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Abstract

Vertex hunting (VH) is the task of estimating a simplex from noisy data points and
has many applications in areas such as network and text analysis. We introduce a
new variant, semi-supervised vertex hunting (SSVH), in which partial information
is available in the form of barycentric coordinates for some data points, known
only up to an unknown transformation. To address this problem, we develop a
method that leverages properties of orthogonal projection matrices, drawing on
novel insights from linear algebra. We establish theoretical error bounds for our
method and demonstrate that it achieves a faster convergence rate than existing
unsupervised VH algorithms. Finally, we apply SSVH to two practical settings—
semi-supervised network mixed membership estimation and semi-supervised topic
modeling—resulting in efficient and scalable algorithms.

1 Introduction

Semi-supervised learning has been widely studied in the classification settings with discrete-valued la-
bels. In contrast, continuous-valued labels (e.g., soft labels) also play crucial role in applications. One
example is network mixed membership estimation [2l]. Suppose a network contains K communities,
and each node has a mixed membership over K communities. The mixed membership vectors take
arbitrary values in the probability simplex of R”. Another example is topic modeling [7]. Suppose a
text corpus contains K topics. Each word has a K-dimensional topic loading vector representing its
relevance to K topics. These topic loading vectors can also be regarded as soft labels of the words.

We are interested in semi-supervised learning for soft labels, where a small fraction of them are
known. In the previous network estimation example, we may know the mixed membership vectors
for some nodes (for example, this happens in dynamic networks with both long-existing and newly
emerging nodes, where the mixed membership of a long-existing node can be inferred from historical
data). In topic modeling, we may have knowledge of the topic relevance of certain words, such as
anchor words [5] or seed words [[15] for some topics, which can be leveraged for model estimation.

Vertex hunting (VH), also called linear unmixing or archetypical analysis, is an important tool used in
the above problems for unsupervised learning. Fix K > 2 and a simplex S C R that has K vertices

V1,2, ..., Uk. Let wy, wa, ..., w, € RE be weight vectors (a weight vector is such that all entries
are non-negative and sum to 1). Suppose we observe x1, s, ..., 2, € R? satisfying
K
T, =71 + €, where r; = Z w;(k)vk, and e;’s are i.i.d. noise. e
k=1

Here, each r; is contained in the simplex S, and w; is called the barycentric coordinate of r;. The goal
of VH is to estimate the vertices vy, . .., vk from the noisy data cloud {z; } ;. In both unsupervised
mixed membership estimation and topic modeling, the spectral-projected data exhibit such simplex
structure, so that VH is frequently used as a plug-in step in parameter estimation [1} |5} 21 [25].
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In this paper, we introduce the semi-supervised vertex hunting (SSVH) problem, as a new tool for
semi-supervised learning in the above problems. Suppose for a subset S C {1,2,...,n}, we observe
m; € RX foreach i € S, where 7; is related to the barycentric coordinate w; as follows:

w; = (bom;)/||bomi1, for an unknown positive vector b € R¥. )

Here o is the Hadamard (entrywise) product. In this expression, if we multiply b by any positive
scalar, the equality continues to hold. Therefore, we assume ||b]] = 1 without loss of generality.
SSVH aims to estimate vy, ..., vx from {x;}? ; and the additional information {m;};cs.

Model (2) was discovered in the literature of unsupervised learning, such as [21]] for mixed member-
ship estimation and [25] for topic modeling. In these problems, the mean of data matrix admits a
nonnegative factorization structure. Under such structures, for any low-dimensional linear projection
of data (including the spectral projection), the projected points are contained in a simplicial cone
subject to noise corruption. To enable downstream estimation procedures, we must first normalize
this simplicial cone to a simplex (e.g., for spectral projections, the SCORE normalization [20]] is a
convenient choice), and Model (2) is a direct consequence of such normalizations [24]. See SectionE]
for details, where we validate (2) for the two applications of interest. It is worth noting that Model (2)
was often hidden in the proofs of the previous works but not explicitly presented there, due to that an
unsupervised VH algorithm does not need any knowledge of how the barycentric coordinate w; is
related to the true 7;. In contrast, for semi-supervised VH, the connection between 7; and w; directly
affects how we design the algorithm, so we must present Model 2) explicitly here.

Many algorithms have been developed for unsupervised VH, such as minimum volume transformation
(MVT) [8], N-FINDR [32], and successive projection (SP) [4]. Based on MVT, [14] developed a
delicate anchor-free topic model estimation approach, which can also be applied to the VH problem.
Recently, [22] provided a refinement of SP to strengthen its robustness against noise; [34] estimated
the vertices in unsupervised overlapping community detection via K-median clustering under certain
asymptotic regime; [[16] adopted a regularized negative matrix factorization (NMF) for vertex hunting
(archetypal analysis); and [30]] proposed a theoretical framework for interpretation and guidance on
spectral methods for network membership estimation and algorithms for vertex hunting such as MVT.
However, it is unclear how to modify these methods to incorporate the information within {; };cs.
The difficulty stems from that b is unknown—hence the knowledge of 7; does not directly imply the
barycentric coordinate of r; inside the simplex. One may consider a joint-optimization approach,
where we optimize over b and v, ..., vk together using a loss function, but it is unclear how to
design a loss function that both facilitates computation and comes with a theoretical guarantee.

We overcome the difficulty by proposing an optimization-free estimate of b: For any vector a € R!*|

satisfying mild conditions, we construct a K x K matrix M () and let b be the eigenvector of this
matrix associated with its smallest eigenvalue. This estimator is easy to implement and enjoys nice
theoretical properties. Our method is inspired by non-trivial insight in linear algebra: the construction

of M () carefully utilizes properties of orthogonal projection matrices.

Once b is obtained, we can derive the barycentric coordinate w; for i € S at ease. It provides the
locations of these r; inside the simplex, and we can utilize such information to enhance an existing

unsupervised VH algorithm. In fact, given b, we can even use a simple regression to get 01, ..., Ux.
This gives our final SSVH algorithm.

We show that SSVH has several benefits compared to unsupervised VH: First, unsupervised VH
needs strong identification conditions. For instance, SP requires that at least one r; is placed at each
vertex, and MVT requires that the minimum-volume simplex containing ry, . .., 7, is unique. When
such conditions are violated, unsupervised VH may fail. Second, the error rate of unsupervised VH
does not decay with n [11,[22], so it is unable to take advantage of having more data points. Third,
the signal-to-noise ratio of unsupervised VH depends on the (X — 1)th singular value of the vertex
matrix [22]. When K is large, this singular value can be small, indicating that the simplex is ‘thin’ in
some direction and vulnerable to noise corruption; hence, unsupervised VH may have unsatisfactory
performance for large K. SSVH can address these issues—as we will demonstrate, it requires weaker
identification conditions, enjoys a fast-decaying error rate, and can handle large values of K.

We apply SSVH to semi-supervised mixed-membership estimation and semi-supervised topic model-
ing and develop new methods for these two problems. For the first problem, despite of many methods
for semi-supervised community detection [26, |19} 33} 16l [17, 28| [35]], they are hard to generalize to
allow for mixed membership. For example, one strategy in such methods (e.g., see [[19]) is to group



labeled nodes according to their true communities and compute the ‘similarity’ between an unlabeled
node and each group. When there is mixed membership, it is unclear how to define groups and com-
pute the similarity metrics. For the second problem, seeded topic modeling [[15] and keyword-assisted
topic modeling [10] can be regarded as semi-supervised learning methods. However, they add prior
information as Dirichlet priors, not permitting specification of topic relevance for individual words.
Additionally, these Bayesian approaches are computationally intensive for large corpora, while our
SSVH-powered algorithms can run much faster in some settings.

In summary, we introduce the SSVH problem and make the following contributions:
* Methodology: We propose an SSVH algorithm, the core idea of which is an optimization-free
approach to estimating b. Our method is inspired by delicate insight in linear algebra.

» Theory: We prove an explicit error bound for SSVH under sub-Gaussian noise. We show
that the error bound decreases fast as the size of .S increases.

» Application: We apply SSVH to network mixed membership estimation and topic modeling,
obtaining new semi-supervised learning algorithms for these two problems.

Notations: Write N = |S|. Let Wg,II5 € RV*K Rg € RV*4 and Xg € RV*? be the matrices
of stacking together the w;, 7;, r;, and x; for i € S, respectively. Let V' € RE>*d pe the matrix
whose kth row is equal to vj,. With these notations, model (I)) can be re-written as Rg = WgV.
By elementary linear algebra, an eigenvector of a matrix is defined up to any scalar multiplication.
Throughout this paper, when we compute the eigenvector of a matrix, the default scalar multiplication
is chosen such that the eigenvector has a unit #2-norm and that the sum of its entries is positive.

2 Method for Semi-supervised Vertex Hunting

2.1 The oracle case

In the oracle case, we observe r; = E[z;] and aim to recover V' from rq, 9, ..., r, and 7; fori € S.
The key is to find an approach for recovering b. Once b is known, we can immediately use (2)) to
recover the barycentric coordinate w; for 7 € .S, and the problem becomes relatively easy.

We tackle the estimation of b by an interesting discovery in linear algebra. We introduce an N x N
matrix, which is the projection matrix to the orthogonal complement of the column space of I1g:
H = H(S) = Iy — TIg(ITsg) ' TIk. 3)

For any vector v, let diag(v) denote the diagonal matrix whose diagonal entries are from v. Given
any o € RY . we construct a K x K matrix:

M(a) = M(«; S) = Mgdiag(Ha) Rs Rgdiag( Ha)1ls. “)
Our design of M («) is based on a novel idea of leveraging properties of projection matrices. In the
following theorem, we show that M («) has a nice property:

Theorem 2.1 (Main discovery). For any o € R™, M (a))b = Ok. Therefore, b is an eigenvector of
M () associated with the zero egienvalue.

Proof of this theorem: Let J (o) = Rydiag(Ha)ILg. Then, M (o) = J(a)’J(e). It suffices to show
J(a)b = 04. First, model (I)) implies Rg = WV It follows that J ()b = V'W{ - diag(Ha)ILgb.
Second, model () implies w; = (m; o b)/||m; o b||1; in the matrix form, this can be expressed as
Ws = [diag(Ilgb)] "t Igdiag(b). We plug W into J()b to obtain:

J(a)b = V'diag(b)Ils[diag(ITsb)] ™ diag( Ha)gb
= V'diag(b)[Tydiag(Ho)[diag(TIsb)] 'TIgb (switching diagonal matrices)
= V'diag(b)Il'ydiag(Ha)ly  (because diag(v)~'v = 1 for a vector v)

= V'diag(b)ITsHa. (because diag(v)1 = v for a vector v) 3)
We recall that H is the projection matrix to the orthogonal complement of ITg. Hence, I H is a zero
matrix. It follows that the right hand side of (3) is a zero vector. O

Theorem states that b is an eigenvector associated with the zero eigenvalue of M («). However, it
does not imply that b is the unique eigenvector associated with the zero eigenvalue. The uniqueness
holds only if the null space of M («) is a one-dimensional subspace. The next theorem provides a
sufficient condition for the uniqueness to hold:



Theorem 2.2 (Uniqueness). Let w, = % > ics wi and define a K x K matrix by

1 / _ N/
B(a) = B0, 8) = & EZS(Ha)i(wib) (wi — @) (w; — W) (6)
7
When rank(X(a)) = K — 1, the null space of M () is a one-dimensional subspace. Consequently,
the eigenvector associated with the zero eigenvalue of M () is unique and must be equal to b.

To see when the condition rank(X(a)) = K — 1 holds, we consider a simple case where b = 1, and
Ha =1, and give two examples. In the first example, there are K + 1 labeled points, with one point
at each vertex and the last point located in the interior of the simplex (not on any vertex/edge/face).
When the simplex is non-degenerate , () has a rank K — 1. In the second example, the 7;’s of
labeled nodes are i.i.d. sampled from a Dirichlet distribution, with the Dirichlet parameters being all
positive constants. As N — 0o, X:(«) has a rank K — 1 with an overwhelming probability.

Inspired by Theorems [2.112.2] we obtain a method for recovering b from the eigenvector of M («).
Once b is known, by (2)), w; is known for i € S. We then have many options for recovering V. A
simple method is the following regression approach. Recalling that Rg = WV, we recover V' from

V = (WiWs) 'WiRs. (7)

Another option is a penalized optimization approach. Let L(V;r1,...,r,) be a loss function that
quantifies how well the simplex spanned by V fits the data points. Such loss functions exist in many
unsupervised VH algorithms (e.g., [8,[16]). We propose the following optimization:

m‘;n L(V;rl,...,rn)Jr)\Z;HmfV’le'HQ- (8)
1€
When \ = oo, it reduces to the estimator in @) which is the main version we will use. Meanwhile,
one can always use a finite A. Then, (8) and our method of estimating b together offer an approach
for extending any (optimization-based) unsupervised VH method to the semi-supervised setting.

Remark 1: Unsupervised VH requires identification conditions to uniquely determine the simplex
from ry, 79, ..., r,. For example, SP [4] requires that there is at least one 7; locating at each vertex,
and MVT [8] and anchor-free approaches such as [14]] require that among all simplexes that contain
T1,T2,..., Ty, there is a unique one that minimizes the volume. When such conditions are violated,
unsupervised VH may fail (see Figure[I]and more details in Appendix[G). SSVH addresses this issue
by leveraging the additional information in {7; };cs.

= True simplex

— Another simplex that also
contains the data cloud

—— True simplex

— MVT solutions
(infinitely many)

Figure 1: The identification issue for SP (left) and MVT (right). The grey area is the area covered by 71, ..., 7»
(the noiseless point cloud). Left: There exists no 7; on the vertices of the true simplex; consequently, there are
multiple simplexes containing the point cloud, and the SP solution is not necessarily the true simplex. Right: the
point cloud is a ball, and the MVT solution (the minimum-volume simplex that contains this ball) is not unique
and does not include the true simplex.

2.2 The real case

In the real case, we observe x; instead of ;. The oracle method can be extended: First, we construct

M () by replacing Rg in (@) by Xs. Due to noise corruption, this matrix often doesn’t have a zero
eigenvalue; but we can estimate b by the eigenvector associated with the smallest eigenvalue. Second,

we plug b into (7) and replace Rg by X5 there. This gives V. See Algorithm
Choice of a: In Algorithm T} the only remaining question is how to choose «. In the oracle case, as

long as the matrix X(«) defined in (6)) has a rank K — 1, any choice of « yields the precise recovery
of V. In the real case, we still have a wide range of choice of «, as long as the the signal-to-noise ratio

(SNR) in M («) is properly large. We offer two recommended approaches, both being closed-form.

Since re-scaling v doesn’t alter b, we set ||cr|| = 1. Note that b and b are the eigenvector of M («) and
M («) associated with the smallest eigenvalue, respectively. By sin-theta theorem [9], the eigen-gap,
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Algorithm 1: Semi-supervised Vertex Hunting (SSVH)
Input: K, Xg, and Ilg.
1. Compute o € RY from Il using the closed-form solution of either () or (T0).
2. Construct Z/\l\(a) = Iydiag(Ha) X s X 4diag(Ha)Ilg, where H is as in (3). Let b be the
eigenvector of M («) corresponding to the smallest eigenvalue.
3. Obtain @; = (bom;)/||bo w1, and let W be the matrix of stacking together the t; for
i€ S. Compute V = (WgWS)’1W§XS.

Output: % (its rows are the estimated vertices).

Ax—1(M(a)), plays a key role in determining the signal strength. With ||| = 1, we empirically
observe that A1 (M () often increases with || M («)||. It inspires us to maximize || M («)|| subject
to ||| = 1. This optimization still does not have an explicit solution. However, when the volume of
the simplex is lower bounded (which means that the simplex is not ‘super thin’ in any direction), it
holds approximately that || M («)|| > w - | [Isdiag(H o)1l ||%, where w is a quantity that depends on
model parameters but not « (this derivation is technical thus contained in the supplement). Therefore,
we solve the following optimization:

max ||ITydiag( Ha)Ilg|/%, s.tl]al =1 )

Without much effort, we can show that (9) has a close-form solution: Let I'g = IIgIT’, and let f(I's)
be the matrix of applying a univariate function f(c) = ¢ on I's entry-wisely. The solution a* is the
eigenvector of H f(I's) H corresponding to the largest eigenvalue.

Another option of choosing o uses dimension reduction. We divide .S into K + 1 non-overlapping
clusters Cy, . . .,Cx+1, by running k-means clustering on {7; };cs. Let 7" = ¢, (the kth standard
basis vector of RE*1) for i € Cy. Let It € RV*(K+1) be the matrix of stacking together 7 for
all i € S. Define U™ = TT%'[(II%") T~ (IT%')’, the projection matrix into the column space of
IT%" (which is a subspace with dimension < K + 1). We solve the optimization:

max || M (U™ )|, s.t.af = 1. (10)

At first glance, this problem is not easier than maximizing || M («)|| directly. What makes a difference
is that when ITIT" has a full rank K, HU™ projects all vectors into a 1-dimensional subspace. In
this case, maximizing || M (U™ «)|| is equivalent to maximizing || HU"«||, and the problem has a
closed-form solution: a* is the right eigenvector of HU™" associated with the largest eigenvalue
of HU™', We remark that even when the column space of HU"™ is not 1-dimensional, we can still
compute this closed-form o*, though it is no longer the solution of (I0).

Remark 2: It is important to note that, although these choices of « are motivated by optimizations
involving M («), their closed-form solutions are only functions of ITg. In other words, these « neither
use noisy data nor depend on unknown model parameters. This is why we can legitimately impose
regularity conditions on « in the theoretical analysis to be presented in Section 3]

3 Theoretical Results

In this section, we derive the error bound for our estimator in Algorithm[I] As we have mentioned,
the scaling of b and @ doesn’t matter. We assume ||b|| = 1 and |||| = 1 without loss of generality.

Assumption 3.1. There exist constants ¢y, ca,c3 > 0, such that (a) |V|| > ¢1 and Ag_1(V) >
AV, () Amin(Ms) > ca - Anax(Ilg), and (¢) ming by, > c5 - maxy, by.

Assumption 3.2 (Sub-Gaussian noise). There exists o, > 0 (which may depend on n) such that
Elexp(te;;)] < exp(t?02/2),i € S,j € [K],t € R.

Assumption 3.3. There exists a constant ¢4 > 0 such that A\ _1(X(a)) > ¢4/ (VEKN), where X(«)
is the matrix defined in Theorem[2.2)]

Assumption [3.2]assumes that the noise within the data is sub-Gaussian, and the noise level o,, may
grow as n — oo. Regarding Assumption since the volume of the simplex is related to Ax_1(V),
item (a) imposes a lower bound on the volume after re-scaling, which prevents the simplex to be
too thin in some direction. Item (b) states that the labeled points are well spread-out in the simplex.



For instance, they can’t concentrate in a small region, in which case the conditioning number of IIg
is large. Item (c) implies that 7; retains enough information of each coordinate of w; (e.g., when
some by, is much smaller than the others, information of w; (k) is nearly lost in ;). Assumption
is about the matrix X(c). In Theorem[2.2] we assume that its (K — 1)th singular value is nonzero;
and here we put a slightly stronger condition.

Our first result is a non-stochastic bound, which drops Assumption [3.2]and treats €; as non-stochastic:
Lemma 3.1 (Non-stochastic bound). Suppose Models (I)-@2) and Assumptions hold. Define
erry := ||[Ilydiag(Ha)(Xs — Rg)||r, erry := |W{(Xs — Rs)||lr, errs:=||Xs — Rs|lmax-

There exist constants Cs, cg > 0 that only depend on ¢y, . . . ¢y, such that when erry < cg+/N/K,

IV = V|| < ||V - CsK][erry (1 + errs)V'N + err?/N + erry /N]. (11)

We use matrix spectral norm as the loss metric. The row-wise norm |9y — vy || is more frequently used
in the literature [11}22]]. Our bound implies the row-wise bound because maxy, |0 — vk || < [|[V =V
The three error terms defined in Lemma [3.1] are functions of the ‘noise’ matrix X¢ — Rg. Our next
result provides high-probability bounds for them under sub-Gaussian noise.

Lemma 3.2 (Noise terms). Suppose Models (1)-(2) and Assumptions[3.1} 3.2) hold. Suppose N >
K. There exists a universal constant Cep, (Which does not depend on any other constant in the
assumptions) such that with probability at least 1 —2/n =1 — O(1/n),

err; < O’n\/K + C’grr\/Elog(n), erry < Corop, N\/Elog(n), errg < Corpy/log(n). (12)

Here the absolute constant Cy,, depends on the absolute constants of Hanson—Wright inequality [31}
Theorem 1.1]. [29] provides an evaluation of Hanson—Wright inequality’s constants, based on which
a rough estimate of C,, is 2.8042. See Appendix [D.4]for more details. Combining Lemma [3.1]and
Lemma/[3.2] we have the main theorem:

Theorem 3.1. Suppose Models (1) @) and Assumptions hold. Suppose N > (1/c%)-02(K?+
C2,. K" log(n)), where cg is as in Lemmaand Clery is as in Lemma There exists a constant

_err

Cs > 0 only depending on c1, . . . c4, and Cyyy, such that with probability at least 1 — O(1/n),
IV = VIl < V]| - CsN~2K1 %50, /Tog(n) (VEE + log(n))*. (13)

In Theorem we require the number of labeled nodes N to be at least of order o2 (K? +
K*'®1log(n)). This condition is mild. First, when K and o,, are constants, it only requires O(log(n))
of labeled nodes, which is much smaller than n. Second, in many applications (see Section E[), On
decreases fast with n. In such settings, even a finite number of labeled nodes are sufficient.

Faster rate than unsupervised VH: We focus on comparing with the results for successive projection
(SP). [11]] derived a non-stochastic bound in terms of [1/Ax (V)] maxi<;<, | €]|; and [22] derived an
improved bound where A (V') is replaced by Ax—1(V'). Their bounds are for the loss maxy, |05 —
vg||. Translating their results to our loss and using concentration inequalities for sub-Gaussian
variables, we have (see [22] and in Appendix for details):

IV =V < V] CKoyy/log(n). (14)
Comparing (T4) with (T3), we observe that the error rate of SSVH has an additional factor of N /2
(ignoring K"-*° and logarithmic terms), which converges faster than the error of unsupervised VH.

Tightness of the error bound: We consider an ideal situation where b is given. It follows by (2) that
Wy is immediately known. Define a regression estimator (under Gaussian noise, this is the MLE):

V* = (WLWs) ' WEXs. (15)
If the error rate in (I3)) matches with the rate of this estimator, then we believe that the rate is already
sharp. The lemmas below shows that the error rate in (T3) matches the ideal estimator’s error rate
only up to a (vK + log(n))?® factor, suggesting the tightness of our rate.
Lemma 3.3 (Ideal estimator). Under the assumptions of Theorem the ideal estimator satisfies
that with probability at least 1 — O(1/n), Ve_v| < V|- CsN—12K1255, , /log(n).

Remark 3 (Noisy labels): Our theory can be extended to the case with incorrect or noisy labels. Let
IIs and Il g be the true and noisy label matrices, respectively. In this case, there will be an extra term
in the error bound, N ~'/2||TLg — IIg||. Notably, this term will not explode as N increases.
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4 Applications to Network Analysis and Text Analysis

4.1 Semi-supervised mixed membership estimation

Mixed membership estimation (MME) [2] is a problem of interest in network analysis. Let A € R™"*"
be the adjacency matrix of an undirected network with n nodes. The network has K communities.
Each node 4 has a mixed membership vector w; € R¥, where 7;(k) is this node’s fractional weight on
community k. The degree-corrected mixed membership (DCMM) model [21]] has been introduced:

Definition 4.1 (DCMM model). The upper triangle of A contains independent Bernoulli variables,
with P(A;; = 1) = 0,0; - m[Pmj, where m; € RE is the mixed membership vector, 9; > 0 is the
degree parameter, and P € RE*K s a symmetric nonnegative matrix that has unit diagonal entries.

Definition 4.2 (Semi-supervised MME). Suppose the network follows a DCMM model. Let S be a
subset of {1,2,...,n}. Given A and 7; for i € S, we aim to estimate all ; fori ¢ S.

We propose the following algorithm. It first uses a full-rank matrix U to project each column of A to
a K-dimensional vector &; = U’ Ae;, and then uses a vector 7 to normalize it: z; = Z;/(n'Z;). When
U consists of the first K eigenvectors of A and when 77 = ey, the vectors x; coincide with the spectral
projections in [21]]. However, our approach permits a general choice of U and 7. For example, we
may apply a community detection algorithm on A to get an estimated community membership matrix
e € R™* K where each row takes values in e1, . .., ex. Then, we can take U = 114 and n=1g.
Under mild regularity conditions on (U, 1), we can show that up to noise corruption, x1, . .., 2, are
contained in a simplex with K vertices (see Theorem .1 below). Therefore, we apply SSVH to z;’s.

Algorithm 2: Semi-supervised Mixed Membership Estimation

Input: K, A, and I1g. Algorithm parameters: a matrix U € R"*X and a vector € R¥.
1. Compute z; = U’ Ae;/ (U’ Ae;) for 1 <i <n.Let X = [x1,...,7,] € R"X and let
X € RV*K be the matrix of stacking the x; for i € S.
2. (SSVH). Apply Algorithmto (K, Xg,I1g) to obtain V and the intermediate quantity b.
3. Let B = diag(b)V. Foreach i ¢ S, compute 7; = ¢, AUB'(BB’)~!. Let #; be the vector
by setting the negative entries in 7, to zero and re-normalizing to have a unit £!-norm.
Output: 7; fori ¢ S.

We justify this algorithm using the following theorem. Under the DCMM model, E[A] = Q—diag(Q),
where Q is a matrix with Q;; = 6,0; - 7} Pm;. We call Q the ‘signal’ matrix.

Theorem 4.1 (Validity of the algorithm). Suppose that the rank of 2 is K, and (U, n) satisfies that
rank(U) = K and n'U’Qe; > 0 for all i. The following statements are true:

(a) Let vy = U'Qe;/(n'U'Qe;), for 1 < i < n. There exist vy, ...,vx € RE and a positive
vector b € RY such that each r; = Zszl w; (k)vg, where w; = (bom;)/||bo 1.
(b) If we plug (K,Q,1Lg) into Algorithm[2| then 7t; = m; for all i ¢ S.

The first statement in Theorem [41] justifies that Models (I)-(2) hold for z;’s, so that our SSVH
framework is applicable. (Here, the noise is ¢; = x; — r; =~ U'(A — Q)e;/(n'U’Qe;), which can be
shown sub-Gaussian, as (A — )e; contains independent centered Bernoulli variables.) The second
statement says that the proposed algorithm can exactly recover unknown 7; in the noiseless case.

Compared with the unsupervised MME methods such as MSCORE [21]] or [34]], a major benefit of the
above algorithm is that it doesn’t require existence of pure nodes for each community. Additionally,
Algorithm 2]is also a new unsupervised MME algorithm, if we replace SSVH by unsupervised VH in
Step 2. The resulting algorithm is different from MSCORE [21]] in the unsupervised setting.

4.2 Semi-supervised topic modeling

Topic modeling (TM) [7]] is a widely used tool for text analysis. Suppose we have a corpus with n
documents written on a vocabulary of p words. Let Y = [Y7,...,Y,] € RP*™ be such that Y;(j) is
the count of word j in document 7. Topic modeling aims to estimate K topics from the corpus, where
each topic is a distribution over vocabulary words, represented by a probability mass function (PMF)
Ay € RP. The probabilistic Latent Semantic Indexing (pLSI) model [12] is a common topic model:
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Definition 4.3 (pLSI model). The word count vectors Y1, . ..,Y, are independent of each other, with
Y; ~ Multinomial(N;, Q;), where N; is the length of document i, and ; € RP is a PMF satisfying

that Q; = Zszl vi (k) Ay, with ~;(k) being the fractional weight that document i puts on topic k.

The unsupervised topic modeling aims to estimate A = [A1, ..., Ax]| from the data matrix Y, and
is addressed various algorithms via optimization or spectral methods [14, 25]. We now formulate
the semi-supervised problem by discussing what ‘additional information’ means in practice. For
each1 < j < p,leta; = (A1(5),...,Ax(j)) € RE. This vector contains word j’s frequencies
in different topics. The topic loading vector for word j is defined as aj = a;/|[|a;|1. Since the
effect of word frequency heterogeneity has been removed in o, this vector purely captures word j’s
topic relevance. For example, when j is an anchor word [525]] of topic k, a7 is equal to ex. When
a; = (0.5,0.5,0,...), it means that word j is only related to the first two topics. Motivated by these
observations, we formulate the semi-supervised problem as follows:

Definition 4.4 (Semi-supervised TM). Suppose the word count matrix Y follows the pLSI model. Let
S be a subset of {1,2,...,p}. Given'Y and aj for j € S, we aim to estimate A.

There is literature on incorporating prior knowledge or human input into topic modeling [3, 1527, [10].
A common assumption [15,[10] is that a set of keywords is given for each topic, and the topic vector is

modeled as A, = wkﬁk +(1—my)Aj, where Ak and Aj, are the keyword-assisted and standard topics,

respectively, and the support of Ay, is restricted on the keyword set. All parameters (7, Ag, A}) are
estimated in a Bayesian framework using beta and Dirichlet priors. In comparison, our problem in
Definition permits a more flexible way of specifying the topic relevance of each keyword. If in a7
we put an equal weight on each topic word j serves as a keyword, then our framework is similar to
those in the literature. But we can also put unequal weights, to incorporate more human knowledge
on keywords. Another benefit of our framework is that we can leverage SSVH to get a fast algorithm,

without relying on the sampling procedure in the Bayesian framework.

We now propose our algorithm for semi-supervised TM. The strategy is similar to that in Section [4.1]
We first turn the counts to frequencies: D = [dy,ds, . ..,d,], with d; = Ni_lYi. We use a matrix
U € RP*K (o project each row of D and a vector € R¥ for normalization, and apply SSVH. After
V is obtained, how to estimate A requires some derivation. We relegate details to the supplement and
only present the algorithm (A is the N x K matrix of stacking together those a} for j € S):

Algorithm 3: Semi-supervised Topic Modeling

Input: K, D, and A%. Algorithm parameters: a matrix U € RP*¥ and a vector n € R¥.
1. Compute z; = U'D’e; /(n/U’'D’e;) for1 < j < p.Let X = [z1,...,x,) € RP*K and
let X5 € RV*X be the matrix of stacking the x; for i € S.
2. (SSVH). Apply AlgorithmlIIto (K, Xg, A¥%) to obtain V and the intermediate quantity b.
3. Let B = diag(b)V. Estimate Aby A = DUB'(BB’)~!

Output: A (its columns are the estimated topic vectors).

Theorem 4.2 (Validity of the algorithm). In the pLSI model, write T' = [y1,...,7v,] and Dy = AT.
Suppose the rank of AT is K, and (U, n) is such that rank(U) = K and /U’ Dgye; > 0for1 < j < p.

Ifwe plug (K, Dy, A%) into AlgorithmE] then A = A.
S Empirical Study

We evaluate the performance of our method, compare it with the unsupervised SP algorithm, and apply
our method to the problems in Section[d] By default, we choose « in our algorithm using the first

approach there. We use the loss minp ||[PV — V|| z /K, where minimum is over row permutations.

Simulations: We fix n = 1000 and generate b by first sampling its K entries independently from
Uniform(0.9, 1.1) and then normalizing it so that ||b|| = 1. The diagonal elements of V" are 1, and the
off-diagonal entries are independently generated from Uniform (0, 1/K) (we make the off-diagonal
elements of V' less than 1/K is to guarantee A _1(V) = O(1) when K is large). We consider a total
of 5 experiments by varying the label ratio |S|/n, noise level o, and dimension K, and 2 additional
experiments comparing with unsupervised VH and studying the runtime.
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Figure 2: The influence of label ratio N/n, noise level o, and dimension K on error |V — V||%/K.
“Balanced Dirichlet” and “Dirichlet w/ Pure Points” correspond to setting (1) and (2) respectively.

Experiments 1-2, influence of data points distribution. We set (K,0) = (3,0.2) and con-
sider two different settings for W: (1) all the rows of W are generated independently from
Dirichlet(1/3,1/3,1/3); (2) with k = 1,2, ..., K, generate 2 rows of Wy independently from
the transformed Dirichlet distribution 0.1Dirichlet(1/3,1/3,1/3) 4 0.9¢, so that they are almost
pure, set 30 rows of Wgc to be ej, so that they are pure, and finally generate all the other rows of W
independently from Dirichlet(1/3,1/3,1/3). Setting (1) is more natural, but it does not guarantee
the existence of pure points (i.e., r; is equal to one vertex). In setting (2), we purposely add pure
points. Once W is generated, we generate z;’s following Models (I)-(2). In these two experiments,
we vary the label ratio |S|/n from 1% to 5%. The results based on 100 repetitions are given in
Figure[2] In both experiments, with only very low label ratio, our algorithm can greatly outperform
the unsupervised VH algorithm, successive projection (SP).

Experiments 3-5, influence of noise level and data dimension. In experiment 3 and 4, we fix
(K,|S|/n) = (3,0.03) and vary the noise level o. We still consider the two ways of generating W
as in Experiments 1-2. As seen in Figure 2] as the noise level increases, the error of our method
grows much slower than that of SP. In experiment 5, we study the influence of K. Fix 0 = 0.2.
As K increases, the number of vertices grows and it is reasonable to require more labeled points.
We set |S| = 4K (e.g., when K = 3, the label ratio |S|/n = 0.012). For large K, it is likely
that some vertices are far from all the observed points, rendering difficulty in identifying them. To
prevent this, we generate W in the following way. With k = 1,2, ..., K, we generate 2 rows of Wg
independently from the transformed Dirichlet distribution 0.1Dirichlet(1x) + 0.9¢j, generate 2
rows of W independently from 0.1Dirichlet(1x) + 0.91x /K, set 10 rows of Wc to be ey, and
finally generate all the other rows of W independently from Dirichlet(1x). As seen in Figure 2]
despite the high dimensionality, our method outperforms SP with only very few labeled points.

Experiments 6, comparison with MVT and AA. In this experiment, we compared our method
with two NMF-based unsupervised methods: the minimum volume transformation (MVT, [8]])
and the archetypal analysis (AA) algorithm [16]. Different from SP, both approaches are anchor-
free: MVT can leverage the data points on the boundary to locate the minimum-volume simplex,
and AA focus on the convex hull of the data cloud, minimizing the well-constructed distance
between it and the estimated vertices. However, the two methods are restricted to utilizing only
the convex hull information and rely on the assumption that the data points are scattered widely
enough for the convex hull to cover most of the underlying simplex. Our method, conversely, can
appropriately extract information from both the inner and boundary points. In this experiment, we fix
(K,|S|/n) = (3,0.03) and vary the noise level 0. Because both MVT and AA are anchor free, we
adopt the same generation process of W as in Experiment 1 so that there may not exist no pure nodes.
The results based on 100 repetitions are exhibited in Table[I] It illustrates that without leveraging the
pure nodes, our method can outperform both of MVT and AA under various noise level.
Table 1: The median estimation error for SP, MVT, AA, and our method over 100 repetitions.
o [ 02 0.4 0.6 0.8 1
Ours | 0.053 0.064 0.231 0.297 0.416
SP 0.319 1.712 4438 8.404 13.37
MVT | 0.191 0.38 0.39  0.427 0.522
AA | 1.863 4.095 7.8 12.521 18.925

Experiments 7, runtime analysis. In this experiment, we study the runtime of SP, MVT, and our
method as the dimension K grows. We adopt the same setting as in experiment 5. The results
aggregated from 100 repetitions are shown in Table[2] From the table, one can see that our method is
very computationally efficient compared to unsupervised approaches such as SP or MVT. Additionally,



Table 2: The mean runtime (in milliseconds) of SP, MVT, and our method over 100 repetitions. MVT

is very time-consuming for large K, so the results are omitted.

K [ 3 6 9 12 15 18 21 24 27 30
Ours | 322 322 345 381 3.71 3.98 4.1 544 492 452

SP 5.11  9.62 1044 17.67 2444 3258 3593 44.67 46.11 53.55
MVT | 8489 >led >led >led >led >led >led >led >led >led

as K scales up, the time complexity of unsupervised methods grows rapid, while our method maintains

a low computation cost.

Network mixed-membership estimation. We use a co-authorship
network for statisticians [18]], with 2831 nodes and 71432 edges.
The node degrees range from 2 to 853, showing with severe hetero-
geneity. Since there is no ground-truth membership, we conduct a
semi-synthetic experiment where we first apply Mixed-SCORE [21]
to cablirate the parameters K, P, w, § for DCMM and then generate
synthetic networks with the estimated parameters. We set the label
ratio N/n = 0.05 and compare our algorithm with two unsupervised
algorithm, SP and a de-noised variant of SP called SVS [21] (it has
a tuning parameter L, which is set to L = 10 x K). The median
loss on estimating V' over 100 repetitions is given in Table 3] and the
estimated simplexes by different methods in one repetition are shown
in Figure [3](the points z;’s are obtained using the spectral projections
in [21]]). Additionally, we also evaluated the excess error of plugging
in different VH algorithms into Algorithm [2]for estimating the mixed
membership vectors compared with the ideal case where the vertices

are known (the loss is the Frobenius error ||IT — II|| p /v/nK). In
Table (3] we report the Excess Error: the loss by plugging in our

Oracle

|
>

Figure 3: Comparison of the
true simplex (orange), SSVH
estimate (blue), SP estimate
(pink), and SVS estimate (red).
The green points are the la-

SSVH estimate minus the loss by plugging in the true simplex. beled ones.

Table 3: The median estimation error of the vertices for SP, SVS, and our method over 100 repetitions.
The numbers in parentheses denote median absolute deviation [13], a robust statistics for variability.

‘ Errorin V ‘ Excess Error of IT or A
SP SVS Ours SP SVS Ours
Network 2.37(0.26) 1.05(0.14) 0.16 (0.04) | 0.15(0.024) 0.08 (0.0083) 0.02 (0.0035)
Text Analysis | 177 (0.12) 1.64 (0.11) 1.22 (0.46) | 0.052 (0.014) 0.033 (0.0025) 0.031 (0.0047)

Topic modeling. We use the academic abstracts in MADStat [23]]. The processed word count provided
by authors use a vocabulary of 2106 words. We further restrict to those abstracts whose total count on
these 2106 words is at least 100. This results in 4129 documents. We fix K = 11 (following [23])) and
apply the algorithm in [25]] to calibrate model parameters (A, ). We then generate synthetic corpus
matrices. We set the label ratio N/n = 0.05 and compare our algorithm with two unsupervised
algorithms, SP and SVS. Since K is large, we set L = K + 5 in SVS (the time complexity of

the algorithm scales with ( IL()) We perform 100 repetition of the semi-synthetic experiments, and

compares the average estimation error of the vertices ||V — V|| /K (up to permutation) for the
three different methods. The results are displayed in Table[3] It can be seen that with only a small
proportion of the label information, our method can greatly outperform the unsupervised methods.
We also computed the Excess Error of plugging these algorithms into AorithmE]for estimating A

(the loss is Frobenius error || A — A||p/K), and the results are in Table

Besides SP ans SVS, we also compare our method with a novel unsupervised topic model estimation
approach [14]. We use the same synthetic dateset and setting as the previous empirical study except
setting the number of labeled nodes N = K + 1. The prior information within this scenario is
extremely weak, barely equipping us with any knowledge above the unsupervised setting. Remarkably,
over 100 repetitions, our method’s median estimation error in V is 0.023 , while the corresponding
error of [[14] is 0.030, which is 30.4% higher than us. This illustrates the efficiency of our algorithm
even with exceedingly low signal. We also implemented SeededL.DA [15], but the resulting error in
A is very large (about 40 times larger than our method). The main reason is that seeded LDA assumes
a different model and is less valid in our scenario.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly explained the contributions of the paper in Section[Iusing bullets
points. We also presented a detailed related work review and emphasize the gap in the
current literature.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We summarize our novel semi-supervised vertex hunting algorithm; also, we
discuss the limitations and future extensions of our work in Appendix

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide a full set of assumptions, Assumption in Section 3] We
provide a complete proof of all the theorems and lemmas in the supplemental material.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose all the information needed to reproduce our experiments in
Section[3l

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and code for our experiments are available in the supplementary
materials.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the experiment details, such as the parameters/simulation settings we
choose, are available in Section[3]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the error bars of our result in Table 3]in the form of median absolute
deviation (MAD) [[13]]. We use this robust statistics for error bar to alleviate the effect of
extreme cases in the experiments where all of or most of the methods perform very poorly.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our experiments do not require any computer resources. All the experiments
in our paper can be implemented on a personal computer.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We strictly conform the NeurIPS Code of Ethics, without any form of plagia-
rism or the use of LLM models.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As illustrated in Section ] our method can be applied to both network and text
analysis, providing a positive social impact. We discuss the possible social impact of our
algorithm in Appendix|[l|

16


https://neurips.cc/public/EthicsGuidelines

11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper proposes a vertex hunting problem, which we do not think has any
risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cite the sources of the data we use, [18] 23] in Section 3}
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The details of our method is well explained in Section 2] and the code for our
algorithm is available in the supplementary materials.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our paper does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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