
1

Efficient and Privacy-preserving Outsourcing of
Gradient Boosting Decision Tree Inference

Shuai Yuan, Student Member, IEEE, Hongwei Li (Corresponding Author), Fellow, IEEE,
Xinyuan Qian, Student Member, IEEE, Meng Hao, Student Member, IEEE,

Yixiao Zhai, Student Member, IEEE, Guowen Xu, Member, IEEE

Abstract—Recently, outsourcing machine learning inference
services to the cloud has become increasingly popular. The
inference process, however, remains an open question on how to
effectively protect the model owner’s proprietary model, the user’s
sensitive data, and prediction results. In this work, we propose an
efficient and comprehensive privacy-preserving framework for
outsourcing Gradient Boosting Decision Tree (GBDT) inference
utilizing pseudorandom function and additively homomorphic
encryption. Specifically, we first design a transformation method
for GBDT to protect the node and structure privacy of the
owner’s model. On top of the protected model, we further propose
customized comparison and random trees permutation protocols,
which substantially boost the computation and reduce the
communication cost of the outsourcing inference, while preventing
the user from inferring privacy associated with GBDT. Besides,
we provide rigorous security analysis, and extensive experiments
on 7 real-world datasets and various models demonstrating that
our scheme achieves up to 36 times less runtime and 69 times
less communication compared to the state-of-the-arts.

Index Terms—Privacy-preserving Machine Learning, Out-
sourcing Inference, Gradient Boosting Decision Tree, Additively
Homomorphic Encryption.

I. INTRODUCTION

Gradient Boosting Decision Tree (GBDT) has become a
popular type of machine learning (ML) algorithm because of its
efficiency, accuracy, and interpretability. With the development
of efficient GBDT libraries [1] [2] [3], it can be widely applied
in both data science competitions and industrial scenarios
such as credit modeling [4], fraud detection [5], and medical
diagnosis [6]. In short, GBDT builds many decision trees one
by one, where each tree tries to reduce the residual of previous
trees. In the prediction phase, the final result is obtained by
summing up the outputs of all trees. With the widespread
adoption of cloud computing, outsourcing GBDT inference
services to the cloud is gaining more and more popularity.

However, this practice can lead to critical privacy issues.
Firstly, the model owner’s model is usually exclusive since
training an effective model takes a significant investment in
datasets, computational resources, and labor costs. The model
owner would naturally not want to expose their models to the
cloud server in plaintext. Secondly, the users’ query data may be
sensitive, such as financial information or medical data. Sending
data directly in plaintext may easily compromise the user’s
privacy. Thirdly, the user might not like the server to be aware
of the true predictions, such as financial judgments or medical
diagnoses. Meanwhile, the user cannot infer information about
GBDT based on predictions. The server should only be able
to make predictions but do not know the real results.

Extensive efforts have been dedicated to enhancing the
security of decision tree evaluation [7] [8] [9] [10]. How-
ever, these schemes grapple with the challenge of effectively
balancing accuracy and overhead. In the realm of privacy-
preserving decision tree evaluation (PPDE), research can be
broadly categorized into two distinct approaches: perturbation-
based and cryptography-based methods. Firstly, perturbation-
based approaches [11] [12] [13] [14] predominantly involve
the introduction of randomness or noise into the original
database. These methods exhibit high efficiency without
entailing time-consuming operations. However, the introduction
of noise can significantly undermine model accuracy. Secondly,
cryptography-based methods [15] [16] [17] ensure both high
model accuracy and robust security. However, many of these
methods [18] [19] [20] rely on resource-intensive cryptographic
tools, resulting in substantial overhead that limits their practical
applicability. Furthermore, it is important to note that many
existing PPDE methodologies [8], [10], [21], [22], [23], [24],
[25] fail to effectively scale to GBDT. This limitation arises
from the fact that users, with access to predictions for each
tree, can pinpoint sparse trees that reach leaf nodes “too early”
[26]. A more detailed exploration of related work is available
in Section II.

In this work, our focus lies in employing cryptographic
methods to ensure the utmost accuracy of the GBDT while
minimizing any associated overhead. To tackle the aforemen-
tioned challenges, we present an innovative secure framework.
This framework empowers GBDT owners to deploy inference
services within the cloud for their clients while upholding the
confidentiality of proprietary models, sensitive user data, and
prediction outcomes. Firstly, to protect the model owner’s
proprietary GBDT, we consider how to properly encrypt
the decision trees in GBDT so that they can still function
well during inference in the cloud. Note that a decision tree
contains not only node privacy but also structural information,
like the evaluation path over the feature vector, which also
demands protection. Our solution involves encoding all decision
trees in GBDT with pseudorandom function and additively
homomorphic encryption. Secondly, to be compatible with the
working paradigm of additively homomorphic encryption as
well as protect users’ sensitive data and prediction results, we
design a secure comparison protocol. This protocol efficiently
facilitates the comparison of internal nodes during prediction
without leaking feature or threshold specifics. Importantly, the
comparison process circumvents the need to traverse through
all internal nodes, resulting in minimal overhead. Finally, to

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3395928

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 24,2024 at 08:34:40 UTC from IEEE Xplore. Restrictions apply.

2

TABLE I: Comparative summary of different schemes

Scheme Techniques Round Leakage Privacy One server One path Support GBDTNode Structure

Bost et al. [7] leveled-FHE ≥ 6 γ ! % ! % !

Wu et al. [27] HE, OT 6 γ, d ! ! ! % !

Cock et al. [8] SS, OT 11 (d ≤ 9) γ, d ! ! % % %

Tai et al. [22] AHE 4 γ ! % ! % %

Joye et al. [16] AHE, OT ≥ 6 d ! ! ! % !

Tueno et al. [23] OT, GC 4d d ! % ! ! %

Tueno et al. [23] ORAM d2 + 3d d ! % ! ! %

Kiss et al. [9] AHE, OT, GC 4 γ ! % ! % !

Zheng et al. [18] SS O(2d) d, l ! % % % !

Ma et al. [19] SS, OT, GC 2d− 1 γ, d ! ! % ! !

Bai et al. [20] AHE, SS, OT 8d γ, d ! ! % ! %

Bai et al. [20] SS, OT, PRF (3rf + 5)d γ, d ! ! % ! %

Ours AHE, PRF 2d γ, d ! ! ! ! !

Node Privacy: information on internal nodes and leaf nodes, Structure Privacy: tree structure and prediction paths, One path: traverse
only the nodes on the predicted path, γ: the number of decision nodes, d: the tree depth, l: bit length of each element in the feature vector,
rf : rounds for evaluating PRF f, leveled-FHE: leveled Fully Homomorphic Encryption, HE: Homomorphic Encryption, AHE: Additively
Homomorphic Encryption, OT: Oblivious Transfer, SS: Secret Sharing, GC: Garbled Circuit, ORAM: Oblivious Random-Access Memory,
PRF: Pseudorandom Function.

prevent any potential leakage of GBDT-related information to
users, we customize the random trees permutation protocol.
This protocol fully capitalizes on GBDT’s inherent properties
to obscure the connection between interim results and trees,
all while incurring minimal overhead. A thorough evaluation
of these technical innovations is comprehensively presented.
Our noteworthy contributions are succinctly outlined below:

• We propose a secure and effective framework for out-
sourcing GBDT inference, which protects the privacy of
models, feature vectors, and predictions.

• Our approach involves a specialized algorithm for the pro-
prietary GBDT. We also customize the secure comparison
protocol for internal node determination using additively
homomorphic encryption exclusively. Furthermore, we
design the random trees permutations protocol using the
properties of GBDT to effectively thwart any attempts
at unauthorized information extraction. To solidify the
integrity of our approach, we provide formal security
proofs for these protocols.

• We conduct an empirical evaluation with GBDT of practi-
cal sizes, showing the actual performance of our security
design, as well as substantial performance advantages for
inference process compared with other existing privacy-
preserving schemes (up to 36× in computation and 69×
in communication).

II. RELATED WORK

There have been massive works concerned with privacy-
preserving decision tree evaluation (PPDE). Generally, there
exist two kinds of technologies adopted in this area, i,e.,
(1) perturbation-based approaches and (2) cryptography-based
approaches. Perturbation-based approaches [11] [12] [13] [14]
typically involve introducing randomness or noise into the
original database to safeguard the privacy of individual data
entities. In general, these methods are efficient but with low
accuracy.

In contrast, cryptography-based technologies can provide
stronger privacy and accuracy. Our current focus primarily
centers on this category of approaches. Ma et al. [28] proposed
a privacy-preserving random tree framework with Paillier
cryptosystem, which implemented accurate and secure training
over encrypted data. Similarly, Wu et al. [29] devised an
innovative solution for privacy-preserving vertical decision
tree training and prediction, ensuring the non-disclosure of
intermediary information. Furthermore, Liu et al. [30] proposed
a federated extreme gradient boosting scheme that supports
forced aggregation. The above schemes all adopt the HE-based
mechanism, which is feasible for decision trees with privacy
preservation. However, the secure computation implemented
over a substantial volume of encrypted data results in a
significant computational overhead.

To address the above issue, a model sharing-based privacy-
preserving decision tree framework has been designed, which
outsources encrypted model parameters rather than a large
number of local data. Table I summarizes the strengths and
weaknesses of the current work. Cock et al. [8] proposed
a PPDE scheme in the semi-honest model. This scheme is
designed by adopting Shamir’s secret sharing scheme in the
commodity-based model. Tai et al. [22] showed that their work
successfully avoids an exponential number of encryptions in the
depth of the tree. Tueno et al. [23] devised a method to represent
the decision tree as an array and employed oblivious array
indexing. In their scheme, garbled circuits (GC) [31], oblivious
transfer (OT) [32], or oblivious RAM (ORAM) [33] are adopted.
However, as shown in Table I the existing decision tree-based
methods [8], [10], [21], [22], [23], [24], [25] face limitations in
directly supporting GBDT. A straightforward approach involves
transmitting ciphertexts containing predictions from all decision
trees to the client, enabling the client to recover individual
inference outcomes and subsequently aggregate them. Despite
its simplicity, this approach raises concerns as it inadvertently
exposes individual decision tree predictions to the client. The

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3395928

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 24,2024 at 08:34:40 UTC from IEEE Xplore. Restrictions apply.

3

adversary can discern sparse trees arriving “too early”, allowing
them to identify influential features in each tree by refining their
query data [26]. Additionally, Luo et al. [34] proposed a feature
inference attack, that successfully reconstructs private features
by exploiting local linear correlations between the inputs
and outputs of a single tree, even without prior background
knowledge. The majority of existing single-server schemes [27],
[22], [8], [16] necessitate traversing all nodes, incurring high
overhead. Alternatively, schemes traversing only the correct
paths typically require two or more servers [20], [19], posing
deployment challenges in real-world scenarios.

To support GBDT, Bost et al. [7] built a privacy-preserving
protocol for GBDT evaluation. They treated each decision tree
as a polynomial and used fully homomorphic encryption. Kiss
et al. [9] systematically categorized constant-round protocols
to identify optimal instantiations, utilizing garbling techniques
and homomorphic encryption. Zheng et al. [18] proposed a
secure framework for outsourcing decision tree inference with
huge communication overhead on the cloud side. However, the
findings in Table I show that none of these works take into
consideration the structure privacy of the model, which mainly
consists of the architecture of the model and the real prediction
paths.

In order to protect both node privacy and structure privacy,
Wu et al. [27] enhanced Bost et al.’s approach by employing
additively homomorphic encryption. Joye et al. [16] formulated
protocols for privately evaluating decision trees through oblivi-
ous transfer. Nonetheless, both of these efforts still necessitate
traversing each internal node (“One path” in Table I), incurring
a notable overhead. Some subsequent work has investigated
obtaining correct predictions through only one pathway. Ma et
al. [19] proposed two MPC-based protocols, demanding two
non-colluding servers for both complete and sparse trees. Bai
et al. [20] designed a sublinear PPDE protocol involving 8d
rounds of communication, which is larger than our 2d round.
In addition, in Bai et al.’s work, the model owner needs to
be engaged in the user’s prediction process all the time. Note
that these endeavors do not satisfy the one server requirement
in Table I and require multiple non-colluding servers, which
is very impractical and involves substantial overhead between
servers.

III. PRELIMINARIES

In this section, we introduce foundational concepts that form
the basis of our approach. Table II provides a comprehensive
list of the key notations used throughout this paper.

A. Gradient Boosting Decision Tree

GBDT, an ensemble machine learning algorithm, operates
on a training dataset D = {(x1, y1), · · · , (xN , yN)} where
xi ∈ X ⊆ Rn and yi ∈ Y ⊆ R. Using a specified loss function
L(y, f(x)), GBDT aims to discover an estimation function
f̂(x) that maps every vector xi to the corresponding label yi
to minimize the expected value of the loss function L.

GBDT encompasses two kinds of nodes: non-leaf nodes
(i.e., internal nodes) housing feature index and threshold
information, and leaf nodes containing predicted values. During

TABLE II: Notations Used

Notations Definition

n Number of features
d Maximum depth of decision trees
m Number of decision trees in GBDT
γ Maximum number of internal nodes in GBDT
f Feature index

ef,n column vector in Rn with all zeros except
for a 1 in position f

θ Threshold value
vi,j The j-th node of the i-th tree
ri The random number of the i-th tree

pk/sk Public/Secret key of AHE
⊞ / ⊟ Addition / Subtraction of ciphertext
JxK Ciphertext of x

Fi,j(x) Feature selection function of the vi,j
Jxi,jK Encrypted data after feature selection of the vi,j
CPT Cipher Private Tree
SCP Secure Comparison Protocol
RTP Random Trees Permutation

Anti-RTP Recovery algorithm for RTP

the prediction process, GBDT aggregates the predictions from
all trees to generate the final prediction. We define the privacy
aspects of GBDT as follows:

• Node Privacy: Node privacy consists of two kinds of node
information in GBDT. Firstly, there are many internal
nodes in decision trees, in which we want to protect
the feature index and threshold information. Secondly,
it extends to the leaf nodes, which store the predicted
values of decision trees and determine the final GBDT
prediction.

• Structure (Path) Privacy: The decision tree traverses
the leaf nodes starting from the root node to generate
predictions. This process defines a prediction path in the
decision tree, referred to as path privacy, which must be
safeguarded against disclosure. Furthermore, in the case
of sparse trees, the structure of the tree should also be
kept confidential.

B. Pseudorandom Function

The standard definition for pseudorandom function (PRF) is
given as follows:

Definition 1. Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an
efficient, length-preserving, keyed function. We say F is a
pseudorandom function if for all probabilistic polynomial-time
distinguishers D, there exists a negligible function negl such
that:

|Pr[DFk(·)(1n) = 1]− Pr[Dfn(·)(1n) = 1]| ≤ negl(n),

where k ← {0, 1}n is chosen uniformly at random and fn is
chosen uniformly at random from the set of functions mapping
n-bit strings to n-bit strings.

C. Additively Homomorphic Encryption

Our scheme relies on additively homomorphic encryption
(AHE), which supports fast addition and scalar multiplication.
The standard definition for AHE is given as follows:

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3395928

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 24,2024 at 08:34:40 UTC from IEEE Xplore. Restrictions apply.

4

Definition 2. (Additively Homomorphic Encryption [35]):
AHE schemes consist of the following (possibly probabilistic)
poly-time algorithms.

• KeyGen(1λ)→ (pk, sk): pk is the public key, while sk
is the secret key.

• Enc(pk,m) → JmK: probabilistic encryption algorithm
produces JmK, the ciphertext of message m.

• Dec(sk, JmK) → m: decryption algorithm returns mes-
sage m encrypted in JmK.

• Add(JmK, Jm′K): : The output is the encryption of plain-
text addition/subtraction (m±m′).

• DecA(sk, Jm±m′K): decrypting Jm±m′K to obtain an
addition/subtraction of plaintexts.

Definition 3. (CPA security): An AHE scheme is indistin-
guishability under chosen plaintext attack (IND-CPA) secure
if, for any polynomial-time adversary A, it holds that

AdvCPA[A] ≜ |Pr[A(pk,AHE.Encpk(0) = 1)]

− Pr[A(pk,AHE.Encpk(1) = 1)]| = negl(λ),
(1)

where (pk, sk)← AHE.KeyGen(1λ).

D. Random Permutation

A random permutation f of order n is a random bijection
over the set {1, 2, . . . , n}, which can be denoted as

f =

(
1 2 . . . n

f(1) f(2) . . . f(n)

)
,

where (f(1), f(2), . . . , f(n)) is a random reordering of
(1, 2, . . . , n). The well-known Fisher-Yates shuffle [36] [37]
iterates a sequence from the end to the beginning (or vice
versa), and for each location i, it swaps the value at i with the
value at a random target location j.

IV. PROBLEM STATEMENT

A. System Architecture

Our system architecture of outsourced GBDT inference is
illustrated in Figure 1. Within this proposed framework, three
distinct entities play pivotal roles: the Model Owner (MO), the
Cloud Server (CS), and the User. A User transmits encrypted
personal data (e.g., age, weight, height, and traffic) to the CS
for secure prediction because the CS is scalable and easy to
manage the task (e.g., disease diagnosis or intrusion detection).
On the CS side, a private GBDT algorithm is deployed
to classify the User’s data. In order to safeguard User’s
privacy, the CS remains oblivious to the actual results during
the inference process, only returning ciphertext predictions.
Furthermore, the GBDT model parameters should be prevented
from being learned by the CS and the User as this model is
considered proprietary to the MO.

B. Threat Model

Similar to most of the existing privacy-preserving machine
learning efforts [38] [39] [20] [17], we focus on the honest-
but-curious adversary who will not deviate from the defined
protocols but will try to learn all possible information from
legitimately received messages. We assume each party will

!"#$% &'($)
!"#$%$%& '#(#

!"#$ %&'(()*)+, -.+,/ 0'1'
23+'1.,+ 4+516,(7

8,+0)51)69(

*(+),-.$#
/012 3%455676$)

3%"8# 9$):$)

*(+),-.$# 14.4 *(+),-.$#
;)$#6+.6"(5

!"#$%&'()
*+,- ./011232($

!"#$%&'() 4(0'5$(1

!"#$%&'() 6$()2#'27"1&8.-8.

<(-8.

9=4)$ 9$+8)6.,
;4)4>$.$)5

!"#$%"&'()*&+$,-.$%#/01&203"%"0#"&!"%4/#"

?5$)

Fig. 1: System architecture

not collude with others. In our threat model, the CS will
try to recover the encrypted feature vectors as well as the
encrypted GBDT classifier. The User will try to infer the
structure of the tree in GBDT from the information returned by
the CS. Like all previous work [27] [19], we do not protect the
following generic parameters about the GBDT: the max depth d
of GBDT, the number γ of internal nodes, and the dimension n
of feature vectors. The following privacy requirements should
be guaranteed.

• Data privacy: The feature vectors and prediction results
should be protected from the CS. Namely, the User needs
to upload encrypted private data for secure online inference
and then get the corresponding encrypted prediction results.
All ciphertexts should not be recovered by the CS.

• Classifier privacy: Specifically, classifier privacy includes
both node privacy and structure privacy, as we stated in
Preliminaries. Therefore, the GBDT classifier should be
kept secret from the CS and the User. In other words, the
CS cannot reveal the corresponding plaintext form of the
encrypted model. And the User cannot infer information
about the GBDT based on the prediction results.

V. EFFICIENT AND PRIVACY-PRESERVING OUTSOURCING
OF GBDT INFERENCE

A. High-level Overview

We propose an efficient and privacy-preserving framework
for outsourcing GBDT inference. From a high-level perspective,
our scheme comprises three essential phases:
(1) Private Tree Transformation: This phase focuses on

safeguarding the MO’s private model by effectively
concealing the node and structure information of GBDT.

(2) Secure Comparison Protocol: This step involves deter-
mining internal node results between the CS and the
User, with a potential risk of prediction path leakage.

(3) Random Trees Permutation Protocol: To mitigate this
risk and enhance model evaluation efficiency, we design
the random tree permutation protocol.

The overall scheme can be divided into two parts. First, the
GBDT must be transformed before the MO uploads the model
(steps 1 and 2 in Figure 3). Then, by deploying the encoded
GBDT on the cloud, the two protocols collaborate to achieve
GBDT prediction (step 3-6 in Figure 3). Next, we will delve
into each phase with detailed elaboration.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3395928

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 24,2024 at 08:34:40 UTC from IEEE Xplore. Restrictions apply.

5

B. Private Tree Transformation

Algorithm 1 Private Tree Transformation
Input: The root node v of each tree in GBDT, AHE.pk, PRF , a seed sMO

of PRF
Output: The encoded private GBDT
1: Note: Ti denotes the i-th tree in GBDT and Ti.d is the maximum depth

of the tree. A node v is a data structure including the following fields:
v.value is predicted result when v is a leaf node; v.index denotes the
index of node v; v.sf denotes the switch flag of node v; v.d denotes the
depth of node v. rand f and rand θ are two random values for feature
index and threshold. In addition, v.left and v.right are denoted as the
left and right sub-trees of v, respectively.

2: function tree transformation(v, d)
3: if v is a leaf and v.d = d then
4: encrypt its value: AHE.Enc(pk, v.value);
5: end if
6: if v is a non-leaf node then
7: encrypt threshold value: AHE.Enc(pk, v.θ);
8: mask feature index: e′v.f,n = ev.f,n + F (sMO, ev.index,γ);
9: tree transformation(v.left, d);

10: tree transformation(v.right, d);
11: end if
12: if v is a leaf and v.d ̸= d then
13: randomly select 0 or 1 for split;
14: if split == 1 then
15: select rand f and rand θ;
16: create a dummy node v′ with F (sMO, ev′.rand f,γ) and

AHE.Enc(pk, v′.rand θ);
17: set left child and right child of v′ to node v;
18: attach the created node to the parent node;
19: end if
20: end if
21: end function
22: for i← 1 to m do
23: randomly disrupt the index of non-leaf nodes in Tree Ti;
24: tree transformation(Ti.root, Ti.d);
25: for j ← 1 to γ do
26: randomly select 1 or −1 for switch flag vi,j .sf ;
27: if vi,j .sf == −1 then
28: swap left and right child nodes;
29: end if
30: encrypt switch flag: AHE.Enc(pk, vi,j.sf);
31: end for
32: end for

There are several crucial aspects when dealing with GBDT
under privacy settings, such as information about the nodes
of each tree in GBDT (e.g., thresholds, feature indexes, leaf
values, etc.). Moreover, even if the nodes and feature vectors
are well protected (e.g., by encryption), revealing tree structure
and prediction paths can leak sensitive information [9] [26].
To avoid leaking the above GBDT privacy, the private tree
transformation algorithm πPTT is proposed. Notice that unlike
prior works [9] [18], we comprehensively protect the node and
structure privacy of GBDT. We modify GBDT as shown in
Algorithm 1.

For node privacy, we use AHE to encrypt the prediction
value of leaf nodes that arrive at the max depth d and the
threshold value of internal nodes (line 3-7). Moreover, to
ensure secure feature selection, we introduce the pseudorandom
function (PRF) to mask the feature index of internal nodes (line
8). Specifically, the feature index f is an index in {1, 2, ..., n},
and each internal node vi,j identifies the data xi,j used for the
boolean test function with the function Fi,j(x) = eTvi,j .f,n · x,
where · is the standard row-by-column multiplication. Here the
vector ef,n is the column vector in Rn with all zeros except
for a 1 in position f and eTf,n is its transpose. In order to

hide the information of f and to keep the function Fi,j(x)
available, we design a secure feature selection method for each
internal node. Let γ be the number of internal nodes, we disrupt
the index {1, 2, ..., γ} and assign the disrupted index to each
internal node in level order traversal. Now, we assume that F :
{0, 1}γ×{0, 1}γ → {0, 1}n is a public PRF. The MO sample
a seed sMO ← {0, 1}γ . And for internal node j = 1, 2, ..., γ,
the MP computes e′vi,j .f,n = evi,j .f,n +F (sMO, evi,j .index,γ)
in each tree (i = 1, 2, ...m). Therefore, the MO hides the
feature index f by adding the output of PRF on the vector
ef,n. After these operations, the feature index of each internal
node f becomes vector f ′ = e′f,n. As a result, the function
Fi(x) = e′

T
f,n · x. Without sMO, the adversary cannot derive

information about f based on f ′.
For structure privacy, we randomly replace the leaf node

v (only once) that does not reach the maximum depth with a
dummy node (random feature index and threshold) and redirect
the left and right children of the random node to v (line 12-
20). After dealing with node v, we recursively process its left
and right children to form the function tree transformation.
We randomly disrupt the index of internal nodes in Ti by
using uniform permutation πi(). In addition, during level order
traversal, the MO randomly assigns switch flag 1 or −1 to
each internal node. The left and right child nodes are exchanged
if the switch flag sf is −1. After this, the sf is encrypted by
AHE (line 25-31).

Unlike the previous approach [7] [9], our algorithm πPTT

does not pad each GBDT tree to be complete or near-complete
and run comparisons for all internal nodes. This is because we
have designed a customized protocol in Section V-D to prevent
the User from locating trees that reach leaf nodes “too early”.
Note that we encode the structure of GBDT by expanding only
a part of the leaf nodes and randomly flipping branches, so it
is efficient in the inference process, especially when evaluating
large trees.

Security. Here we briefly describe the security of preprocess-
ing for GBDT. It is easy to infer that the above transformation
for GBDT is secure against the semi-honest model owner MO
and cloud server CS.

Specifically, for the model owner MO, since the entire
preprocessing process does not require the participation of
the cloud server and user, the MO cannot obtain any private
information about the CS and User. Similarly, for the cloud
server CS, since the transformation is non-interactive and
the encoded GBDT satisfies the IND-CPA security defined in
Section III-C, CS cannot obtain the plaintext corresponding to
the ciphertext sent by the model owner. In addition, the feature
index in each internal node is masked by a PRF. Since the PRF
inherits the efficiently checkable property of a random function
(see Pseudorandom Function subsection), it is difficult for CS
to obtain the feature index without sMO. Therefore, CS cannot
obtain any useful information from nodes, otherwise, he can
distinguish the encrypted GBDT from random.

The structure privacy refers to the fact that the original
structure of the model cannot be deduced. For any probabilistic
polynomial adversary, the probability of guessing the tree struc-
ture for any tree of depth d is computationally indistinguishable
from the probability of randomly guessing from the set of all

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3395928

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 24,2024 at 08:34:40 UTC from IEEE Xplore. Restrictions apply.

6

possible tree structures of depth d. We protect the structure
privacy in two key steps. Firstly, we implement random splits
for leaf nodes that have yet to reach the maximum depth.
Secondly, we employ a randomized swapping of branches for
each internal node, utilizing random switch flags to interchange
left and right branches.

To demonstrating the effectiveness of our algorithm for
structural protection, we theoretically calculate the probability
that the adversary guesses the original tree structure in three
different situations. Firstly, in the general case, the number
of internal and leaf nodes within the left and right branches
exhibits similarity, while the specific structure may vary. We
assume only a quarter of the leaf nodes in both the left and
right branches achieve layer (d+ 1), and the number of non-
leaf nodes in layer d is half of the leaf nodes in layer (d+ 1).
When the practical depth d = 9, the probability of the adversary
accurately guessing the architecture is less than or equal to 2−97,
which is considered negligible. Secondly, in the unbalanced
case, the left and right branches exhibit an imbalance, with the
assumption that the left branch possesses a significantly larger
number of nodes than the right branch. We also assume only
a quarter of the leaves of the left branch reach layer 10(d =
9), and the right branch has no nodes reaching maximum
depth. The probability of the adversary correctly guessing the
architecture is less than 2−49, also deemed negligible. Finally,
we consider a perfect binary tree with depth d = 9. Only
the random splits at layer d need to be considered in this
case, and the random branch swapping is invalidated. The
total number of combinations for all possible architectures
is given by c = 22

d−1

. Consequently, the probability that
the adversary can correctly guess the architecture is 2−256,
which is negligible. In summary, our private tree transformation
algorithm ensures the confidentiality of both individual node
and the original structure.

C. Secure Comparison Protocol
In this section, we define integers in the interval

[−2ℓ−1, 2ℓ−1). Our protocol operates over a modulo field Zn,
which n ≥ 2ℓ and is either 2k or a prime p. For any integer
a belonging to the range [−2ℓ−1, 2ℓ−1), we can map it to
the corresponding element in the ring of integers modulo n
(denoted as Zn) by calculating a mod n ∈ Zn.

A naive way of comparing two integers a and b would be
c = (a− b) and see whether c is positive. However, knowing
the difference c and one of the values from a or b will reveal
the other value. Hence, besides encrypting a and b using AHE,
the difference c also needs to be blinded through multiplication
with a much larger random number r. To efficiently hide a
number of sizes O(m) by multiplication, the size of random
hiding factor r for multiplication has to be at least O(m2).

However, if the difference between a and b is 0, i.e., they
are equal, the result of (a− b) ∗ r will be 0 regardless of the
chosen hiding factor r. This vulnerability can be avoided by
subtracting a smaller random value r′ < r that does not change
the result. Note that both the r and r′ are positive and r′ is
strictly smaller than the hiding factor r.

If the number a and b are taken from the domain D = [l, h],
then the difference (a−b) is in the domain Dsub = [l−h, h−l].

Let lr be (l−r) and hr be (h−r). We can choose the random
numbers r from the domain Dr = [1, (h− r)2] = [1, h2

r]. The
another random numbers r′ come from the domain Dr′ = [0, r].
To run the protocol correctly, we have to prevent “overflow”
modulo n. In the worst case, the positive value can be close to
hr∗h2

r+h2
r . Thus the modulus n of the additively homomorphic

encryption scheme needs to be larger than 2∗(h3
r+h2

r) because
we set the upper half of the range [0, n − 1] to be negative
numbers.

There is a small leak in the protocol that occurs with very
minor probability. One of the parties knows the information of
the comparison if c=0, (i.e., a=b). Let E0 denote the event in
which the comparison result c is equal to 0. We now calculate
the probability Pr[E0] that event E0 happens. If c = 0, if and
only if a = b and for every r, there is r′ = 0. We set the
probability of a = b as p, and p is definitely less than 1. If r
and r′ are chosen uniformly from Dr and Dr′ , respectively,
then probability Pr[E0] of revealing a = b is:

Pr[E0] = p ∗ (1

h2
r

∗ 1
1
+

1

h2
r

∗ 1
2
+ · · ·+ 1

h2
r

∗ 1

h2
r

)

= p ∗
h2
r∑

i=1

1

h2
r

∗ 1
i
≈ p ∗ 2 lnhr

h2
r

<
2 lnhr

h2
r

(2)

For large numbers hr, the probability Pr[E0] is negligible.
E.g., when comparing 32-bit numbers, p < 2−58. This can be
made even more difficult by choosing a distribution at random
to pick r and r′.

In our outsourcing scenario, the comparative information
is provided by the User and the MO. To decide which path
to go between two children in an internal node vi,j , the CS
uses the encrypted threshold value Jvi,j .θK and masked feature
index vi,j .f

′ to compare with encrypted testing data Jxi,jK.
The protocol πSCP is executed by the CS and User and is
formulated as given in Figure 2. We elaborate on the protocol
πSCP as follows.

Data Encryption Phase. To avoid query sample x leak-
age, the User needs to prepare encrypted data JxK =
AHE.Enc(pk, x). In addition, the User calculates xj =
−F (sMO, ej,γ)

T · x, which j = 1, 2, ..., γ. For each vector
xj , User sums the elements in the vector and then encrypts
them, i.e. Jx′

jK = AHE.Enc(pk,
∑n−1

i=0 xj [i]). The goal of γ
ciphertext is to complete secure feature selection. Then, the
User sends the encrypted data JxK, Jx′

1K, ..., Jx′
γK to the server.

Secure Feature Selection Phase. Since the MO sends the
CPTs, for each non-leaf node vi,j , the CS has the encrypted
threshold value Jvi,j .θK and masked features vi,j .f

′. The CS

computes Jxi,jK = Fi(JxK) + Jx′
jK = e′

T
vi,j .f,n · JxK + Jx′

jK
= (eTvi,j .f,n + F (sMO, e

T
j,γ)) · JxK + J−F (sMO, e

T
j,γ) · xK

= eTvi,j .f,n · JxK, which offset the noise of the PRF, enables
secure feature selection, and the resultsing data is ciphertext.
The secure comparison protocol for two ciphertext (Jxi,jK and
Jvi,j .θJ) can now be executed.

Masked Comparison Phase. As we mentioned before, the
server calculates JciK = (Jxi,jK− Jvi,j .θK) · ri + r′i and form
m ciphertext comparison results as JCK. Next, we generate
random flipping si for each result to secure the real prediction
results. The CS sends the ciphertext JC ′K to the User. After

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3395928

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 24,2024 at 08:34:40 UTC from IEEE Xplore. Restrictions apply.

7

Preamble: Consider a Gradient Boosting Decision Tree (GBDT) consisting of m decision trees. After the private tree transformation, there are m cipher
private trees (CPTs). Determine the children of m nodes in these CPTs simultaneously.
Input: The server holds m nodes from CPTs, each node vi,j includes masked feature index vi,j .f

′ and encrypted threshold value J vi,j .θ K. The user
holds query sample x, a seed sMO of PRF .
Output: The server obtains Res containing m comparison results.
Protocol:

1. Data Encryption Phase:
– The user computes JxK← AHE.Enc(pk, x) to encrypt the query sample.
– The uesr computes γ masked query samples: {xj}j=1,...,γ ← {−F (sMO, ej,γ)

T · x}j=1,...,γ .
– The user encrypts the sum of n elements for each masked query sample: {Jx′

jK}j=1,...,γ ← {AHE.Enc(pk,
∑n−1

i=0 xj [i])}j=1,...,γ .
– The user sends the encrypted samples JxK, Jx′

1K, ..., Jx′
γK to the server.

2. Secure Feature Selection Phase:
– For each node vi,j , the server performs secure feature selction to obtain encrypted data Jxi,jK corresponding to the feature vi,j .f :

Jxi,jK = Fi(JxK) + Jx′
jK = e′

T
vi,j .f,n

· JxK + Jx′
jK = (eTvi,j .f,n + F (sMO, eTj,γ)) · JxK + J−F (sMO, eTj,γ) · xK = eTvi,j .f,n · JxK

3. Masked Comparison Phase:
– The server chooses random number ri and r′i with 0 ≤ r′i < ri, and calculates the comparison results JCK = (Jc1K, · · · , JcmK), each of which

is computed as follows:
JciK = (Jxi,jK− Jvi,j .θK) · ri + r′i

– The server generates S = (s1, · · · , sm), where si ∈ {−1, 1}, to mask the results C. Get the masked results JC′K = (s1 · Jc1K, · · · , sm · JcmK)
and send the JC′K to the user.

– The user decrypts JC′K and decides plaintext result pi = 1 if and only if c′i mod n < n
2

(n is the ring of integers modulo). Then the user
sends the bit results P = (p1, · · · , pm) for m nodes to the server. The following derivation shows this equivalence:

c′i mod n <
n

2
⇔ ci · si > 0

– The user assumes si = 1, then:

(xi,j − vi,j .θ) · ri + r′i > 0⇔ xi,j − vi,j .θ > 0 > −
r′i
ri

> −1⇔ xi,j > vi,j .θ ⇒ pi = resi · si = 1

The resi represents the true comparison result, which is masked by si. Else pi = −1 if and only if c′i mod n ≥ n
2

.
– The user sends the P = (p1, · · · , pm) to the server.

4. Output Phase:
– The server gets the real comparison results Res = S · P = (s1 · s1 · res1, · · · , sm · sm · resm) = (res1, · · · , resm) because of si · si = 1.

Fig. 2: Our protocol πSCP for secure comparison in GBDT

decrypting JC ′K, the User infer comparison result pi = 1 if and
only if c′i mod n < n

2 . Importantly, the result pi is concealed
by the si, and the random flipping S also significantly reduces
the probability of the user deriving the true predicted path.
Therefore, the server deduces the actual comparison results,
denoted as resi, by multiplying pi with si. If resi equals 1,
the current node in tree Ti should choose the left child for the
next comparison; otherwise, it should choose the right child.

Output Phase. Finally, the CS obtains the true compar-
ison result resi by multiplying the received pi by si again.
Our proposed comparison protocol ΠSCP securely gets the
comparison results for m non-leaf nodes in each round of
communication. In our protocol, the probability of a small leak
in a real-world scenario is negligible. The CS can only know
the results because all the messages involved in the comparison
are ciphertexts. On the other hand, the User can not determine
the real results because of masking. The difference between
testing data and threshold is also fuzzed. Thus the User is only
able to help calculate the comparison results without deducing
other information. We assume that the CS’s flipped random
numbers are chosen uniformly, so the probability of a User
guessing the real path is 1

2d
. This probability is not negligible,

so we need to design another protocol to protect path privacy.
Security. Our protocol for securely generating comparison

results, πSCP , is secure against the semi-honest cloud server

CS and user User. We provide the following theorem.

Theorem 1. Let the additively homomorphic encryption and
pseudorandom function used in πSCP have the properties
defined in Section III. πSCP is secure against the semi-honest
cloud server CS and user User.

D. Random Trees Permutation Protocol

With the secure comparison protocol πSCP at internal nodes,
we now describe how to securely generate the prediction result
without compromising path privacy. When the sequence of
transmitted ciphertexts aligns with the trees, the user can obtain
both comparison and prediction outcomes for each individual
tree. In addition, the User can locate the sparse trees that
arrive at leaf nodes “too early” based on the length of the path.
Recognizing that in GBDT each tree operates with a degree of
independence during the prediction phase, we craft the random
trees permutation protocol πRTPP to obfuscate the relationship
between trees and comparison results.

We use the algorithm in Section III-D to achieve randomness.
The process of the random trees permutation (RTP) algorithm is
as follows. First, the CS needs to generate a random bijection
table R. Then, the comparison results are permuted according
to the table. For example, for every i ∈ [n], we put the si in
the f(i)-th slot of a new vector v, where f(i) ∈ R (random

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3395928

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 24,2024 at 08:34:40 UTC from IEEE Xplore. Restrictions apply.

8

!!

!!

!"

!"# $%&'()*)%**

)%(+,-.%/()&.+ -.% 0123
!4# 5+6%78)*9
)*,)&+: 9()(

!;# <.9*,=
9*)*%/&+()&.+

!>#2*6%78)
!"#$%&'%()*

#!

#"

$

##

!%

"#$%& '()*

"#$%&' $'#()*& *'&&!

"#$%&' $'#()*& *'&&"

"#$%&' $'#()*& *'&&%

!
!

$

#$

!!

! "

!"

!!

!#!#$!

!"#$%&'()((*)!" +

,-. /(0 !12+)2#

+,-./ 01$231 $#45%367#8 53#9#$#&:

!!"! "

!"#$%" &"'($%"

)"*"#(+,-

!#"! "

!$"! "

#$%

#$&

#$'

!

+,-;/:<*=

+,->/:
?896-<*=

" &'()&*+

+ ',-.+/

!?#=@././.%8A&6=

(99&)&.+

!!

%&'()#*)+,-

./(!

./%& !

./) !

./* !

&'+% , +-%

!
!

&'+& , +-&

&'+' , +-'

B.9*C DE+*%

FC.G9 H*%'*%

I,*%

!

!

!

I,*%

!+,!!

!-.!

!!,,

!

!!!! !

Fig. 3: System overview

bijection table). The recovery algorithm called Anti-RTP also
relies on R. For instance, for every i ∈ [n], we put the number
vf(i) in the i-th slot.

Now, we introduce the process of our random trees permu-
tation protocol πRTPP . In each round, the CS uses the RTP
algorithm to permute the secure comparison results. Then, the
User decrypts the disrupted ciphertext and sends it to the CS.
By executing the Anti-RTP algorithm, the CS can restore the
correct order to get the real result of each tree. Therefore, the
CS knows which child node each tree should go to in the next
round, and the User does not know the child node. Notably,
the semi-honest adversary cannot deduce the threshold value of
each node even through adaptive queries. This is because we
prevent the adversary from associating a specific tree with a
particular result received in each round. Note that the branches
of each tree in GBDT have been randomly swapped by switch
flags, so the path obtained by CS is not the true predicted
path. The protocol protects the node information of GBDT and
also protects the path privacy. As we mentioned in Section
V-C, with our random trees permutation protocol πRTPP and
considering sparse trees, the probability of a User guessing
the correct predicted path of a tree is reduced from 1

2(d−1)

to 1
m(2(d+1)−2)

. And the probability that the user guesses the
correct predicted path for all trees in GBDT is 1

m!(2(d+1)−2)
e.g., for practical setting d = 8 and m = 32, the probability is

1
32!∗510 , which is negligible. Besides, the random permutation
algorithm requires very few steps, each iteration requires only
a random integer and a swap operation.

Security. Our protocol for obfuscating decision trees in
GBDT, πRTPP , is secure against the semi-honest cloud server
CS and user User. We provide the following theorem.

Theorem 2. Let the Fisher-Yates shuffle used in πRTPP have
the properties defined in Section III. πRTPP is secure against

the semi-honest cloud server CS and user User.

E. Putting It All Together

Putting it all together, we summarize the workflow of our
scheme in Figure 3.

Initialization The initialization phase includes three steps.
In step 1 of Figure 3, the User and the MO share PRF
and a seed sMO, pk, and sk. The MO trains local GBDT
(G1, G2, · · · , Gn), encrypts them using the private tree trans-
formation algorithm, and uploads all the CPTs to the CS in
step 2. The User encrypts his/her testing data in step 3. In
particular, the encrypted testing data JxK and {Jx′

1K, ..., Jx′
γK}.

Inference The inference phase includes three steps. Specif-
ically, in step 4 of Figure 3, the CS computes the decision
path for all trees by communicating with the User (d rounds
of nodes determination). The πSCP and πRTPP protocols are
mainly executed in each round of interaction. The CS first
executes secure feature selection and computes the masked
comparison result c′i for each tree under ciphertext. As shown
in Figure 3, Jc′1K is computed from Jx1,1K and the encrypted
threshold in CPT1. If there exists a sparse tree t that arrives
early, the CS can continue to perform the mask comparison
phase in the protocol πSCP by using the ciphertext Jxt,jK
obtained in the last round. The c′i and the corresponding
switch flag sfi together form the comparing values (ci, sfi).
Then, the CS executes the RTP algorithm and generates a
bijection table. By using the table, the CS obfuscates the
corresponding relationships between the tree and encrypted
comparing value. The CS sends the disrupted results to the
user, note that the number of these results is equal to m as
shown in Figure 3. Once the User receives and decrypts all
the results, he/she multiplies SCP results and corresponding
switch flags, i.e., (resi · si) · sfi. The CS recovers the order

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3395928

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 24,2024 at 08:34:40 UTC from IEEE Xplore. Restrictions apply.

9

according to the bijection table (Anti-RTP) and array S for
masking, i.e., resi · sfi in Figure 3. If a comparison result is 1,
then the left child node should be selected, otherwise the right
child node (-1). Then the CS chooses the next nodes to go for
all trees. Because the structure of each tree is disordered by the
switch flags, the result (resi · sfi) is equivalent to multiplying
sfi again in each encoded tree, i.e., resi · sfi · sfi = resi.
Therefore, there is no need to alter the threshold values, and
the correct predictions will be obtained.

In step 5 of Figure 3, the CS does a homomorphic addition
to all the encrypted leaf values and sends the result to the
User. We should note that some trees may reach leaf nodes
earlier. So the CS can sum the results that reach the leaf nodes
in advance. Rather than leaving the values of the leaf nodes to
be calculated uniformly at the end, the inference time can be
reduced. At last, in step 6 of Figure 3, the User decrypts the
ciphertext and obtains the real predictions.

Security. Our protocol for privacy-preserving outsourcing
of GBDT inference is secure against the semi-honest model
owner MO, cloud server CS, and user User. We provide the
following theorem.

Theorem 3. Let the additively homomorphic encryption,
pseudorandom function, and Fisher-Yates shuffle used in our
protocol have the properties defined in Section III. Our
proposed privacy-preserving outsourcing of GBDT inference
is secure against the semi-honest model owner MO, cloud
server CS, and user User.

F. Security Analysis

Before formally stating our proof, we introduce some
notation. We will consider executions of our protocols where
the underlying cryptographic primitive is instantiated with
security parameter λ. TheMO encodes GBDT which consists
of a set T of m trees. There are at most γ internal nodes in
each tree. In addition, the switch flag of an internal node is
set to sf . The random permutation for node indexes is set to
π. α is a seed to perform the AHE encryption. The seed of
PRF is set to sMO. Denote the input of the user with x, and
with xi is computed by PRF.
Proof of Theorem 1 We first define the functionality of the
protocol πSCP , denoted as FSCP , as shown in Figure 4. Now
we prove security for the semi-honest cloud server and then
demonstrate security against semi-honest users.

Input: The CS holds m nodes from CPTs, each node vi,j includes
masked feature index vi,j .f

′ ∈ {0, 1}n and encrypted threshold value
Jvi,j .θK. The User holds query sample x, each element in x ∈ ZN ,
a seed sMO ∈ {0, 1}γ of PRF .
Output: The CS obtains Res = {resi = 1 (xi,j > vi,j .θ)
,otherwise −1}i=1,...,m.

Fig. 4: Functionality of the secure comparison FSCP

Semi-honest cloud server security. The simulator SimCS
samples random number r∗ from ZN2 , and the x is drewn from
ZN . The another random numbers r′∗ come from the domain
[0, r∗]. The simulator and the user run the secure comparison
protocol to generate the comparison results for internal nodes.
When the simulator accesses the ideal functionality, it provides

Res as output. We now show the indistinguishability between
real and simulated views by the following hybrid arguments.

Hyb1 This data encryption and secure feature selection phase
are identical to Real.

Hyb2 Please note that in this hybrid the simulator SimCS
can access User’s input Jxi,jK corresponding to the
feature index vi,j .f . Therefore, for i = 1, ...,m, the
simulator SimCS sample a random value r∗i chosen from
ZN2 uniformly. Another random value r′∗i is chosen
from the domain [0, r∗i] uniformaly. SimCS computes
(Jxi,jK − Jvi,j .θK) · r∗i + r′∗i and obtains the JciK∗ for
i = 1, ...,m. Moreover, the simulator SimCS generate
s∗i ∈ {1,−1}. After masking JciK∗ with s∗i , SimCS sends
the result JC ′K∗ to the User. The User follows the
protocol and sends the result P ∗ to SimCS .

Hyb3 Instead of using the original S = (s1, ..., sm) to get
the real comparison results, the SimCS multiply each
element in P ∗ with s∗i . Since the s∗i · s∗i = 1, the output
of SimπSCP

CS (JxK, Jx1K, ..., JxγK) is identically distributed
to the view RealπSCP

CS of the corrupted cloud server.

Semi-honest user security. The simulator SimUser replaces
the original seed by a random number seed∗ to perform the
AHE. In addition, SimUser generates a new seed s∗MO for
the PRF . Note that we assume the seed∗ and s∗MO is also
used by the model owner in the private tree transformation.
Then, SimUser uses the randomness to generate the encrypted
samples to complete the secure comparison protocol with the
cloud server.

Hyb1 In this hybrid, SimUser encrypted query sample with
uniformly random number seed∗ and a s∗MO ∈
{0, 1}γ . The simulator SimUser sends the ciphertext
JxK∗, Jx1K∗, ..., JxγK∗ to the cloud server. The distri-
butions of ciphertext with the same message and pk
but different seeds are indistinguishable with semantic
security. According to our assumption, the feature index
and threshold of node vi,j in CPTi have become
Jvi,j .fK∗ and Jvi,j .θK∗. The IND-CPA secure AHE and
PRF ensures this hybrid is indistinguishable from real
protocol.

Hyb2 This secure feature selection phase is identical to Real.
Hyb3 The CS follows the protocol and computes JciK∗ =

(Jxi,jK∗ − Jvi,j .θK∗) · ri + r′i. After masking JciK∗ with
si ∈ {1,−1}, CS send the result JC ′K∗ to the SimUser.
The simulator SimUser decrypts JC ′K∗ to get the result
p∗i . Because we only change the AHE and PRF seeds,
the additivity of AHE ensures the SimUser return the
same sign bit of c

′∗
i . Therefore, the output of SimπSCP

User

is identically distributed to the view RealπSCP

User of the
corrupted user.

The proof of Theorem 1 is completed.
Proof of Theorem 2 Let FRTPP shown in Figure 5 be the
functionality of obfuscating decision trees in GBDT.

Input: The CS holds ciphertext JC′K = {Jc′1K, ..., Jc′mK} from πSCP .
Output: The CS obtains comparison results Res = {res1, ..., resm}.

Fig. 5: Functionality of the random trees permutation FRTPP

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3395928

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 24,2024 at 08:34:40 UTC from IEEE Xplore. Restrictions apply.

10

Semi-honest user security. The security of the protocol
πRTPP against the semi-honest user User is evident by
observing the execution of the protocol. This stems from the
fact that User receives randomly disturbed ciphertext. And
every comparison result is masked by a random value si
∈ {1,−1}. User has no way of knowing how the results
correspond to each tree. This also implies that for trees that
reach leaf nodes “too early”, User is unable to derive which
are sparse trees in GBDT. Naturally, the predicted paths for
each tree cannot be derived. With our random trees permutation
protocol πRTPP and considering sparse trees, the probability
of a User guessing the correct predicted path of a tree is
reduced from 1

2d
to 1

m(2(d+1)−2)
. And the probability that the

user guesses the correct predicted path for all trees in GBDT
is 1

m!(2(d+1)−2)
e.g., for practical setting d = 8 and m = 32,

the probability is 1
32!∗510 , which is negligible. Next, we focus

on the security analysis of πRTPP against semi-honest cloud
server CS .

Semi-honest cloud server security. The simulator SimCS
replaces the original permutation f with f∗. Then, SimCS uses
the bijection table to obfuscate comparison results and get the
results for node determination in the correct order.
Hyb1 The simulator SimCS generate a new bijection table as

f∗ =

(
1 2 . . . n

f∗(1) f∗(2) . . . f∗(n)

)
.

Then, SimCS permutes the ciphertext JC ′K
and sends the disrupted results JC ′

f∗K =
{Jc′f∗(1)K, Jc

′
f∗(2)K, ..., Jc

′
f∗(n)K} to User. The pseudo-

randomness Fisher-Yates shuffle algorithm ensures that
the order of ciphertext is different. The properties of
AHE ensure the indistinguishability between this hybrid
with real protocol.

Hyb2 The User follows the protocol and sends plaintext to the
simulator SimCS . By executing the Anti-RTP algorithm
with f∗, SimCS restore the correct order to get the
comparison result of each tree. Therefore, the output
of SimπRTPP

CS (JC ′K, f∗) is identically distributed to the
view RealπRTPP

CS of the corrupted cloud server.
The proof of Theorem 2 is completed.

Proof of Theorem 3 We first define the functionality of the
GBDT outsourcing inference protocol, denoted as FGOI , as
shown in Figure 6.

Input: The MO holds GBDT G = {T1, ..., Tm}. The User holds
query sample x, each element in x ∈ ZN .
Output: The prediction result Pr =

∑m
i=1 Ti(x).

Fig. 6: Functionality of the GBDT outsourcing inference FGOI

Semi-honest model owner security. The simulator SimMO
substitutes the original seed with a random number, denoted as
seed∗, to execute the AHE. Furthermore, SimU ser generates
a fresh seed, denoted as s∗MO, for the PRF. We now show the
indistinguishability between real and simulated views by the
following hybrid arguments.
Hyb1 In this hybrid, the simulator SimMO changes the

behavior of the model owner. Specifically, for each tree
of GBDT, a uniformly random number seed∗ is selected

to replace the original seed and to perform the AHE
encryption. The purpose of the replacement seed is to
ensure the correctness of our protocol. The distributions
of ciphertext with the same message and pk but different
seeds are indistinguishable with semantic security. The
simulator cannot distinguish between seed∗ and pk-
encrypted data and the real seed and pk-encrypted
data. In addition, SimMO uniformly sample a new
seed s∗MO ← {0, 1}γ to replace the original sMO.
The distribution of feature indexes in each tree is
indistinguishable because of the pseudorandom function.
The IND-CPA secure AHE and PRF ensures that this
hybrid possesses indistinguishability from real protocol.

Hyb2 In this hybrid, the simulator SimMO replaces all
encrypted data (e.g., the encrypted threshold Jvi,j .θK
and leaf value Jvi,j .valueK) sent by the model owner
with encrypted data using seed′ (e.g., Jvi,j .θK∗ and
Jvi,j .valueK∗). In addition, the simulator computes each
feature index using PRF with s′MO (e.g., vi,j .f ′∗). For
the swich flags in internal node vi,j , SimMO uniformly
generate the random number vi,j .sf

∗ ∈ {1,−1}. Here
∗ indicates a different value for the same input due to
the semantic security of the AHE and the property of
PRF. Because we just change the seed of AHE and
PRF, the properties of AHE and PRF ensure the output
of SimπGOI

MO (T1, ..., Tm, seed∗, s∗MO) is identically dis-
tributed to the view RealπGOI

MO of the corrupted model
owner.

Semi-honest cloud server security. The simulator SimCS
perform d rounds of node determination, which consist of πSCP

and πRTPP . As we prove in Theorem 1 and 2, the πSCP and
πRTPP are secure against semi-honset cloud server CS . SimCS
sum the prediction value of leaf nodes as

∑m
i=1JTi(x))K. The

IND-CPA secure AHE secures the prediction result. Therefore,
the output of SimπGOI

CS (JGK, JxK, Jx1K, ..., JxγK) is identically
distributed to the view RealπGOI

CS of the corrupted cloud server.
Semi-honest user security. The simulator SimUser upload

the encrypted query sample JxK∗, Jx1K∗, ..., JxγK∗ using seed∗

and s∗MO to the cloud server. Since the πSCP and πRTPP

have been proven to be secure for semi-honest users, the output
of SimπGOI

User is identically distributed to the view RealπGOI

User of
the corrupted user.

The proof of Theorem 3 is completed.

VI. EXPERIMENTS

A. Experimental Settings

TABLE III: Reference for the UCI datasets

Dataset Features n Instances

Nursery 8 12960
Breast-cancer 9 286
Heart-disease 13 303

Adult 14 48842
Credit-screening 15 690

Horse-colic 27 368
Spambase 57 4601

We implement and evaluate our scheme to demonstrate its
practicality. All experiments are performed on an Intel Core i7

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3395928

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 24,2024 at 08:34:40 UTC from IEEE Xplore. Restrictions apply.

11

Fig. 7: Computation performance of our scheme for different entities with different d’s (m=5, n=14), m’s (d=6, n=14), and n’s (d=6, m=5)

TABLE IV: Computation performance of the model owner and the cloud server with different d’s (m=5, n=14)

Depth d
Model Owner Cloud Server

Trees.trans Trees.enc MO.total SCP RTP Anti-RTP Predict CS.total

3 0.010567s 0.242599s 0.253166s 0.036839s 0.000038s 0.000009s 0.078177s 0.115063s
6 0.063678s 0.751951s 0.815629s 0.067749s 0.000071s 0.000019s 0.079792s 0.147631s
9 0.116230s 1.121975s 1.238205s 0.088126s 0.000132s 0.000048s 0.079643s 0.167949s

12 0.178506s 2.127499s 2.306005s 0.363499s 0.000175s 0.000082s 0.080423s 0.444179s
15 0.341301s 2.496553s 2.837854s 0.961849s 0.000394s 0.000312s 0.095361s 1.057916s
18 0.529471s 2.522491s 3.051962s 1.267147s 0.000429s 0.000348s 0.112691s 1.380615s

CPU @2.2GHz. Our implementation utilizes Python, with the
LightGBM library for classifier generation and the TenSEAL
library for CKKS homomorphic encryption operations. In
particular, m varies from 5 to 50, d varies from 3 to 18, and n
varies from 8 to 57. To minimize errors, each value in the tables
is taken from the average of 20 runs of our algorithm. Note that
the correctness of our design is guaranteed by the underlying
cryptographic primitives. So we focus on the computation and
communication performance. The information on datasets is
in Table III.

B. Experimental Evaluations

1) Computation Performance: We examine the computation
performance at the MO, the CS, and the User, respectively.
Our experiments are conducted as follows. (1) Fix (m, n) =
(5, 14) and let d varies from 3 to 18. (2) Fix (d, n) = (6, 14)
and let m varies from 5 to 50. (3) Fix (d, m) = (6, 5) and let
n vary from 8 to 57.

Initially, we conducted experiments to assess the time
overhead of each entity under varying parameters, as illustrated
in Figure 7. Notably, MO incurs the longest time duration for
completing the transformation, which remains within acceptable
limits for the offline phase. Indeed, as the depth d increases,
the time overhead for User surpasses that of CS. The number
of trees m has a greater impact on CS because more trees
means more comparisons to be made. Because MO spends
most of the time, the time gap between CS and User cannot
be clearly seen in Figure 7. Regarding feature n, it significantly
impacts the time overhead for all three entities.

Next, We measured the computational performance of each
process, and the results are presented in Tables IV, VI, and
VII. For the MO task, one only needs to perform private tree
transformation on the GBDT after local training. Trees.trans
represents the time required for structural transformation
of the GBDT, while Trees.enc reflects the computational

TABLE V: Computation performance of user with different d’s (m=5, n=14)

Depth d Data.enc Middle.dec Final.dec Total

3 0.088802s 0.006169s 0.001163s 0.096134s
6 0.135847s 0.012489s 0.001285s 0.149621s
9 0.404622s 0.013436s 0.001139s 0.419197s
12 0.976750s 0.016920s 0.001242s 0.994912s
15 1.320420s 0.017004s 0.001134s 1.338558s
18 2.032602s 0.019281s 0.001156s 2.053039s

performance of GBDT encryption. Table IV clearly illustrates
that the computation performance of the MO task exhibits a
linear increase with respect to the parameter d in GBDT.

Even for the largest GBDT (m=50, d=6, n=14) in our test,
the transformation with MO takes only approximately 7.9
seconds. Table VI illustrates that the computation performance
of MO increases linearly with the number of trees, denoted as
m, in GBDT. From Table VII, we observe a direct relationship
between the computational overhead of MO and the variation
in n. Overall, the computational performance of MO is more
significantly influenced by the values of d and m.

Next, we assess the computational performance of CS, which
encompasses both the d-round secure comparison and the
permutation of private trees. The term “Predict” signifies
the time required to sum up the ciphertext predictions from
all the trees. In fact, predictions can be computed more
quickly for certain trees that reach the leaf nodes earlier in the
interaction process. In our analysis, we aggregate all the results
after obtaining them, which overestimates the actual overhead.
As depicted in Tables IV, VI, and VII, the computational
performance of CS is predominantly allocated to the SCP and
Predict phases. Moreover, the value of d exerts a substantial
influence on the duration of SCP. This is due to the fact that,
in the worst-case scenario, each decision tree requires d rounds
of comparison to reach a leaf node.

We now examine the computation performance at the User

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3395928

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 24,2024 at 08:34:40 UTC from IEEE Xplore. Restrictions apply.

12

TABLE VI: Computation performance of the model owner and the cloud server with different m’s (d=6, n=14)

Trees m
Model Owner Cloud Server

Trees.trans Trees.enc MO.total SCP RTP Anti-RTP Predict CS.total

5 0.069260s 0.874164s 0.943424s 0.048764s 0.000049s 0.000015s 0.057523s 0.106351s
10 0.107003s 1.529727s 1.636730s 0.097712s 0.000073s 0.000020s 0.110736s 0.208541s
20 0.281701s 3.147459s 3.429160s 0.219759s 0.000098s 0.000044s 0.238164s 0.458065s
30 0.465818s 4.458129s 4.923947s 0.338027s 0.000116s 0.000051s 0.267035s 0.605229s
40 0.610018s 5.395117s 6.005135s 0.464806s 0.000135s 0.000085s 0.354779s 0.819805s
50 0.740381s 7.129192s 7.869573s 0.525133s 0.000187s 0.000142s 0.589709s 1.115171s

TABLE VII: Computation performance of the model owner and the cloud server with different n’s (d=6, m=5)

Features n
Model Owner Cloud Server

Trees.trans Trees.enc MO.total SCP RTP Anti-RTP Predict CS.total

8 0.011145s 0.243765s 0.254910s 0.030492s 0.000039s 0.000011s 0.031790s 0.062332s
9 0.011042s 0.418600s 0.429642s 0.032820s 0.000040s 0.000009s 0.031976s 0.064845s
13 0.024092s 0.559720s 0.583812s 0.036629s 0.000038s 0.000010s 0.038971s 0.075648s
14 0.071103s 0.873225s 0.944328s 0.044743s 0.000052s 0.000012s 0.046828s 0.091635s
15 0.071785s 0.852355s 0.924140s 0.052461s 0.000055s 0.000016s 0.057956s 0.110488s
27 0.038671s 0.520720s 0.559391s 0.037993s 0.000041s 0.000011s 0.041258s 0.079303s
57 0.077138s 0.822025s 0.899163s 0.059844s 0.000066s 0.000015s 0.067425s 0.127350s

TABLE VIII: Computation performance of user with different m’s (d=6, n=14)

Trees m Data.enc Middle.dec Final.dec Total

5 0.131677s 0.012489s 0.001142s 0.145308s
10 0.127917s 0.025373s 0.001298s 0.154588s
20 0.141902s 0.050180s 0.001078s 0.193160s
30 0.132727s 0.076108s 0.001057s 0.209892s
40 0.113075s 0.100655s 0.001130s 0.214860s
50 0.147502s 0.118395s 0.001187s 0.267084s

TABLE IX: Computation performance of user with different n’s (d=6, m=5)

Features n Data.enc Middle.dec Final.dec Total

8 0.075371s 0.006376s 0.001121s 0.082868s
9 0.084374s 0.007187s 0.001172s 0.092733s
13 0.127105s 0.007900s 0.001170s 0.136175s
14 0.136734s 0.009169s 0.001171s 0.147074s
15 0.137129s 0.008483s 0.001301s 0.146913s
27 0.226028s 0.006332s 0.001144s 0.233504s
57 0.369361s 0.009961s 0.001236s 0.380558s

side. Analyzing the experimental results presented in Table
V, it becomes evident that the variable d significantly affects
the time overhead incurred by the user during data encryption.
Increasing the value of m results in higher decryption time
for intermediate results, and consequently, the time cost for
the user escalates with each increment in m. Even with 50
trees in the GBDT model, the user’s total time expenditure
remains below 0.27 seconds, as indicated in Table VIII. Lastly,
Table IX illustrates the fact that a greater number of features
translates to more time required by the user for encryption
processes.

2) Communication Performance: We have evaluated the
communication costs for each role, and the corresponding
experimental results can be found in Figure 8. First and
foremost, we assessed the communication overhead of MO,
which exclusively transmits the encrypted GBDT model.
Consequently, the communication cost is primarily attributable
to the ciphertext of the GBDT model. It is noteworthy that
the size of CPTs exhibits minimal sensitivity to variations in
d and n, and instead demonstrates a strong correlation with
the value of m in GBDT. Even though the number of trees in
the model has been altered from 5 to 50, the size of CPTs has

increased by a factor of only 4.75.
Next, we examine the communication cost on the CS side.

This aspect of communication cost is comprised of two key
components: transmitting the ciphertext of disordered node de-
termination results for d rounds (Middle.cipher) and the final
prediction ciphertext (Final.cipher). Notably, Middle.cipher
constitutes the primary portion of the communication cost,
scaling in tandem with the depth d. Referring to Figure 8,
we can derive the following insights. The communication cost
on the CS side shows no significant increase with respect to
m. The impact of increasing n on the CS remains relatively
modest. In the context of the same testing data, the size of the
encrypted data remains consistent.

Finally, we evaluate the communication cost for the user,
which encompasses both the upload of encrypted prediction
data (Data.encrypted) and the decryption of intermediate
results (Middle.clean). As illustrated in Figure 8, the costs
vary from 936 KB at d=3 to 2.57 MB at d=18.Even when m is
set to 50, the communication cost for the user remains below
3.4 MB, as evidenced in Figure 8. The number of features
n has a substantial impact on the user, primarily due to the
growth in the volume of encrypted data to be uploaded with
increasing values of n.

3) Comparison with Prior Works: We emphasize that the
computation and communication overhead of our scheme for
the inference process has significant advantages compared to
previous works. Although our performance results are not
directly comparable to the prior designs in different scenario
settings, it is interesting to observe the potential benefits of
our secure outsourcing scheme in Table X.

Specifically, Wu et al. [27] proposed a protocol (PERF)
using additively homomorphic encryption for privately evaluat-
ing decision trees and random forests. In PERF , the server
needs to transform the decision tree into a complete tree
before sending it to the client. However, the computational
complexity of the server grows exponentially with the depth
of the tree. In contrast, our private tree transformation method
randomly expands the leaf nodes without filling up the sparse
tree while hiding the node information. Furthermore, Tai et al.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3395928

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 24,2024 at 08:34:40 UTC from IEEE Xplore. Restrictions apply.

13

Fig. 8: Communication performance of our scheme with different d’s (m=5, n=14), m’s (d=6, n=14), and n’s (d=6, m=5)

TABLE X: Performance comparison with prior works

(n, d, m) Scheme Computation Communication

(16,10,50)
PERF [27] 117.385s 46.256MB

Ours 3.258s 9.881MB
36.0× 4.7×

(16,12,5)
PPDTE [22] 12.36s 5.06MB

Ours 0.61s 2.99MB

20.3× 1.7×

(57,17,5)
SEODT [18] 6.723s 263.624MB

Ours 1.487s 3.811MB
4.5× 69.2×

(57,17,5)
PDTE [23] 1.969s 17.409MB

Ours 1.487s 3.811MB
1.3× 4.6×

[22] made a significant improvement (PPDTE) in efficiency
by cleverly exploiting the structure of decision trees. Both
our scheme and PPDTE perform well on sparse trees, but
their scheme can be very time-consuming for complete trees.
Zheng et al. [18] propose a dual-cloud protocol (SEODT)
using only lightweight cryptography in the online execution
of secure inference. Their method is based on the path cost
mechanism at the cost of O(2d) communication complexity
for the client. Compared to SEODT , our one cloud server
setting is more practical. Additionally, our scheme does not
traverse all nodes while SEODT needs to compute each
internal node during the inference process. At last, Tueno
et al [23]’s method (PDTE) represents the tree as an array
and uses Oblivious RAM (ORAM), which can lead to d2 +3d
round communication. ORAM has large constants hidden in its
asymptotic complexity and a significant setup cost that needs
to be amortized over many invocations of the protocol. So the
communication overhead of PDTE is higher than our scheme.

VII. CONCLUSION

In this paper, we propose a novel framework for efficient and
secure outsourcing inference based on GBDT. Our approach
involves a unique transformation technique for GBDT, com-
plemented by a tailored protocol that leverages pseudorandom
function and homomorphic cryptography. This ensures the
utmost privacy for the model, test data, and predictions.
Experimental results show the effectiveness of our method. In
the future, we intend to extend our scheme to the online training

process. On the other hand, we also consider doing research
on privacy protection for other machine learning algorithms.

REFERENCES

[1] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of KDD, 2016, pp. 785–794.

[2] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T. Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Proceedings of NIPS, vol. 30, 2017.

[3] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“Catboost: unbiased boosting with categorical features,” Proceedings of
NIPS, vol. 31, 2018.

[4] Y. Xia, C. Liu, Y. Li, and N. Liu, “A boosted decision tree approach
using bayesian hyper-parameter optimization for credit scoring,” Expert
systems with applications, vol. 78, pp. 225–241, 2017.

[5] M. Hasan, M. M. Islam, M. I. I. Zarif, and M. Hashem, “Attack and
anomaly detection in iot sensors in iot sites using machine learning
approaches,” Internet of Things, vol. 7, p. 100059, 2019.

[6] S. L. Zhu, J. Dong, C. Zhang, Y. B. Huang, and W. Pan, “Application of
machine learning in the diagnosis of gastric cancer based on noninvasive
characteristics,” Plos one, vol. 15, no. 12, p. e0244869, 2020.

[7] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data,” Cryptology ePrint Archive, 2014.

[8] M. De Cock, R. Dowsley, C. Horst, R. Katti, A. C. Nascimento, W. S.
Poon, and S. Truex, “Efficient and private scoring of decision trees,
support vector machines and logistic regression models based on pre-
computation,” IEEE Transactions on Dependable and Secure Computing,
vol. 16, no. 2, pp. 217–230, 2017.

[9] A. Kiss, M. Naderpour, J. Liu, N. Asokan, and T. Schneider, “Sok:
Modular and efficient private decision tree evaluation,” Proceedings on
PET, vol. 2019, no. 2, pp. 187–208, 2019.

[10] L. Liu, R. Chen, X. Liu, J. Su, and L. Qiao, “Towards practical privacy-
preserving decision tree training and evaluation in the cloud,” IEEE
Transactions on Information Forensics and Security, vol. 15, pp. 2914–
2929, 2020.

[11] J. Vaidya, B. Shafiq, W. Fan, D. Mehmood, and D. Lorenzi, “A random
decision tree framework for privacy-preserving data mining,” IEEE
transactions on dependable and secure computing, vol. 11, no. 5, pp.
399–411, 2013.

[12] L. Zhao, L. Ni, S. Hu, Y. Chen, P. Zhou, F. Xiao, and L. Wu, “Inprivate
digging: Enabling tree-based distributed data mining with differential
privacy,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 2087–2095.

[13] S. Fletcher and M. Z. Islam, “Decision tree classification with differential
privacy: A survey,” ACM Computing Surveys (CSUR), vol. 52, no. 4, pp.
1–33, 2019.

[14] Q. Li, Z. Wu, Z. Wen, and B. He, “Privacy-preserving gradient boosting
decision trees,” in Proceedings of AAAI, vol. 34, no. 01, 2020, pp. 784–
791.

[15] Y. Li, Z. L. Jiang, X. Wang, S. M. Yiu, and J. Fang, “Outsourced privacy-
preserving random decision tree algorithm under multiple parties for
sensor-cloud integration,” in International Conference on Information
Security Practice and Experience. Springer, 2017, pp. 525–538.

[16] M. Joye and F. Salehi, “Private yet efficient decision tree evaluation,” in
IFIP Annual Conference on Data and Applications Security and Privacy.
Springer, 2018, pp. 243–259.

[17] W. j. Lu, Z. Huang, Q. Zhang, Y. Wang, and C. Hong, “Squirrel: A
scalable secure two-party computation framework for training gradient
boosting decision tree,” Cryptology ePrint Archive, 2023.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3395928

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 24,2024 at 08:34:40 UTC from IEEE Xplore. Restrictions apply.

14

[18] Y. Zheng, H. Duan, C. Wang, R. Wang, and S. Nepal, “Securely and
efficiently outsourcing decision tree inference,” IEEE Transactions on
Dependable and Secure Computing, 2020.

[19] J. P. Ma, R. K. Tai, Y. Zhao, and S. S. Chow, “Let’s stride blindfolded in
a forest: Sublinear multi-client decision trees evaluation.” in Proceedings
of NDSS, 2021.

[20] J. Bai, X. Song, S. Cui, E.-C. Chang, and G. Russello, “Scalable private
decision tree evaluation with sublinear communication,” in Proceedings
of ASIA CCS, 2022, pp. 843–857.

[21] K. Sarpatwar, N. K. Ratha, K. Nandakumar, K. Shanmugam, J. T.
Rayfield, S. Pankanti, and R. Vaculin, “Privacy enhanced decision tree
inference,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2020, pp. 34–35.

[22] R. K. Tai, J. P. Ma, Y. Zhao, and S. S. Chow, “Privacy-preserving
decision trees evaluation via linear functions,” in European Symposium
on Research in Computer Security. Springer, 2017, pp. 494–512.

[23] A. Tueno, F. Kerschbaum, and S. Katzenbeisser, “Private evaluation of
decision trees using sublinear cost.” Proc. Priv. Enhancing Technol., vol.
2019, no. 1, pp. 266–286, 2019.

[24] J. Frery, A. Stoian, R. Bredehoft, L. Montero, C. Kherfallah, B. Chevallier-
Mames, and A. Meyre, “Privacy-preserving tree-based inference with
fully homomorphic encryption,” arXiv preprint arXiv:2303.01254, 2023.

[25] R. R. Karn, K. Nawaz, and I. A. M. Elfadel, “Securing decision
tree inference using order-preserving cryptography,” in 2023 IEEE 5th
International Conference on Artificial Intelligence Circuits and Systems
(AICAS). IEEE, 2023, pp. 1–5.

[26] Z. Zhu and W. Du, “Understanding privacy risk of publishing decision
trees,” in IFIP Annual Conference on Data and Applications Security
and Privacy. Springer, 2010, pp. 33–48.

[27] D. J. Wu, T. Feng, M. Naehrig, and K. Lauter, “Privately evaluating
decision trees and random forests,” Cryptology ePrint Archive, 2015.

[28] Z. Ma, J. Ma, Y. Miao, and X. Liu, “Privacy-preserving and high-accurate
outsourced disease predictor on random forest,” Information Sciences,
vol. 496, pp. 225–241, 2019.

[29] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserv-
ing vertical federated learning for tree-based models,” arXiv preprint
arXiv:2008.06170, 2020.

[30] Y. Liu, Z. Ma, X. Liu, S. Ma, S. Nepal, R. H. Deng, and K. Ren,
“Boosting privately: Federated extreme gradient boosting for mobile
crowdsensing,” in Proceedings of ICDCS. IEEE, 2020, pp. 1–11.

[31] A. C. C. Yao, “How to generate and exchange secrets,” in 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986). IEEE,
1986, pp. 162–167.

[32] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in
Proceedings of ACM-SIAM symposium on Discrete algorithms, 2001, pp.
448–457.

[33] L. Li, R. Lu, K. K. R. Choo, A. Datta, and J. Shao, “Privacy-preserving-
outsourced association rule mining on vertically partitioned databases,”
IEEE Transactions on Information Forensics and Security, vol. 11, no. 8,
pp. 1847–1861, 2016.

[34] X. Luo, Y. Jiang, and X. Xiao, “Feature inference attack on shapley
values,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 2233–2247.

[35] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving deep
learning via additively homomorphic encryption,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2017.

[36] R. A. Fisher and F. Yates, Statistical tables for biological, agricultural
and medical research. Hafner Publishing Company, 1953.

[37] R. Durstenfeld, “Algorithm 235: random permutation,” Communications
of the ACM, vol. 7, no. 7, p. 420, 1964.

[38] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “Verifynet: Secure
and verifiable federated learning,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 911–926, 2019.

[39] G. Xu, H. Li, Y. Zhang, S. Xu, J. Ning, and R. H. Deng, “Privacy-
preserving federated deep learning with irregular users,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 19, no. 2, pp. 1364–
1381, 2020.

Shuai Yuan Shuai Yuan received a B.S. degree in
information security from the University of Science
and Technology Beijing, and he is currently working
toward a Ph.D. degree in cyber security at the Univer-
sity of Electronic Science and Technology of China.
His research interests include applied cryptography
and privacy-preserving machine learning.

Hongwei Li Hongwei Li (Fellow, IEEE) is currently
the Associate Dean at School of Computer Science
and Engineering, University of Electronic Science
and Technology of China. He received the Ph.D.
degree from University of Electronic Science and
Technology of China in June 2008. He worked as
a Postdoctoral Fellow at the University of Waterloo
from October 2011 to October 2012. His research
interests include network security and applied cryp-
tography. Dr. Li has published more than 100 techni-
cal papers. He is the sole author of a book, Enabling

Secure and Privacy Preserving Communications in Smart Grids (Springer,
2014). Dr. Li serves as the Associate Editors of IEEE Internet of Things
Journal, and Peer-to-Peer Networking and Applications, the Guest Editors of
IEEE Network, IEEE Internet of Things Journal and IEEE Transactions on
Vehicular Technology. He also served the Technical Symposium Co-chairs of
IEEE ICC 2022, ACM TUR-C 2019, IEEE ICCC 2016, IEEE GLOBECOM
2015 and IEEE BigDataService 2015, and Technical Program Committees
for many international conferences, such as IEEE INFOCOM, IEEE ICC,
IEEE GLOBECOM, IEEE WCNC, IEEE SmartGridComm, BODYNETS and
IEEE DASC. He won Best Paper Awards from IEEE ICPADS 2020 and IEEE
HEALTHCOM 2015. Dr. Li currently serves as the Vice Chair(conference)
of IEEE ComSoc CIS-TC. He is the Fellow of IEEE and the Distinguished
Lecturer of IEEE Vehicular Technology Society.

Xinyuan Qian Xinyuan Qian received B.Eng. degree
in security engineering in People’s Public Security
University of China in 2018 and M.Eng. degree
in computer technology in University of Chinese
Academy of Sciences in 2021. He is currenting pursu-
ing the Ph.D. degree in School of Computer Science
and Engineering, University of Electronic Science
and Technology of China. His research interests
include IBE, ABE, FE, FHE, applied cryptography,
and privacy-preserving machine learning.

Meng Hao Meng Hao received the B.S. degree in
information security in 2018, from the University
of Electronic Science and Technology of China
(UESTC). He is currently working toward the Ph.D.
degree in cyber security at UESTC. His research
interests include applied cryptography and privacy-
preserving deep learning.

Yixiao Zhai Yixiao Zhai received her B.S. degree
in Information Security from the University of Elec-
tronic Science and Technology of China (UESTC)
in 2020. She received M.S. degree in 2023 from the
UESTC. Her research interests include adversarial
attacks and privacy-preserving deep learning.

Guowen Xu Guowen Xu is currently a Postdoc at
City University of Hong Kong under the supervision
of Prof. Yuguang Fang. He was a Research Fellow
at Nanyang Technolgoical University from March
2021 to May 2023. He received his Ph.D. degree in
2020 from the University of Electronic Science and
Technology of China. His research interests include
applied cryptography and privacy-preserving deep
learning.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3395928

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on May 24,2024 at 08:34:40 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Work
	Preliminaries
	Gradient Boosting Decision Tree
	Pseudorandom Function
	Additively Homomorphic Encryption
	Random Permutation

	Problem Statement
	System Architecture
	Threat Model

	Efficient and Privacy-preserving Outsourcing of GBDT Inference
	High-level Overview
	Private Tree Transformation
	Secure Comparison Protocol
	Random Trees Permutation Protocol
	Putting It All Together
	Security Analysis

	Experiments
	Experimental Settings
	Experimental Evaluations
	Computation Performance
	Communication Performance
	Comparison with Prior Works

	Conclusion
	References
	Biographies
	Shuai Yuan
	Hongwei Li
	Xinyuan Qian
	Meng Hao
	Yixiao Zhai
	Guowen Xu

