
Under review as a conference paper at ICLR 2024

THINK BEFORE YOU ACT: DECISION TRANSFORMERS
WITH INTERNAL MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

Decision transformer model-based decision-making agents have shown the ability1

to generalize across multiple tasks. However, their performance relies on massive2

data and computation. We argue that this inefficiency stems from the forgetting3

phenomenon, in which a model memorizes its behaviors in parameters throughout4

training. As a result, training on a new task may deteriorate the model’s perfor-5

mance on previous tasks. In contrast to LLMs’ implicit memory mechanism, the6

human brain utilizes distributed memory storage, which helps manage and organize7

multiple skills efficiently, mitigating the forgetting phenomenon. Thus inspired,8

we propose an internal memory module to store, blend, and retrieve information9

for different downstream tasks. Evaluation results show that the proposed method10

improves training efficiency and generalization in both Atari games and meta-world11

object manipulation tasks. Moreover, we demonstrate that memory fine-tuning12

further enhances the adaptability of the proposed architecture.13

1 INTRODUCTION14

Asteroids

Asteroids Delux

Games

Space Invaders

Space Invaders II

Asteroids
Knowledge

Asteroids Delux
Knowledge

Space Invaders
Knowledge

Space Invaders II
Knowledge

Working Memory

Shared
Knowledge

Memory
Update

Memory
Retrieve

Figure 1: A robot uses its memory to guide its
playing strategy.

Recently, with the tremendous success of15

decoder-only transformer models (Brown et al.,16

2020; OpenAI, 2023; Dosovitskiy et al., 2021;17

Touvron et al., 2023), an increasing number18

of researchers have focused on decoder-only19

transformer-based decision-making agents. As20

shown with GPT-3 (Brown et al., 2020) and21

follow-up work Kaplan et al. (2020); Clark et al.22

(2022), the generalization of these LLMs de-23

pends significantly on the model size, i.e. the24

number of parameters. This is partly because25

neural network parameters act as implicit mem-26

ory (Neyshabur et al., 2019), enabling models27

to “memorize” a huge amount of training data28

by fitting these parameters. However, relying29

purely on scale has practical and ethical limits:30

there are economic and ecological costs, it re-31

duces accessibility, and more efficient uses of scale might improve performance further. To address32

some limits of the implicit, parameter-based memory of large models, we take the inspiration from33

the concept of “working memory” (Baddeley, 2003; Cowan, 2008) to explicitly store and recall past34

experiences for use in future decision-making. The concept, “working memory”, originates from35

cognitive psychology and neuroscience (Baddeley, 2003; Goldman-Rakic, 1995), where it refers to36

the system responsible for the temporary storage and manipulation of information during cognitive37

tasks.38

Our motivation comes from how humans think before they act: they can reason on past experiences to39

generate appropriate behavior in new situations. As an illustration, imagine we want to train a robot40

to play four different Atari games: Asteroids, Asteroids Deluxe, Space Invaders, and Space Invaders41

II (Figure 1). Asteroids Deluxe is a sequel to Asteroids that introduces new boss fights and enemies,42

and the same can be said about Space Invaders II and Space Invaders. For the robot to play these four43

games, it must actively store what it has learned in each game in its memory module and choose the44

1

Under review as a conference paper at ICLR 2024

appropriate strategy for each game. Throughout training, the robot’s memory module continuously45

processes and updates relevant game information, allowing it to make informed decisions and adapt46

its strategies.47

Followed by this intuition, we introduce Decision Transformers with Memory (DT-Mem): it48

stores an internal memory as a matrix and its functioning entails two primary steps: memory49

update and memory retrieval. DT-Mem builds on earlier work on memory-augmented neural50

networks (Santoro et al., 2016)—including neural Turing machines (Graves et al., 2014) and memory51

networks (Sukhbaatar et al., 2015)—in several ways, as we detail in the related work.52

We use content-based addressing (Eslami et al., 2016) to locate the memory position to update or53

retrieve from. The memory update involves modifying or replacing existing information. This enables54

the system to keep track of changes, maintain task-relevant information, and facilitate decision-55

making. More specifically, we first map the input sequence and memory into three entities: query,56

key, and value. Next, we use an attention-based mechanism to calculate the correlations between the57

input and memory, and then we use the attended weight of the input sequence to update the memory.58

Memory retrieval refers to the process of accessing and recovering stored information. It involves59

bringing relevant information back to condition decision-making. To do so, we read from the updated60

memory at the content-based address.61

Since experience must often be mapped from one task to another (e.g., through analogy in humans) to62

be useful, we also equip our memory module with an adaptable mapping capability. Specifically, for63

adapting the memory module to a new task, we employ the Low-Rank Adaptation (LoRA) method64

as described in (Hu et al., 2022) to fine-tune it. The main idea behind LoRA is to train a low-rank65

projection matrix on a small amount of labeled data from a new task. This matrix maps the parameters66

of a pre-trained model to a new task. We fine-tune only the memory module in this work because we67

rely on the generalization capacity of a pre-trained Decision Transformer (DT). Transformers are68

often pre-trained on large-scale datasets, as in the case of models like Multi-game DT (Lee et al.,69

2022) and Hyper-DT (Xu et al., 2023), and this pre-training enables them to capture broad knowledge70

that is transferable across tasks. In contrast, our memory module stores task-specific knowledge that71

should be adapted for new tasks.72

The functioning of DT-Mem differs from external memory and information retrieval-based methods73

in several ways: (1) memory size, (2) representation of stored information, and (3) retrieval method.74

In contrast to internal memory module, external memory methods generally require a large dataset75

that serves as a look-up table. Each raw data point in the external memory also requires an extra step76

of representation learning to be input to the neural network. Finally, our memory module relies on an77

attention-based retrieval method, since attention has demonstrated the ability to generalize across tasks.78

However, attention is computationally impractical for large sets, and hence external/retrieval-based79

memory systems tend to rely on k-nearest neighbor search for information retrieval.80

To validate our approach, we evaluate DT-Mem in two environments: (a) on Atari games against Multi-81

game Decision Transformer (MDT, Lee et al., 2022) and Recurrent Memory Decision Transformer82

(RMDT, Bessonov et al., 2023), and (b) on Meta-World environments against Prompt Decision83

Transformer (PDT, Xu et al., 2022) and Hyper-Decision Transformer (HDT, Xu et al., 2023). Our84

results show that DT-Mem improves generalization and adaptability with fewer model parameters85

and less training time.86

2 RELATED WORK87

Transformer-based Reinforcement Learning methods Transformer (Vaswani et al., 2017) is a88

powerful architecture designed for sequence modeling. Owing to the capabilities that emerge as89

model and data size scale up, the Transformer has become a foundational model in several domains,90

including natural language processing (Brown et al., 2020; OpenAI, 2023; Touvron et al., 2023) and91

computer vision (Dosovitskiy et al., 2021). However, applying Transformer in reinforcement learning92

settings, such that it generalizes to multiple tasks, remains an open problem.93

Recently, Chen et al. (2021) and Janner et al. (2021) treat the RL problem as a sequence modeling94

problem and proposed a Transformer-based architecture to solve it with offline RL. These findings95

inspired researchers to develop more advanced Transformer-based RL methods. Subsequent efforts96

mainly focus on two aspects: generalization and adaptability. To improve model online adaptabil-97

2

Under review as a conference paper at ICLR 2024

ity, Zheng et al. (2022) propose the Online Decision Transformer (Online DT), which utilizes the98

maximum-entropy idea to encourage pre-trained policies to explore during a phase of online adapta-99

tion. To improve offline adaptation, Xu et al. (2023) propose a Hyper-network-based module that100

helps DT adapt to unseen tasks efficiently. To facilitate task adaptation, Xu et al. (2022) introduce the101

prompt-based DT, which selects short trajectories to use in a task prompt in analogy with in-context102

learning for large language models. Furthermore, Lee et al. (2022) propose a multi-game DT (MDT),103

which use the expert action inference to consistently produce actions of highly-rewarding behavior.104

MDT demonstrates that DT can generalize to various Atari games with human-level performance.105

We argue that the generalization of the above-mentioned works relies on the size of models and does106

not learn the data efficiently. To address this issue, we introduce a memory module that can store,107

blend, and retrieve training information for better model and training efficiency.108

Working memory In the context of machine learning, there is a long history of neural network-based109

models that incorporate memory mechanisms (Das et al., 1992; Schmidhuber, 1992; Hochreiter110

and Schmidhuber, 1997; Santoro et al., 2016; Ba et al., 2016; Munkhdalai and Yu, 2017; Csordás111

and Schmidhuber, 2019; Ramsauer et al., 2020; Wu et al., 2022a). Generally, this research aims to112

enhance the capacity of neural networks to store and manipulate information over extended periods113

of time, leading to improved performance on a range of tasks. It often takes inspiration from human114

cognitive function. Most salient to our work, Graves et al. (2014) merge concepts from Turing115

machines and deep learning in “Neural Turing Machines” (NTMs), neural networks that include116

a content-addressable matrix memory space for storing and updating information throughout time.117

They show NTMs to be effective for various algorithmic tasks. Concurrently, Sukhbaatar et al.118

(2015) introduce “memory networks,” which use a content-addressable matrix memory store and119

retrieve information from previous computational steps to facilitate complex reasoning and inference120

tasks. infinity-former excels in handling unbounded contexts with precision and flexibility, ideal121

for extensive and complex datasets (Martins et al., 2021). LONGMEM decoupled architecture122

and token-to-chunk retrieval make it adept at managing large contexts and overcoming memory123

staleness Wang et al. (2023). kNN-augmented Transformer offers flexibility in context length and124

rapid adaptation to new data, enhancing the model’s real-time applicability Wu et al. (2022b). More125

recently, Bessonov et al. (2023) introduces a recurrent memory mechanism to address reinforcement126

learning challenges, which preserves a hidden state throughout the decision-making process. However,127

this method overlooks the storage and retrieval of task-related information, thereby falling short128

in fostering model generalization and task adaptation. Munkhdalai et al. (2019) propose a rapidly129

adaptable neural memory system, which they instantiate as a feedforward neural network trained by130

metalearning. They evaluate the memory’s effectiveness in a simple RL setting, maze exploration,131

and on various NLP tasks. Alternatively, Goyal et al. (2022) builds on the “global workspace” theory132

from cognitive science, which posits that different input entities share information through a common133

communication channel. The proposed shared global workspace method employs the attention134

mechanism to encourage the most useful information to be shared among neural modules. It is closely135

related to working memory and inspires us to explore how an explicit working memory can improve136

the generalization of Transformer-based models. An upshot of our work is that it may be valuable to137

revisit earlier memory-augmentation methods in light of more powerful foundation models.138

3 PRELIMINARIES139

3.1 OFFLINE REINFORCEMENT LEARNING140

A trajectory consists of a series of states, actions, and rewards, expressed as ⌧ =141

(s0, a0, r0, s1, a1, r1, · · · , sT , aT , rT). In the context of offline RL, data acquisition doesn’t come142

from active interaction with the environment. Instead, we rely solely on a predefined and limited143

dataset containing various trajectories generated by different policies. This scenario presents greater144

challenges as it restricts the agent’s ability to actively explore the environment and gather new145

information, which is a crucial aspect of traditional RL approaches.146

Formally, in the context of model evaluation, we can define a set of training tasks and testing147

tasks as T train and T
test, respectively. These two sets deliberately have no overlapping tasks, but148

they may share the same or similar observation and action spaces. To be more specific, for each149

training task T i 2 T
train, we have access to a large training dataset, which contains trajectories150

3

Under review as a conference paper at ICLR 2024

Output
Embeddings Memory

Cross Attention Cross Attention

Adding vector Erasing vector

Memory
Update

Memory
Retrieve

Encoder + Positional Encoding

Transformer Module Memory

Memory
Update

Memory
Retrieve

Action Decoder
Transformer

Module

InputsN

Figure 2: An overview of the proposed DT-Mem architecture.

⌧
0:H = (s0, a0, r0, · · · , sH , aH , rH), where H is the episode length. However, we assume access to151

only a small amount of data for the testing tasks.152

Our goal is to evaluate the proposed model in two dimensions. First, we want to assess the model’s153

generalization, which refers to its ability to solve the testing tasks within a finite time with no154

additional fine-tuning. Second, we want to test the model’s adaptability, which refers to its ability to155

improve its performance on the testing tasks through fine-tuning on limited data after pre-training on156

separate tasks.157

3.2 LOW-RANK ADAPTATION158

Low-rank adaptation (LoRA, Hu et al., 2022) is a transfer learning technique used to adapt a pre-159

trained model to a new task with limited labeled data. LoRA assumes that the pre-trained model’s160

parameters can be expressed as a low-rank matrix, and that only a small number of parameters must161

be modified to adapt the model to the new task. The main idea behind LoRA is to utilize a small162

amount of labeled data from a new task to learn a low-rank projection matrix. This matrix maps the163

parameters of a pre-trained model to the new task.164

4 METHODOLOGY165

4.1 OVERVIEW OF DT-MEM166

In Figure 2, we depict the architecture of DT-Mem, which consists of three components: the167

Transformer module, the Memory module, and the Multi-layer perceptron (MLP) module. The168

primary role of the Transformer module is to capture dependencies and relationships between states,169

actions, and returns in a sequence. The input of the Transformer module is a fixed-length sequence of170

trajectories, denoted as ⌧ t+1:t+K . The output is a sequence of embeddings, where each entry can be171

attended state embeddings, action embeddings, or return-to-go embeddings. The Transformer module172

follows the architecture of GPT-2 (Radford et al., 2019), but without the feed-forward layer after173

attention blocks. We separate the GPT-2 architecture into two pieces: the Transformer module and174

the MLP module, following the setup for natural language processing tasks: one GPT-2 model can175

be applied to a wide variety of tasks with different MLP modules Radford et al. (2019). Finally, we176

introduce a memory module for storing and manipulating intermediate information. This is inspired177

by the Neural Turing Machine (Graves et al., 2014), where the memory is utilized to infer multiple178

algorithms.179

4

Under review as a conference paper at ICLR 2024

4.2 MEMORY MODULE180

The design for the memory module is inspired by the way humans think before they act. Its181

functioning consists of three parts: identifying salient information output from the transformer182

module, determining where to store new information and how to integrate it with existing memories,183

and considering how to use these memories for future decision-making. We have broken down these184

questions and designed the following steps to address them.185

Step 0: Memory Module Initialization. The is initialized as a random matrix M , where each row186

mi 2 Rd, with i 2 [0, N], represents a memory slot.187

Step 1: Input Sequence Organizing. Initially, we restructure the input sequence to adopt a different188

format. As illustrated in the problem formulation, the input sequence comprises multiple steps of the189

tuple < r̂t, st, at >. Instead of directly feeding this sequence into the transformer module, we treat190

each tuple as an entity and embed them within the same space. Specifically, we define embedding191

functions gs(s) = es, ga(a) = ea, and gr(r̂) = er̂, where es, ea, and er̂ 2 Rd with d representing192

the dimension in the latent space. The final input sequence emerges from the concatenation of193

embeddings E = [· · · ; est , eat , er̂t ; · · ·].194

Given our memory structure as a matrix with fixed dimensions (i.e., number of slots ⇤ dimensions),195

it’s crucial to synchronize the input dimensions for efficient storage. It’s noteworthy that in this design,196

we maintain the relationships among them as posited in the DT paper, although this is not a requisite.197

For instance, in the trajectory transformer Janner et al. (2021), states, rewards, and others are grouped198

individually. As demonstrated in Appendix B.6, these varied designs exhibit no significant difference.199

Step 2: Content-based Address. We use an attention-based method to locate the correct memory200

slot for new input by identifying correlated information. This approach is based on the idea that201

humans tend to store and group similar information together. To locate the memory position, we202

utilize an attention mechanism. The position address w is calculated as: w = softmax
⇣

QKT
p
d

⌘
. Here,203

Q = MW q and K = EW k, where W q and W k are parameters for the Multi-layer perceptron204

(MLP). The objective is to map the memory and input information into the query and key matrix,205

and then use the dot product to determine the similarities between these two matrices. The softmax206

function guarantees that the sum of all addresses equals one.207

Step 3: Memory update. To store incoming information and blend it with existing memory, we208

calculate two vectors: an erasing vector, ✏e, and an adding vector, ✏a. The erasing vector erases the209

current memory, while the adding vector controls information flow to the memory. To achieve this210

goal, we again utilize the attention mechanism. First, we map memory and input information to query,211

key, and value vectors, denoted as Q̂ = MŴ q , K̂ = EŴ k, and V̂ = EŴ v , respectively, where212

Ŵ q, Ŵ k, and Ŵ v are parameters. Next, we calculate the writing strength, � = softmax
⇣

Q̂K̂T
p
d

⌘
.213

The erasing vector is used to selectively erase information from the memory matrix and is computed214

as a function of the content-based addressing vector and the write strength. The erasing vector is215

calculated as ✏e = w � (1� �), where � indicates element-wise multiplication. The complement216

of the write strength is 1 minus the write strength, so this will result in a vector where the elements217

corresponding to the selected memory locations are set to 0, and the elements corresponding to the218

unselected memory locations are unchanged.219

The adding vector is used to selectively add information to the memory matrix and is computed as a220

function of the write strength and the input vector. Specifically, the adding vector is calculated as221

✏a = (w � �)Ŵ v
x.222

Finally, the memory is updated as Mt = Mt�1 � (1 � ✏e) + ✏a. If the selected memory slot is223

empty or erased, the new information will be stored. Otherwise, the new information will be blended224

with the existing memory contents.225

Step 4: Memory retrieve To utilize memory for decision-making, we retrieve information from the226

updated memory slot. Reading from the memory matrix is done by computing a read position vector.227

This vector can be computed using the above content-based addressing mechanism that compares228

the query vector with the contents of the memory matrix. Note that in other retrieval-based methods229

(Humphreys et al., 2022; Borgeaud et al., 2022), the nearest neighbor is the common way to retrieve230

related information. However, in our case, the internal memory is smaller than the typical external231

5

Under review as a conference paper at ICLR 2024

memory, which makes attention-based retrieval feasible. Since the query information is the same as232

the input information, we use the same content address to retrieve the memory: Eout = w �Mt.233

4.3 PRE-TRAINING DT-MEM234

We use a set of training tasks T train, where each task Ti 2 T
train has an associated offline dataset235

Di consisting of hundreds of trajectories ⌧ generated by a behavior policy. The behavior policy can236

be either a pre-trained policy (such as DQN) or a rule-based policy, depending on what is available.237

Each trajectory ⌧ = (s0, a0, r0, · · · , sH , aH , rH), where si 2 S, ai 2 A, ri 2 R, and H is the238

episode length.239

To serve as an input to the DT-Mem, we first segment the trajectory ⌧ into several pieces, each240

with length K. We denote ⌧t+1:t+K = (st+1, at+1, rt+1, · · · , st+K , at+K , rt+K) as one of241

the input sequence. However, we modify these trajectories instead of inputting them directly.242

Specifically, we follow the return-to-go Decision Transformer idea Chen et al. (2021) and cal-243

culate the return to go, r̂t =
P

t+K

t+1 rt, for every timestep. This is effective because r̂t acts244

as a subgoal. It encourages the Transformer module to generate actions that can reduce the245

negative of this value as close to zero as possible. Then we input the modified trajectories246

⌧̂t+1:t+K = (r̂t+1, st+1, at+1, · · · , r̂t+K , st+K , at+K) to the transformer module. The output of247

the transformer module is a sequence embedding eseq 2 Rd⇥3K , where d is the dimension of the248

embedding space.249

Next, we transmit eseq to the Memory module to update and retrieve the memory information. Finally,250

we use the retrieved memory Eout and MLP modules to generate the corresponding actions ât. We251

minimize a supervised training loss with three terms: predicted actions ãt, predicted reward r̃t, and252

predicted return-to-go R̃t. The loss function is:253

L =
t+KX

t+1

||ãt � at||2 + ↵||r̃t � r̂t||2 + �||R̃t � rt||2, (1)

where ↵ and � are scalar hyper-parameters. In experiments, we find that the final performance is not254

sensitive to these two hyper-parameters, so we set them to 1 for simplicity.255

The full pre-training process is summarized in Appendix A.3 Algorithm 1.256

4.4 FINE-TUNING DT-MEM WITH LORA257

Fine-tuning LLMs involves heavy computation due to the large number of parameter updates required.258

We argue that fine-tuning only the memory module can achieve results comparable to those of259

fine-tuning the entire parameter space. LLMs benefit from being trained on large-scale datasets,260

which expose the model to a diverse range of linguistic patterns and semantic relationships, such as261

models like (Devlin et al., 2019) or GPT (Radford et al., 2019). This exposure helps the model learn262

robust and generalized representations that can capture different aspects of language understanding263

and generation. After pre-training, the model can be fine-tuned on specific downstream tasks with264

task-specific labeled data. In our case, this task-specific knowledge is stored in the memory module.265

Thus, fine-tuning the memory module helps the model update its memory module to adapt to the new266

task.267

We apply the low-rank adaptation approach (LoRA, Hu et al., 2022) to fine-tune the memory module.268

Specifically, we modify the forward pass by adding low-rank matrices to W q, W k, W v, Ŵ q,269

and Ŵ k. Let’s take W q as an example. Assuming the original output for query information270

is Q = MW q, we adapt this query value to a new task as Q0 = M(W q + BqAq), where271

W q 2 Rn⇥d, B 2 Rn⇥m, and A 2 Rm⇥d, and m is the size of the memory module. Since the rank272

m ⌧ min(n, d), fine-tuning the parameters Bq and Aq reduces the number of trainable parameters273

for downstream tasks. We perform supervised training by computing the loss between the model’s274

output and the labels in the fine-tuning dataset. During this process, only Bq and Aq are updated.275

The detailed fine-tuning procedure can be seen in Appendix A.3 Algorithm 2.276

6

Under review as a conference paper at ICLR 2024

5 EVALUATION277

We design our experiments to answer the following questions: Q1: Does DT-Mem improve model278

generalization? Q2: Does DT-Mem improve pre-training results and training efficiency? Q3: Does279

DT-Mem scales with model size? Q4: Does fine-tuning only the memory module improve model280

adaptability?281

Recall that we use generalization to refer to performance on tasks the model has never trained on282

(zero-shot), and adaptability to refer to performance after fine-tuning.283

5.1 ENVIRONMENTS AND MODELS SETUP284

Atari Games To ensure a fair comparison with the Multi-Game Decision Transformer, we used285

the same Atari dataset, which comprises multiple training runs of DQN trajectories. Due to limited286

compute resources and to prevent cherry-picking, we select 17 games from the available 41 based on287

their alphabetical order, as introduced in Lee et al. (2022). For each game, the data contains 50 policy288

checkpoints, each containing 500k environment steps. For the fine-tuning dataset, we randomly289

selected 10% of the data from the unseen dataset, which yielded 50k environment steps. Following290

the settings from Lee et al. (2022), we choose five games (Alien, Ms. Pac-Man, Pong, Space Invaders,291

and Star Gunner) to be used only for fine-tuning. Moreover, Brandfonbrener et al. (2022) suggests292

that return-conditioned supervised learning (RCSL) algorithms require strong dataset coverage to293

select a near-optimal policy. Therefore, our dataset contains both expert and non-expert behaviors.294

Meta-World To make a fair comparison with Hyper-DT and Prompt-DT, we evaluate the proposed295

method on the Meta-World environment (Yu et al., 2019). We evaluate using the Meta-World ML45296

benchmark, which includes 45 training tasks and 5 testing tasks. Following the approach taken in Xu297

et al. (2023), for each training task, we generat an offline dataset containing 1000 episodes for each298

game, using a rule-based script policy. For fine-tuning data, we randomly pick 10k episodes from the299

testing dataset, as compared to 20k-80k episodes used in Hyper-DT.300

DT-Mem settings We report results for DT-Mem 20M (20 million parameters), which consists301

of 13M transformer parameters and 7M memory module parameters. We specify the architecture302

completely in Appendix A.1.303

Training and Fine-tuning For all games, we use eight V100 GPUs for model training and one V100304

GPU for fine-tuning. We train on both Atari games and Meta-World for 10M steps. For fine-tuning305

on unseen scenarios, we train for 100k steps.306

5.2 BASELINE METHODS307

We compare DT-Mem’s performance against the following baselines. MDT Multi-game Decision308

Transformer (Lee et al., 2022), which trains a large transformer-based model on multi-game domains.309

For a fair comparison, we train an MDT with 20M parameters, which is approximately the same310

size of DT-Mem. RMDT Recurrent Memory Decision Transformer (Bessonov et al., 2023), which311

utilizes a recurrent memory mechanism for solving reinforcement learning problems. This is the312

most related memory-based DT that is close to our work. HDT Hyper-Decision Transformer (Xu313

et al., 2023), which utilizes a hyper-network module to help DT adapt rapidly to unseen tasks. Since314

we do not have access to the implementation at the time of writing, for the sake of correctness, we315

compare our model with HDT on Meta-World only. The results reported in our evaluation section316

come from the HDT paper. PDT The Prompt Decision Transformer (Xu et al., 2022) generates317

actions by considering both recent context and pre-collected demonstrations from the target task.318

5.3 DT-MEM IMPROVES MODEL GENERALIZATION.319

We evaluate five held-out games fine-tuning results as listed in Table 1. Each evaluation signifies an320

average derived from 16 runs, each under differing random seeds. The derived results show that the321

memory-incorporated method, RMDT and DT-Mem, enhances model generalization when compared322

to their ablation method MDT. A noteworthy observation is that DT-Memdemonstrates superior323

generalization performance than RMDT in four out of the five games. Neither of the methods achieves324

a good result in "Pong". We further discuss whether fine-tuning helps to improve the performance in325

Section 5.5.326

7

Under review as a conference paper at ICLR 2024

Alien MsPacman Pong SpaceInvaders StarGunner

MDT 3.8%
(±0.4%)

13.2%
(±1.3%)

0%
(±0%)

8.6%
(±1.6%)

2.3%
(±0.1%)

RMDT 22.3%
(±10.7%)

22.9%
(±8.9%)

0%
(±0%)

17.6%
(±9.2%)

27.7%
(±11.5%)

DT-Mem 51.0%
(±32.2%)

69.3%
(±19.3%)

0%
(±0%)

53.6%
(±29.0%)

62.2%
(±19.1%)

Table 1: Evaluation results on 5 held-out games after pre-training on other Atari Games. Each value
represents the DQN-normalized score, computed with a 95% confidence interval.

5.4 DT-MEM ENABLES MORE COMPUTATIONALLY EFFICIENT TRAINING AND SCALE WITH327

MODEL PARAMETERS.328

To demonstrate training efficiency, we illustrate the model training time in Table 4 and the training329

curve in Appendix B.2 Figure 7. During training, we find that DT-Mem reduces the training time by330

approximately 4 times, 8 times, and 32 times compared to MDT-13M, MDT-40M, and MDT-200M,331

respectively. For the training curve, it is reasonable to report the prediction loss on the training dataset332

since we use a supervised loss. Here, the prediction accuracy consists of three parts: action prediction333

accuracy, reward prediction accuracy, and return prediction accuracy.334

71%

123%
143%

56%

93%

126%

0%
20%
40%
60%
80%

100%
120%
140%
160%

10M 12M 20M 40M 50M 200MHu
m

an
-N

or
m

al
ize

d
IQ

M
 S

co
re

Number of Model Parameters

DT-Mem DT

Figure 3: Scaling of IQM scores

Model Training time (hours)
DT-Mem 50

MDT-13M 200
MDT-40M 400
MDT-200M 1600

Figure 4: Model training time

Figure 3 showcases the scaling laws of the proposed DT-Mem model. We measure performance335

using the human-normalized IQM score. It’s crucial to note that for all instances of DT-Mem, we336

maintained a consistent number of memory slots. From the result, it’s evident that the performance of337

DT-Mem scales with the number of parameters. Notably, the generalization of DT-Mem with 20M338

parameters is approximately on par with the 200M parameter version of MDT. Furthermore, the 50M339

DT-Mem surpasses MDT by a margin of 16.7%.340

5.5 FINE-TUNING ONLY THE MEMORY MODULE IMPROVES MODEL ADAPTABILITY.341

0
1
2
3
4
5
6
7
8

Ka
ng
aro
o

Ku
ng
Fu
Ma
ste
r

Qb
ert

Ro
bo
tan
k

Se
aq
ue
st

Riv
err
aid

Ro
ad
Ru
nn
er

Na
me
Th
isG
am
e

Ph
oe
nixDQ

N-
no

rm
al

ize
d

Sc
or

e

RMDT DT-Mem MDT

Figure 5: Fine-tuning performance on 10% of dataset in unseen Atari games. For better visualization,
the y-axis is the logarithm of DQN-normalized score.
Another question we care about is how the pre-trained DT-Mem performs on unseen tasks. We342

randomly selected nine unseen Atari games and evaluated their performance through relative im-343

8

Under review as a conference paper at ICLR 2024

provement scores, as shown in Figure 5. DT-Mem consistently outperforms RMDT and MDT in344

most of the games listed, with the exception of Seaquest, where MDT excels. MDT exhibits the least345

superior performance across most games, with its performance particularly lagging in KungFuMaster,346

Robotank, and Phoenix. RMDT holds an intermediate performance level between DT-Mem and MDT347

across most games. The consistent superior performance of DT-Mem across most games suggests348

that this method might have a more adaptable approach. The singular superior performance of MDT349

in Seaquest prompts a further investigation into the unique attributes of this game that may favor the350

MDT method.351

To further understand the adaptability of the proposed method, we compare DT-Mem with HDT352

and PDT in meta-world environments. The quantitative fine-tuning results are shown in Table 2.353

Overall, DT-Mem achieves the best performance in the comparison. As we can see, compared to354

HDT, DT-Mem increases training, testing (no-FT), and testing (FT) scores by an average of 3%, 8%,355

and 3%, respectively. Moreover, the HDT adaptation module (hyper-network module), while small356

(69K) relative to the full model (13M), relies on the pre-trained hyper-network, which contains 2.3M357

parameters. We argue that the hyper-net is more burdensome than our design: it uses more than 10x358

the number of adaptation parameters (147K) used by DT-Mem and requires an extra compute phase359

to pre-train the hyper-network module.360

Model Sizes Meta-World ML45 Performances
Adaptation Percentage Train Test (no-FT) Test (FT)

HDT 69K 0.5% 0.89± 0.00 0.12± 0.01 0.92± 0.10
PDT 6K 0.05% 0.88± 0.00 0.06± 0.05 0.09± 0.01

DT-Mem 147K 0.7% 0.92± 0.00 0.20± 0.01 0.95± 0.10

Table 2: Evaluation results on Meta-World ML45 benchmarks

5.6 DT-MEM IMPROVES TRAINING PERFORMANCE.361

-10
-8
-6
-4
-2
0
2
4
6
8

10
12

Am
ida
r

As
sau
lt

Ba
nk
He
ist

Ba
ttle
Zo
ne

Be
am
Rid
er

Bre
ako

ut

Ce
nti
pe
de

Ch
op
pe
rCo
mm

an
d

Cra
zyC
lim
be
r

De
mo
nA
tta
ck

Do
ub
leD
un
k

Fis
hin
gD
erb
y

Fre
ew
ay

Fro
stb
ite

Go
ph
er

Gr
avi
tar

Ice
Ho
cke
y

Im
pr

ov
m

en
t o

ve
r b

se
t s

co
re

 in
 d

at
as

et

RMDT DT-Mem MDT

Figure 6: The percent improvement for training dataset.

In this section, we evaluate whether adding the memory module helps improve the pre-362

training performance. Thus, we choose relative improvement: rel-imp(%) = (model score �363

best score in data/best score in data ⇥ 100 to measure the model performance. For better visual-364

ization, we take the logarithm of the rel-imp(%). As shown in Figure 6, the proposed DT-Memout365

performs MDT in 13 out of 17 games. DT-Mem outperforms RMDT in 15 out of 17 games. These366

results demonstrates that memory module improves the policy training performance.367

6 CONCLUSION368

LLM-based RL algorithms have shown generalization across multiple tasks and games. We argue369

that this ability comes from implicit memory that fits a large number of parameters to the training370

data, which is inefficient in terms of model size. In contrast, we propose a new approach inspired by371

the concept of “working memory” called Decision Transformers with Memory (DT-Mem), which372

stores training experience explicitly in a content-addressable matrix module for later retrieval and373

use. The evaluation demonstrates that DT-Mem achieves better generalization on Atari games with374

only 10% of the model parameters compared to the state-of-the-art method. We also show that375

DT-Mem outperform other memory-based DT methods in terms of generalization and adaptability.376

Furthermore, we demonstrate that fine-tuning DT-Mem with a small amount of data can produce377

state-of-the-art results on both Atari games and the Meta-World environment, when compared to378

MDT, RMDT, PDT, and HDT.379

9

Under review as a conference paper at ICLR 2024

REFERENCES380

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast381

weights to attend to the recent past. Advances in neural information processing systems, 29, 2016.382

Alan Baddeley. Working memory: looking back and looking forward. Nature reviews neuroscience,383

4(10):829–839, 2003.384

Arkadii Bessonov, Alexey Staroverov, Huzhenyu Zhang, Alexey K Kovalev, Dmitry Yudin, and385

Aleksandr I Panov. Recurrent memory decision transformer. arXiv preprint arXiv:2306.09459,386

2023.387

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-388

lican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego389

de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Loren390

Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol391

Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. Improv-392

ing language models by retrieving from trillions of tokens. In ICML, volume 162 of Proceedings393

of Machine Learning Research, pages 2206–2240. PMLR, 2022.394

David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna. When395

does return-conditioned supervised learning work for offline reinforcement learning? In NeurIPS,396

2022.397

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,398

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel399

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,400

Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott401

Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya402

Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165,403

2020.404

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,405

Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence406

modeling. In NeurIPS, pages 15084–15097, 2021.407

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoff-408

mann, Bogdan Damoc, Blake A. Hechtman, Trevor Cai, Sebastian Borgeaud, George van den409

Driessche, Eliza Rutherford, Tom Hennigan, Matthew J. Johnson, Albin Cassirer, Chris Jones,410

Elena Buchatskaya, David Budden, Laurent Sifre, Simon Osindero, Oriol Vinyals, Marc’Aurelio411

Ranzato, Jack W. Rae, Erich Elsen, Koray Kavukcuoglu, and Karen Simonyan. Unified scaling412

laws for routed language models. In ICML, volume 162 of Proceedings of Machine Learning413

Research, pages 4057–4086. PMLR, 2022.414

Nelson Cowan. What are the differences between long-term, short-term, and working memory?415

Progress in brain research, 169:323–338, 2008.416

Róbert Csordás and Juergen Schmidhuber. Improving differentiable neural computers through417

memory masking, de-allocation, and link distribution sharpness control. arXiv preprint418

arXiv:1904.10278, 2019.419

Sreerupa Das, C Lee Giles, and Guo-Zheng Sun. Learning context-free grammars: Capabilities and420

limitations of a recurrent neural network with an external stack memory. In Proceedings of The421

Fourteenth Annual Conference of Cognitive Science Society. Indiana University, volume 14, 1992.422

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep423

bidirectional transformers for language understanding. In NAACL-HLT (1), pages 4171–4186.424

Association for Computational Linguistics, 2019.425

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas426

Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,427

and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.428

In ICLR. OpenReview.net, 2021.429

10

Under review as a conference paper at ICLR 2024

S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Koray430

Kavukcuoglu, and Geoffrey E. Hinton. Attend, infer, repeat: Fast scene understanding with431

generative models. In NIPS, pages 3225–3233, 2016.432

Patricia S Goldman-Rakic. Cellular basis of working memory. Neuron, 14(3):477–485, 1995.433

Anirudh Goyal, Aniket Rajiv Didolkar, Alex Lamb, Kartikeya Badola, Nan Rosemary Ke, Nasim434

Rahaman, Jonathan Binas, Charles Blundell, Michael Curtis Mozer, and Yoshua Bengio. Coor-435

dination among neural modules through a shared global workspace. In ICLR. OpenReview.net,436

2022.437

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint438

arXiv:1410.5401, 2014.439

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):440

1735–1780, 1997.441

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,442

and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR. OpenReview.net,443

2022.444

Peter C. Humphreys, Arthur Guez, Olivier Tieleman, Laurent Sifre, Theophane Weber, and Timothy P.445

Lillicrap. Large-scale retrieval for reinforcement learning. In NeurIPS, 2022.446

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence447

modeling problem. In Advances in Neural Information Processing Systems, 2021.448

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott449

Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.450

arXiv preprint arXiv:2001.08361, 2020.451

Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Sergio Guadarrama, Ian452

Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, and Igor Mordatch. Multi-game decision453

transformers. In NeurIPS, 2022.454

Pedro Henrique Martins, Zita Marinho, and André FT Martins. infty-former: Infinite memory455

transformer. arXiv preprint arXiv:2109.00301, 2021.456

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In International conference on machine457

learning, pages 2554–2563. PMLR, 2017.458

Tsendsuren Munkhdalai, Alessandro Sordoni, Tong Wang, and Adam Trischler. Metalearned neural459

memory. Advances in Neural Information Processing Systems, 32, 2019.460

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. The role461

of over-parametrization in generalization of neural networks. In ICLR (Poster). OpenReview.net,462

2019.463

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.464

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language465

models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.466

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler,467

Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. Hopfield networks468

is all you need. arXiv preprint arXiv:2008.02217, 2020.469

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-470

learning with memory-augmented neural networks. In International conference on machine471

learning, pages 1842–1850. PMLR, 2016.472

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent473

networks. Neural Computation, 4(1):131–139, 1992.474

11

Under review as a conference paper at ICLR 2024

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. Advances in475

neural information processing systems, 28, 2015.476

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée477

Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand478

Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language479

models. CoRR, abs/2302.13971, 2023.480

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz481

Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pages 5998–6008, 2017.482

Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F. Grewe. Continual483

learning with hypernetworks. In ICLR. OpenReview.net, 2020.484

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei.485

Augmenting language models with long-term memory. arXiv preprint arXiv:2306.07174, 2023.486

Chao-Yuan Wu, Yanghao Li, Karttikeya Mangalam, Haoqi Fan, Bo Xiong, Jitendra Malik, and487

Christoph Feichtenhofer. Memvit: Memory-augmented multiscale vision transformer for efficient488

long-term video recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision489

and Pattern Recognition, pages 13587–13597, 2022a.490

Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing transformers.491

arXiv preprint arXiv:2203.08913, 2022b.492

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua B. Tenenbaum, and Chuang493

Gan. Prompting decision transformer for few-shot policy generalization. In ICML, volume 162 of494

Proceedings of Machine Learning Research, pages 24631–24645. PMLR, 2022.495

Mengdi Xu, Yuchen Lu, Yikang Shen, Shun Zhang, Ding Zhao, and Chuang Gan. Hyper-decision496

transformer for efficient online policy adaptation. CoRR, abs/2304.08487, 2023.497

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey498

Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.499

In Conference on Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.500

10897.501

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In ICML, volume 162502

of Proceedings of Machine Learning Research, pages 27042–27059. PMLR, 2022.503

12

https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897

	Introduction
	Related work
	Preliminaries
	Offline Reinforcement Learning
	Low-rank Adaptation

	Methodology
	Overview of DT-Mem
	Memory Module
	Pre-training DT-Mem
	Fine-tuning DT-Mem with LoRA

	Evaluation
	Environments and Models Setup
	Baseline Methods
	DT-Mem improves model generalization.
	DT-Mem enables more computationally efficient training and scale with model parameters.
	Fine-tuning only the memory module improves model adaptability.
	DT-Mem improves training performance.

	Conclusion
	Implementation Details
	DT-Mem network architecture
	Hyper-parameters
	Training and fine-tuning algorithm

	Additional Experiments
	Evaluation Parameters
	Training Efficiencies
	The analysis of memory size
	Ablation study of LoRA adaptor
	LoRA hyper-parameters tuning
	Ablation studies on different input sequence organizing choices
	Ablation studies with DT
	Full Fine-tuning vs. LoRA
	Analyze of input misleading

	Memory Module Visualization
	Limitations and Societal Impact
	Comparison of DT-Mem and Neural Episodic Control (NEC) in Writing and Reading Memory

