
Large scale Extraction of Composition and Properties
from Materials Tables

Kausik Hira1, Mohd Zaki2,
Mausam1, N. M. Anoop Krishnan1,2

1Yardi School of Artificial Intelligence, 2Department of Civil Engineering
Indian Institute of Technology Delhi

{kausikhira, mohdzaki1995}@gmail.com
{mausam, krishnan}@iitd.ac.in

Abstract

In this study, we aim to develop the largest automated knowledge base (KB) of
inorganic materials’ compositions and properties by systematically extracting data
from published research articles in the Materials Science (MatSci) domain. Since
most material compositions and properties are reported in tables, their efficient
extraction is essential for building large-scale knowledge repositories in this field.
To this extent, we developed a framework combining two models, namely, DIS-
COMAT and PEGAMAT for extracting materials’ compositions and properties
respectively. Training data was generated through distant supervision using com-
positions and desired properties from existing databases and the corresponding
journals, supplemented by rule-based parsers. Validation and test datasets were
manually annotated by materials science experts. DISCOMAT achieved an F1
score of 71.49 for composition extraction, while PEGAMAT attained 86.90 for
property extraction. We processed research papers published in 12 journals of the
ScienceDirect database for our study and extracted more than 550,000 entries
comprising around 100,000 glass material compositions with their properties, along
with 137,000 compositions and 316,000 properties without their counterparts. The
proposed models and the resulting database offer significant potential to advance
the modeling and development of tailored materials.

1 Introduction
The discovery of novel materials has significantly accelerated human progress, with a crucial initial
step being the comprehensive understanding of existing materials and their behaviors, which are
fundamentally linked to their compositions, structure, and properties. This information is typically
found in both structured formats (tables) and unstructured formats (text and images) across research
papers, handbooks, and patents [17, 16]. Several efforts have been made in the past to develop
materials domain-specific language models or other machine learning models that allow information
extraction [13, 7, 18, 24, 2, 14, 23, 20–22]. Extracting and organizing this information into structured
databases can accelerate the development of machine learning models, which in turn, can be used for
accelerating materials discovery [12, 10].

Tables in scientific articles form a crucial repository of information [8, 12]. There have been several
efforts towards information extraction from materials tables using regular expressions (regex) [9, 15],
finetuning language models [24, 5, 19], or developing table specific graph neural networks [7]. There
have been some additional efforts towards probing the LLMs to evaluate their understanding of tables
and materials [4, 1, 22], which can then be used for extracting materials in an autonomous fashion [3].
However, these methods are limited to a smaller number of materials due to either the inherent limited
generalizability of the model or the computational cost associated with inferencing employing LLMs,
which makes it prohibitive to scale to large data.
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Here, we present a framework that allows automated extraction of materials compositions and
properties from tables in scientific articles. The major contributions of our studies are as follows.

• Unified model framework for tabular data extraction: We introduce a comprehen-
sive framework integrating two models, DiSCoMaT and PeGaMaT, trained on distantly-
supervised data, enhanced with annotation codes and data augmentation, to facilitate large-
scale extraction of compositions and properties, respectively, from tables present in the
MatSci literature.

• Comprehensive Materials Database: Using the unified model framework, we synthesize
large-scale data from MatSci literature, which comprises ≈ 550,000 entries, making it one
of the largest materials databases.

2 Methodology

To build a knowledge base (KB) of compositions and properties in MatSci domain, our initial aim
was to identify where these entities are reported within research articles. According to Hira et
al.(2024) [8], 74% of papers reported compositions in tables, while 82% of the papers recorded the
properties belonging to the experimented material in tables. Hence, we prioritized the extraction of
compositions and properties from tables present in the documented literature of the MatSci field.
We chose DISCOMAT [7], a framework that handles different tables of complex structures along
with other challenges and is currently the best composition extraction model in this field [22]. We
upgraded DISCOMAT by re-annotating its training data and modifying its post-processing rules. We
followed the similar annotation approach used in DISCOMAT and started working towards creating
our own property extraction model from tables. When simple distant supervision on [11] proved to
be insufficient for property extraction, as done in DISCOMAT, we supplemented the training data
with annotation codes followed by data augmentation. Finally, we developed our own graph attention
network-based model for property extraction, namely PEGAMAT(Property Extraction using Graph
Attention Networks from Material Science Tables). With PEGAMAT and an improved version of
DISCOMAT, we extracted composition and properties from tables belonging to different journals of
the MatSci domain. We then integrated the extracted information to form our automated KB.

3 Extracting compositions using DISCOMAT
Table-type Old F1 scores New F1 scores

SCC-CI 78.21 77.07
MCC-CI 65.41 74.53
MCC-PI 51.66 52.82

All table types 63.53 70.27

Table 1: Evaluation of DISCOMAT Per-
formance: A comparison between previ-
ous and upgraded versions.

We adapted DISCOMAT from [7], and re-annotated the
training data with rule-based constituent detectors, and re-
trained DISCOMAT on the newly annotated training data.
We also modified the post-processing rules for partial-
composition extraction and the regex parsers and intro-
duced some less frequently seen compounds to the com-
pound list. Lastly, we extended the scope of unit extraction
from tables and captions to the "Result" and "Discussion"
sections of the paper for more accurate unit extraction.
These modifications led us to a gain of 6.74 points in the F1 score, as shown in Table 1. Notably, we
have enhanced the extraction of materials from MCC-CI tables, which is the most frequently reported
table structure in this field [8].

4 Extracting properties using PEGAMAT

4.1 Dataset Construction

We used the dataset reported in DISCOMAT to develop our property-extraction model. We employed
a similar approach to DISCOMAT [7] for annotating training datasets. Similar to DISCOMAT,
we utilised the commercial glass database [11] and used distant supervision to align the properties
mentioned in the training dataset. However, training data built on distant supervision [11] yielded
low validation scores. Upon further analysis, it was observed that properties in several tables of
the training data remain undetected. Thereafter, we supplemented the distantly supervised dataset
with deterministic annotation codes, which were significantly more complex than those used in
composition extraction. Some of the primary reasons are the presence of a huge number of tables
having different properties with semantically similar abbreviations, in some cases exactly identical
abbreviations are used to represent different entities and also the same properties reported with

2



different acronyms across different articles, and many other factors mentioned in [8], makes the
detection of the desired property challenging by any automated system. Despite making a substantial
effort to write the supplementary codes for annotating the training data after distantly supervising
it, we found that while our model was doing well for frequently studied properties such as density
and glass transition temperature, it struggled with lesser seen properties like Abbe Number, Young’s
Modulus, Fracture Toughness. To address this issue, we employed data augmentation by integrating
a column of the target property into tables that did not originally include that property but contained
other properties commonly examined together. To reconcile the differences between the two table
structures, assuming the table is column-oriented, we adjusted the column length of the source
table (CLs) to match the column length of the augmented target table (CLt). Specifically, when
CLs < CLt, we padded the source column with values within ±10% of the median to match CLt,
or clipped the source column if CLs > CLt. Given the inherent noise and potential inaccuracies in
the distant supervision approach, the validation and test datasets were manually annotated by two
co-authors.

4.2 Model Architecture

As 82% of the articles reported their findings related to properties in tables [8], our next goal was to
create a model for extracting properties from tables of MatSci literature. We developed a GAT-based
model, PEGAMAT(Property Extraction using Graph Attention Networks from Material Science
Tables), and intended to extract 18 properties. PEGAMAT takes a table and caption text as input,
upon which a directed graph is constructed where each table cell is a node, along with one additional
node for the caption and a header node for each row and column. Each cell node is directed to its
corresponding row header and column header node, and bidirectional edges exist between every
cell node of the same row or column. The caption node propagates its information to every header
node. Each node’s embedding is initialized by running through the LM MatSciBERT [6]. We also
introduced four structural constraints, which, when violated, lead to penalization of the loss function.
This is followed by multiple post-processing rules specific to one or a particular set of properties. For
instance, the Expansion Coefficient or Electrical Conductivity reported for a material often contains
values in the range of y×10−x, where only y is mentioned in table cells and [10−x] in the header cell.
Post-processing rules take care of such cases to extract the correct values regarding each property.
Additionally, we implemented outlier detection by verifying that the extracted property values fall
within their expected range. These are some of the few examples of post-processing rules used by our
model. As we have considered 18 properties, extracting the correct unit for a reported property is
substantially more complex than that used in composition extraction.

4.3 Results

PEGAMAT takes the table along with its caption and text of the paper as input and gives out a list of
tuples as output. The tuple consists of four elements – (Unique_ID, Property Name, Value, Unit).
The Unique_ID is unique to every extracted tuple, which contains PII_TID_R_C_ID, where PII
stands for article ID, and TID stands for table number belonging to that article. R and C represent
the row and column index from which the information is obtained. We append the material ID if
it is detected inside the table. This Unique_ID will provide us with information about the source
of the generated tuple, which is essential to connect with other entities that were extracted by other
models over the same table. PEGAMAT achieves a strong F1 score of 87.80 on the validation set and
an F1 score of 86.90 on the test dataset. Notably, we achieved an F1 score of 90 or more for 8 out
of the 18 properties on the test dataset, as detailed in Table. 2. We ignored the ID while evaluating
the model, as our objective was to detect how efficiently we were able to extract the properties from
each individual table. PEGAMAT detects material ID with an F1 score of 82.90. The material ID is
essential when considering aligning information for a particular material across different tables.

5 Creating the MatSci Database
Precision Recall F1

Materials extracted 81.55 63.65 71.49
Properties extracted 88.20 85.65 86.90
Database constructed 74.19 64.10 68.78

Table 3: Performance metrics of composi-
tion and property extracted, along with the
database constructed.

To evaluate the metrics at the database level, we
used the manually annotated gold standard data from
PEGAMAT and DISCOMAT, and compared it with
the database generated by our models on the test
dataset, obtaining a precision of 74.19 and F1 of
68.78, as described in Table. 3. We focused on scores
excluding IDs because the primary compositions and
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Sl. No. Property Name Validation F1 Test Precision Test Recall Test F1 Test Support
1 Density 92.9 87.7 94.7 91 75
2 Glass Transition Temp 97.2 90.4 90.4 90.4 104
3 Refractive Index 81 76.7 78.7 77.6 42
4 Abbe Number 100 100 100 100 1
5 Young’s Modulus 93.3 74.2 100 85.2 23
6 Shear Modulus 100 100 81.2 89.7 16
7 Vickers Hardness 95.8 100 86.7 92.9 15
8 Poisson Ratio 82.8 64.7 73.3 68.8 15
9 Fracture Toughness 71.4 80 100 88.9 4

10 Crystallization Temp 92.6 93.5 86.7 90 83
11 Melting Temp 85.7 95.2 87 90.9 23
12 Electrical Conductivity 61.5 63.6 58.3 60.9 12
13 Temp of Softness 90.9 80 80 80 10
14 Annealing Point 83.3 75 75 75 8
15 Expansion Coefficient 88.9 100 95 97.4 20
16 Liquidus Temp 95.7 76.9 83.3 80 12
17 Bulk Modulus 100 100 71.4 83.3 14
18 Activation Energy 65.9 97.8 80.4 88.2 56

Table 2: Comprehensive evaluation of PEGAMAT for each property extracted.

properties of the materials are linked by their orientation and not IDs, as in most of the articles the
composition of the material along with its properties are reported in the same table.

We applied DISCOMAT and PEGAMAT on 12 scientific journals of the ScienceDirect database to
extract materials compositions and properties from the tables reported in these articles. The extracted
information was integrated based on table orientation, assuming that the material’s properties and
composition would be presented in the same row for column-oriented tables or in the same column
for row-oriented tables. In cases where composition and properties were reported in separate tables,
material IDs were used to link the extracted data. Additionally, our database includes materials
for which only compositional or property data were extracted, but not both. We obtained 76,166
entries having both composition and property of the material from the same table, followed by
21,945 similar entries obtained from inter-table with the help of material IDs. Additionally, we have
extracted 137,003 only compositions, and 316,117 only properties, where we could not extract their
corresponding counterparts, detailed in Table 4, where ‘*’ refers to inter-table extraction.

Sl. No. Journal Abbreviations Papers Tables (C + P) (C + P)* C only P only Total entries
1 J. Solid State Chem. 4005 5889 3742 270 17955 15989 37956
2 Solid State Ionics 2568 3662 4582 305 6240 17892 29019
3 J. Phys. Chem. Solids 2397 3759 5652 523 6380 23293 35848
4 J. Non-Cryst. Solids 6590 10537 30805 9444 23689 45815 109753
5 Ceram. Int. 14024 21689 14727 7236 38024 89411 149398
6 Solid State Sci. 1831 2724 2288 626 6677 10019 19610
7 J. Nucl. Mater. 4609 6699 1934 968 11160 29870 43932
8 Thin Solid Films 4478 5684 2828 358 8081 24358 35625
9 Mater. Lett. 3524 3960 2450 166 5334 15368 23318

10 Solid State Commun. 1629 2339 3087 215 3338 15371 22011
11 Opt. Mater. 2610 3635 2914 1299 5308 17255 26776
12 J. Lumin. 1842 2453 1157 535 4817 11476 17985

Total 50107 73030 76166 21945 137003 316177 551231

Table 4: Summary of the knowledge-base formed by extracting information from different journals.

6 Conclusion and Future Work

In this article, we introduce property-extraction model PEGAMAT, which extracts properties with high
accuracy from tables reported in material science articles. By enhancing DISCOMAT and integrating
it with PEGAMAT we have developed the first large-scale automated material science database
(MatSci DB), which meticulously captures compositions and properties from tables across a broad
spectrum of research articles. These models have implications beyond material science, as various
scientific domains like Biochemistry, Food Science, Pharmacology, and others use tables to report
their findings. The models introduced and the database generated present substantial opportunities for
advancing the design and development of specialized materials, along with accelerating the discovery
of novel materials and improving the prediction models used in this domain.
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