after considering τu. Using these updated shared

parameters, we calculate the forecast loss for other tasks while keeping task-specific parameters and
inputs unchanged. Gradient coherence between tasks τu and τv is then measured as:

Ct
u→v = 1−

Lv(τv | xt,Θt+1
g|u ,Θ

t
v)

Lv(τv | xt,Θt
g,Θ

t
v)

. (8)

A positive Ct
u→v indicates that the update from τu reduces the loss for τv, while a negative value

Ct
u→v value indicates conflicting parameter update directions. Tasks with high gradient coherence

1Note: In the E2E compression training phase, bitrate consumption is defined as Ex∼px [− log2 pŷ(ŷ)] . During
deployment, the cumulative distribution function (CDF) of Pŷ(ŷ) is used for arithmetic coding to determine
the final bitrate.

2As shown in Fig. 3, tasks may belong to multiple groups. Transparent tasks are used during training to boost
group performance but are discarded during inference.
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are grouped to share encoders and representations. After T timesteps, the cumulative coherent
measure is calculated as: Ĉu→v = 1

T

∑T
t=1 C

t
u→v After obtaining the gradient coherence measures

between all pairs of tasks, the number of possible grouping for n tasks is given by the Bell number:
Belln+1 =

∑n
k=0

(
n
k

)
Bellk,Bell0 = 1, which grows rapidly with n. To address this computational

complexity, we apply relaxed estimates for higher-order cluster coherent measures. Specifically,
for a triplet of tasks {τu, τv, τw}, the triplet cost is estimated as the average of pairwise coherence
measures Ĉt

u→v and Ĉt
w→v. Assuming each cluster has a unit bitrate cost, we adopt a branch-and-

bound method, as in prior works (Standley et al., 2020; Zamir et al., 2018), to search for locally
optimal grouping strategies under the given bitrate budget b.

3.3 CAUSAL GRAPH-BASED COMPRESSION METHOD

Constructing DAG via Conditional Entropy. Let Y = {Y1, Y2, . . . , Yk} be a set of task-shared
random variables, where each Yi corresponds to the shared representation yi for task group ci. We say
that Yi causes Yj if there exists a function f and an exogenous random variable N , independent of Yi,
such that Yj = f(Yi, N). This causal relationship is represented by the edge Yi → Yj in a directed
acyclic graph (DAG) G = (V,E), where V denotes the vertex (i.e. Y in our context) and the set of
E denotes the set of edges. A structural causal model is defined asM = (Y,N ,F ,PN ), where
F = {f1, f2, . . . , fk} are functions, N is the set of exogenous variables, and PN is a probability
distribution over N . The joint distribution over Y is induced by PN and F , denoted as PY . In G, a
node Yi is a parent of node Yj if Yj = fj(Yi, S,Nj) for some S ⊂ Y .

Algorithm 1 : DAG Construction via Conditional
Entropy

Require: Latents set Y = {Y1, . . . , Yk}, conditional
entropy oracle H

Ensure: Causal DAG G = (V,E)
1: Initialize V = Y and E = ∅
2: for each latent Yc ∈ Y do
3: Initialize min_cond_entropy ← ∞, Yp ←

None
4: for each latent Yj ∈ Y \ {Yc} do
5: Compute H(Yc | Yj)
6: if H(Yc | Yj) <

min_cond_entropyandH(Yj < Yc) then
7: Update min_cond_entropy ← H(Yc |

Yj)
8: Update Yp ← Yj

9: end if
10: end for
11: Add edge Yp → Yc to E
12: end for
13: return G = (V,E)

Identifying the true causal graph without experi-
ments or strong assumptions is generally infeasi-
ble. To efficiently compress the representations
Y , we approximate causal relationships by mini-
mizing the conditional entropy, which quantifies
the uncertainty of one variable given another.
Specifically, given Yi and Yj with domains Yi
and Yj respectively, the pair-wise conditional
entropy H(Yi | Yj) (also denoted as the con-
ditional entropy oracle H in Algorithm 1) is
defined as:

H(Yi | Yj) = −
∑

yi∈Yi,yj∈Yj

p(yi,yj) log p(yi | yj).

(9)
We define the parent Yp of the children variable
Yc as the one that minimizes the conditional
entropy:

Yp = arg min
Yj∈Y\{Yc}

H(Yc | Yj). (10)

By applying this criterion iteratively to all representations in Y , we construct the edges E of the
causal graph G. The causal discovery process is detailed in Algorithm 1.

Scalable Compression Using the Causal DAG. After constructing G, inspired by the causal context
entropy model Guo et al. (2021) and MLIC++ (Jiang et al., 2023), we perform compression by
traversing the graph in topological order. The parent representation yp serves as an additional cross-
task context for the child representation yc, enhancing compression efficiency. Specifically, when the
parent latent representation yp is assumed to cause the child representation yc, the distribution of yp
is modelled using the prior framework in Eq. 3. As illustrated in Fig. 2 (right part), the prediction of
pŷp

(ŷp) involves a mask convolution ϕp,i = gcm(ŷp < i;θcm), which generates the local context
ϕp,i. This context is then combined with the hyperpriors zp to estimate the Gaussian distribution
parameters for ŷp. When it comes to decoding ŷc, we aggregate both the decoded latent ŷp and
the first half latent in the current spatial location ŷc, generating more informative contexts ϕc,i. As
shown in Fig. 4a, the whole process can be extended from Eq.3 and formulated as:

pŷc
(ŷc | ẑc,θhd,θcm+,θep) =

∏
i

(
N (µc,i, σ

2
c,i) ∗ U

(
−1

2
,
1

2

))
(ŷc,i), (11)
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Figure 4: The structure of proposed cross-task causal context compression: (a) Cross-task local
causal context mask convolution. (b) The parent ŷp provides a global context for the child ŷc.

with µc,i, σc,i = gep(ψc,ϕc,i;θep),ψc = gh(ẑc;θhd) , and ϕc,i = gcm+(ŷc < i, ŷp;θcm+). The
differences from Eq. 3 are highlighted in blue.

The above causal context model only extracts local correlations but ignores global correlations.
Causal global prediction model is proposed to utilize the long-range correlations of the parent ŷp and
child ŷc. The overall process shown in Fig.4b and also formulated as:

ŷattn
c,i = softmax2

(
ŷq
p < i

)
softmax1

(
ŷk
p < i

)⊤︸ ︷︷ ︸
non-negative

ŷv
c < i, ŷconv

c,i = convK×K(ŷattn
c,i ),ϕgc,i = DepthRB(ŷconv

c,i ),

(12)
where ŷq

p < i, ŷk
p < i = Embedding(ŷp < i), ŷv

c < i = Embedding(ŷc < i), and the embedding
layer consists of a 1× 1 convolutional layer and a 3× 3 depth-wise convolutional layer. The 3× 3
depth-wise convolutional layer is employed for learnable position embedding. Use θgc denotes the
trainable parameters in the Causal global prediction model, and then the Eq.3 can be extended as:

pŷc
(ŷc | ẑc,θhd,θcm,θgc,θep) =

∏
i

(
N (µc,i, σ

2
c,i) ∗ U

(
−1

2
,
1

2

))
(ŷc,i), (13)

with µc,i, σc,i = gep(ψc,ϕc,i;ϕgc,i;θep),ψc = gh(ẑc;θhd) , and ϕc,i = gcm(ŷc <
i, ŷp;θcm),ϕgc,i = ggc(ŷc < i, ŷp;θgc). The differences from Eq. 11 are highlighted in green.

4 EXPERIMENTS

4.1 TASKS AND DATASETS

To quantify the performance across diverse downstream tasks, we evaluate 5 compression benchmarks
on the Taskonomy dataset (Zamir et al., 2018) across 6 tasks. Taskonomy is a large-scale computer
vision dataset that includes over 4.5 million images from more than 500 buildings. Each image
has 18 annotations covering 2D, 3D, and semantic tasks. The total size of the dataset is 11.16 TB.
Due to limited computational and storage resources, we used the Tiny split for our experiments,
which consists of 872,517 images in the training set and 16,000 images in the validation set and test
set, respectively. We conducted experiments on 6 tasks selected from the 15 annotated tasks, i.e.,
Semantic Segment, Keypoint 2D, Edge Texture, Surface Normal, Depth Zbuffer and Autoencoder.
More details of tasks and loss measurements are placed in A.2.

4.2 BASELINES

Our method is compared against several baselines, including JPEG (Pennebaker & Mitchell, 1992),
WebP (Si & Shen, 2016), VTM-17.0 (Bross et al., 2021), as well as learning-based compression
methods, i.e., ELIC (He et al., 2022) and MLIC++ (Jiang et al., 2023).

To evaluate the performance of different compression methods across a variety of tasks, we used
the official open-source code of compression methods to compress input images. Subsequently, we
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assessed the performance of the reconstructed images on various tasks by analyzing the features
extracted by the pre-trained downstream task models provided by the Taskonomy dataset.

For our method, we first employed Xception (Chollet, 2017) as the encoder backbone, and the
task-specific decoder consists of four transposed convolutional layers and four convolutional layers.
Initially, we trained the group-task shared encoder-decoder without compression loss for 60 epochs
using the SGD optimizer (Ruder, 2016), with the learning rate decaying from 0.1 to 1e-4. Then,
based on the conditional entropy of the shared representation, we constructed a directed acyclic graph
(DAG) among the child nodes of the shared representation. Finally, we learned entropy models for
different compression rates by following paths from parent nodes to child nodes. We set the task
learning rate to 1e-4, and the learning rate of the hyperprior entropy model to 1e-4. We continued
training for 50 epochs, adjusting the λ parameter in the distortion-rate trade-off λ × D +R with
values from [0.04, 0.072, 0.14, 1, 1.932] to learn encoder-decoder models parameters and entropy
model parameters for different bitrates.

4.3 RESULTS

4.3.1 PERFORMANCE OF COMPRESSION FOR MULTIPLE TASKS
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Figure 5: Comparison of performance-rate curves for 6 tasksusing baseline compression methods
and our proposed TAMC. "Anchor" refers to the optimal performance of a supervision task obtained
using uncompressed images as input. The area of the shade color visualizes bitrate-performance
gains.

Our results, summarized in Fig. 5, demonstrate that TAMC achieves a new state-of-the-art in
compression for multitask scenarios, significantly outperforming other baselines across 5 of 6
tasks. In multitask learning and compression, different tasks have distinct requirements for image
information. Traditional compression methods (i.e., JPEG, WebP, VTM) and end-to-end deep learning
approaches (i.e., ELIC, MLIC++) typically use a unified compression representation for all tasks,
overlooking task relationships and dependencies. This often leads to conflicts, causing suboptimal
performance for certain tasks. TAMC addresses this by first partitioning tasks into complementary
groups, where tasks within the same group share representations. We then use causal discovery
through conditional entropy to identify dependencies among groups. These shared representations
are progressively compressed based on parent-child relationships, effectively leveraging the context
priors from parent nodes to reduce the uncertainty of child nodes.

TAMC demonstrates particularly significant improvements in depth zbuffer, semantic segmentation,
surface normal, and edge texture. For depth zbuffer, TAMC preserves more geometric details,
especially the spatial structural information essential for depth buffer, through task grouping and
shared representations. Our experiments validate this, which shows a substantial decrease in L1
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loss, outperforming traditional methods and even existing deep-learning compression techniques.
Semantic segmentation, normal surface prediction, and edge texture detection rely on local image
details and geometric structures. TAMC effectively compresses while retaining features useful
for these tasks through causal discovery and grouping mechanisms. Notably, TAMC outperforms
traditional compression methods in low-bit-rate scenarios.

4.3.2 PERFORMANCE OF IMAGE COMPRESSION
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Figure 6: Comparison of performance-rate curves for image compression on the Taskonomy dataset
using baseline methods and our proposed TAMC.

Method Bitrate Task Grouping1 Task Grouping2 Task Grouping3
Segment. Depth Normal Normal Keypoint Segment. Normal Texture

JPEG 0.283 44.32% 29.86% -7.05% -14.10% -44.58% 28.40% -17.56% -0.06%
WebP 0.281 3.13% 20.08% -3.69% 2.79% -49.00% -0.91% -5.43% -0.59%
VTM-17.0 0.229 -0.24% -5.28% 8.24% 11.16% -46.65% -1.82% 2.84% -0.37%
ELIC 0.302 -1.50% -0.03% 6.48% 9.69% -39.11% -2.47% 2.27% -0.90%
MLIC++ 0.289 -1.18% -1.05% 6.65% 9.79% -40.40% -2.26% 2.47% -0.93%
TAMC 0.224 -10.08% 3.33% 0.21% 12.43% -45.02% -4.84% 5.38% -1.05%

Table 1: Performance loss reduction of grouped inter-coherent tasks relative to single-task training.

As shown in Figure 6, our proposed algorithm demonstrates competitive performance compared
to the VTM baseline. For structure- and texture-sensitive metrics, such as MS-SSIM (Wang et al.,
2003), our method (TAMC) is slightly inferior to VTM. For semantic-sensitive metrics, including
KID (Bińkowski et al., 2018), FID (Heusel et al., 2017) in Fig. 6, and LPIPS (Zhang et al., 2018) in
Fig. 14, TAMC is slightly superior to VTM, reflecting its strong capacity for semantic understanding
and perceptual quality retention. However, the Peak Signal-to-Noise Ratio (PSNR) results in Fig.
14a are comparatively lower, indicating room for improvement in pixel-level fidelity. This could
be attributed to our choice of Xception (Chollet, 2017) as the encoder backbone and a task-specific
decoder consisting of four transposed convolutional layers and four convolutional layers, which aligns
with the architectures pre-trained for machine tasks (Fifty et al., 2021) but does not yet integrate the
full advantages of advanced backbone modules for image compression, e.g., GDN (Ballé et al., 2018),
residual networks (Cheng et al., 2020), and transformers (Zou et al., 2022; Zhu et al., 2021; Lu et al.,
2022), suggesting potential for further exploration.
5 ANALYSIS

5.1 ABLATION OF GROUP INTER-COHERENT TASKS

In our experiments, given 5 downstream tasks: {Semantic Segmentation, Depth Zbuffer, Edge Texture,
Surface Normal, Keypoints 2D}, our task grouping results based on gradient coherence between task
pairs are as follows: Group 1 {Semantic Segmentation, Depth Zbuffer, Surface Normal}, Group
2 {Surface Normal, Keypoints 2D} and Group 3 {Semantic Segmentation, Surface Normal, Edge
Texture. As illustrated in Fig. 1, during inference, only the tasks marked in green within each
group are decoded and referenced for downstream tasks, while the remaining tasks are solely used to
enhance performance during training and discarded during inference.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

For traditional and end-to-end compression methods, we assess the relative performance of task
grouping in downstream tasks compared to performance without task grouping. For our progressive
compression paradigm, we evaluate the relative performance of latent space disentanglement with
task grouping versus without task grouping. In the ablation study of grouping inter-coherent tasks, the
causal discovery module is not employed. Our goal is to evaluate the effectiveness and generalization
of task grouping in the context of multi-task compression. From the experimental results, it is evident
that for baseline methods, the performance of tasks such as Semantic Segmentation in Group 1,
Keypoints 2D in Group 2, and Edge Texture in Group 3 experienced a significant degradation when
compared to single-task training due to the influence of other tasks. Although the tasks of Depth
Zuffer and Normal Surface in Group 1 did not exhibit any noticeable improvements and even showed
slight performance declines, they contributed positively to the performance enhancements of other
tasks within their respective groups. Additionally, the shared representation effectively reduced the
bitrate budget, indicating its efficiency. For TAMC, where the task groupings in the latent space were
applied in the reconstructed pixel space for downstream task inference, it can be observed that, apart
from JPEG and WebP, other algorithms demonstrated trends similar to ours. This could be attributed
to the fact that the low-dimensional pixel space in JPEG and WebP suffers from compression artifacts
and natural pixel space biases, which introduce deviations from the predicted classification results.

5.2 ABLATION OF CAUSAL DISCOVERY TOPOLOGY

To better understand how causal discovery graphs constructed via conditional entropy optimize
both collaborative bitrate and task performance, we analyzed their effectiveness in determining the
optimal trade-off between these factors. As visualized in Fig. 7, different graph construction methods
are compared across various settings. In Setting A, where the graph follows principles of causal
discovery via conditional entropy, the resulting tasks exhibit better coordination, balancing both
bitrate efficiency and task performance. In contrast, Setting B and Setting C represent random graph
constructions that do not adhere to causal discovery principles. The visualized results show that
Setting B requires a higher bitrate to achieve similar performance while Setting C not only consumes
more bitrate but also results in performance degradation. This comparison highlights the importance
of proper graph construction in multi-task compression systems.

Group

1

Group

2

Group

3

Group

2

Group

3

Group

1

Group

1

Group

3

Setting A
Setting B

Setting C

Group

2

Figure 7: Impact of different DAG topologies on bitrate and multi-task performance (lower left
indicates better solutions, where both bitrate and performance loss are minimized). Left: Example
of graph construction methods. Middle: Task performance of graph node and bitrate consumption
of the entire causal graph. Note: Different colors denote different graph topologies, and different
shapes represent different nodes. Right: A more detailed breakdown of the middle, showing bitrate
consumption and performance for different nodes in each causal graph. Note: Different colors
represent different topologies, with varying transparency of the same color indicating different nodes
within the same graph. Different shapes represent different tasks. Red-bordered shapes highlight the
best-performing task in each topology (prioritizing task performance over bitrate).
6 CONCLUSION

In this work, we introduced a novel multi-task representation compression framework that leverages
causal discovery via conditional entropy to optimize the trade-off between bitrate efficiency and
task performance. By grouping mutually beneficial tasks and constructing a DAG to characterise
their interdependencies, our method enables efficient compression of disentangled representations.
Through extensive experiments on key computer vision tasks, we demonstrated the effectiveness of
our approach in both bitrate reduction and task accuracy. Our findings highlight the importance of
properly structured task groupings and causal relationships in multi-task compression, offering a
promising direction for future work in video coding for machine learning and multi-task optimization.
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Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans. arXiv preprint arXiv:1801.01401, 2018.

Benjamin Bross, Ye-Kui Wang, Yan Ye, Shan Liu, Jianle Chen, Gary J Sullivan, and Jens-Rainer
Ohm. Overview of the versatile video coding (vvc) standard and its applications. IEEE TCSVT, 31
(10):3736–3764, 2021.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Tong Chen, Haojie Liu, Zhan Ma, Qiu Shen, Xun Cao, and Yao Wang. End-to-End learnt image
compression via non-local attention optimization and improved context modeling. IEEE TIP, 30:
3179–3191, 2021.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. Advances in Neural Information Processing Systems, 33:2039–2050, 2020.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image compression with
discretized gaussian mixture likelihoods and attention modules. In CVPR, pp. 7939–7948, 2020.
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A APPENDIX

A.1 DISCUSSION

While graph models can effectively capture complex relationships between multiple representation
spaces, it is well-known that the computational complexity of adding or removing nodes in graph
structures is high. This becomes especially challenging in open-set scenarios, where tasks or data
points are continuously evolving. Developing efficient methods for dynamically adding and removing
nodes while maintaining the integrity of the graph remains an important research question.

Another critical point is the representation compatibility between different tasks. Ideally, the represen-
tation form and model architecture should be customized to fit the specific requirements of each task
and application scenario. Until a truly unified model emerges, representations and architectures might
not always be fully compatible across tasks. In our current work, we used a shared model architecture
and representations across tasks, which, while ideal for controlled experimentation, may not reflect
the diversity seen in real-world applications. However, our experiments successfully validated the
feasibility and effectiveness of using a causal graph model based on conditional entropy for multi-task
compression under these controlled conditions.

This work offers a foundational approach to multi-task compression using causal discovery, but
the model’s flexibility and scalability in more diverse and dynamic environments warrant further
investigation.

A.2 MORE DETAILS OF EXPERIMENTAL SETTINGS

We applied and measured 6 tasks in Taskonomy3, which is listed below:

• Semantic Segment: The annotations include 18 unique labels, with 16 object classes,
a "background" class, and an "uncertain" class. For this task, we evaluate compression
performance at different compression rates using cross-entropy loss.

• Keypoint 2D: This task involves 2D keypoint heatmaps. We assess compression perfor-
mance at different compression rates using the L1 loss.

• Edge Texture: This task involves detecting 2D edge textures. Similar to Keypoints2D, we
evaluate performance using L1 loss at different compression rates.

• Surface Normal: This task includes surface normal images, centered at 127. To evaluate
performance under different compression rates, we use the rotate_loss, which is
commonly applied in image processing or volume rendering tasks. The loss computes
the L1 difference between the output and target and compares the result across 9 different
orientations to find the minimal loss. This ensures that the model’s depth predictions remain
consistent under rotational and translational transformations, which is crucial when dealing
with real-world noise and variations.

• Depth Zbuffer: This task involves Z-buffer depth images, measured in units of 1/512m
with a maximum range of 128m. Similar to the Normal task, we use rotate_loss at
different compression rates, first calculating the L1 difference between the output and target,
then comparing across 9 orientations to find the minimal loss.

• Autoencoder: This task reconstructs RGB images at a resolution of 512×512. We evaluate
compression performance at different compression rates using the L1 loss. Additionally,
we assess fidelity using PSNR/SSIM (Wang et al., 2003) and perceptual quality using
LPIPS (Zhang et al., 2018) / KID (Bińkowski et al., 2018) / FID (Heusel et al., 2017).

3https://github.com/StanfordVL/taskonomy/tree/master/data by (Zamir et al., 2018)
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For the compression baselines, we used the open source codes, i.e., JPEG4, WebP 5, VTM-17.06,
ELIC 7, and MLIC++ 8. For downstream tasks, we uniformly used the Taskonomy pre-trained 9

Xception encoder and task-specific decoder. TAMC directly performs coherent task grouping and
causal graph construction in the latent space, so its encoder and decoder follow the Xception structure
of the pre-trained model. For the image compression task, better model architecture designs are
already available to optimize performance.

A.3 SUPPLEMENTARY ABLATION STUDIES

In this section, we extend our analysis to E2E compression involving multiple supervised tasks as
auxiliary tasks. We also examine single-task groups, where each task is treated as an independent
group rather than grouping tasks together. Additionally, we explore whether the conherence from
Task A to Task B can be used to predict the conherence from Task B to Task A. Furthermore, we
investigate the impact of prohibiting the same task from appearing in multiple clusters and assess
whether this restriction leads to better or worse performance. Finally, we compare our approach with
VQ-GAN-based compression method to evaluate its overall effectiveness.

A.3.1 ADDITIONAL RESULTS OF E2E COMPRESSION WITH MULTIPLE TASK AUXILIARY
LOSS
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Figure 9: Performance-rate curves for 6 tasks: Semantic Segmentation, Depth Z-buffer, Surface
Normal, Keypoint 2D, Edge Texture, and Autoencoder, on the Taskonomy dataset. The comparison
includes baseline compression methods ( MLIC++, Task Auxiliary+MLIC++) and our proposed
TAMC. Results highlight the efficiency of our method in achieving superior task performance at
various bit rates, demonstrating the necessity of task grouping and scalable encoding.

To evaluate the impact of task grouping and the DAG on performance, we conducted an ablation
study where both components were removed. In this alternative setup, multiple auxiliary tasks were
integrated directly into the compression framework, as illustrated in Fig. 8, optimizing the following
combined loss function:

L = Lcompression +
∑
i

wi.Ltaski (14)

4ftp://ftp.ijg.org/pub/jpeg/
5https://github.com/webmproject/libwebp
6https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM
7https://github.com/VincentChandelier/ELiC-ReImplemetation
8https://github.com/JiangWeibeta/MLIC
9https://drive.google.com/drive/folders/1XQVpv6Yyz5CRGNxetO0LTXuTvMS_w5R5?
usp=sharing
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Here, wi represents the weight assigned to each task, we set equal weights for tasks in our ablation
studies. We tested this approach on 6 tasks: Semantic Segmentation, Surface Normal, Edge Texture,
Depth Z-buffer, Keypoint 2D, and Autoencoder. Fig. 9 presents the performance-rate curves for each
task, comparing our method to baseline compression methods (e.g., MLIC++) and an auxiliary task-
based variant (Task Auxiliary+MLIC++). The results demonstrate the advantages of our approach in
both compression efficiency and task performance, as well as the complex interplay between task
collaboration and conflict, which highlights the significance of task grouping and scalable encoding.

𝑥 𝑦 #𝑥
𝑇!

𝑇"

…

Figure 8: End-to-end compression with
Multiple Task Auxiliary Loss.

Our method consistently outperforms baseline compres-
sion methods, especially for tasks such as Semantic Seg-
mentation, Surface Normal, Edge Texture, and Depth
Z-buffer. Even at lower bit rates, our framework achieves
notable improvements over MLIC++ and Task Auxil-
iary+MLIC++, underscoring its robustness and adaptabil-
ity in multi-task settings. These results confirm the efficacy
of task grouping and the integration of a causal DAG in
preserving task performance under constrained compres-
sion conditions.

The Task Auxiliary+MLIC++ variant, which replaces task
grouping and DAG with auxiliary tasks, provides useful
insights into task-level interactions. For tasks like Edge
Texture, Semantic Segmentation, Surface Normal, and
Depth Z-buffer, the auxiliary task approach yields substantial improvements compared to end-to-end
compression methods, suggesting enhanced task collaboration and feature sharing. However, for
Autoencoder, the auxiliary task approach performs similarly to end-to-end methods, indicating
limited benefits for tasks with strong self-supervised structures.

In contrast, the Keypoint 2D task experiences performance degradation with the auxiliary task ap-
proach, likely due to task interference. This highlights the potential conflicts between task objectives,
emphasizing the importance of careful task grouping to mitigate such issues.

The observed interplay of task collaboration and conflict further validates the need for task grouping.
By grouping tasks based on gradient coherence, our framework minimizes inter-task interference and
promotes effective task collaboration, explaining its superior performance relative to the auxiliary
task-based approach. Moreover, these results show that uncoordinated task interactions can negatively
impact specific tasks, such as Keypoint 2D.

Fig. 10 also reveals variations in bit-rate efficiency across tasks. For instance, Semantic Segmentation
and Surface Normal maintain strong performance even at lower bit rates, while tasks like Edge
Texture require higher bit rates due to the need for detailed feature representation. These findings
highlight the importance of scalable encoding to accommodate the varying bit-rate needs of different
tasks. By enabling task grouping and scalable encoding, our method addresses these challenges while
optimizing compression efficiency.

A.3.2 PERFORMANCE COMPARISON OF SINGLE TASK VS. GROUPED TASKS

To further examine the effectiveness of task groups, we trained a model based on single-task com-
pression, where each task is treated as an independent group rather than grouping tasks together.
Additionally, we set up a Grouping 1 compression model that jointly optimizes the task grouping of
Semantic Segmentation, Depth Z-buffer, and Surface Normal, and a Group 2 compression model
that jointly optimizes the task grouping of Surface Normal and Keypoint 2D. The results are shown
in Tab.2, and further visualized in the performance curves in Fig. 10. As observed, Semantic Seg-
mentation and Depth Z-buffer benefit from a more compact and high-precision representation when
grouped in Group 1. Similarly, Keypoint 2D shows improved representation with higher compactness
and precision in Group 2. Surface Normal’s performance remains comparable between task grouping
and the single-task approach.

One additional benefit of task grouping is the shared encoder and shared representations across
multiple tasks. For example, in Group 1, a single encoder feature extraction is used for inference,
consuming 0.0015 bpp for Semantic Segmentation, Depth Z-buffer, and Surface Normal. In contrast,
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Method Semantic Seg. Depth Z-buffer Surface Normal Keypoint 2D
BitrateTest Loss BitrateTest Loss Bitrate Test Loss BitrateTest Loss

Single Task
0.0014 0.0852 0.0008 0.2925 0.0006 0.1315 0.0017 0.2439
0.0055 0.0680 0.0051 0.2648 0.0052 0.0963 0.0645 0.1115
0.0069 0.0674 0.0063 0.2643 0.0069 0.0938 0.0940 0.0954

Group 1
0.0015 0.0704 0.0015 0.2615 0.0015 0.1378 - -
0.0096 0.0598 0.0096 0.2419 0.0096 0.1079 - -
0.0139 0.0574 0.0139 0.2385 0.0139 0.1045 - -

Group 2
- - - - 0.0018 0.1528 0.0018 0.2412
- - - - 0.0623 0.1103 0.0623 0.0944
- - - - 0.0843 0.1080 0.0843 0.0936

Table 2: Performance-Bitrate comparing task grouping with single task. Group 1 represents the task
grouping of Semantic Segmentation, Depth Z-buffer, and Surface Normal. Group 2 represents the
task grouping of Surface Normal and Keypoint 2D.
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Figure 10: Performance-Bitrate curves comparing task grouping with single task. The purple curves
represent the bitrate-performance performance of task grouping, while the red curves represent the
performance of the single-task model.

Method Semantic Seg. Depth Z-buffer Surface Normal Edge Texture Keypoint 2D Total Test Loss

Setting 1 Group 1 0.532 0.2527 0.1064 — — 0.5288Group 2 — — — 0.0232 0.0933

Setting 2 Group 1 0.0532 0.2527 0.1064 — —
0.5176Group 2 — — 0.1096 0.0271 0.0750

Table 3: Number of Task Grouping=2. Tasks are not allowed to appear in multiple groups in Setting
1. Tasks can appear in multiple groups in Setting 2.

treating each task independently requires three separate feature extraction inferences, with a total
bitrate of 0.0014 bpp + 0.0008 bpp + 0.0006 bpp = 0.0028 bpp to serve the three tasks.

A.3.3 IMPACT OF TASK EXCLUSIVITY ACROSS GROUPS ON PERFORMANCE

From a performance ceiling perspective, allowing the same task to appear in different clusters
maximizes the potential for task collaboration. As shown in Tab. 3 and 4, we conducted experiments
under two settings: Setting 1, where tasks are not allowed to appear in multiple clusters, and Setting
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Method Semantic Seg. Depth Z-buffer Surface Normal Edge Texture Keypoint 2D Total Test Loss

Setting 1
Group 1 0.0528 0.2636 — — —

0.5304Group 2 — — — 0.0232 0.0933
Group 3 — — 0.0975 — —

Setting 2
Group 1 0.0532 0.2527 0.1064 — —

0.4862Group 2 0.0500 — 0.1025 0.0242 —
Group 3 — — 0.1110 — 0.0568

Table 4: Number of Task Groupings=3.

2, where tasks can appear in multiple clusters. Setting 2 achieves a superior performance ceiling,
demonstrating the advantages of task interdependence. Notably, since each task is only inferred
once, Setting 2 does not introduce additional inference complexity. However, it does result in a
significant increase in GPU memory consumption during training. This highlights the trade-off
between performance and resource utilization when task exclusivity is relaxed.

A.3.4 IMPACT OF TASK ORDER ON TASK GROUPING AND ADDRESSING VARIABILITY

Figure 11: Inter-task coherence on
Taskonomy. Red color signify higher
inter-task affinities.

Regarding whether the order of tasks affects the cost cal-
culation and how to address potential variability in the
method using coherence scores: In Sec. 3.2, the number
of possible groupings for n tasks is given by the Bell num-
bers. To quickly estimate the similarity between tasks,
after calculating Ĉt

u→v, Ĉt
w→v, we estimate the higher-

order costs for {τu, τv, τw} which significantly reduces
the computational complexity.

Although the order of tasks may influence the dynamics
of gradient updates and the final learning outcomes in
multi-task learning, particularly in non-convex optimiza-
tion problems, we mitigate the impact of task order with
the following operations:

1. The coherence score is a measure based on the impact of
gradient updates between tasks on the loss function. It is
a relative measure that reduces the impact of the absolute
order of task execution. 2. By calculating the coherence
scores throughout the entire training process and taking
the average, we can mitigate the impact caused by specific
stages of training, thus reducing the potential variability
brought about by changes in the order of tasks. 3. To
validate the reasonableness of this operation, in Fig.11,
we experimentally demonstrate that although the coherence score between task pairs is not strictly
symmetric (Ĉt

u→v ̸= Ĉt
v→u), it exhibits a strong symmetry trend in practice. This allows us to

approximate the values while maintaining accuracy and efficiency.

A.3.5 COMPARISON WITH VQ-GAN COMPRESSION

While VQGAN-based compression methods (Esser et al., 2021; Mao et al., 2024) achieve perceptual
compression at low bitrates through discretized codebooks, our optimization goal diverges signifi-
cantly. Unlike VQGAN (Mao et al., 2024), which prioritizes image reconstruction and perceptual
quality, our approach focuses on compact, multi-task semantic compression. Specifically, we opti-
mize for efficient semantic representation sharing across tasks, reducing redundancy in encoding.
This contrasts with VQGAN’s generative approach. Comparative experiments in Fig. 12 reveal key
differences in performance and efficiency.

Although VQGAN (Mao et al., 2024) demonstrates significant improvements in compression rates
over VAE backbone models, especially for perceptual tasks, it still introduces bias compared to the
optimal supervision anchor, even with sufficient bitrate. This is due to its generative nature, which
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Figure 12: Comparison with VQGAN (Mao et al., 2024) in multi-task compression: Our method
outperforms VQGAN in compression efficiency at low bitrates and closely matches the supervision
anchor at higher bitrates, particularly in tasks like Keypoint 2D, Semantic Segmentation, and Depth
Zbuffer. VQGAN, however, shows performance degradation in fine-grained tasks, highlighting the
advantages of our task-aware semantic compression approach.

cannot fully eliminate reconstruction errors, leading to discrepancies from the ground truth. Moreover,
VQGAN struggles with tasks requiring precise, sparse local feature detection (e.g., Keypoint 2D),
a limitation common in generative models that fail to capture fine-scale features. In contrast, our
method is specifically designed to encode and preserve task-specific features, achieving superior
performance in these tasks.

In multi-task settings (e.g., Semantic Segmentation, Surface Normal, Edge Texture, Depth Zbuffer),
our approach demonstrates superior compression efficiency at low bitrates and near-optimal per-
formance at higher bitrates, closely matching the supervision anchor. VQGAN, while effective for
perceptual compression, struggles to leverage task-specific semantic information, leading to inferior
performance, particularly at low bitrates.

A.4 COMPLEXITY ANALYSIS

A.4.1 COMPLEXITY ANALYSIS OF COMPRESSION FOR MULTIPLE TASKS: ATC VS. CTA
PARADIGMS

MLIC++ Encoder/Decoder Module ga gs

KParams 12033.6 4396.3

MMACs 194556.9 296377.9

Table 5: Parameters and Forward Macs of Encoder/Decoder of MLIC++ on 512 × 512 images.

Task Xception Encoder/Decoder Module la ls

KParams 16467.2 525.1

MMACs 25708.0 4968.1

Table 6: Parameters and Forward Macs of Task Encoder/Decoder of Xception on 512 × 512 images.

In the task of compression for multiple downstream tasks, we investigate two compression paradigms:
Analysis and Then Compression (ATC) and Compression and Then Analysis (CTA). ATC pipeline
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Context Module θhd θcm θcm+ θgc

KParams 5810.1 755.2 1487.7 2264.4

MMACs 8925.1 1148.2 2264.4 7100.5

Table 7: Parameters and Forward Macs of entropy context modules on 512 × 512 images.

consists of two main phases: the downstream task analysis phase, where the input image is used
for specific tasks such as keypoint detection, segmentation, and depth estimation, and the feature
compression phase, which includes the encoding and decoding steps. The CTA pipeline also consists
of two main phases: the image compression phase, which includes encoding and decoding, and the
downstream task analysis phase, where the compressed image is used for tasks such as keypoint
detection, segmentation, and depth estimation. To better understand the computational costs involved
in each module, we summarize the parameters and forward MACs (Multiply-Accumulate Operations)
of the different components in the ATC and CTA pipelines. These values are presented in the tables 5,
6, 7. Below, we present the complexity analysis for both approaches.

Our proposed method belongs to ATC paradigm, and the total computational complexity of this
pipeline results from both the downstream task analysis and the feature compression phases. The
number of downstream tasks N and the number of task groups K directly affect the computational
cost of the task analysis phase. The overall complexity is expressed as:

Total Complexity of ATC = N · ls +K · (la + θhd + θcm+ + θgc)

= N · 4968.1 +K · 40088.0, (15)

where θhd, θcm+, and θgc represent the complexities of the context modules. N is the number of
downstream tasks, K is the number of task groups, la and ls represent the complexities of the Task
Xception Encoder/Decoder for each individual task.

This formulation indicates that the task analysis phase (which involves both la and ls) and the context
module complexities contribute to the total computational cost.

The total computational complexity in the CTA pipeline arises from both the compression and the
downstream task analysis phases. The number of tasks N directly affects the computational cost of
the task analysis phase. The overall complexity is expressed as:

Total Complexity of CTA = ga + gs + θhd + θcm + θgc +N · (la + ls)

= 500008.6 +N · 30676.1, (16)

where ga and gs are the complexities of the MLIC++ Encoder/Decoder. θhd, θcm, and θgc represent
the complexities of the context modules. N is the number of downstream tasks. la and ls represent
the complexities of the Task Xception Encoder/Decoder for each individual task.

This formulation emphasizes the contribution of the encoding/decoding processes (represented by ga
and gs) as well as the task-specific encoding/decoding complexities la and ls in the CTA pipeline.

A.4.2 COMPLEXITY ANALYSIS OF OUR LOOKAHEAD MODULE

Our Lookahead module consists of two steps: task grouping and DAG construction. In the task
grouping step, we first compute the coherence score between tasks using joint training on N ×N/2
task pairs. Then, we use pairwise coherence scores to estimate the coherence scores of higher-order
task groupings. Finally, based on all task groups, task coherence scores and budget b, we select k
multitask networks to maximize the overall task performance. This is an NP-hard problem. A brute

force approach would take O(|T | · |C0|
b

minn∈C0
cn ), which is exponential in the maximum number

of groups that fit within the budget. Here, |T | is the number of tasks, |C0| is the number of candidate
networks, b is the budget, and minn∈C0 cn is the smallest cost among the networks. This can be
solved using the branch-and-bound-like algorithm provided in prior work (Standley et al., 2020;
Zamir et al., 2018) as detailed in Sec.A.5.

The overall time complexity of the DAG construction algorithm 1 is dominated by the nested loops
that compute conditional and independent entropies for each latent group. The algorithm iterates
over all K groups, leading to an outer loop complexity of O(K). For each group, the algorithm
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computes the conditional entropy between pairs of latent variables. This operation takes O(n) time,
where n is the size of the dataset (number of samples). Additionally, the algorithm computes the
independent entropy for each group, which takes O(m) time, where m represents the complexity of
entropy calculation for a single group Thus, the overall time complexity is:

O(K2 · n ·m),

where K is the number of groups, n is the time complexity for calculating conditional entropy, m is
the time complexity for calculating independent entropy for a group.

The process of computing task coherence scores, grouping tasks, and constructing the corresponding
Directed Acyclic Graph (DAG) is computationally intensive. These steps share a conceptual similarity
with the lookahead stage in traditional video encoding (Li, 2003; He & Mitra, 2002; Wang & Kwong,
2008; Ma et al., 2005). In video encoding, the lookahead stage performs a preliminary analysis of the
video content to optimize the encoding process, ensuring that the final compression achieves the best
trade-off between quality and bitrate. Specifically, it evaluates potential encoding decisions ahead of
time to minimize redundancies and improve efficiency, all while adhering to bitrate constraints.

Similarly, in multi-task compression, the task grouping and causal relationship modeling steps aim
to optimize the encoding of multiple tasks by leveraging the inherent interdependencies among
them. However, due to the high computational complexity of calculating coherence scores between
tasks and determining the optimal task groupings, an efficient pre-analysis phase is essential. Our
contribution lies in exploring the effectiveness of task grouping and cross-task causal relationship
modeling, demonstrating that these techniques can significantly enhance the performance of multi-task
compression.

To make this process feasible and scalable, further exploration can involve using downsampled
low-resolution images as inputs for the pre-analysis phase. This strategy, when combined with a
low-complexity feature extraction backbone (Iandola, 2016), provides an efficient means of assessing
task grouping performance under bitrate consumption constraints.

A.5 IMPLEMENTATION DETAILS OF TASK GROUPING

As mentioned in Sec. 3.2, we adopt a branch-and-bound method, as in prior works (Standley et al.,
2020; Zamir et al., 2018), to search for locally optimal grouping strategies under the given bitrate
budget b. We here provide pseudo algorithm for clarity and the implementation is provided in
Github10. Consider the situation in which we have an initial candidate set C0 = {n1, n2, ..., nm}
of fully-trained networks that each solve some subset of our task set T . Our goal is to choose a
subset of C0 that solve all the tasks under budget b and the lowest overall loss. More formally,
we want to find a solution Sb = argminS⊆C0:cost(S)≤b L(S). It can be shown that solving this
problem is NP-hard in general (reduction from SET-COVER). A brute force approach would take

O(|T | · |C0|
b

minn∈C0
cn ), which is exponential in the maximum number of groups that fit in our

budget. This would be computationally challenging even for small problems.

However, many techniques exist that can optimally solve most instances of problems like these in
reasonable amounts of time. All of these techniques produce solutions that perform equally well.
We chose to use a branch-and-bound-like algorithm for finding this optimal solution (shown in
Algorithm 2), but in principle the same solution could be achieved by other optimization methods,
such as encoding the problem as a binary integer program (BIP) and solving it in a way similar to
Taskonomy(Zamir et al., 2018). Algorithm 2 chooses the best subset of groups in our collection,
subject to the inference time budget constraint. The algorithm recursively explores the space of
solutions and prunes branches that cannot lead to optimal solutions. The recursion terminates when
the budget is exhausted, at which point Cr becomes empty and the loop body does not execute. The
sorting step on line 3 requires a heuristic upon which to sort. We found that ranking models based on
how much they improve the current solution, S, works well. It should be noted that this algorithm
always produces an optimal solution, regardless of which sorting heuristic is used. However, better
sorting heuristics reduce the running time because subsequent iterations will more readily detect and
prune portions of the search space that cannot contain an optimal solution.

10https://github.com/tstandley/taskgrouping/
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Ground Truth JPEG
0.359 bpp, 33.01dB, 0.9624

VTM
0.282 bpp, 38.42dB, 0.9903

ELIC
0.370 bpp, 40.98dB, 0.9932

MLIC
0.352 bpp, 41.12dB, 0.9946

Ours
0.346 bpp, 37.851dB, 0.9890

Ground Truth JPEG
0.479 bpp, 33.60dB, 0.9753

VTM
0.389 bpp, 37.24dB, 0.9888

ELIC
0.370 bpp, 40.98dB, 0.9978

MLIC
0.472 bpp, 39.65dB, 0.9934

Ours
0.436 bpp, 36.013dB, 0.9840

Figure 13: Subjective comparisons.

A.6 SUBJECTIVE RESULTS

In Fig. 13, we present examples showing competitive qualitative results from our method compared
to VTM and end-to-end compression methods.

A.7 MORE EXPERIMENTAL RESULTS

we present the detailed experimental results comparing the performance of our proposed TAMC
with several baseline image compression methods on the Taskonomy dataset. Figure 14 provides a
detailed comparison of PSNR-Bitrate and LPIPS-Bitrate performance.
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Figure 14: Comparison of PSNR-Bitrate performance and LPIPS (Zhang et al., 2018)-Bitrate
performance for image compression on the Taskonomy dataset, using baseline methods and our
proposed TAMC.

Algorithm 2 Get Task Grouping Strategy

Input: Cr, a running set of candidate groups, each with an associated cost c ∈ R
and a performance score for each task the network solves. Initially,Cr = C0

Input: Sr ⊆ C0, a running solution, initially
Input: br ∈ R, the remaining time budget, initially b

1: function GETBESTNETWORKS(Cr,Sr, br)
2: Cr ← FILTER(Cr,Sr, br)
3: Cr ← SORT(Cr) ▷ Most promising groups first
4: Best← Sr

5: for n ∈ Cr do
6: Cr ← Cr \ n ▷ \ is set subtraction.
7: Si ← Sr ∪ {n}
8: bi← br − cn
9: Child← GETBESTNETWORKS(Cr,Si, bi)

10: Best← BETTER(Best,Child)
11: end for
12: returnBest
13: end function

14: function FILTER(Cr,Sr, br)
15: Remove groups from Cr with cn > br.
16: Remove groups from Cr that cannot improve Sr’s performance on any

task.
17: return Cr

18: end function

19: function BETTER(S1,S2)
20: if C(S1) < C(S2) then
21: return S1

22: else
23: return S2

24: end if
25: end function
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