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Abstract

Distractor generation is a critical task in objec-
tive types of assessments, including fill-in-the-
blank and multiple-choice questions. Recent
advances in pre-trained transformer-based mod-
els have shown success in generating distrac-
tors. Prior research efforts focus on fine-tuning
pre-trained encoder-decoder models with data
augmentation strategies to improve this task,
but these models often fail to capture the full se-
mantic representation of a given query-answer
and related distractors. Data augmentation
methods often rely on expanding the quantity of
proposed distractors, which can introduce noise
into the models without necessarily enhancing
its understanding of the deeper semantic rela-
tionships between distractors. This paper in-
troduces a novel distractor generation model
based on contrastive learning to capture seman-
tic details from the query-answer and distractor
sequence encodings. The contrastive learning
method trains the model to recognize essen-
tial semantic features, necessary to generate
in-context distractors. The extensive experi-
ments on two public datasets indicate that con-
trastive learning is essential in encoder-decoder
models. It significantly outperforms baseline
models and advances the NDCG@3 score from
24.68 to 32.33 in the MCQ dataset and 26.66
to 36.68 in the SciQ dataset.

1 Introduction

In assessments, objective questions (Das et al.,
2021) such as multiple-choice and fill-in-the-blank
questions are widely used in education because
they contribute to fair assessment across various
domains and subjects (Ch and Saha, 2018; Kurdi
et al., 2020). These questions require an examinee
to select one correct answer from a set of wrong
options. Notably, the quality of these questions
relies on the quality of selecting false plausible op-
tions, known as distractors. Distractor generation
(Dong et al., 2022; Alhazmi et al., 2024) refers to
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Figure 1: Distractor generation methods via PLMs.
CSG-DS refers to the candidate generation and selec-
tion framework. Text2Text represents the sequence-to-
sequence generation task by encoder-decoder models.

the automated process of generating plausible yet
incorrect options in objective types of questions.

For decades, research communities have shown
interest in generating distractors using several
approaches, ranging from feature-based learning
(Liang et al., 2018) to deep neural networks (Mau-
rya and Desarkar, 2020). Also, recent advance-
ments in artificial intelligence, particularly in pre-
trained language models (PLMs), have significantly
enhanced the task of distractor generation through
fine-tuning (Bitew et al., 2022; Wang et al., 2023;
Yu et al., 2024) and prompting (Feng et al., 2024;
Maity et al., 2024; Doughty et al., 2024) methods.

Two primary approaches have been proposed for
distractor generation by using PLMs as showed in
Figure 1. First, candidate generation and selection
framework (Chiang et al., 2022) uses fine-tuning or
prompting methods to generate a candidate set of
distractors, then selects the top distractors based on
embedding models or feature-based rules. Second,
Text2Text architecture (Wang et al., 2023) utilizes
encoder-decoder models to generate distractors as
a sequence-to-sequence (Seq2Seq) task.

While pre-trained encoder-decoder models have
shown success in distractor generation, aligning
these models specifically with distractor generation



as a Seq2Seq task remains challenging. Recent
state-of-the-art approaches incorporate augmenta-
tion techniques on distractor candidates (Wang
et al., 2023) and adopt retrieval augmented pre-
training method (Yu et al., 2024) to enhance the
knowledge of pre-trained encoder-decoder mod-
els. These models are primarily designed to re-
store and denoise entire text sequences during pre-
training, rather than capturing fine-grained seman-
tic distinctions required for distractor generation
models. Therefore, we propose to integrate a con-
trastive learning approach inspired by computer vi-
sion and text generation works (Li et al., 2020; Rad-
ford et al., 2021; Zhang et al., 2022a; Dong et al.,
2023; Zhuang et al., 2024) to enhance the seman-
tic learning in these pre-trained encoder-decoder
models for the distractor generation task.

Initially, the encoding and decoding of the target
input and output can be regarded as two represen-
tational views with respect to the same semantics.
The encoded representation of the question-answer
as an input and the sequence of distractors as an
output is considered a positive pair. Then, the
model utilizes these two representations in con-
trastive learning with other selected negative pairs
in the mini-batch to capture fine-grained semantics.

Since contrastive learning has not yet been con-
ducted in the distractor generation, we explore
two contrastive objectives, including InfoNCE and
Triplet loss, which both enhanced the performance
of distractor generation. InfoNCE utilizes multiple
negative examples, while Triplet loss relies on a sin-
gle negative example. When a contrastive objective
integrated with generation loss in encoder-decoder
models, a contrastive objective effectively trains
the model to bring semantically similar pairs (pos-
itives) closer together in the feature space while
push dissimilar pairs (negatives) further apart. This
training teaches the model to capture semantic fea-
tures and generate contextually relevant distractors.

Our experimental results, derived from both
automatic and human evaluations on two public
datasets, demonstrate that this method success-
fully aligns the distractor generation task with pre-
trained encoder-decoder models without relying
on augmentation or external data sources. The
main contributions of this work can be summarized
as follows: (i) introducing a contrastive learning-
based approach to enhance distractor generation,
marking its first application in pre-trained encoder-
decoder models specifically tailored for distractor
generation tasks, (ii) validating the effectiveness of

our approach by benchmarking it against the state-
of-the-art models on two public datasets, using
both automatic and manual evaluation metrics, and
(iii) conducting extensive analysis to thoroughly
examine our approach in encoder-decoder models.

This paper is organized as follows. Sec. 2 re-
views the related works on distractor generation
and contrastive learning. Sec. 3 presents the details
of the proposed methodology. Sec. 4 reports the ex-
perimental details along with performance analysis,
and Sec. 5 offers some concluding remarks.

2 Related Work

2.1 Distractor Generation

Distractor generation (DG) tasks are typically di-
vided into two primary formats: multiple-choice
questions (MCQs) and fill-in-the-blank (FITB).
These formats are applied across various contexts,
ranging from textual (Xie et al., 2018) to multi-
modal (Yagcioglu et al., 2018) aspects. These
tasks are explored across various domains, includ-
ing question answering (Liang et al., 2017, 2018),
reading comprehension (Gao et al., 2019; Xie et al.,
2021; Qu et al., 2024), and multi-modal question
answering (Zhu et al., 2016; Ding et al., 2024).
Over the years, the field of DG has progressed
significantly in methodologies, transitioning from
conventional techniques to cutting-edge artificial
intelligence approaches. Initially, conventional
methods include the use of corpus features (Chen
et al., 2006), phonetic and morphological features
(Pino and Eskenazi, 2009), knowledge-based struc-
tures (Mitkov et al., 2003, 2009), and word embed-
ding models (Kumar et al., 2015; Guo et al., 2016;
Yoshimi et al., 2023), e.g., word2vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014), and
fastText (Bojanowski et al., 2017), to select dis-
tractors that are semantically similar to the answer
based on cosine similarity of word vectors.
Recently, transformer-based PLMs have revo-
lutionized DG tasks. The two main approaches
proposed for generating distractors in text-based
contexts include the candidate generation and se-
lection framework, and the Text2Text architecture.
Ren and Zhu (2021) proposed using knowledge-
based structures such as Probase (Wu et al., 2012)
and WordNet (Miller, 1995) to retrieve a small
set of distractor candidates, followed by a feature-
rich learning-to-rank model to identify the top dis-
tractors. Chiang et al. (2022) utilized PLMs to
generate the candidate sets instead of knowledge-



based structure approaches, which showed sig-
nificant improvement. Additionally, Taslimipoor
et al. (2024) proposed using a pre-trained encoder-
decoder model for generating both correct and in-
correct answer options, and then discriminate be-
tween options with a classifier. The generated op-
tions are then clustered to remove duplicates.
Wang et al. (2023) treated distractor generation
as a Text2Text problem through fine-tuning pre-
trained encoder-decoder models. To improve the
DG performance, data augmentation was proposed
to reduce repeated generation. Yu et al. (2024)
applied retrieval-augmented pre-training and used
knowledge graph triplet as data augmentation. Al-
though Text2Text DG models have been improved
with the previous approaches, the key to improve
DG models is to address the lack of fine-grained
semantic learning. Thus, we propose to exploit con-
trastive learning methods to Text2Text DG models.

2.2 Contrastive Learning

Contrastive learning (CL) is a machine learning
technique that trains models to distinguish be-
tween semantically similar and dissimilar data pairs
(Chopra et al., 2005; Hadsell et al., 2006). The goal
is to bring semantically related instances closer in
the feature space, while pushing apart unrelated
instances. It has shown success in various domains,
starting with applications in computer vision.

Initially, Schroff et al. (2015) proposed the
FaceNet system that trains face recognition and
clustering based on triplet loss learning, while Sohn
(2016) proposed multi-class N-pair loss for a va-
riety of tasks on several visual recognition bench-
marks. Chen et al. (2020) introduced the SImCLR
framework using data augmentation to generate
diverse views of the same image. This approach
used a CL objective to ensure that representations
from the same source image are similar, while those
from different source images remain distinct. Rad-
ford et al. (2021) utilized CL to pre-train a vision-
language model to align representations between
images and their textual descriptions.

Recently, the CL has been widely used in en-
hancing semantic information for NLP tasks. Many
works applied CL to learn better sentence embed-
dings (Gao et al., 2021; Giorgi et al., 2021; Kim
et al., 2021; Wu et al., 2022; Zhang et al., 2022b;
Xu et al., 2023). Beyond embeddings, Karpukhin
et al. (2020) applied CL to develop an innova-
tive dense passage retrieval strategy for question-
passage pairs, substantially advancing the field

of open-domain question answering (Zaib et al.,
2024). Qin et al. (2021) explored CL to obtain a
deeper understanding of the entities and their rela-
tions in texts, and Chen et al. (2022) utilized CL to
tackle both discriminative representation and over-
fitting problems in the few-shot text classification.

In text generation (An et al., 2022), CL is rec-
ognized for addressing the degeneration problem,
including issues like undesirable generated con-
tent and repetitions (Su et al., 2022). Although
it has been applied in machine translation (Pan
et al., 2021), definition generation (Zhang et al.,
2022a), closed-book question generation (Dong
et al., 2023), and summarization (Zhuang et al.,
2022, 2024), it is not yet applied to DG in pre-
trained encoder-decoder models.

3 Methodology

This section outlines the details of our approach.
Sec. 3.1 defines the task formulation and relevant
terms for DG. Sec. 3.2 and Sec. 3.3 detail the train-
ing of Text2Text DG and the implementation of
contrastive learning in pre-trained encoder-decoder
models, respectively. Sec. 3.4 presents a two-stage
training to incorporate contrastive learning with
generation tasks.

3.1 Task Formulation

Given a query Q ={q1, . . ., ¢, } and its correspond-
ing answer A = {a1,...,an}, the task of DG in-
volves generating a set sequence of distractors D
= {{dl,la ey dl,j}? ey {dN,lv Ce 7dN,j}}a where
N > 0 represents the number of distractors. The
generation process is formally defined as:

N
P(D|Q,A) =]]rd|d<,Q,A) (D)

t=1
where d; represents the sequence of letters in the
t-th distractor, d~; denotes the sequences of all
distractors generated before d;. Q and A denote
the query and answer representations, respectively.

3.2 Text2Text Generation

For each training instance (Q, A, D), the objec-
tive is to fine-tune a generative model, which is
conditioned on the given query () and the answer
A, aiming to minimize the negative log-likelihood
for each correct token ¢; in the sequence D, based
on its preceding tokens and the given conditions,
where the generation loss function is defined as:

|D|
»Cg = - th Ing(tAZ ‘ £<i7Q>A79) (2)

=1
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Figure 2: The training pipeline describes the integration of contrastive learning in the Text2Text distractor generation.
Solid arrows represent the data flow of generation loss, and dashed arrows indicate the data flow of contrastive
learning. Our approach outlines two-stage training. The first stage trains the model as generation task, including

only cross-entropy loss. The second stage trains the model
learning losses.

As depicted in Figure 2, the input consists of the
query () and the answer A, with the prefix “Ques-
tion: ” before the given query and “Answer: ” be-
fore the given answer. The generated output is a
sequence of distractors, expressed as di @ da @ ds.

3.3 Contrastive Learning

Contrastive learning (CL) aims to optimize seman-
tic representations by pulling positive pairs closer
in feature space while pushing negative pairs fur-
ther apart. In DG models, this requires an under-
standing of the semantics of a question, answer
and their relationships with related ground-truth
distractors. The encoder takes an input sequence
of source words z = (1, x2,...,x,), which in-
cludes the given question and answer as illustrated
in Figure 2. The encoder then maps x to a sequence
of continuous representations z = (z1, 22, . . . , 2n).
Subsequently, the decoder utilizes z to generate
a sequence of target words, which are the sequence
of distractors y = (y1, Y2, - - ., Ym) at a time. The
question-answer encoding should be semantically
similar to its ground-truth distractors and dissimilar
to incorrect distractors. The objective is to develop
a similarity function that minimizes the distance
between the question-answer sequence and the rep-
resentations of its correct distractors, enhancing the
model to generate relevant in-context distractors.

with both cross-entropy loss and one of the contrastive

First, we implement the InfoNCE contrastive
loss in the representation space to enhance model
training. For a positive pair S = {(z4,vi)}-,
where x; and y; represent semantically related in-
puts, we treat the remaining (n — 1) examples
within a mini-batch as negative examples. The
training loss objective for each pair (z;, ;) is:

ed(zl‘i 7zyi )/T

L.=—log (3)

n

)T
J:

2

where 2, and z,, are the representations of inputs
x; and y;, respectively, d(z;, zj) denotes the cosine
similarity, and 7 is a temperature parameter.
Zj
12 1]
Second, we implement the Triplet contrastive
loss in the representation space. For each positive
pair S = {(x;, y;)}}—,, where x; and y; are seman-
tically related inputs, we randomly select a negative
example n; from the mini-batch, ensuring j # 1.
The training loss objective for the (z;, y;, n;) is:

Ly = max(d(zz,,zy,) — d(24,,2n;) +m,0) (5)

where z,,, z,,, and z,,, represent the semantic em-
beddings of the anchor, positive, and negative ex-
amples, respectively. Here, z,, and z,, are seman-
tically similar, whereas z,; is semantically dissim-
ilar. The margin m ensures a minimum distance

d(Zi? Zj) = 4



between the anchor-positive pairs and the anchor-
negative pairs. The distance function d can be ei-
ther implemented with cosine similarity in Eq 4 or
euclidean distance in Eq 6.

d

> (lk] —zk])?  (©)

k=1

d(Zi, Zj) =

3.4 Overall Two-Stage Training

The training approach combines both generation
loss with a newly implemented contrastive objec-
tive loss. As illustrated in Figure 2, the model
is fine-tuned using solely the generation loss (i.e.,
Text2Text generation) as the first stage. In the sub-
sequent stage, contrastive learning loss is intro-
duced and trained with the conventional generation
loss, optimizing the model with a mixed loss func-
tion £ ginal:

Lpinal = >\g * Eg + A *x Ly (N

As described in Sec. 3.3, the contrastive learning
objective L. can be implemented as either the In-
foNCE loss L. or the Triplet loss £;. Here, A\, and
Ac serves as a hyper-parameter to balance the gen-
erative and contrastive types of losses, respectively.
The two-stage training strategy is designed to en-
able the model to learn semantic information from
given question-answer and distractors, thereby im-
proving the model’s ability to capture semantic fea-
tures to align DG with the encoder-decoder models.

4 [Experiments

4.1 Datasets

We conduct the experiments on the SciQ (Welbl
et al.,, 2017) and MCQ (Ren and Zhu, 2021)
datasets as the statistics outlined in Table 1.

SciQ dataset, collected by crowd workers, consists
of multiple-choice questions, each with one correct
answer and three incorrect distractors. These ques-
tions are open-ended and span various domains,
including physics, chemistry, biology, and other
natural sciences. This dataset contains word-level
options, with the average token count for options
at 1.6 and 14.5 for the question. We remove unnec-
essary articles in the answers or distractors.

MCQ or Dgen dataset, collected from several
datasets and websites, includes fill-in-the-blank
sentences, each with a ‘“**blank**’, one correct an-
swer, and three distractors. We replace “**blank**’
with [M ASK] token. These cloze sentences are

Datasets | Train | Valid | Test All
SciQ 11,700 | 1,000 | 1,000 | 13,700
MCQ 1,856 465 259 | 2,580

Table 1: Statistics of the datasets.

also open-ended and span the fields of science, vo-
cabulary, commonsense, and trivia. This dataset
contains word-level options, with the average token
count for options at 1 and 19.5 for the cloze stem.
It is available on GitHub link! and comprises train-
ing and testing data with 2,321 and 259 instances,
respectively. We allocate 80% of the training data
for training and the remaining 20% for validation.

4.2 Baselines Models

We conduct comparative experiments with the fol-
lowing baseline models and recent approaches:

T5-Base (Raffel et al., 2020) and BART-Base
(Lewis et al., 2020) models. We fine-tune pre-train
encoder-decoder models based on the Text2Text
architecture using generation loss only.

T5-Base candidate generation, we fine-tune the
TS5 model using a candidate generation and selec-
tion framework. We utilize two approaches for
selection: beam search (Gao et al., 2019) and clus-
tering (Taslimipoor et al., 2024). Beam search is
utilized to select the top three predicted distractors
from a set of ten. For clustering, we utilize ag-
glomerative clustering” with Euclidean distance to
measure the similarity between clusters, setting a
threshold of 1.2. The heads of different clusters are
then selected as the final set of distractors.

One-shot and few-shot learning (Bitew et al.,
2023). We utilize a single random example for
one-shot and three random examples for few-shot
to generate three distractors for each query. An
example includes a query and three distractors.

4.3 Evaluation Metrics

For automatic evaluation, we utilize ranking-based
metrics that measure the models ability to retrieve
relevant distractors from the top-k locations as used
on the previous studies (Ren and Zhu, 2021; Yu
et al., 2024). Order-unaware metrics, include F1
score (F1@3), precision (P@1, P@3), and recall
(R@1,R@3). We also include order-aware metrics
such as mean reciprocal rank (MRR @K) and nor-
malized discounted cumulative gain NDCG@K).

1https: //github.com/DRSY/DGen

2https://scikit-learn.org/stable/
modules/generated/sklearn.cluster.
AgglomerativeClustering.html
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Dataset | Method P@1 | R@1 | F1@3 | MRR | NDCG@3
MCQ | BART-base 849 | 2.83 | 10.55 | 14.99 | 20.66
BART-Contrast(Triplet)/Cosine 11.58 | 3.86 | 11.58 | 18.53 | 24.51
BART-Contrast(Triplet)/Euclidean | 15.44 | 5.15 | 13.13 | 22.84 | 29.20
BART-Contrast(InfoNCE) 13.90 | 4.63 | 12.61 | 21.24 | 27.71
T5-base 1429 | 476 | 10.81 | 20.14 | 24.68
T5-Contrast(Triplet)/Cosine 20.46 | 6.82 | 13.38 | 25.61 | 29.51
T5-Contrast(Triplet)/Euclidean 22.01 | 7.34 | 14.16 | 26.96 | 30.46
T5-Contrast(InfoNCE) 22,78 | 7.59 | 15.70 | 28.57 | 32.33
T5-CG(beam) 17.37 | 5.79 | 13.38 | 24.20 | 30.11
T5-CG(clustering) 11.58 | 3.86 | 7.72 16.47 | 20.95
GPT-3(one-shot) 11.19 | 3.73 | 9.13 16.57 | 20.75
GPT-3(few-shot) 13.89 | 4.63 | 11.06 | 20.07 | 25.50
SciQ | BART-base 10.50 | 3.50 | 12.60 | 17.77 | 24.02
BART-Contrast(Triplet)/Cosine 15.50 | 5.17 | 15.27 | 23.67 | 30.45
BART-Contrast(Triplet)/Euclidean | 16.30 | 5.43 | 15.33 | 24.15 | 30.63
BART-Contrast(InfoNCE) 16.00 | 5.33 | 1543 | 24.73 | 32.35
T5-base 1890 | 6.30 | 13.77 | 23.23 | 26.66
T5-Contrast(Triplet)/Cosine 2220 | 7.40 | 16.60 | 28.58 | 33.72
T5-Contrast(Triplet)/Euclidean 24.80 | 8.27 | 17.50 | 30.62 | 35.25
T5-Contrast(InfoNCE) 25.00 | 833 | 17.73 | 31.42 | 36.68
T5-CG(beam) 20.30 | 6.77 | 14.33 | 26.20 | 31.30
T5-CG(clustering) 10.50 | 3.49 | 6.30 14.35 | 17.95
GPT-3(one-shot) 11.00 | 3.66 | 8.69 15.36 | 19.07
GPT-3(few-shot) 12.50 | 4.16 | 9.63 17.08 | 21.01

Table 2: The results of automatic evaluation on the MCQ and SciQ datasets. The best scores are highlighted in bold.

Method Relevance | Difficulty | Fluency
T5-Contrast(InfoNCE) 4.16 3.56 3.98
T5-Contrast(Triplet)/Euclidean 3.88 3.04 3.76
GPT-3(few-shot) 3.80 2.98 3.74
T5-CG(beam) 3.74 2.70 3.44
T5-CG(clustering) 3.06 2.64 3.16
T5-base 2.82 2.30 2.30
Ground-truth 3.44 3.28 3.52

Table 3: Human evaluations in the MCQ dataset.

We utilize human evaluation metrics to assess
the model performance. The metrics include, rele-
vance to assess if the distractors are relevant to the
context of the query, difficulty to evaluate the level
of distraction provided in finding the correct an-
swer, and fluency to determine if the distractors are
not duplicated and semantically different. We ran-
domly select ten examples, which are then assessed
by five human participants, each having more than
two years of academic experience. We use a five-
point quantitative rating system from 1 (strongly
irrelevant) to 5 (strongly relevant).

4.4 Implementation Details

Our models are built using Hugging Face frame-
works (Wolf et al., 2020), including TS and BART
as generative models. We optimize using AdamW,
with initial learning rates of le-4 for T5 and 2e-
4 for BART. We conduct the experiments on two
NVIDIA Tesla P100 GPUs. The T5 model trains

for 10 epochs and the BART model for 20, both
with a batch size of 4. For InfoNCE, the tempera-
ture 7 is set at 1.0, and in the Triplet, the margin m
is set at 0.01. The weights A\, and A, are both set
at 0.5, and Mean pooling is used as the standard
pooling method for embedding dimensions. We
implement the two-stage training and employ the
gpt-3.5-turbo model for prompting>.

4.5 Evaluation Results
4.5.1 Automatic Evaluation Results

Table 2 shows a comparison of automatic evalua-
tion results for various models on both datasets. Im-
plementing a two-stage training approach with ei-
ther InfoNCE or Triplet loss significantly enhanced
the performance of Text2Text architecture in both
BART and T5 compared to baseline models.
T5-Contrast (InfoNCE) shows superior perfor-
mance across all metrics. For the MCQ dataset,
this model achieves a 8.49% increase in P@1 and
a 7.65% rise in NDCG@3 over its baseline T5-
base. Similarly, the SciQ dataset records a 6.10%
increase in P@1 and a 10.02% improvement in
NDCG @3, underscoring the effectiveness of the
InfoNCE loss in aligning the T5 model closely with
ground-truth distractors. In addition, T5-Contrast

3https: //github.com/contrastivelearningDG/
contrastive_learning_in_encoder_decoder_models
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Dataset | Method P@1 | R@1 | F1@3 | MRR | NDCG@3
MCQ | T5-base 1429 | 476 | 10.81 | 20.14 | 24.68
TS5-Contrast(InfoNCE) 2278 | 7.59 | 15.70 | 28.57 | 32.33
T5-Contrast(InfoNCE)/one-stage 21.24 | 7.08 | 14.80 | 26.64 | 30.64
T5-Contrast(InfoNCE)/max 16.99 | 5.66 | 11.71 | 22.46 | 27.09
T5-Contrast(Triplet)/Cosine 20.46 | 6.82 | 13.38 | 25.61 | 29.51
T5-Contrast(Triplet)/Cosine/one-stage 20.08 | 6.69 | 15.06 | 26.00 | 30.60
T5-Contrast(Triplet)/Cosine/max 21.62 | 7.21 15.06 | 26.83 | 30.67
T5-Contrast(Triplet)/Euclidean 22,01 | 7.34 | 14.16 | 26.96 | 30.46
T5-Contrast(Triplet)/Euclidean/one-stage | 20.46 | 6.82 | 12.74 | 25.42 | 29.05
T5-Contrast(Triplet)/Euclidean/max 20.85 | 6.95 | 13.26 | 25.23 | 28.21
SciQ | TS-base 18.90 | 6.30 | 13.77 | 23.23 | 26.66
TS5-Contrast(InfoNCE) 25.00 | 833 | 17.73 | 31.42 | 36.68
T5-Contrast(InfoNCE)/one-stage 2490 | 830 | 17.50 | 31.23 | 36.33
T5-Contrast(InfoNCE)/max 25.40 | 847 | 16.70 | 30.83 | 35.26
T5-Contrast(Triplet)/Cosine 2220 | 7.40 | 16.60 | 28.58 | 33.72
T5-Contrast(Triplet)/Cosine/one-stage 2390 | 797 | 17.33 | 30.58 | 3591
T5-Contrast(Triplet)/Cosine/max 2290 | 7.63 | 17.03 | 29.23 | 34.27
T5-Contrast(Triplet)/Euclidean 24.80 | 827 | 17.50 | 30.62 | 35.25
T5-Contrast(Triplet)/Euclidean/one-stage | 24.80 | 8.27 | 17.33 | 30.33 | 34.62
T5-Contrast(Triplet)/Euclidean/max 24,50 | 8.17 | 17.07 | 30.38 | 35.28

Table 4: Ablation experiments on both MCQ and SciQ datasets using the TS model.

(Triplet), utilizing Euclidean distance, shows the
second-best performance, which may illustrate the
benefits of batch-wide optimization in InfoNCE
that considers multiple negative examples, com-
pared to one negative example in Triplet.
Conversely, while BART-Contrast (InfoNCE)
achieves significant improvements over the BART-
base model, BART-Contrast (Triplet), also utilizing
Euclidean distance, occasionally surpasses the In-
foNCE variant in metrics such as P@1, R@1, and
F1@3 in both datasets. The choice of distance
metric in Triplet loss plays a critical role in per-
formance, with Euclidean distance demonstrating
notably better results compared to the cosine simi-
larity method across both models and datasets. It
is worth noting that applying CL within encoder-
decoder models for the DG task achieves state-of-
the-art results and outperforms other methods (e.g.,
beam search and clustering-based selection).

4.5.2 Human Evaluation Results

Table 3 presents the results of human evaluations
comparing different methods for generating dis-
tractors in the MCQ dataset. Remarkably, T5-
(InfoNCE) scores the highest across all evaluation
metrics: relevance, difficulty, and fluency, demon-
strating the substantial benefits of semantic fine-
grained training in encoder-decoder models. Addi-
tionally, the T5-Triplet/Euclidean distance model
surpasses ground-truth distractors in relevance and
fluency, underscoring the impact of semantic ob-
jective learning in pre-trained models. Compar-
ing T5-base models with contrastive learning mod-

The common term for the

(1) Question [Answer] chemical formula H5O is [water]

Models

T5-Contrast(InfoNCE)
T5-Contrast(Triplet)/Euclidean
GPT-3(few-shot)
T5-CG(beam)
T5-CG(clustering)

T5-base

Ground-Truth

Generated Distractors

[helium, nitrogen, carbon]
[nitrogen, carbon, oxygen]
[carbon dioxide, nitrogen, oxygen]
[carbon, oxygen, gas]

[carbon, air, ions]

[air, light, air]

[hydrogen, air, oxygen]

The only known planet with large

(2) Question [Answer] amounts of water is [earth]

Models

T5-Contrast(InfoNCE)
T5-Contrast(Triplet)/Euclidean
GPT-3(few-shot)
T5-CG(beam)
T5-CG(clustering)

T5-base

Ground-Truth

Generated Distractors
[Mars, Venus, Jupiter]
[earth, moon, planet]
[Venus, Mars, Mercury]
[moon, planet earth]
[planet, ice]

[ice, moon, planet]
[Saturn, Jupiter, Mars]

Table 5: Examples of distractors generated by seven
models from the MCQ dataset.

els confirm the critical role of semantic training
in enhancing DG models. While approaches like
few-shot learning and candidate generation and se-
lection methods can generate in-context relevant
distractors, they often under-perform CL models
due to the lack of semantic fine-grained learning.

4.6 Ablation Study

To assess the impact of each component in our
methodology, we conduct an ablation study and
the results are presented in Table 4. We propose
two types of contrastive objectives, as discussed in
Sec. 3. Triplet loss incorporates cosine similarity
or Euclidean distance. We also utilize a pooling
function and a two-stage training strategy.



Test Dataset | Method (Pre-train Dataset) P@l | R@1 | F1@3 | MRR | NDCG@3
T5-base (SciQ) 25.86 | 8.62 | 22.26 | 33.59 | 39.03

MCQ T5-Contrast(InfoNCE) (SciQ) 63.70 | 21.23 | 55.08 | 74.38 | 81.24
T5-Contrast(Triplet)/Euclidean (SciQ) 66.79 | 22.26 | 48.64 | 74.90 | 79.72
BART-base (SciQ) 15.05 | 5.01 17.76 | 25.22 | 33.79
BART-Contrast(InfoNCE) (SciQ) 86.48 | 28.82 | 85.84 | 90.54 | 93.37
BART-Contrast(Triplet)/Euclidean (SciQ) | 82.62 | 27.54 | 81.33 | 86.87 | 89.85
T5-base (MCQ) 1580 | 5.26 | 10.29 | 19.51 | 22.38

SciQ T5-Contrast(InfoNCE) (MCQ) 34.10 | 11.36 | 27.53 | 38.34 | 41.71
T5-Contrast(Triplet)/Euclidean (MCQ) 29.59 | 9.86 | 22.03 | 33.93 | 37.21
BART-base (MCQ) 7.50 | 249 | 1036 | 13.71 | 1891
BART-Contrast(InfoNCE) (MCQ) 36.30 | 12.09 | 35.36 | 38.53 | 40.42
BART-Contrast(Triplet)/Euclidean (MCQ) | 34.90 | 11.63 | 34.13 | 37.75 | 40.19

Table 6: Cross-domain training on the two datasets. The best scores are highlighted in bold.

Replacing the mean pooling function with max
pooling in the T5-Contrast methods using InfoNCE
and Triplet loss across both datasets shows different
results. In the InfoNCE method, max pooling gen-
erally underperforms compared to mean pooling
across most metrics. With Triplet cosine similarity,
max pooling slightly improves the performance;
but it reduces with Triplet Euclidean distance.

Removing the first stage and directly training the
model with the second stage (contrastive loss and
generation loss) in TS5 generally shows a decline
in performance across all metrics in both datasets,
indicating that the complexity of the two-stage pro-
cess is beneficial for the InfoNCE method. Con-
versely, the one-stage Triplet model with cosine
similarity presents improvements in several metrics,
particularly in the SciQ dataset, while the one-stage
Triplet model with Euclidean distance shows a de-
cline in performance across both datasets. We also
provide analysis on hyper-parameters in App. A.
All ablated variants still outperform T5-Base in all
metrics, indicating the robustness of CL in DG.

4.7 Case Study

Table 5 presents the distractors generated by seven
models. Firstly, it is obvious that the distractors
generated by the T5-base model lack semantic rele-
vance to the question. As demonstrated in example
(1), the distractors (e.g., air, light, air) might seem
plausible in relation to the answer water, and in ex-
ample (2), the distractors (e.g., ice, moon, planet)
might also be contextually plausible to earth. How-
ever, both sets of distractors fail to maintain mean-
ingful semantic connections to the questions, mak-
ing them unsuitable for real-world applications.
Contrastive learning shows semantic fine-
grained in the generated distractors. First, InfoNCE
presents remarkable outputs as showed in both ex-
ample (1) and (2). Secondly, Triplet/Euclidean ob-

jective shows varied success in generated outputs.
The distractors in example (1) (e.g., nitrogen, car-
bon, oxygen) are successfully relevant to the ques-
tion, but the distractors (e.g., earth, moon, planet)
in example (2) are semantically less relevant. This
outlines the benefit of InfoNCE, including several
negative examples compared to Triplet loss, using
only one negative example. We provide additional
cases in Table 13 in App. A.

We further investigate cross-domain training us-
ing CL, leading to notable improvements in the
automatic metrics for both datasets, as detailed in
Table 6. Contrastive learning has enhanced these
metrics even though the training dataset MCQ is
smaller than the testing dataset SciQ. This outlines
the critical role of contrastive learning in distractor
generation models. We present examples of dis-
tractors generated through cross-domain training
in Table 14 in App. A.

5 Conclusion

In this paper, we integrate contrastive learning (CL)
into pre-trained encoder-decoder models for en-
hancing the objective query distractor generation
(DG). We introduce contrastive objectives like In-
foNCE and Triplet losses, integrating each one of
them with the generation task to align semanti-
cally similar question-answer and distractor pairs
closer in feature space while distancing negative
pairs. This training improves the models to capture
semantic features from given pairs to generate in-
context relevant distractors. We demonstrate the
effectiveness of our approach, which are validated
through both automatic and manual evaluations
across two datasets. Our work represents a novel
contribution to the field of DG. It underscores the
significance of CL in improving the automatic re-
sults and the quality of generated distractors with-
out using external data augmentation techniques.



Limitations

We identify the following limitations of contrastive
learning (CL) in Text2Text-based distractor genera-
tion (DG). While contrastive learning has enhanced
the semantic alignment between generated distrac-
tors and human-created ones, Text2Text models
are still vulnerable to producing distractors that are
either too similar to the correct answer, repetitive,
or semantically valid as potential answers. Fur-
thermore, automatic evaluation metrics still rely
on token scores, which only reflect similarity to
the ground truth and do not comprehensively repre-
sent the quality of the generated output. Although
contrastive learning has been effectively applied
in Text2Text architectures, candidate generation
frameworks can produce a more diverse set of dis-
tractors that may are suitable in real-world appli-
cations. However, these frameworks require de-
tailed semantic analysis to select high-quality dis-
tractors. We hope our work will encourage the
community to explore integrating contrastive learn-
ing as a novel selection method within candidate
generation frameworks. Finally, we would like to
declare that our approach and all baseline models
are implemented without relying on external data
augmentation resources.
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A Analysis on Hyper-Parameters

In the following sections, we study the hyper-
parameters used in our approach. Sec. A.l ex-
amines the influence of generation loss (\,) and
contrastive loss (\.) weights on the InfoNCE ob-
jective, as defined in Eq. 7, on learning variations
within the T5 model. Then, Sec. A.2 details the
effects of temperature (7) in the InfoNCE loss and
margin (m) in the Triplet loss as defined in Eq. 3
and Eq. 5, respectively. The hyper-parameters are
studied across both the MCQ and SciQ datasets.

A.1 Loss Weights

Adjusting the weights of the generation loss A,
and contrastive loss A. in the TS model, using the
InfoNCE contrastive objective, resulted in varied
outcomes across both the MCQ and SciQ datasets.

Firstly, Table 7 presents the results in the MCQ
dataset. The optimal performance is achieved when
both A. and )\, are set to 0.5. Secondly, Table 8
outlines the results in the SciQ dataset. Unlike the
MCQ dataset, SciQ achieves optimal performance
metrics - P@1 and R@1 with both A, and A, set to
0.2, F1@3 at 0.1, and MRR and NDCG@3 at 0.3.

Then, both MCQ and SciQQ datasets show a slight
decrease when the contrastive loss is omitted in the
second stage of training, underscoring the impor-
tance of contrastive loss weight in the task of dis-
tractor generation at pre-trained encoder-decoder
models. Notably, the performance significantly de-
teriorates when the generation loss )\, is set to 0.0
in the second stage, highlighting the crucial role of
generation loss in aligning T5 objectives with its
generative goals.

A.2 Temperature and Margin

Another crucial hyper-parameter impacting model
performance is the temperature (7) in the InfoNCE
loss and the margin () in the Triplet loss.

Table 9 presents the results of varying the tem-
perature 7 for the InfoNCE objective in the TS
model within the MCQ dataset, with optimal per-
formance observed at 0.1 across all automatic met-
rics. Table 10 outlines the performance of the T5-
Triplet/Euclidean model in the MCQ dataset, where
the best results are achieved with margins ranging
from 0.01 to 0.1. In contrast, Table 11 shows that
the optimal performance of the temperature in the
SciQ dataset ranges between 0.1 and 0.5, while Ta-
ble 12 indicates that the best margin performance
in SciQ occurs at 0.1.

13

A¢ | Ac | P@1 | R@1 | F1@3 | MRR | NDCG@3
0.1 0.1 19.69 | 656 | 14.03 | 25.48 29.70
021022046 | 6.82 | 14.16 | 26.51 31.19
03|03 1931 | 6.44 | 13.51 | 24.07 27.54
04| 04| 2046 | 682 | 13.64 | 26.38 31.16
0.51]0.0]2046 | 6.82 | 13.64 | 24.58 27.37
051052278 | 7.59 | 15.70 | 28.57 32.33
0.0|05]| 1.16 | 0.39 1.54 245 3.61
0.6 | 0.6 | 20.46 | 6.82 | 14.54 | 26.58 31.33
0.7 1 0.7 | 20.08 | 6.69 | 13.90 | 25.55 29.64
0.8 1 0.8 2008 | 6.69 | 15.06 | 26.71 31.66
09109 | 19.69 | 656 | 12.87 | 25.10 29.15
1.0 | 1.0 | 19.31 | 6.44 | 13.26 | 24.13 27.71

Table 7: A4 and A, settings on T5 InfoNCE loss at

MCQ.
A¢ | Ac | P@1 | R@1 | F1@3 | MRR | NDCG@3
0.1 10.1|2500]| 833 | 18.13 | 31.48 36.64
020212570 | 857 | 17.60 | 31.55 36.22
0310312550 | 850 | 18.03 | 31.95 37.08
04|04 |23.60 | 7.87 | 17.60 | 3042 | 3595
0500|2430 | 810 | 17.70 | 30.35 35.16
051052500 | 8.33 17.73 | 31.42 36.68
00]05]| 090 | 030 | 1.07 | 1.81 2.50
0.6 | 0.6 | 2430 | 8.10 | 17.87 | 30.97 36.43
0.7 1 0.7 | 24.00 | 8.00 | 17.67 | 30.63 36.14
0.8 |08 2500 833 | 17.50 | 30.73 | 35.03
09|09 2340 | 7.80 | 17.50 | 30.12 | 35.78
1.0 ] 1.0 | 24.10 | 8.03 16.87 | 30.12 35.06

Table 8: A\, and A, settings on TS5 InfoNCE loss at SciQ.

T P@1 | R@1 | F1@3 | MRR | NDCG@3
0.08 | 18.92 | 6.31 | 13.51 | 25.16 30.24
0.1 | 2278 | 7.59 | 15.70 | 28.57 32.33
0.5 | 20.85 | 695 | 14.80 | 26.71 31.12
1.0 | 21.24 | 7.08 | 14.93 | 25.42 27.97

Table 9: 7 on T5 InfoNCE loss at MCQ

m | P@1 | R@1 | F1@3 | MRR | NDCG@3
0.04 | 21.62 | 7.21 | 13.77 | 26.06 29.27
0.01 | 22.01 | 7.34 | 14.16 | 26.96 30.46
0.1 | 21.24 | 7.08 | 14.29 | 26.64 30.63
0.4 | 20.08 | 6.69 | 14.29 | 25.42 29.33
Table 10: m on TS5 Triplet loss (Euclidean) at MCQ.

T P@1 | R@1 | F1@3 | MRR | NDCG@3
0.08 | 24.70 | 8.23 | 17.33 | 31.08 36.26
0.1 | 25.00 | 833 | 17.73 | 31.42 36.68
0.5 | 25.80 | 8.60 | 17.47 | 31.47 3591
1.0 | 2390 | 7.97 | 17.70 | 30.52 36.04

Table 11: 7 on T5 InfoNCE loss at SciQ.

m | P@1 | R@1 | F1@3 | MRR | NDCG@3
0.04 | 23.60 | 7.87 | 16.90 | 29.98 35.23
0.01 | 24.80 | 8.27 | 17.50 | 30.62 35.25
0.1 | 25.40 | 847 | 17.60 | 31.08 35.67
04 | 2470 | 823 | 17.00 | 30.15 34.47

Table 12: m on TS Triplet loss (Euclidean) at SciQ



Question [Answer] A [lead] is typically used to shield things from gamma rays

Models Generated Distractors
T5-Contrast(InfoNCE) [aluminum, copper, zinc]
T5-Contrast(Triplet)/Euclidean  [aluminum, lead, copper ]
GPT-3(few-shot) [aluminum, lead, copper]
T5-CG(beam) [glass, carbon, mercury]
T5-CG(clustering) [iron, metals, cellulose]
T5-base [helium, sulphur, carbon]
Ground-Truth [gold, silver, aluminum]
Question [Answer] Gymnosperms have seeds but do not have [flowers]
Models Generated Distractors
T5-Contrast(InfoNCE) [leaves, cells, roots]
T5-Contrast(Triplet)/Euclidean [leaves, stems, roots]
GPT-3(few-shot) [leaves, flowers, roots]
T5-CG(beam) [seeds, leaves, stems]
T5-CG(clustering) [eggs, flowers, stems]
T5-base [leaves, leaves]

Ground-Truth [leaves, stems, roots]
Question [Answer] [inches] of measurement is typically used for rainfall
Models Generated Distractors
T5-Contrast(InfoNCE) [grams, meters, liters]
T5-Contrast(Triplet)/Euclidean  [grams, minutes, liters ]
GPT-3(few-shot) [unit, method, scale]
T5-CG(beam) [kilograms, meters, grams]
T5-CG(clustering) [kilograms, meters, degrees]
T5-base [meters, meters]
Ground-Truth [gallons, feet, pounds]
Question [Answer] Sugars are broken down into in your digestive system [glucose]
Models Generated Distractors
T5-Contrast(InfoNCE) [fats, vitamins, protein]
T5-Contrast(Triplet)/Euclidean [fat, protein, water ]
GPT-3(few-shot) [proteins, vitamins, minerals ]
T5-CG(beam) [glucose, fat, cellulose]
T5-CG(clustering) [sugar, fats, cellulose]
T5-base [lipids, fat, protein]
Ground-Truth [starch, insulin, nicotine]

Table 13: Examples of distractors generated by seven models from the MCQ dataset. The models include contrastive
learning (InfoNCE, Triplet), prompting (few-shot), candidate set generation and selection framework (beam search,
clustering) and ground-truth distractors.
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Test Dataset MCQ
While similar to insects, [arachnids] eight-legged invertebrates

uestion [Answer .
Q L I lack antennae or wings

Models (Pre-train Dataset) Generated Distractors

T5-base (SciQ) [reptiles, mammals, amphibians]
T5-Contrast(InfoNCE) (SciQ) [spiders, reptiles, crustaceans]
T5-Contrast(Triplet)/Euclidean (SciQ) [spiders, reptiles, insects]
BART-base (SciQ) [parasites, invertebrates, arthropods]
BART-Contrast(InfoNCE) (SciQ) [spiders, reptiles, crustaceans]
BART-Contrast(Triplet)/Euclidean (SciQ) [spiders, reptiles, crustaceans]
Ground-Truth [spiders, reptiles, crustaceans]

Test Dataset MCQ

Question [Answer] The common term for the chemical formula H5O is [water]
Models (Pre-train Dataset) Generated Distractors

T5-base (SciQ) [air, sand, air]
T5-Contrast(InfoNCE) (SciQ) [acid, air, plasma]
T5-Contrast(Triplet)/Euclidean (SciQ) [oxygen, helium, nitrogen]
BART-base (SciQ) [carbon dioxide, oxygen, nitrogen]
BART-Contrast(InfoNCE) (SciQ) [hydrogen, air, oxygen]
BART-Contrast(Triplet)/Euclidean (SciQ) [glass, smog, salt]

Ground-Truth [hydrogen, air, oxygen]

Test Dataset SciQ

Question [Answer] What are by far the most common type of invertebrate? [insects]
Models (Pre-train Dataset) Generated Distractors

T5-base (MCQ) [worms, fungi, insects]
T5-Contrast(InfoNCE) (MCQ) [spiders, crustaceans, corals]
T5-Contrast(Triplet)/Euclidean (MCQ) [crustaceans, crusted, mammals]
BART-base (MCQ) [mammals, reptiles, crustaceans]
BART-Contrast(InfoNCE) (MCQ) [spiders, crustaceans, corals]
BART-Contrast(Triplet)/Euclidean (MCQ) [spiders, crustaceans, corals]
Ground-Truth [spiders, crustaceans, corals]

Test Dataset SciQ

Question [Answer] What kind of organisms helps hold soil in place to slow erosion? [plants]
Models (Pre-train Dataset) Generated Distractors

T5-base (MCQ) [insects, insects, animals]
T5-Contrast(InfoNCE) (MCQ) [animals, insects, bacteria]
T5-Contrast(Triplet)/Euclidean (MCQ) [roots, bacteria, insects]

BART-base (MCQ) [mammals, animals, insects]
BART-Contrast(InfoNCE) (MCQ) [flowers, bacteria, animals]
BART-Contrast(Triplet)/Euclidean (MCQ) [flowers, bacteria, animals]
Ground-Truth [flowers, bacteria, animals]

Table 14: Additional distractors generated through cross-domain training using both base fine-tuning and contrastive
learning in two PLMs (TS5, BART). Each example specified with test dataset and each model indicates the pre-train
dataset in parentheses.
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