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Abstract

Building NLP models that are resistant to
computer destabilization has become a key el-
ement of research in recent years. While mod-
els are becoming more and more reliable and
robust, concerns about the exploitation of their
flaws involve the construction of tools to guar-
antee their robustness and to protect against
computer attacks. As a result, adversarial de-
fense have been aggressively developed over
the past decade, showing convincing results in
improving the robustness of models and their
resistance to attacks. However, another cru-
cial tool in protecting from attacks is to im-
prove word-adversarial attacks detection. In
this paper, we evaluate the performance of
two attack detection methods on two prepared
datasets and two transformer-based models 1.
Our main goal is to investigate and confirm the
results obtained in Yoo et al. (Yoo et al., 2022),
using density estimation.

1 Introduction

Natural Language Processing (NLP) has seen sig-
nificant advancements in recent years, with nu-
merous applications in various domains, from
chatbots to sentiment analysis. However, with
these advancements come concerns about the
safety and fairness of NLP models. In particular,
there is a growing awareness of the importance of
fairness (Colombo et al., 2021; Pichler et al., 2022;
Colombo et al., 2022b), out-of-distribution (OOD)
generalization (Colombo, 2021), and adversarial
defense (Yoo et al., 2022).

1.1 Adversarial attacks

Adversarial attacks in NLP have been identified as
a problem for many years (Hulten et al., 2004; Pi-
cot et al., 2023a,b), especially as NLP models are

∗The two authors have equal contribution.
1https://github.com/VincentNg5/NLP project

being increasingly used in critical fields. They re-
fer to the deliberate manipulation of NLP models
to produce erroneous or misleading outputs.

These attacks are usually carried out by inject-
ing specially crafted input data that can trick NLP
models into making incorrect predictions, there-
fore known as evasion attacks (Barreno et al.,
2006). Over the previous years, many adversar-
ial attacks have shown success in destabilizing
transformer-based models, especially with the rise
of many easy-to-use frameworks, such as TextAt-
tack (Morris et al., 2020) or OpenAttack (Zeng
et al., 2021).

To tackle this issue, many papers in recent years
has tried to improve the robustness of NLP al-
gorithms, using various techniques of adversar-
ial defense. Among them, robust encoding in-
volves using the average embedding of all charac-
ters of a given word to protect against character-
level adversarial example attacks (Belinkov and
Bisk, 2017) ; randomization involves generating
embedding vectors for each word from a convex
hull of every single word and its synonyms, which
improves the model’s performance against adver-
sarial attacks by synonym substitution (Zhou et al.,
2021) ; and adversarial training involves combin-
ing specific adversarial examples with the original
inputs as an augmented dataset to significantly en-
hance the model’s robustness (Wang et al., 2021).

However, the detection of adversarial attacks
has recently emerged as one of the fundamental
issues in the development of NLP models. In-
deed, the drawbacks of the above mentioned de-
fense techniques are that they are often costly and
prove to be inadequate in a number of situations
for which the simple detection of adversarial at-
tacks would be sufficient. In this respect, several
recent papers have worked to develop a baseline
for enhancing the detection of adversarial attacks
(Xie et al., 2022) (Mozes et al., 2021). The pa-



per by Yoo et al. (Yoo et al., 2022) gives a gen-
eral overview, on four datasets and with four NLP
models, of the main detection methods and their
ability to efficiently detect adversarial attacks, us-
ing three different scores. In particular, the authors
introduce a new detection method, based on robust
density estimation, which we will try to reproduce
in the rest of this paper.

2 Experiments Protocol

Our main goal is to evaluate an adversarial de-
tection technique that is based on robust density
estimation through Kernel PCA and Minimum
Covariance Determinant. To do so, we use the
widely-used IMDb Dataset (Maas et al., 2011).

2.1 Dataset

The IMDb dataset is a commonly used dataset for
sentiment analysis, consisting of a collection of
50,000 movie reviews, split evenly into a training
set and a test set. The dataset is labeled with bi-
nary sentiment labels, where 0 denotes a negative
sentiment and 1 denotes a positive sentiment. The
reviews were originally collected on the Interna-
tional Movie Database (IMDb), and the Dataset is
loaded from HuggingFace. The dataset has been
widely used for evaluating the performance of sen-
timent analysis models, and has been used in nu-
merous studies in the field.

2.2 Construction of the adversarial examples

As the attacks are expensive to reproduce, we have
recovered the attacks already created by Yoo et al.
in their paper already quoted (Yoo et al., 2022).
To do this, the dataset was split into two parts S1

and S2. Only the S1 part was used to generate the
attacks in TextAttack, and the successful contra-
dictory examples were kept. The reviews in sub-
set S2 are kept as is and form the clean part of
the dataset. Subsequently, two Transformer-based
models are used, that both lie on the BERT model.
BERT (standing for Bidirectional Encoder Rep-
resentations from Transformers) is a pre-training
method developed by Google researchers in 2018
(Devlin et al., 2018). The key innovation of this
model is its ability to pre-train a deep bidirec-
tional representation of text by jointly condition-
ing on both left and right contexts in all layers of
the transformer. This means that BERT is able to
capture the context of a given word not just from
the words that come before it, but also from the

words that come after it. BERT was pre-trained
on a large corpus of text data, specifically the
BooksCorpus and English Wikipedia datasets, and
achieved state-of-the-art results on a range of NLP
benchmarks.

The second model that we use, RoBERTa (Ro-
bustly Optimized BERT Pretraining Approach) is
based on the BERT architecture. It was devel-
oped by Facebook AI researchers in 2019 (Liu
et al., 2019). The main improvement of RoBERTa
over BERT is its training strategy. The RoBERTa
model is trained on a much larger and more di-
verse dataset than the original BERT model, and
it also uses a longer sequence length during train-
ing. This allows RoBERTa to capture more com-
plex relationships between words and phrases, and
to better model the nuances of natural language.

2.3 Robust Density Estimation

Following the Yoo et al. paper, we build a strategy
of adversarial detection that uses Robust Density
Estimation with a Kernel-Principal Component
Analysis and Minimum Covariance Determinant.
The Principal Component Analysis aims at avoid-
ing the curse of dimensionality that would arise
from the high dimension of transformers-based
models (D = 768), as well as the presence of
outliers. However, PCA can only model linear
relationships between variables, therefore we use
Kernel PCA that extends the linear PCA approach
by applying a non-linear transformation to the in-
put data. This transformation maps the input data
into a higher-dimensional feature space, where it
becomes easier to model non-linear relationships
between variables. Considering N centered sam-
ples Ztrain ∈ RD×N = [z1, ..., zN ], a mapping
function φ : RD → RD0 , and its mapping applied
to each sample Φ(Ztrain) ∈ RD0×N , kernel
PCA projects the data points to the eigenvectors
with the P largest eigenvalues of the covariance
Φ(Ztrain)Φ(Ztrain)

T .

The second problem that may arise from our
data is that the use of a Kernel-PCA haven’t tack-
led the problem of outliers that are present in the
data. As a consequence, we use a Minimum Co-
variance Determinant (MCD), which is a robust
statistical method used to estimate the parameters
of a multivariate normal distribution in the pres-
ence of outliers (Rousseeuw, 1984). Given a set of
n d-dimensional observations X = x1, x2, ..., xn,



the goal of MCD is to find a subset of the data Y
with size m ≤ n that minimizes the determinant
of its covariance matrix, subject to the constraint
m ≥ d + 1. By minimizing the influence of out-
liers on the covariance matrix, the MCD is able to
provide more accurate estimates of the true under-
lying parameters of the distribution.

2.4 Implementation details

We load pretrained models provided by TextAt-
tack 2. Both kPCA and MCD are computed us-
ing the scikit-learn library (Pedregosa et al., 2012).
We choose the input of the Kernel PCA to be the
output of the last attention layer. We use radial ba-
sis function kernel and reduce the dimensions of
the feature to P = 100. For MCD, we choose
the default value of support fraction provided by
scikit-learn.

2.5 Evaluation of the results

To evaluate the performances of our model, we
use three different scores that gives us different
informations. For all metrics, higher means better.
First of all, the F1 score is a commonly used
metric in classification tasks that measures the
harmonic mean of precision and recall, providing
a single score that highlights the trade-off between
precision and recall. Secondly, the recall (or true
positive rate) is a performance metric that mea-
sures the proportion of true positive predictions
out of all actual positive instances in the data. In
other words, it is the ratio of correctly predicted
positive instances to all positive instances. Both
of theses scores depends on the false positive
rate (FPR) that we have fixed at 0.1, which
means that 10% of normal samples are pre-
dicted to be attacks. However, the fact that these
metrics depends on this parameter is inconvenient.

The other score is the the area under the re-
ceiver operating characteristic curve (AUC-ROC)
and does not depends on the FPR. That is why the
AUC score is the preferred metric in our paper.
The ROC curve is a plot of the true positive rate
(TPR) against the false positive rate (FPR) at var-
ious threshold settings. The AUC-ROC represents
the probability that a randomly selected positive
sample is ranked higher than a randomly selected
negative sample, and is equal to the area under the
ROC curve. A perfect classifier has an AUC-ROC

2https://huggingface.co/textattack

of 1, while a random classifier has an AUC-ROC
of 0.5. The AUC-ROC is a useful metric for eval-
uating classifier performance when the classes are
imbalanced and the cost of false positives and false
negatives are different.

3 Results

3.1 Log-likelihood with or without
MinCovDet

The graphs below highlight the value of using a
MinCovDet. The first graph presents the results
of the log-likelihood of the covariance matrix ob-
tained from the Kernel-PCA. We can clearly see
that the log-likelihood is rather high for the clean
examples, while the adversarial examples have a
lower (and more spread out) log-likelihood.
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Figure 1: Log-likelihood of the covariance matrixes
without MinCovDet

However, we note that in the second example,
the use of the Minimal Covariance Determinant al-
lows us to obtain much tighter results. Indeed, the
MCD estimator assumes that a subset of the data is
drawn from a multivariate normal distribution, and
the subset is chosen to minimize the covariance
matrix determinant. Therefore, the outliers are re-
moved and the results seem clearly better, with a
clear separation between the adversarial distribu-
tion and the clean distribution.

3.2 AUC and F1-Score

The table below resumes the performances of the
Robust Density Estimation, for both BERT and
RoBERTa. The most informative results have been
put in bold. First, it appears that most of the mod-
els using mincovdet achieve higher AUC, F1, and
recall scores compared to their counterparts us-
ing simple covariance matrices (cov). This sug-
gests that our approach using mincovdet can be a
better approach for tasks of adversarial detection.



BERT Models
Metric MCD with TextFooler Covariance with TextFooler MCD with PWWS Covariance with PWWS
AUC 0.94 0.92 0.94 0.92

F1 0.85 0.80 0.84 0.79
Recall 0.82 0.73 0.80 0.72

BERT Models (continued)
Metric MCD with BAE Covariance with BAE MCD with TF-adj Covariance with TF-adj
AUC 0.92 0.90 0.9 0.87

F1 0.80 0.72 0.77 0.66
Recall 0.73 0.63 0.69 0.55

RoBERTa Models
Metric MCD with TextFooler Covariance with TextFooler MCD with PWWS Covariance with PWWS
AUC 0.95 0.92 0.95 0.94

F1 0.88 0.85 0.88 0.86
Recall 0.86 0.82 0.88 0.84

RoBERTa Models (continued)
Metric MCD with BAE Covariance with BAE MCD with TF-adj Covariance with TF-adj
AUC 0.95 0.92 0.90 0.87

F1 0.87 0.83 0.76 0.73
Recall 0.85 0.78 0.68 0.64

Table 1: Performance Metrics for BERT and RoBERTa models
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Figure 2: Log-likelihood of the covariance matrixes
with MinCovDet

For instance, the RobeRTa with Textfooler attacks
achieves a AUC score of 0.95, which is higher than
the AUC score of its counterpart using simple co-
variance matrices with a score of 0.92.

Additionally, the Roberta models generally per-
form better than the BERT models across all met-
rics, which is probably due to differences in model
architecture or training data (as mentioned above).
Looking at the table, we can see that for all of
the models tested, the highest scores (AUC, F1,
and recall) are achieved by the RoBERTa mod-
els. As an example, we can compare the AUC
scores and F1 scores of the models with PWWS
attacks and MinCovDet. The RoBERTa model
achieved an AUC score of 0.95, while the BERT
model achieved an AUC score of 0.94. Similarly,

RoBERTa achieved an F1 score of 0.88, while
BERT achieved an F1 score of 0.84.

In summary, our method applied to
transformers-based embeddings achieves good
performance, with a AUC score greater than 0.9
for each attack.

4 Conclusion

In this work, we introduce a method based on den-
sity estimation for adversarial detection for trans-
formers models in NLP. We find that our out-of-
distribution detection works well and can handle
unseen attacks. However, there remains room for
future research on robustness, for example against
stronger adversaries who use adaptive attacks. An-
other direction for future improvement could be
to take into consideration information available in
all the hidden layers of the transformers architec-
ture (Colombo et al., 2022a; Darrin et al., 2023b)
and to test our methods on OOD detection (Darrin
et al., 2023a).



References
Peter Rousseeuw. 1984. Least median of squares re-

gression. Journal of the American statistical associ-
ation, 79:871–880.

Geoff Hulten, Anthony Penta, Gopalakrishnan Se-
shadrinathan, and Manav Mishra. 2004. Trends in
spam products and methods.

Marco Barreno, Blaine Nelson, Russell Sears, Anthony
Joseph, and J. Tygar. 2006. Can machine learning be
secure? volume 2006, pages 16–25.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Andreas Müller, Joel
Nothman, Gilles Louppe, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2012.
Scikit-learn: Machine learning in python.

Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic
and natural noise both break neural machine transla-
tion.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. TextAttack: A frame-
work for adversarial attacks, data augmentation, and
adversarial training in NLP. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 119–126, Online. Association for Computa-
tional Linguistics.

Xiaosen Wang, Yichen Yang, Yihe Deng, and Kun He.
2021. Adversarial training with fast gradient projec-
tion method against synonym substitution based text
attacks. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 35(16):13997–14005.

Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-Wei
Chang, and Xuanjing Huang. 2021. Defense against
synonym substitution-based adversarial attacks via
Dirichlet neighborhood ensemble. In Proceedings

of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 5482–5492,
Online. Association for Computational Linguistics.

Maximilian Mozes, Pontus Stenetorp, Bennett Klein-
berg, and Lewis Griffin. 2021. Frequency-guided
word substitutions for detecting textual adversarial
examples. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 171–186,
Online. Association for Computational Linguistics.

Pierre Colombo. 2021. Learning to represent and gen-
erate text using information measures. Ph.D. thesis,
(PhD thesis) Institut polytechnique de Paris.

Pierre Colombo, Chloe Clavel, and Pablo Piantanida.
2021. A novel estimator of mutual information for
learning to disentangle textual representations. ()
ACL 2021.

Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji
Zhang, Zixian Ma, Bairu Hou, Yuan Zang, Zhiyuan
Liu, and Maosong Sun. 2021. OpenAttack: An
open-source textual adversarial attack toolkit. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing: System Demonstrations, pages
363–371, Online. Association for Computational
Linguistics.

Pierre Colombo, Eduardo D. C. Gomes, Guillaume
Staerman, Nathan Noiry, and Pablo Piantanida.
2022a. Beyond mahalanobis-based scores for tex-
tual ood detection.

KiYoon Yoo, Jangho Kim, Jiho Jang, and Nojun Kwak.
2022. Detection of word adversarial examples in
text classification: Benchmark and baseline via ro-
bust density estimation.

Georg Pichler, Pierre Jean A Colombo, Malik Boudiaf,
Günther Koliander, and Pablo Piantanida. 2022. A
differential entropy estimator for training neural net-
works. In () ICML 2022.

Zhouhang Xie, Jonathan Brophy, Adam Noack, Wen-
cong You, Kalyani Asthana, Carter Perkins, Sabrina
Reis, Sameer Singh, and Daniel Lowd. 2022. Iden-
tifying adversarial attacks on text classifiers.

Pierre Colombo, Guillaume Staerman, Nathan Noiry,
and Pablo Piantanida. 2022b. Learning disentan-
gled textual representations via statistical measures
of similarity. ACL 2022.

Marine Picot, Nathan Noiry, Pablo Piantanida, and
Pierre Colombo. 2023a. Adversarial attack detec-
tion under realistic constraints.

Maxime Darrin, Pablo Piantanida, and Pierre Colombo.
2023a. Rainproof: An umbrella to shield text gen-
erators from out-of-distribution data. arXiv preprint
arXiv:2212.09171.

https://doi.org/10.2307/2288718
https://doi.org/10.2307/2288718
https://doi.org/10.1145/1128817.1128824
https://doi.org/10.1145/1128817.1128824
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.48550/ARXIV.1201.0490
https://doi.org/10.48550/ARXIV.1711.02173
https://doi.org/10.48550/ARXIV.1711.02173
https://doi.org/10.48550/ARXIV.1711.02173
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.1609/aaai.v35i16.17648
https://doi.org/10.1609/aaai.v35i16.17648
https://doi.org/10.1609/aaai.v35i16.17648
https://doi.org/10.18653/v1/2021.acl-long.426
https://doi.org/10.18653/v1/2021.acl-long.426
https://doi.org/10.18653/v1/2021.acl-long.426
https://doi.org/10.18653/v1/2021.eacl-main.13
https://doi.org/10.18653/v1/2021.eacl-main.13
https://doi.org/10.18653/v1/2021.eacl-main.13
https://doi.org/10.18653/v1/2021.acl-demo.43
https://doi.org/10.18653/v1/2021.acl-demo.43
http://arxiv.org/abs/2211.13527
http://arxiv.org/abs/2211.13527
https://doi.org/10.48550/ARXIV.2203.01677
https://doi.org/10.48550/ARXIV.2203.01677
https://doi.org/10.48550/ARXIV.2203.01677
https://doi.org/10.48550/ARXIV.2201.08555
https://doi.org/10.48550/ARXIV.2201.08555


Marine Picot, Guillaume Staerman, Federica Granese,
Nathan Noiry, Francisco Messina, Pablo Piantanida,
and Pierre Colombo. 2023b. A simple unsupervised
data depth-based method to detect adversarial im-
ages.

Maxime Darrin, Guillaume Staerman, Eduardo
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