
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS EFFICIENT AND SCALABLE IMPLEMENTA-
TION OF DIFFERENTIALLY PRIVATE DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentially private stochastic gradient descent (DP-SGD) is the standard algo-
rithm for training machine learning models under differential privacy (DP). The
most common DP-SGD privacy accountants rely on Poisson subsampling for en-
suring the theoretical DP guarantees. Implementing computationally efficient DP-
SGD with Poisson subsampling is not trivial, which leads to many implementa-
tions ignoring this requirement. We conduct a comprehensive empirical study to
quantify the computational cost of training deep learning models under DP given
the requirement of Poisson subsampling, by re-implementing efficient methods
using Poisson subsampling and benchmarking them. We find that using the naive
implementation DP-SGD with Opacus in PyTorch has between 2.6 and 8 times
lower throughput of processed training examples per second than SGD. However,
efficient gradient clipping implementations with e.g. Ghost Clipping can roughly
halve this cost. We propose alternative computationally efficient ways of imple-
menting DP-SGD with JAX that are using Poisson subsampling and achieve only
around 1.2 times lower throughput than SGD based on PyTorch. We highlight
important implementation considerations with JAX. Finally, we study the scaling
behaviour using up to 80 GPUs and find that DP-SGD scales better than SGD.

1 INTRODUCTION

Training data of machine learning (ML) models can be vulnerable to extraction (Balle et al., 2022;
Carlini et al., 2021). Differential Privacy (DP) (Dwork et al., 2006) is the gold standard for for-
malizing the privacy leakage of training data in ML and mitigating the risk of privacy attacks on the
training data. DP is deployed in many applications involving sensitive data (Abowd, 2018; Cormode
et al., 2018).

Opacus
(PyTorch)

GhostClipping
(PyTorch)

MaskedDP-SGD
(JAX)

naive DP
(JAX)

non-DP
(PyTorch)

0.25
0.3

0.4
0.5
0.6
0.7
0.8
0.9

1
1.2
1.4
1.6
1.8

2

T
hr

ou
gh

pu
tr

el
at

iv
e

to
no

n-
D

P

TF32
FP32

Figure 1: Relative throughput to the respective non private baseline (higher is better) on NVIDIA
A100. For each optimization method and each model size, we divide its throughput with the non-
private counterpart. Throughput is the number of processed instances per second. We distinguish
between precision modes. They are available on both frameworks and significantly improve the
throughput for the different DP-SGD implementations.

The established algorithm for integrating DP into the training pipeline of deep learning models is
DP stochastic gradient descent (DP-SGD) (Rajkumar & Agarwal, 2012; Song et al., 2013; Abadi
et al., 2016), which is the DP adaptation of SGD (see also Algorithm 1). DP-SGD has two major

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

drawbacks in comparison to SGD: higher computational cost and loss in utility. DP-SGD requires
more memory and is computationally more expensive due to the per-example clipping. The utility
in comparison to non-DP training drops but this can be mitigated to certain extend by using larger
batch sizes (Räisä et al., 2024) and training longer (Ponomareva et al., 2023) which further increases
the computational cost.

Standard DP privacy accountants assume so-called Poisson subsampling, where each example is
selected at each iteration independently with a fixed probability. This implies that different mini-
batches will be of different size, and makes efficient implementation more difficult. As a result, many
existing implementations forego proper implementation of Poisson subsampling. Recent research
(Lebeda et al., 2024; Chua et al., 2024a;b; Annamalai et al., 2024) shows that such implementa-
tions may have significantly weaker privacy guarantees than claimed under the Poisson subsampling
assumption and that Poisson subsampling is essential for achieving optimal utility under DP.

List of contributions In this work we perform an extensive empirical study on the computational
efficiency of DP-SGD. We will focus on fine-tuning a wide range of large computer vision classifi-
cation models but our findings can be applied any other large models that are trained or fine-tuned
with DP-SGD. Our main contributions are the following:

1. We re-implement all DP-SGD methods with Poisson subsampling that is fully DP and share the
source code.

2. We find that non-optimized training with DP-SGD costs per-epoch between 2.6 and 3.2 times
more than non-private training for ViT and 4 to 8 times for ResNets (See Section 4). We identify
the reasons that lead to the higher computational cost of DP-SGD using profiling.

3. We benchmark different strategies that can reduce this cost drastically up to a level that matches
the non-optimized non-private training (See Figure 1 for an overview): (i) More efficient gradient
clipping implementations of DP-SGD (See Section 5.1). (ii) Lower Precision with TF32 (See
Section 5.2).

4. We propose a JAX implementation relying on proper Poisson sampling that is not prone to re-
compilation and outperforms a naive implementation in terms of throughput (See Section 6).

5. We scale up the training to 80 GPUs and find that DP-SGD scales better than non-private training
(See Section 7).

2 BACKGROUND

This section will explain the main DP-SGD algorithm and optimizations to alleviate its computa-
tional cost.

2.1 DP-SGD ALGORITHM

Algorithm 1 is the original DP-SGD algorithm, with virtual batching, as proposed by Abadi et al.
(2016).

Virtual Batching distinguishes between logical and physical batches. Logical batches are divided
into multiple physical batches to allow taking optimizer steps with many samples without running
out of memory. For example, we typically sample logical batch sizes of size L = 25000 while the
memory only fits < 300 samples at a time. Implementing DP-SGD with virtual batching Algo-
rithm 1 does not modify the privacy accounting. The amount of added noise is the same and does
not affect the model utility (Ponomareva et al., 2023).

Poisson subsampling Interestingly, Bu et al. (2022) and Bu et al. (2023) never mention Poisson
subsampling in their works of Mix Ghost clipping and Book Keeping. Even more, Bu et al. (2022)
state that it has a speed-up of ×1.7 times against other algorithms with a fixed batch size, which
would affect the privacy accounting method. The same happens in practice for JAX implementations
(De et al., 2022), where the sampling is done by shuffling the dataset and using each sample once
per epoch. While this makes efficient implementation easier, it does not use the correct Poisson
subsampling assumed by the privacy accounting methods, and therefore the implementation might
have significantly weaker privacy properties than claimed (Lebeda et al., 2024; Chua et al., 2024a;b;
Annamalai et al., 2024). All our experiments are based on Poisson subsampling which is compliant
with the commonly used privacy accounting.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Algorithm 1 Virtual Batching DP-SGD

Input: Training data points {x1, . . . , xN}, loss function L(θ) = 1
N

∑
i L(θ, xi)

Parameters: Parameters: learning rate ηt, noise scale σ, gradient norm bound C, number of steps
T , approximate logical batch size L, physical batch size p.
for t ∈ [T] do
B ← {xj1 , . . . , xjm} with Poisson sampling with rate L/N .
P ← {B1, . . . , Bk} divide the logical batch B into physical batches of size p.
θacc ← 0
for s ∈ [P] do

For each i ∈ s compute gt(xi)← ∇θtL(θt, xi) {Compute gradient}
gt(xi)← gt/max(1, ∥gt(xi)∥2

C) {Clip gradient}
θacc ← θacc +

∑
i gt(xi) {Accumulate gradient}

end for
g̃t ← 1

|L| (θacc +N (0, σ2C2I)) {Add noise}
θt+1 ← θt − ηtg̃t {Step}

end for
Return Learned parameters θT and the privacy cost from a privacy accountant.

2.2 DP-SGD GRADIENT CLIPPING OPTIMIZATIONS

We benchmark five types of clipping methods. Table 1 shows which clipping optimizations we are
benchmark against the library or framework that implements it.

Table 1: Benchmarked DP-SGD frameworks and libraries. Note that Opacus implements Ghost
Clipping but in our experiments the loss does not decrease, thus indicating a problem.

PYTORCH JAX
CLIPPING MODE NATIVE OPACUS PRIVATEVISION (PV) FASTDP (BK) NATIVE OURS

(YOUSEFPOUR ET AL., 2021) (BU ET AL., 2022) (BU ET AL., 2023)

NON-PRIVATE
PER-EXAMPLE
GHOST CLIPPING (LI ET AL., 2022) ?
MIX GHOST (BU ET AL., 2022)
MIX OPT (BU ET AL., 2023)
MASKED DP-SGD

Ghost clipping computes the loss gradient norm after the backpropagation optimization and then
reweights the loss to update the clipped gradients. Its main contribution is memory saving at the cost
of adding another backward pass (Li et al., 2022).

Mixed Ghost clipping (Bu et al., 2022) builds on-top of Ghost clipping. It implements the ghost
clipping technique for convolutional layers. Its main contribution is that the algorithm will decide
when to clip the gradients using per-example or ghost. This difference matters because the ghost
clipping is less efficient when the layer’s input dimensions are too big. E.g., for ResNets, each
clipping method will be applied for half of the layers. The first layers will be clipped using the the
per-example and then ghost clipping in the bottom layers. As the model goes deeper, the feature size
decreases, and the number of channels increases, prioritizing ghost clipping (Bu et al., 2022).

Book Keeping (Bu et al., 2023) uses all the previous techniques but requires only one backpropa-
gation pass without explicitly calculating the per-example gradients. It avoids the second pass that
ghost clipping does by reusing the intermediate results of the output gradients to calculate the sum
of the clipped gradients and the clipping factor. Book Keeping can also be implemented together
with the mix optimization. It does the same evaluation as the mix ghost clipping, but also determines
whether doing a second backward pass is more efficient.

3 EXPERIMENT OVERVIEW

PyTorch implementations We benchmark a native PyTorch (Ansel et al., 2024) implementation
with PyTorch based libraries Opacus (Yousefpour et al., 2021) (details on gradsampling in Ap-
pendix A.3), PrivateVision (PV) (Bu et al., 2022), and FastDP (BK) (Bu et al., 2023), see Table 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

At submission time ghost clipping in Opacus was still undergoing changes and was unstable in our
experiments.

Native JAX implementation We benchmark a native JAX (Bradbury et al., 2018) implementation
that clips the per-sample gradients with Optax (DeepMind et al., 2020) without utilizing any further
optimization. This naive implementation in JAX is prone to recompiling due to changing tensor
sizes caused by the Poisson subsampling.

Masked DP-SGD We propose an alternative algorithm called Masked DP-SGD which solves the
issue of recompilation but computes always slightly more gradients. It consists of the following
sub-steps at every iteration (see Algorithm 2 for more details):

1. We sample a logical batch size using Poisson sampling.
2. We round up the number of samples for which we compute per-sample gradients so that it is

devisable by the physical batch size without remainder.
3. We compute the per-sample gradients.
4. We mask out gradients so that the per-sample gradients used for the update are the actual Poisson

subsampled ones, ensuring compliance with the Poisson subsampling accounting.

Implementation of Poisson sampling Opacus samples the logical batches using Poisson sampling
and then divides them into physical batches using their BatchMemoryManager class. The other
implementations considered in our experiments do not support virtual batching out-of-the-box. To
make a fair comparison between all methods, we implement the Poisson subsampling, the same way
Opacus does it, for all frameworks and adapt the Batch Memory Manager to support them. This
way, all the experiments are seeded and have the same logical batch sizes.

Metrics We compare the throughput, defined as how many samples can be processed per second
during training, and the maximum physical batch size, reached before running out of memory.

Dataset We benchmark with the CIFAR100 (Krizhevsky & Hinton, 2009) resized to 224x224.

Models We train two families of models: Vision Transformer (ViT) (Dosovitskiy et al., 2021) and
ResNet (Kolesnikov et al., 2020) (See Table 2). Both are pre-trained on ImageNet-21k (Russakovsky
et al., 2015).

Table 2: Number of parameters, in millions, for each family architecture and size of the model.

VISION TRANSFORMER (VIT) RESNET
TYPE # OF PARAMETERS TYPE # OF PARAMETERS

TINY 5.7 M 50× 1 23.7 M
SMALL 22.1 M 101× 1 42.7 M

BASE 86.6 M 50× 3 211.8 M
LARGE 304.3 M 101× 3 382.4 M
HUGE 630.8 M 152× 4 929.2 M

Parameterization While parameter-efficient fine-tuning of some parts of the model has been shown
to be effective under DP (Tobaben et al., 2023; Yu et al., 2022), our work focuses on the com-
putational efficiency of DP-SGD and thus we consider the worst-case scenario of fine-tuning all
parameters of the model. Furthermore, any training from scratch requires training all parameters.

Hyperparameters We train for four optimizer steps with a sampling rate of 0.5 (expected batch size
of 25000), which allows us to test the experiments quickly with a realistic high batch size (Pono-
mareva et al., 2023; Räisä et al., 2024). We do not focus on finding the best possible utility, which
requires training for many more epochs (See Table A2 for the accuracy after training for four steps).

Environment specifications We use two GPU architectures: NVIDIA V100 (32 GB VRAM) and
A100 (40 GB VRAM) with identical Python environments. Each node contains four GPUs. We
use 16 CPU workers for data loading. In the distributed case of more than one GPU, we cannot use
multiple workers.

Source code We provide the code for reproducing the experiments in the supplementary material
and will publish the code in an open repository after acceptance of the paper.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

tiny small base large huge

Model

2

4

6

8

R
el

at
iv

e
Sl

ow
do

w
n

2.60 2.67 2.78 2.96 3.17

(a) Vision Transformer Models

R50x1 R101x1 R50x3 R101x3 R152x4

Model

2

4

6

8

R
el

at
iv

e
Sl

ow
do

w
n

4.07 4.22

6.73
6.24

7.96

(b) ResNet Models

Figure 2: Relative slowdown in mean throughputs between Opacus per-example clipping and
the non-private baseline using one A100 GPU. It is defined as private-throughput/non-private-
throughput, this means that lower is better. It shows how many times private training is more expen-
sive with a relative slowdown of 1 indicating that Opacus is as fast as non-private training.

4 WHAT IS THE COST OF DP IN DEEP LEARNING?

In this section we will quantify the computational cost of deploying DP training. We do this by
comparing the throughputs and maximum physical batch sizes between the non-private training
with PyTorch and private training with Opacus, which is the most used DP-SGD implementation.
Additionally, we identify the reasons for the higher computational cost of DP-SGD through profiling.

4.1 THROUGHPUT AND MAXIMUM BATCH SIZE COMPARISON

We compare relative throughput (Figure 2) and the maximum physical batch size (Figure 3) be-
tween DP-SGD (Opacus) and non-private training with PyTorch. The main metric of interest is the
throughput as it quantifies the training speed but the maximum physical batch size becomes impor-
tant when training models that are too large to fit even one example at a time. For both metrics
DP-SGD becomes more expensive with larger models but the detailed trends differ.

Vision Transformer The throughput difference between Opacus and the non-private baseline with
PyTorch (see Figure 2(a)) does not spike but grows steadily as a function of model size, which is in-
teresting considering how big the relative difference is in maximum physical batch size (Figure 3(a))
is: The throughput ranges from a relative difference of ×2.6 for the smallest model to ×3.17 for the
largest model while the maximum physical batch size has a relative difference of around ×4 for the
smallest model and ×11 for the largest model.

ResNets We observe a less steady growth trend in terms of throughput with the ResNets in Fig-
ure 2(b). When increasing the model size the ResNets do have spikes of growth as the model size
grows. The contrast in Figure 2 between ViT and BiT ResNet models is due to the architecture and
types of layers. The parameter space grows as the width factor (see Table 2) for the ResNets, so
the ×3 makes the neural network wider by a factor of three. Based on our results, the width of the
layers affects throughput much more than the depth of the network. They have comparable through-
put with the same width and different depths, but increasing the width will make the model in the
private setting much slower and reduce the maximum batch size significantly.

How much does finding the maximum physical batch size matter? In Figure A.1 in the Ap-
pendix, we display the relative throughput as a percentage by dividing the throughput at a particular
physical batch size by the maximum achievable throughput. We see that as the physical batch size
increases, the throughput will grow as expected, but at some point there is no significant further
improvement in throughput from using a larger physical batch size. Practitioners may estimate the
optimal batch size based on available memory and performance trade-offs. It is not crucial to set the
physical batch size to the maximum possible but a good enough value is fine. Typically, throughput
using smaller batches is limited by data loading speeds, but as batch size increases, computation
becomes the limiting factor.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

tiny small base large huge

Model

0

200

400

600

800

1000

1200

Ph
ys

ic
al

B
at

ch
Si

ze

1130

555

268

93
35

276

111
35 10 3

non-private
Opacus

(a) Vision Transformer Models

R50x1 R101x1 R50x3 R101x3 R152x4

Model

0

200

400

600

800

1000

1200

Ph
ys

ic
al

B
at

ch
Si

ze

510

333

150
56 24

178 135
23 15 4

non-private
Opacus

(b) ResNet Models

Figure 3: Maximum achievable physical batch size by the different model sizes on A100 GPU (40
GB) before they reach Out Of Memory (OOM) Error. The model sizes grow from left to right. To
check the number of parameters of each size, refer to Table 2.

4.2 REASONS FOR THE INCREASE IN COMPUTATIONAL COST

Giving a detailed breakdown of low-level operations associated with DP is challenging. However,
using GPU profiling tool NVIDIA Nsight System, we can identify three aspects which constitute the
majority of DP overheads. Firstly, due to its larger memory footprint, DP-SGD is able to consume
smaller physical batches than its non-private counterpart. This results in larger amount of smaller
low-level kernel calls which leads to slightly lower utilisation of the GPU. At very small batch
sizes even the kernel launch overheads can become a notable factor for slowdown. Secondly, the
computation of per-example gradients introduces significant overhead in the backward pass as it
cannot be parallelised as in batched gradient computation. This is the most prominent cause of the
total overhead. Finally, an additional DP-optimizer step that clips and accumulates the per example
gradients, which is not present in the non-DP algorithm, needs to taken after each physical batch
(see Table 3).

Table 3: Average processing time for each section of the algorithm. We are comparing the non-
private and Opacus per-example clipping on A100, with the same physical batch size. It is calculated
with NVIDIA Nsight Systems. All the measurements include the syncronization time, which is
needed for the profiling, but adds additional time that is not part of the normal execution. All values
are in milliseconds.

SECTION PYTORCH NON-PRIVATE OPACUS PER-EXAMPLE

FORWARD 81.14 101.53
BACKWARD 163.85 681.48
CLIP AND ACCUMULATION 0 26.76
OPTIMIZER STEP 38.17 99.65

5 DECREASING THE COMPUTATIONAL COST

This section analyzes the different strategies for training with DP-SGD more efficiently. We evaluate
both algorithmic and hardware optimizations and their combinations.

5.1 EFFICIENT GRADIENT CLIPPING ALGORITHMS

First, we evaluate the more efficient gradient clipping implementations that have been described in
Section 2.2 using the Vision Transformer ViT base model. We chose it as our benchmark model
because the middle model size is large enough to evaluate the advantages of the optimized gradi-
ent clipping algorithms but does not require excessive amount of time to train. The non-Opacus
implementations do not support the BiT ResNet due to their custom weight standardization layer.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

non-private PV
ghost

PV
ghost mixed

BK
ghost

BK
MixOpt

BK
MixGhostClip

Opacus

Clipping Mode

0

20

40

60

80

100

120

140

160

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

111.7

62.0 61.8 68.7 68.3 68.4

36.9

149.5

80.3 80.4
91.8 92.0 92.0

54.0

V100
A100

Figure 4: Throughput using the maximum batch
size for each clipping algorithm. It compares the
executions for both V100 and A100, for the ViT
Base model.

Table 4: Maximum physical batch size reach-
able for each clipping method, for the two GPU
architectures we are comparing, for the ViT
base model.

CLIPPING MODE V100 A100
(32GB) (40GB)

NON PRIVATE BASELINE 216 268
PER-EXAMPLE (OPACUS) 28 35
GHOST (PRIVATE VISION) 203 257
MIX GHOST (PRIVATE VISION) 203 257
BK GHOST (FASTDP) 189 209
BK MIX GHOST (FASTDP) 189 209
BK MIX OPT (FASTDP) 189 209

Throughput Comparison Figure 4 displays the throughput for each clipping algorithm for each
tested GPU. Moving from a V100 to an A100 GPU increased the throughput by ×1.3 times on
average over all clipping methods. The one that benefited the most is the per-example clipping by
Opacus with a×1.46 improvement in throughput. This is because of Opacus-specific optimizations.
Their implementation is optimized to vectorize the virtual batches and get the most out of the pro-
cessing unit to compensate for the per-example clipping. Also, we base our virtual batching module
on Opacus, which may have further contributed to the advantage seen for Opacus. The other im-
plementations showed benefits similar to those of non-private training. In both GPU architectures,
the clipping optimizations consistently maintained their relative throughput difference to their non
private baseline. Private Vision gets closer to the non-private baseline physical batch size, but Book
Keeping is closer to its throughput with a smaller physical batch size (see Figure 6).

Without sacrificing utility (Table A2), these optimizations offer an alternative to the original per-
example clipping algorithm. Even though Book Keeping performs better in throughput, it is by a
very narrow margin. Consequently, Private Vision and FastDP remain viable options for implement-
ing ghost clipping. The difference between the two algorithms is the second backward pass over the
neural network. Since the Book Keeping trick avoids doing the second backward pass through the
network, it has a higher throughput at a small memory cost.

Mixing ghost clipping does not yield any improvement because it determines whether it should
apply ghost or per-example clipping, which depends on the size of the inputs and the parameter
space. If the dimensions are large enough, the ghost technique will be more expensive (Bu et al.,
2022). In a ViT model, the dimensions change less than in a convolutional network. Therefore,
despite continually evaluating which method to apply, it always uses ghost clipping. However, if
applied to a ResNet model, it should outperform ghost clipping, as it is optimized for convolutional
layers. It could not be tested on BiT ResNet models used in this study due to incompatibilities with
the Private Vision and FastDP, preventing an assessment of mixed optimization methods.

Maximum physical batch size Table 4 compares the maximum physical batch size for both avail-
able GPUs. The maximum physical batch size is larger for the optimizations of DP-SGD than for
Opacus because they do not require per-example gradients. Thus, the optimizations allow training
much larger models without running out of memory. The maximum physical batch size using Pri-
vate Vision library is the one that comes closest to the non-private baseline. In general, we can see
that the methods are consistent within implementations, with Private Vision and the FastDP reach-
ing the same maximum physical batch size no matter the clipping mode. As expected, the A100
achieves consistently higher maximum physical batch sizes than the V100 due to the larger amount
of VRAM.

5.2 LOWER PRECISION

We consider using lower precision to speed up computation. We evaluate the use of Tensor Core 32
(TF32) for training. TF32 has 10 bits for precision, with eight range bits, giving it the same range
but less precision than 32-bit single precision floats (FP32) (Kharya, 2020). Using lower precision
can have benefits exactly where DP training struggles: it requires less memory, uses fewer bits to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

represent the data, and its operations are optimized for GPU, making them much faster (NVIDIA,
2023). It is specially optimized for the A100 GPU and unavailable for the V100, so we compared
training on the A100 with and without TF32.

tiny small base large huge

Model Size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
el

at
iv

e
di

ff
er

en
ce

th
ro

ug
hp

ut

non-private
Opacus

Figure 5: Relative difference in mean throughput between TF32 and FP32 Training for ViT Models.

Experimental results In Figure 5, we display the relative difference between mean throughput
between runs with TF32 and FP32. For non-private training, throughput increases with model size.
For private training throughput increases for the smaller models, but it goes down again as the
model size grows after the base size. Models that are too small do not gain much from TF32, and
the larger ones have too little maximum physical batch size to benefit (See detailed discussion of
this in Appendix C). Regarding the memory advantages by TF32, we could not see an improvement.
Both models, with and without TF32, could fit the same number of instances.

Concerns regarding TF32 under DP There are two concerns with using lower precision in DP
deep learning: its effects on utility and privacy. For the first issue, using lower precision may affect
utility, as it is less precise. We did not find a significant decay in the accuracy of the models com-
pared to the models with FP32; it differs by decimal points at the ×10−6 precision (See Table A2 in
the Appendix). Regarding privacy, all floating point implementations provide imperfect implemen-
tations of real-valued mechanisms, and this can cause additional privacy vulnerabilities (Mironov,
2012). Using lower precision may exacerbate the problem. Discrete mechanisms (e.g. Canonne
et al., 2020; Agarwal et al., 2021) that avoid the theoretical challenges exist, but they are often less
convenient and may lead to loss of utility, especially in low precision settings. The efficiency of
different discrete mechanisms in TF32 is an interesting topic of further research.

6 JAX

In this section we compare the performance of the two JAX implementations with all other DP-SGD
frameworks (all of them are based on PyTorch). The utility is the same as in PyTorch, see Table A2.

Compilation time Comparing JAX to PyTorch requires taking the compilation time into account
that the DP-SGD implementations in PyTorch do not utilize. There is no straightforward way of
calculating the compilation time, but we measure it as the duration to process the first batch. The
execution times for each batch shows that the first one takes much more time than the others, which
means it includes the compilation time (Figure A.2). To provide a fair comparison, we also imple-
mented a non-private JAX training using the same virtual batching as PyTorch.

Throughput comparison JAX defaults to TF32 when it is available. Therefore, to compare it with
Torch, we forced the use of higher-precision FP32. In Figure 6, we compare both precision modes.
A naive JAX implementation is as slow as Opacus due to JAX recompilation. When JAX defaults
to TF32, our Masked implementation outperforms all methods and is steady, as the batch size does
not affect the throughput as much. But we can also see how TF32 benefits Torch implementations,
which are much more dependent on the batch size. At the largest physical batch size, Opacus with
TF32 can have a higher throughput than our method (See Figure 6(b)).

The masked DP-SGD jax implementation shows a higher throughput than the other JAX implemen-
tations. Since for this implementation we are fitting the whole logical batch in CPU memory, we can
split it and have static sizes. Therefore the compilation time will be higher for the first logical batch,
but for the next iterations we can see the gains in speed, as it does not need to recompile. Its through-
put changes less with respect to its batch size, in comparison to other methods. See Appendix D for
a comparison to a concurrent method by Chua et al. (2024b).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 2 4 8 16 32 64 128 256

Physical Batch Size

20

40

60

80

100

120

140

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

non-private
Opacus
ghost/PV
ghost/BK
masked-DP-SGD/jax
naive-DP-SGD/jax

(a) FP32 Precision

1 2 4 8 16 32 64 128 256

Physical Batch Size

20

40

60

80

100

120

140

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

Opacus/tf32
non-private
masked-DP-SGD/jax/tf32

(b) TF32 Precision

Figure 6: Comparison of the throughput as a function of the physical batch size between the JAX
and PyTorch clipping algorithms on A100 GPU. Only the ghost implementations from Private Vision
and Book Keeping are used, not the Mix algorithms, since they have the same performance. The
estimator is the median, and the error bars are the 95% confidence interval using bootstrapping. (a)
Throughput for all methods with FP32 precision. (b) Comparison between Opacus and our Masked
DP-SGD implementation with TF32 precision.

Our Masked implementation of per-example clipping reaches a higher physical batch size, and the
throughput is always higher than its Opacus counterpart in the FP32 setting. It is as efficient in terms
of throughput as the Private Vision Ghost Clipping. However, the Book Keeping Ghost Clipping
implementation has a higher throughput after a physical batch size of 8. For practitioners that remain
in PyTorch, Book Keeping ghost clipping presents a throughput comparable to the execution of the
Masked DP-SGD JAX while reaching a larger batch size.

Another difference between the two frameworks is the variability in the experiments. PyTorch runs
are remarkably consistent in having a low variance, and the same throughput result is expected every
time for a fixed seed. JAX executions are more variable than those of PyTorch, likely due to its sensi-
tivity to HPC environment fluctuations and accelerator stochasticity, as noted in Figure A.2. Another
contributing factor is JAX’s asynchronous dispatch method, which complicates time benchmarking
by issuing a promise rather than immediate results, concealing Python overheads.

The compilation time (see Figure A.2) grows with the batch size. For the private model, it takes
more time since the compiled function is more complex than the non-private counterpart. It includes
expanding the dimensions and clipping the gradients, while the non-private directly computes the
gradient of the whole mini-batch.

Poisson sampling Using JAX for DP introduces complexities, particularly around subsampling
which is crucial for privacy accounting. Implementing Poisson subsampling results in variable batch
sizes in JAX; changes in batch size require JIT to recompile, leading to graph retracing which is
costly and contributes to execution run variability, as discussed by Chua et al. (2024a). Our masked
DP-SGD implementation overcomes this issue while using proper Poisson subsampling and there-
fore ensuring the correct privacy budget.

PyTorch Compilation Although compiling PyTorch is possible, we could not see any improve-
ments in terms of speed-up. While compiling the non-private model worked, the speed-up gained
was minimal and, in the end, even lower if we consider the compilation time. PyTorch also recom-
piles after a batch size change. While trying to compile, PyTorch falls back to predefined CUDA
operations that are already optimized. In the case of the private setting, the compilation does not
recognize Opacus hooks and continues the execution without compiling them (See Figure A.3).

Leveraging the same kernels to support the private hooks and avoid the compilation would require
massive engineering work of writing special kernels for each specific private case. On the other
hand, JAX will compile the JIT functions in XLA, but it does not fall back to the kernels, making it
more generalizable (Subramani et al., 2021).

7 MULTI-GPU TRAINING

This subsection will look at another angle to train deep learning with DP faster: increasing the
computational resources enough to decrease the training time. This is relevant when training cost or
resource constraints are less important than the time to train a new model.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We utilize V100 GPUs on HPC nodes that have 4 GPUs per node. The other experimental setting is
identical to the one in Section 4. Results for utilizing up to 24 A100 GPUs can be found in Figure A.5
in the Appendix. We focus on comparing the scaling behaivour between the non-private baseline
that uses PyTorch and the DP-SGD implementation using Opacus. Both frameworks provide mature
tooling for distributed training.

12 4 8 16 32 64 80

GPU

0

2000

4000

6000

8000

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
) non-private (observed)

Opacus (observed)
non-private (linear scaling)
Opacus (linear scaling)

Figure 7: Comparison between the throughput by scaling the number of GPUs with more nodes for
the non-private and Opacus training with the ViT base model on V100 GPUs. The dashed line is the
ideal growth if it were linear.

Figure 7 shows the throughput increase as a function of number of GPUs. The throughput does
not grow linearly and changes from the ideal linear scaling after using more than one node (i.e.
when using more than 4 GPUs). The communication inside the node is fast, but the communication
between nodes will always be slower. The bottleneck is the bandwidth, and it prevents the model
from scaling linearly. Notably, it affects the non-private training baseline much more, while the
private scales close to optimal up to 32 GPUs. For the 80 GPUs, the private training achieves 69.2%
of the ideal throughput, and the non-private training only achieves 53.3%. Private training scales
better because it is slower and only sometimes saturates the network with updates.

If we use Amdalh’s law to compare the parallelism percentage for each case, we can see that in
the private case, we achieve a 99.5% parallelism compared to a 98.9% in the non-private case (See
Figure A.6 in the Appendix).

8 CONCLUSION

Table 5: A summary of the lessons learnt. The relative throughput/max physical batch size is in
comparison to PyTorch non-DP (higher is better) on NVIDIA A100. For each optimization method
and each model size, we divide it with the non-private counterpart.

Method Relative to non-DP (PyTorch) Supports Compilation Privacy SectionThroughput (↑) Max Physical Batch Size (↑) all layers Initial Re- Concerns
Opacus 0.31-0.39 0.08-0.24 - - - Section 4
Efficient Gradient Clipping 0.49-0.54 0.88-0.95 - - - Section 5.1
Native JAX 0.39-0.59 0.23-0.43 - Section 6
Masked DP-SGD (ours) 0.51-0.69 0.11-0.23 - Section 6
Masked DP-SGD + TF32 0.79-1.33 0.11-0.23 ? Section 6
Low Precision (Opacus+TF32) 0.54-0.84 0.08-0.24 - - ? Section 5.2

We summarize the lessons learnt in Table 5. While DP-SGD is significantly more costly than non-
private training, we identified feasible speed-ups that are often easy to apply but have some draw-
backs. These are: (i) More efficient implementations of DP-SGD which additionally decrease the
memory footprint (allowing for training larger models). However, these implementations are not
as mature as Opacus and do not support all neural network layers (yet). (ii) JAX which processes
samples faster than PyTorch but looses the advantage through frequent re-compilations when utiliz-
ing proper Poisson sampling. Moreover, JAX lacks a comprehensive DP-SGD implementation as
PyTorch and exhibits a greater variability in execution times. (iii) We present an efficient imple-
mentation DP-SGD with JAX that correctly uses Poisson sampling while using physical batches of
the same length, also complying with JAX efficient optimizations. (iv) Lower Precision using TF32
which increases throughput but the implications on the theoretical guarantees of DP-SGD need to be
explored in future work. Finally, we found that distributed computing using DP-SGD scales better
than non-private training and allows for fast training of models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martı́n Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi (eds.), Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October 24-28,
2016, pp. 308–318. ACM, 2016. doi: 10.1145/2976749.2978318. URL https://doi.org/
10.1145/2976749.2978318.

John M. Abowd. The U.S. Census Bureau adopts differential privacy. In Yike Guo and Faisal Farooq
(eds.), Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD 2018, London, UK, August 19-23, 2018, pp. 2867. ACM, 2018. doi:
10.1145/3219819.3226070. URL https://doi.org/10.1145/3219819.3226070.

Naman Agarwal, Peter Kairouz, and Ziyu Liu. The skellam mechanism for differentially private
federated learning. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 5052–5064, 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html.

Meenatchi Sundaram Muthu Selva Annamalai, Borja Balle, Emiliano De Cristofaro, and Jamie
Hayes. Scalable DP-SGD: Shuffling vs. poisson subsampling. CoRR, abs/2411.10614, 2024.
URL https://arxiv.org/abs/2411.10614.

Jason Ansel, Edward Z. Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesen-
sky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael La-
zos, Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yun-
jie Pan, Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk,
Shunting Zhang, Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou, Richard Zou,
Xiaodong Wang, Ajit Mathews, William Wen, Gregory Chanan, Peng Wu, and Soumith Chin-
tala. PyTorch 2: Faster machine learning through dynamic Python bytecode transformation and
graph compilation. In Rajiv Gupta, Nael B. Abu-Ghazaleh, Madan Musuvathi, and Dan Tsafrir
(eds.), Proceedings of the 29th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2, ASPLOS 2024, La Jolla, CA, USA, 27
April 2024- 1 May 2024, pp. 929–947. ACM, 2024. doi: 10.1145/3620665.3640366. URL
https://doi.org/10.1145/3620665.3640366.

Borja Balle, Giovanni Cherubin, and Jamie Hayes. Reconstructing training data with informed
adversaries. In 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA,
USA, May 22-26, 2022, pp. 1138–1156. IEEE, 2022. doi: 10.1109/SP46214.2022.9833677. URL
https://doi.org/10.1109/SP46214.2022.9833677.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs. http://github.
com/google/jax, 2018.

Zhiqi Bu, Jialin Mao, and Shiyun Xu. Scalable and efficient training of large con-
volutional neural networks with differential privacy. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
fa5617c176e76fee83f3f9947fdf9f3f-Abstract-Conference.html.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private optimization
on large model at small cost. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of

11

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/3219819.3226070
https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html
https://arxiv.org/abs/2411.10614
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1109/SP46214.2022.9833677
http://github.com/google/jax
http://github.com/google/jax
http://papers.nips.cc/paper_files/paper/2022/hash/fa5617c176e76fee83f3f9947fdf9f3f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/fa5617c176e76fee83f3f9947fdf9f3f-Abstract-Conference.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Machine Learning Research, pp. 3192–3218. PMLR, 2023. URL https://proceedings.
mlr.press/v202/bu23a.html.

Clément L. Canonne, Gautam Kamath, and Thomas Steinke. The discrete gaussian for differen-
tial privacy. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
b53b3a3d6ab90ce0268229151c9bde11-Abstract.html.

Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-
ine Lee, Adam Roberts, Tom B. Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin
Raffel. Extracting training data from large language models. In Michael Bailey and Rachel
Greenstadt (eds.), 30th USENIX Security Symposium, USENIX Security 2021, August 11-13,
2021, pp. 2633–2650. USENIX Association, 2021. URL https://www.usenix.org/
conference/usenixsecurity21/presentation/carlini-extracting.

Lynn Chua, Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Amer Sinha, and Chiyuan
Zhang. How private are DP-SGD implementations? In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024a. URL
https://openreview.net/forum?id=xWI0MKwJSS.

Lynn Chua, Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Amer Sinha, and Chiyuan
Zhang. Scalable DP-SGD: Shuffling vs. poisson subsampling. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems, 2024b. URL https://openreview.
net/forum?id=6gMnj9oc6d.

Graham Cormode, Somesh Jha, Tejas Kulkarni, Ninghui Li, Divesh Srivastava, and Tianhao Wang.
Privacy at scale: Local differential privacy in practice. In Gautam Das, Christopher M. Jermaine,
and Philip A. Bernstein (eds.), Proceedings of the 2018 International Conference on Manage-
ment of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pp. 1655–
1658. ACM, 2018. doi: 10.1145/3183713.3197390. URL https://doi.org/10.1145/
3183713.3197390.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L. Smith, and Borja Balle. Unlocking high-
accuracy differentially private image classification through scale. ArXiv preprint, abs/2204.13650,
2022. URL https://arxiv.org/abs/2204.13650.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hes-
sel, Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus
Kunesch, Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papa-
makarios, John Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia
Schneider, Eren Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech
Stokowiec, Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem.
http://github.com/google-deepmind, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=YicbFdNTTy.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to sen-
sitivity in private data analysis. In Shai Halevi and Tal Rabin (eds.), Theory of Cryptography,
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006,
Proceedings, volume 3876 of Lecture Notes in Computer Science, pp. 265–284. Springer, 2006.
doi: 10.1007/11681878 14. URL https://doi.org/10.1007/11681878_14.

12

https://proceedings.mlr.press/v202/bu23a.html
https://proceedings.mlr.press/v202/bu23a.html
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://openreview.net/forum?id=xWI0MKwJSS
https://openreview.net/forum?id=6gMnj9oc6d
https://openreview.net/forum?id=6gMnj9oc6d
https://doi.org/10.1145/3183713.3197390
https://doi.org/10.1145/3183713.3197390
https://arxiv.org/abs/2204.13650
http://github.com/google-deepmind
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1007/11681878_14

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Paresh Kharya. TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up to 20x. https:
//blogs.nvidia.com/blog/tensorfloat-32-precision-format/, 2020.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly,
and Neil Houlsby. Big transfer (BiT): General visual representation learning. In Com-
puter Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part V, pp. 491–507, Berlin, Heidelberg, 2020. Springer-Verlag. ISBN 978-3-
030-58557-0. doi: 10.1007/978-3-030-58558-7 29. URL https://doi.org/10.1007/
978-3-030-58558-7_29.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL https://www.cs.
toronto.edu/˜kriz/learning-features-2009-TR.pdf.

Christian Janos Lebeda, Matthew Regehr, Gautam Kamath, and Thomas Steinke. Avoiding pitfalls
for privacy accounting of subsampled mechanisms under composition. CoRR, abs/2405.20769,
2024. doi: 10.48550/ARXIV.2405.20769. URL https://doi.org/10.48550/arXiv.
2405.20769.

Xuechen Li, Florian Tramèr, Percy Liang, and Tatsunori Hashimoto. Large language models can
be strong differentially private learners. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=bVuP3ltATMz.

Ilya Mironov. On significance of the least significant bits for differential privacy. In Ting Yu, George
Danezis, and Virgil D. Gligor (eds.), Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pp. 650–661, New York, NY, USA, 2012. Association for
Computing Machinery. ISBN 9781450316514. doi: 10.1145/2382196.2382264. URL https:
//doi.org/10.1145/2382196.2382264.

NVIDIA. Train with mixed precision. https://docs.nvidia.com/deeplearning/
performance/mixed-precision-training/index.html, 2023.

Natalia Ponomareva, Sergei Vassilvitskii, Zheng Xu, Brendan McMahan, Alexey Kurakin, and
Chiyaun Zhang. How to dp-fy ML: A practical tutorial to machine learning with differen-
tial privacy. In Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos, Xifeng
Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (eds.), Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, Au-
gust 6-10, 2023, pp. 5823–5824. ACM, 2023. doi: 10.1145/3580305.3599561. URL https:
//doi.org/10.1145/3580305.3599561.

Ossi Räisä, Joonas Jälkö, and Antti Honkela. Subsampling is not magic: Why large batch sizes
work for differentially private stochastic optimisation. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=gTBjkJvadC.

Arun Rajkumar and Shivani Agarwal. A differentially private stochastic gradient descent algorithm
for multiparty classification. In Neil D. Lawrence and Mark A. Girolami (eds.), Proceedings of
the Fifteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2012, La
Palma, Canary Islands, Spain, April 21-23, 2012, volume 22 of JMLR Proceedings, pp. 933–941.
JMLR.org, 2012. URL http://proceedings.mlr.press/v22/rajkumar12.html.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic gradient descent with
differentially private updates. In IEEE Global Conference on Signal and Information Pro-
cessing, GlobalSIP 2013, Austin, TX, USA, December 3-5, 2013, pp. 245–248. IEEE, 2013.
doi: 10.1109/GlobalSIP.2013.6736861. URL https://doi.org/10.1109/GlobalSIP.
2013.6736861.

13

https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/
https://doi.org/10.1007/978-3-030-58558-7_29
https://doi.org/10.1007/978-3-030-58558-7_29
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.48550/arXiv.2405.20769
https://doi.org/10.48550/arXiv.2405.20769
https://openreview.net/forum?id=bVuP3ltATMz
https://doi.org/10.1145/2382196.2382264
https://doi.org/10.1145/2382196.2382264
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://doi.org/10.1145/3580305.3599561
https://doi.org/10.1145/3580305.3599561
https://openreview.net/forum?id=gTBjkJvadC
http://proceedings.mlr.press/v22/rajkumar12.html
https://doi.org/10.1109/GlobalSIP.2013.6736861
https://doi.org/10.1109/GlobalSIP.2013.6736861

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Dusan Stosic and Paulius Micikevicius. Accelerating AI training with
NVIDIA TF32 tensor cores. https://developer.nvidia.com/blog/
accelerating-ai-training-with-tf32-tensor-cores/, 2021.

Pranav Subramani, Nicholas Vadivelu, and Gautam Kamath. Enabling fast differentially
private SGD via just-in-time compilation and vectorization. In Marc’Aurelio Ranzato,
Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 26409–26421, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/ddf9029977a61241841edeae15e9b53f-Abstract.html.

Marlon Tobaben, Aliaksandra Shysheya, John Bronskill, Andrew Paverd, Shruti Tople, Santi-
ago Zanella Béguelin, Richard E. Turner, and Antti Honkela. On the efficacy of differentially
private few-shot image classification. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=hFsr59Imzm.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, Graham Cormode, and
Ilya Mironov. Opacus: User-friendly differential privacy library in PyTorch. ArXiv preprint,
abs/2109.12298, 2021. URL https://arxiv.org/abs/2109.12298.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A. Inan, Gautam Kamath, Janard-
han Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, and Huishuai
Zhang. Differentially private fine-tuning of language models. In The Tenth International Confer-
ence on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022. URL https://openreview.net/forum?id=Q42f0dfjECO.

A TRAINING DETAILS

A.1 MODELS

• Vision Transformer (ViT) (Dosovitskiy et al., 2021). Taken from https://
huggingface.co/timm/vit_base_patch16_224.orig_in21k

• Big Transfer ResNet (Kolesnikov et al., 2020). Taken from https://github.com/
google-research/big_transfer

A.2 HYPERPARAMETERS

We use the hyperparameters obtained on request from Tobaben et al. (2023). The hyperparameters
for both models are in Table A1. Even though model utility is not the main objective in this work, in
the non-private case, the learning rate is suboptimal. By changing it to 0.00027 we see an accuracy
improvement, therefore the one we are using.

Table A1: Hyperparameters used for each model architecture.

MODEL TRAINABLE PARAMETERS EPSILON DELTA LEARNING RATE MAX GRAD NORM

VIT ALL 8 2.04e−5 0.00031 4.63
RESNET ALL 8 2.04e−5 0.00098 6.53

A.3 GRAD SAMPLE MODES IN OPACUS

Opacus supports multiple different gradient sampling methods as indicated in the documentation1.
In our original experiments we used the grad sample mode hooks that is the default. This will use

1https://github.com/pytorch/opacus/tree/61ae0ea4fb37a835e93040b5de19e8dfcd465a07/
opacus/grad_sample

14

https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/
https://proceedings.neurips.cc/paper/2021/hash/ddf9029977a61241841edeae15e9b53f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ddf9029977a61241841edeae15e9b53f-Abstract.html
https://openreview.net/forum?id=hFsr59Imzm
https://arxiv.org/abs/2109.12298
https://openreview.net/forum?id=Q42f0dfjECO
https://huggingface.co/timm/vit_base_patch16_224.orig_in21k
https://huggingface.co/timm/vit_base_patch16_224.orig_in21k
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/pytorch/opacus/tree/61ae0ea4fb37a835e93040b5de19e8dfcd465a07/opacus/grad_sample
https://github.com/pytorch/opacus/tree/61ae0ea4fb37a835e93040b5de19e8dfcd465a07/opacus/grad_sample

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

custom opacus modules when they are defined for that layer and functorch as a fallback. Based
on the feedback by a reviewer we tried out different methods listed in the documentation for both
ResNet and ViT models:

• functorch: We forced opacus to use functorch but did not observe any significant speed
differences to using hooks. This is in line with the opacus documentation which writes that
the speed is 0− 50% slower than hooks.

• ExpandedWeigths: We tried this approach but ran into runtime errors. Interestingly,
when looking through the issues others have reported issues23 but it seems to be more a
PyTorch problem and has not been addressed for years. According to the documentation
ExpandedWeights is still in beta status.

• GhostClipping: Note that this method only works for ViT as described in Section 5.1. We
did not manage to decrease the loss with this implementation due to the implementation in
opacus being unstable but think that the speedups should be similar as observed in our
experiments in Section 5.1 as the underlying algorithm is the same.

A.4 POISSON SUBSAMPLING JAX ALGORITHM

We present our DP-SGD implementation in JAX that uses the correct Poisson subsampling and
therefore we can account for its privacy. The main problem with implementing DP-SGD with JAX
is the batches of variable size. In order to address this issue, we compute always full physical batches
and mask out gradients so that the total number of used gradients is equal the sampled logical batch
sizes. This means that we always compute a little more gradients that required due to sampling. This
prevents the recompiling.

Algorithm 2 Virtual Batching DP-SGD JAX

Input: Training data points {x1, . . . , xN}, loss function L(θ) = 1
N

∑
i L(θ, xi)

Parameters: Parameters: learning rate ηt, noise scale σ, gradient norm bound C, number of steps
T , expected logical batch size L, physical batch size p.
Start
for t ∈ [T] do
tl ∼ Bernoulli(L

N) {Sample the true batch size}
Find minimum k ∈ N such that p ·k ≥ tl {Check how many full physical batches are required}
m← k · p
B ← {xj1 , . . . , xjm}
P ← {B1, . . . , Bk} {Divide the maximum logical batch B into physical batches of size p}.
M ← {10, 11, . . . , 1tl−1, 0, 0, . . . , 0m−tl+1} {Create masks so that

∑m
i Mi = tl}

θacc ← 0
for s ∈ [P] do

for i ∈ s do
gt(xi)← ∇θtL(θt, xi) {Compute gradient}
gt(xi)←Mi+(s−1)∗p · gt/max(1, ∥gt(xi)∥2

C) {Clip gradient and mask}
end for
θacc ← θacc +

∑
i gt(xi) {Accumulate gradient}

end for
g̃t ← 1

|L| (θacc +N (0, σ2C2I)) {Add noise}
θt+1 ← θt − ηtg̃t {Step}

end for
Return Learned parameters θT and the privacy cost from a privacy accountant.

B ADDITIONAL RESULTS

This section provides additional figures that supplement the findings in the main text.
2https://github.com/pytorch/opacus/issues/464
3https://github.com/pytorch/opacus/issues/584

15

https://github.com/pytorch/opacus/issues/464
https://github.com/pytorch/opacus/issues/584

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1 2 4 8 16 32 64 128 256

Physical Batch Size

20

40

60

80

100

%
of

M
ax

im
um

T
hr

ou
gh

tp
ut

non-private
Opacus

Figure A.1: The relative difference with the throughput at the maximum batch size for the ViT base
model on A100.

1 2 4 8 16 32 64 128 256

Physical Batch Size

16

18

20

22

24

26

28

30

32

C
om

pi
la

tio
n

tim
e

(s
)

non-private/jax
private/jax

Figure A.2: Compilation time in seconds as a function of the physical batch size for JAX naive
experiments for the ViT Base model on A100. The estimator is the median and the error bars are the
95% confidence interval using bootstrapping.

Table A2: Mean accuracy for CIFAR-100 test set for each clipping mode for the ViT models on
A100 after training for two epochs. All use the ViT hyperparameters from Table A1. While this
work does not focus on the model’s utility, having their results still allows us to compare them. The
use of TF32 as a lower precision mode does not affect the model’s utility.

CLIPPING MODE TEST ACCURACY

OPACUS 0.8223
OPACUS/TF32 0.8225
JAX NAIVE 0.8146
MASKED DP-SGD 0.8224
PV-GHOST 0.822
BK-GHOST 0.822

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

non-private Opacus

Mode

0

50

100

150
T

hr
ou

gh
pu

t(
sa

m
pl

es
/s

)
w compilation time
wout compilation time
no compilation

Figure A.3: Torch compilation experiments on A100, using the maximum physical batch size for
each mode and ViT Base. PyTorch 2 enables compiling the model to (potentially) gain further
speed-ups. We tried PyTorch 2 compilation to make a fair comparison with the JAX compilation but
did not observe any benefits from it. We found that when trying to compile PyTorch, it first tries to
compile but then falls back to NVIDIA kernels and optimizations. In the end, it does not compile,
and the throughput is the same. If we take into account the first iteration (w compilation time), it is
worse because of the time PyTorch spends trying to compile before falling back to NVIDIA kernels
and optimizations. Disregarding the time where PyTorch tries to compile (wout compilation time),
leads to nearly the same throughput as the version that does not attempt using PyTorch 2 compiling
in the first place.

1 2 4 8 16 32 64 128 256 512

Physical Batch

0

100

200

300

400

500

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

non-private
Opacus
non-private tf32
Opacus tf32

(a)

1 2 4

GPU

0

250

500

750

1000

1250

1500

1750

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

non-private tf32
non-private
Opacus tf32
Opacus

(b)

Figure A.4: Combining distributed training with the use of lower precision TF32 for the ViT base
model on A100. (a) Throughput for one GPU; (b) Throughput for multiple GPUs.

1 2 4 8 16 24

GPU

0

500

1000

1500

2000

2500

3000

3500

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

non-private
Opacus

Figure A.5: Comparison between the throughput by scaling the number of GPUs with more nodes
for the non-private and Opacus training with the ViT base model on A100 GPUs. The dashed line
is the ideal growth if it were linear.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1 2 4 8 16 32 64 80

GPUs

100

101

Sp
ee

du
p

non-private
Opacus
Amdahl’s Law 100
Amdahl’s Law 99.5
Amdahl’s Law 98.9
Amdahl’s Law 95

Figure A.6: Comparison between the throughput in our experiments and the theoretical Amdahl’s
Law. Both axis are in log scale. In the distributed setting, private training achieves a 99.5 % of
parallel processing, with a 50 times speed up than single processing.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C FURTHER DISCUSSION OF TF32 SPEEDUPS

The speedup observed in Figure 5 peaks at the ”base” model. We believe that the reasons are the
following: Speed-ups resulting from TF32 can significantly vary on per case basis as “all stor-
age in memory and other operations remain completely in FP32, only convolutions and matrix-
multiplications convert their inputs to TF32 right before multiplication.” (Stosic & Micikevicius,
2021). Until now, TF32 precision benchmarks have been limited to non-DP applications which was
one of the reasons we wanted to discuss our observations in DP context. It appears the effectiveness
of TF32 arithmetic peaks at “base” configuration. This due to a mix of reasons which are difficult
to quantify exactly. Firstly, it is likely that matrix multiplication kernel dominance peaks at this
configuration i.e. we have the most parameters whilst the batch size dimension also remains suf-
ficiently large. With large and huge model variants the parameter count still increases but at the
cost having very small batch dimension of 10 and 3, respectively. Secondly, we observe similar
trend in Figure 2(a) where the discrepancy between dp and non-dp grows as model size gets bigger.
This suggests that the dominance of DP operations also grows with the model size. None of the
DP-operations are cast as matrix-multiplications and hence won’t benefit from TF32.

D EXTRA COMPUTATIONAL COST OF THE MASKED DP-SGD

For the masked dp-sgd, we first sample the minibatch using Poisson subsampling and to allow
JAX compilation, we round this number to the closest larger integer divisable by the physical batch
size. Hence, for any samples batch size X , the difference between X and the upscaled batch size
will be in {0, . . . p− 1} for a physical batch size p. Denoting the excess batch size with ∆p(X) and
the upscaled batch size with X+, we can write

E[X+] = E[X +∆p(X)]. (A1)

Now, we can form a simple upper bound for the expected value of the upscaled batch size as

E[X+] ≤ E[X] + (p− 1). (A2)

When working large number of samples and non-negligible sampling probabilities, the excess cost
due to upscaling the batch size will be modest for feasible physical batch sizes. For example, in our
experiments the expected batch size of the Poisson subsampling was 25 000, whereas the physical
batch sizes extended up to 64.

A recent work by Chua et al. (2024b) proposed an alternative implementation for JAX compilable
implementation of Poisson subsampled DP-SGD. In their approach the batch sizes are sampled from
a truncated Binomial distribution. This affects the privacy guarantees of the models, and therefore
they need to compensate the truncated sampling by increasing the noise std. for DP-SGD. They
suggest an approach for computing the truncation bound B as

Ψ(n, b,B) · T · (1 + eϵ) ≤ τδ (A3)

where Ψ(n, b,B) denotes the survival function (1 − cdf) of Binom(n, b/n) at B and T are the
number of steps. The parameter τ effectively scales the size of the tails and is used to calibrate
the noise std by selecting σ such that the hockey-stick divergence between the Poisson subsampled
Gaussian mechanisms is bound by (1− τ)δ. Chua et al. (2024b) choose τ = 10−5, which keeps the
noise std. increase very small.

In the implementation of Chua et al. (2024b), the gradients are computed for B randomly selected
samples, after which the final samples are chosen according to the batch size sampled from the
truncated Binomial. Hence the computational excess over regular Poisson subsampling becomes
B − b. For example, in our setting where ϵ = 8, δ = 10−5, n = 50 000, b/n = 1/2 and T = 4,
the B − b = 858, which is significantly larger than the p − 1 excess of our method for obtainable
physical batch sizes (p ≤ 64).

19

	Introduction
	Background
	DP-SGD Algorithm
	DP-SGD Gradient Clipping Optimizations

	Experiment Overview
	What is the cost of DP in Deep Learning?
	Throughput and Maximum Batch Size Comparison
	Reasons for the Increase in Computational Cost

	Decreasing the computational cost
	Efficient gradient clipping algorithms
	Lower precision

	JAX
	Multi-GPU Training
	Conclusion
	Training Details
	Models
	Hyperparameters
	Grad sample modes in Opacus
	Poisson Subsampling JAX Algorithm

	Additional Results
	Further discussion of TF32 speedups
	Extra computational cost of the masked dp-sgd

