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Abstract

Distractor generation is a critical task in objec-001
tive types of assessments, including fill-in-the-002
blank and multiple-choice questions. Recent003
advances in pre-trained transformer-based mod-004
els have shown success in generating distrac-005
tors. Prior research efforts focus on fine-tuning006
pre-trained encoder-decoder models with data007
augmentation strategies to improve this task,008
but these models often fail to capture the full se-009
mantic representation of a given query-answer010
and related distractors. Data augmentation011
methods often rely on expanding the quantity of012
proposed distractors, which can introduce noise013
into the models without necessarily enhancing014
its understanding of the deeper semantic rela-015
tionships between distractors. This paper in-016
troduces a novel distractor generation model017
based on contrastive learning to capture seman-018
tic details from the query-answer and distractor019
sequence encodings. The contrastive learning020
method trains the model to recognize essen-021
tial semantic features, necessary to generate022
in-context distractors. The extensive experi-023
ments on two public datasets indicate that con-024
trastive learning is essential in encoder-decoder025
models. It significantly outperforms baseline026
models and advances the NDCG@3 score from027
24.68 to 32.33 in the MCQ dataset and 26.66028
to 36.68 in the SciQ dataset.029

1 Introduction030

In assessments, objective questions (Das et al.,031

2021) such as multiple-choice and fill-in-the-blank032

questions are widely used in education because033

they contribute to fair assessment across various034

domains and subjects (Ch and Saha, 2018; Kurdi035

et al., 2020). These questions require an examinee036

to select one correct answer from a set of wrong037

options. Notably, the quality of these questions038

relies on the quality of selecting false plausible op-039

tions, known as distractors. Distractor generation040

(Dong et al., 2022; Alhazmi et al., 2024) refers to041

Figure 1: Distractor generation methods via PLMs.
CSG-DS refers to the candidate generation and selec-
tion framework. Text2Text represents the sequence-to-
sequence generation task by encoder-decoder models.

the automated process of generating plausible yet 042

incorrect options in objective types of questions. 043

For decades, research communities have shown 044

interest in generating distractors using several 045

approaches, ranging from feature-based learning 046

(Liang et al., 2018) to deep neural networks (Mau- 047

rya and Desarkar, 2020). Also, recent advance- 048

ments in artificial intelligence, particularly in pre- 049

trained language models (PLMs), have significantly 050

enhanced the task of distractor generation through 051

fine-tuning (Bitew et al., 2022; Wang et al., 2023; 052

Yu et al., 2024) and prompting (Feng et al., 2024; 053

Maity et al., 2024; Doughty et al., 2024) methods. 054

Two primary approaches have been proposed for 055

distractor generation by using PLMs as showed in 056

Figure 1. First, candidate generation and selection 057

framework (Chiang et al., 2022) uses fine-tuning or 058

prompting methods to generate a candidate set of 059

distractors, then selects the top distractors based on 060

embedding models or feature-based rules. Second, 061

Text2Text architecture (Wang et al., 2023) utilizes 062

encoder-decoder models to generate distractors as 063

a sequence-to-sequence (Seq2Seq) task. 064

While pre-trained encoder-decoder models have 065

shown success in distractor generation, aligning 066

these models specifically with distractor generation 067
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as a Seq2Seq task remains challenging. Recent068

state-of-the-art approaches incorporate augmenta-069

tion techniques on distractor candidates (Wang070

et al., 2023) and adopt retrieval augmented pre-071

training method (Yu et al., 2024) to enhance the072

knowledge of pre-trained encoder-decoder mod-073

els. These models are primarily designed to re-074

store and denoise entire text sequences during pre-075

training, rather than capturing fine-grained seman-076

tic distinctions required for distractor generation077

models. Therefore, we propose to integrate a con-078

trastive learning approach inspired by computer vi-079

sion and text generation works (Li et al., 2020; Rad-080

ford et al., 2021; Zhang et al., 2022a; Dong et al.,081

2023; Zhuang et al., 2024) to enhance the seman-082

tic learning in these pre-trained encoder-decoder083

models for the distractor generation task.084

Initially, the encoding and decoding of the target085

input and output can be regarded as two represen-086

tational views with respect to the same semantics.087

The encoded representation of the question-answer088

as an input and the sequence of distractors as an089

output is considered a positive pair. Then, the090

model utilizes these two representations in con-091

trastive learning with other selected negative pairs092

in the mini-batch to capture fine-grained semantics.093

Since contrastive learning has not yet been con-094

ducted in the distractor generation, we explore095

two contrastive objectives, including InfoNCE and096

Triplet loss, which both enhanced the performance097

of distractor generation. InfoNCE utilizes multiple098

negative examples, while Triplet loss relies on a sin-099

gle negative example. When a contrastive objective100

integrated with generation loss in encoder-decoder101

models, a contrastive objective effectively trains102

the model to bring semantically similar pairs (pos-103

itives) closer together in the feature space while104

push dissimilar pairs (negatives) further apart. This105

training teaches the model to capture semantic fea-106

tures and generate contextually relevant distractors.107

Our experimental results, derived from both108

automatic and human evaluations on two public109

datasets, demonstrate that this method success-110

fully aligns the distractor generation task with pre-111

trained encoder-decoder models without relying112

on augmentation or external data sources. The113

main contributions of this work can be summarized114

as follows: (i) introducing a contrastive learning-115

based approach to enhance distractor generation,116

marking its first application in pre-trained encoder-117

decoder models specifically tailored for distractor118

generation tasks, (ii) validating the effectiveness of119

our approach by benchmarking it against the state- 120

of-the-art models on two public datasets, using 121

both automatic and manual evaluation metrics, and 122

(iii) conducting extensive analysis to thoroughly 123

examine our approach in encoder-decoder models. 124

This paper is organized as follows. Sec. 2 re- 125

views the related works on distractor generation 126

and contrastive learning. Sec. 3 presents the details 127

of the proposed methodology. Sec. 4 reports the ex- 128

perimental details along with performance analysis, 129

and Sec. 5 offers some concluding remarks. 130

2 Related Work 131

2.1 Distractor Generation 132

Distractor generation (DG) tasks are typically di- 133

vided into two primary formats: multiple-choice 134

questions (MCQs) and fill-in-the-blank (FITB). 135

These formats are applied across various contexts, 136

ranging from textual (Xie et al., 2018) to multi- 137

modal (Yagcioglu et al., 2018) aspects. These 138

tasks are explored across various domains, includ- 139

ing question answering (Liang et al., 2017, 2018), 140

reading comprehension (Gao et al., 2019; Xie et al., 141

2021; Qu et al., 2024), and multi-modal question 142

answering (Zhu et al., 2016; Ding et al., 2024). 143

Over the years, the field of DG has progressed 144

significantly in methodologies, transitioning from 145

conventional techniques to cutting-edge artificial 146

intelligence approaches. Initially, conventional 147

methods include the use of corpus features (Chen 148

et al., 2006), phonetic and morphological features 149

(Pino and Eskenazi, 2009), knowledge-based struc- 150

tures (Mitkov et al., 2003, 2009), and word embed- 151

ding models (Kumar et al., 2015; Guo et al., 2016; 152

Yoshimi et al., 2023), e.g., word2vec (Mikolov 153

et al., 2013), GloVe (Pennington et al., 2014), and 154

fastText (Bojanowski et al., 2017), to select dis- 155

tractors that are semantically similar to the answer 156

based on cosine similarity of word vectors. 157

Recently, transformer-based PLMs have revo- 158

lutionized DG tasks. The two main approaches 159

proposed for generating distractors in text-based 160

contexts include the candidate generation and se- 161

lection framework, and the Text2Text architecture. 162

Ren and Zhu (2021) proposed using knowledge- 163

based structures such as Probase (Wu et al., 2012) 164

and WordNet (Miller, 1995) to retrieve a small 165

set of distractor candidates, followed by a feature- 166

rich learning-to-rank model to identify the top dis- 167

tractors. Chiang et al. (2022) utilized PLMs to 168

generate the candidate sets instead of knowledge- 169
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based structure approaches, which showed sig-170

nificant improvement. Additionally, Taslimipoor171

et al. (2024) proposed using a pre-trained encoder-172

decoder model for generating both correct and in-173

correct answer options, and then discriminate be-174

tween options with a classifier. The generated op-175

tions are then clustered to remove duplicates.176

Wang et al. (2023) treated distractor generation177

as a Text2Text problem through fine-tuning pre-178

trained encoder-decoder models. To improve the179

DG performance, data augmentation was proposed180

to reduce repeated generation. Yu et al. (2024)181

applied retrieval-augmented pre-training and used182

knowledge graph triplet as data augmentation. Al-183

though Text2Text DG models have been improved184

with the previous approaches, the key to improve185

DG models is to address the lack of fine-grained186

semantic learning. Thus, we propose to exploit con-187

trastive learning methods to Text2Text DG models.188

2.2 Contrastive Learning189

Contrastive learning (CL) is a machine learning190

technique that trains models to distinguish be-191

tween semantically similar and dissimilar data pairs192

(Chopra et al., 2005; Hadsell et al., 2006). The goal193

is to bring semantically related instances closer in194

the feature space, while pushing apart unrelated195

instances. It has shown success in various domains,196

starting with applications in computer vision.197

Initially, Schroff et al. (2015) proposed the198

FaceNet system that trains face recognition and199

clustering based on triplet loss learning, while Sohn200

(2016) proposed multi-class N-pair loss for a va-201

riety of tasks on several visual recognition bench-202

marks. Chen et al. (2020) introduced the SimCLR203

framework using data augmentation to generate204

diverse views of the same image. This approach205

used a CL objective to ensure that representations206

from the same source image are similar, while those207

from different source images remain distinct. Rad-208

ford et al. (2021) utilized CL to pre-train a vision-209

language model to align representations between210

images and their textual descriptions.211

Recently, the CL has been widely used in en-212

hancing semantic information for NLP tasks. Many213

works applied CL to learn better sentence embed-214

dings (Gao et al., 2021; Giorgi et al., 2021; Kim215

et al., 2021; Wu et al., 2022; Zhang et al., 2022b;216

Xu et al., 2023). Beyond embeddings, Karpukhin217

et al. (2020) applied CL to develop an innova-218

tive dense passage retrieval strategy for question-219

passage pairs, substantially advancing the field220

of open-domain question answering (Zaib et al., 221

2024). Qin et al. (2021) explored CL to obtain a 222

deeper understanding of the entities and their rela- 223

tions in texts, and Chen et al. (2022) utilized CL to 224

tackle both discriminative representation and over- 225

fitting problems in the few-shot text classification. 226

In text generation (An et al., 2022), CL is rec- 227

ognized for addressing the degeneration problem, 228

including issues like undesirable generated con- 229

tent and repetitions (Su et al., 2022). Although 230

it has been applied in machine translation (Pan 231

et al., 2021), definition generation (Zhang et al., 232

2022a), closed-book question generation (Dong 233

et al., 2023), and summarization (Zhuang et al., 234

2022, 2024), it is not yet applied to DG in pre- 235

trained encoder-decoder models. 236

3 Methodology 237

This section outlines the details of our approach. 238

Sec. 3.1 defines the task formulation and relevant 239

terms for DG. Sec. 3.2 and Sec. 3.3 detail the train- 240

ing of Text2Text DG and the implementation of 241

contrastive learning in pre-trained encoder-decoder 242

models, respectively. Sec. 3.4 presents a two-stage 243

training to incorporate contrastive learning with 244

generation tasks. 245

3.1 Task Formulation 246

Given a query Q = {q1, . . . , qn} and its correspond- 247

ing answer A = {a1, . . . , am}, the task of DG in- 248

volves generating a set sequence of distractors D 249

= {{d1,1, . . . , d1,j}, . . . , {dN,1, . . . , dN,j}}, where 250

N > 0 represents the number of distractors. The 251

generation process is formally defined as: 252

P (D | Q,A) =
N∏
t=1

p(dt | d<t,Q,A) (1) 253

where dt represents the sequence of letters in the 254

t-th distractor, d<t denotes the sequences of all 255

distractors generated before dt. Q and A denote 256

the query and answer representations, respectively. 257

3.2 Text2Text Generation 258

For each training instance (Q,A,D), the objec- 259

tive is to fine-tune a generative model, which is 260

conditioned on the given query Q and the answer 261

A, aiming to minimize the negative log-likelihood 262

for each correct token ti in the sequence D, based 263

on its preceding tokens and the given conditions, 264

where the generation loss function is defined as: 265

Lg = −
|D|∑
i=1

ti log p(t̂i | t̂<i, Q,A, θ) (2) 266
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Figure 2: The training pipeline describes the integration of contrastive learning in the Text2Text distractor generation.
Solid arrows represent the data flow of generation loss, and dashed arrows indicate the data flow of contrastive
learning. Our approach outlines two-stage training. The first stage trains the model as generation task, including
only cross-entropy loss. The second stage trains the model with both cross-entropy loss and one of the contrastive
learning losses.

As depicted in Figure 2, the input consists of the267

query Q and the answer A, with the prefix “Ques-268

tion: ” before the given query and “Answer: ” be-269

fore the given answer. The generated output is a270

sequence of distractors, expressed as d1 ⊕ d2 ⊕ d3.271

3.3 Contrastive Learning272

Contrastive learning (CL) aims to optimize seman-273

tic representations by pulling positive pairs closer274

in feature space while pushing negative pairs fur-275

ther apart. In DG models, this requires an under-276

standing of the semantics of a question, answer277

and their relationships with related ground-truth278

distractors. The encoder takes an input sequence279

of source words x = (x1, x2, . . . , xn), which in-280

cludes the given question and answer as illustrated281

in Figure 2. The encoder then maps x to a sequence282

of continuous representations z = (z1, z2, . . . , zn).283

Subsequently, the decoder utilizes z to generate284

a sequence of target words, which are the sequence285

of distractors y = (y1, y2, . . . , ym) at a time. The286

question-answer encoding should be semantically287

similar to its ground-truth distractors and dissimilar288

to incorrect distractors. The objective is to develop289

a similarity function that minimizes the distance290

between the question-answer sequence and the rep-291

resentations of its correct distractors, enhancing the292

model to generate relevant in-context distractors.293

First, we implement the InfoNCE contrastive 294

loss in the representation space to enhance model 295

training. For a positive pair S = {(xi, yi)}ni=1, 296

where xi and yi represent semantically related in- 297

puts, we treat the remaining (n − 1) examples 298

within a mini-batch as negative examples. The 299

training loss objective for each pair (xi, yi) is: 300

Lc = − log
ed(zxi ,zyi )/τ∑n
j=1 e

d(zxi ,zyj )/τ
(3) 301

where zxi and zyi are the representations of inputs 302

xi and yi, respectively, d(zi, zj) denotes the cosine 303

similarity, and τ is a temperature parameter. 304

d(zi, zj) =
z⊤i zj

∥zi∥∥zj∥
(4) 305

Second, we implement the Triplet contrastive 306

loss in the representation space. For each positive 307

pair S = {(xi, yi)}ni=1, where xi and yi are seman- 308

tically related inputs, we randomly select a negative 309

example nj from the mini-batch, ensuring j ̸= i. 310

The training loss objective for the (xi, yi, nj) is: 311

Lt = max(d(zxi , zyi)− d(zxi , znj ) +m, 0) (5) 312

where zxi , zyi , and znj represent the semantic em- 313

beddings of the anchor, positive, and negative ex- 314

amples, respectively. Here, zxi and zyi are seman- 315

tically similar, whereas znj is semantically dissim- 316

ilar. The margin m ensures a minimum distance 317
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between the anchor-positive pairs and the anchor-318

negative pairs. The distance function d can be ei-319

ther implemented with cosine similarity in Eq 4 or320

euclidean distance in Eq 6.321

d(zi, zj) =

√√√√ d∑
k=1

(zi[k]− zj [k])2 (6)322

3.4 Overall Two-Stage Training323

The training approach combines both generation324

loss with a newly implemented contrastive objec-325

tive loss. As illustrated in Figure 2, the model326

is fine-tuned using solely the generation loss (i.e.,327

Text2Text generation) as the first stage. In the sub-328

sequent stage, contrastive learning loss is intro-329

duced and trained with the conventional generation330

loss, optimizing the model with a mixed loss func-331

tion LFinal:332

LFinal = λg ∗ Lg + λc ∗ Lcl (7)333

As described in Sec. 3.3, the contrastive learning334

objective Lcl can be implemented as either the In-335

foNCE loss Lc or the Triplet loss Lt. Here, λg and336

λc serves as a hyper-parameter to balance the gen-337

erative and contrastive types of losses, respectively.338

The two-stage training strategy is designed to en-339

able the model to learn semantic information from340

given question-answer and distractors, thereby im-341

proving the model’s ability to capture semantic fea-342

tures to align DG with the encoder-decoder models.343

4 Experiments344

4.1 Datasets345

We conduct the experiments on the SciQ (Welbl346

et al., 2017) and MCQ (Ren and Zhu, 2021)347

datasets as the statistics outlined in Table 1.348

SciQ dataset, collected by crowd workers, consists349

of multiple-choice questions, each with one correct350

answer and three incorrect distractors. These ques-351

tions are open-ended and span various domains,352

including physics, chemistry, biology, and other353

natural sciences. This dataset contains word-level354

options, with the average token count for options355

at 1.6 and 14.5 for the question. We remove unnec-356

essary articles in the answers or distractors.357

MCQ or Dgen dataset, collected from several358

datasets and websites, includes fill-in-the-blank359

sentences, each with a ‘**blank**’, one correct an-360

swer, and three distractors. We replace ‘**blank**’361

with [MASK] token. These cloze sentences are362

Datasets Train Valid Test All
SciQ 11,700 1,000 1,000 13,700
MCQ 1,856 465 259 2,580

Table 1: Statistics of the datasets.

also open-ended and span the fields of science, vo- 363

cabulary, commonsense, and trivia. This dataset 364

contains word-level options, with the average token 365

count for options at 1 and 19.5 for the cloze stem. 366

It is available on GitHub link1 and comprises train- 367

ing and testing data with 2,321 and 259 instances, 368

respectively. We allocate 80% of the training data 369

for training and the remaining 20% for validation. 370

4.2 Baselines Models 371

We conduct comparative experiments with the fol- 372

lowing baseline models and recent approaches: 373

T5-Base (Raffel et al., 2020) and BART-Base 374

(Lewis et al., 2020) models. We fine-tune pre-train 375

encoder-decoder models based on the Text2Text 376

architecture using generation loss only. 377

T5-Base candidate generation, we fine-tune the 378

T5 model using a candidate generation and selec- 379

tion framework. We utilize two approaches for 380

selection: beam search (Gao et al., 2019) and clus- 381

tering (Taslimipoor et al., 2024). Beam search is 382

utilized to select the top three predicted distractors 383

from a set of ten. For clustering, we utilize ag- 384

glomerative clustering2 with Euclidean distance to 385

measure the similarity between clusters, setting a 386

threshold of 1.2. The heads of different clusters are 387

then selected as the final set of distractors. 388

One-shot and few-shot learning (Bitew et al., 389

2023). We utilize a single random example for 390

one-shot and three random examples for few-shot 391

to generate three distractors for each query. An 392

example includes a query and three distractors. 393

4.3 Evaluation Metrics 394

For automatic evaluation, we utilize ranking-based 395

metrics that measure the models ability to retrieve 396

relevant distractors from the top-k locations as used 397

on the previous studies (Ren and Zhu, 2021; Yu 398

et al., 2024). Order-unaware metrics, include F1 399

score (F1@3), precision (P@1, P@3), and recall 400

(R@1, R@3). We also include order-aware metrics 401

such as mean reciprocal rank (MRR@K) and nor- 402

malized discounted cumulative gain (NDCG@K). 403

1https://github.com/DRSY/DGen
2https://scikit-learn.org/stable/

modules/generated/sklearn.cluster.
AgglomerativeClustering.html
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Dataset Method P@1 R@1 F1@3 MRR NDCG@3
MCQ BART-base 8.49 2.83 10.55 14.99 20.66

BART-Contrast(Triplet)/Cosine 11.58 3.86 11.58 18.53 24.51
BART-Contrast(Triplet)/Euclidean 15.44 5.15 13.13 22.84 29.20
BART-Contrast(InfoNCE) 13.90 4.63 12.61 21.24 27.71
T5-base 14.29 4.76 10.81 20.14 24.68
T5-Contrast(Triplet)/Cosine 20.46 6.82 13.38 25.61 29.51
T5-Contrast(Triplet)/Euclidean 22.01 7.34 14.16 26.96 30.46
T5-Contrast(InfoNCE) 22.78 7.59 15.70 28.57 32.33
T5-CG(beam) 17.37 5.79 13.38 24.20 30.11
T5-CG(clustering) 11.58 3.86 7.72 16.47 20.95
GPT-3(one-shot) 11.19 3.73 9.13 16.57 20.75
GPT-3(few-shot) 13.89 4.63 11.06 20.07 25.50

SciQ BART-base 10.50 3.50 12.60 17.77 24.02
BART-Contrast(Triplet)/Cosine 15.50 5.17 15.27 23.67 30.45
BART-Contrast(Triplet)/Euclidean 16.30 5.43 15.33 24.15 30.63
BART-Contrast(InfoNCE) 16.00 5.33 15.43 24.73 32.35
T5-base 18.90 6.30 13.77 23.23 26.66
T5-Contrast(Triplet)/Cosine 22.20 7.40 16.60 28.58 33.72
T5-Contrast(Triplet)/Euclidean 24.80 8.27 17.50 30.62 35.25
T5-Contrast(InfoNCE) 25.00 8.33 17.73 31.42 36.68
T5-CG(beam) 20.30 6.77 14.33 26.20 31.30
T5-CG(clustering) 10.50 3.49 6.30 14.35 17.95
GPT-3(one-shot) 11.00 3.66 8.69 15.36 19.07
GPT-3(few-shot) 12.50 4.16 9.63 17.08 21.01

Table 2: The results of automatic evaluation on the MCQ and SciQ datasets. The best scores are highlighted in bold.

Method Relevance Difficulty Fluency
T5-Contrast(InfoNCE) 4.16 3.56 3.98
T5-Contrast(Triplet)/Euclidean 3.88 3.04 3.76
GPT-3(few-shot) 3.80 2.98 3.74
T5-CG(beam) 3.74 2.70 3.44
T5-CG(clustering) 3.06 2.64 3.16
T5-base 2.82 2.30 2.30
Ground-truth 3.44 3.28 3.52

Table 3: Human evaluations in the MCQ dataset.

We utilize human evaluation metrics to assess404

the model performance. The metrics include, rele-405

vance to assess if the distractors are relevant to the406

context of the query, difficulty to evaluate the level407

of distraction provided in finding the correct an-408

swer, and fluency to determine if the distractors are409

not duplicated and semantically different. We ran-410

domly select ten examples, which are then assessed411

by five human participants, each having more than412

two years of academic experience. We use a five-413

point quantitative rating system from 1 (strongly414

irrelevant) to 5 (strongly relevant).415

4.4 Implementation Details416

Our models are built using Hugging Face frame-417

works (Wolf et al., 2020), including T5 and BART418

as generative models. We optimize using AdamW,419

with initial learning rates of 1e-4 for T5 and 2e-420

4 for BART. We conduct the experiments on two421

NVIDIA Tesla P100 GPUs. The T5 model trains422

for 10 epochs and the BART model for 20, both 423

with a batch size of 4. For InfoNCE, the tempera- 424

ture τ is set at 1.0, and in the Triplet, the margin m 425

is set at 0.01. The weights λg and λc are both set 426

at 0.5, and Mean pooling is used as the standard 427

pooling method for embedding dimensions. We 428

implement the two-stage training and employ the 429

gpt-3.5-turbo model for prompting3. 430

4.5 Evaluation Results 431

4.5.1 Automatic Evaluation Results 432

Table 2 shows a comparison of automatic evalua- 433

tion results for various models on both datasets. Im- 434

plementing a two-stage training approach with ei- 435

ther InfoNCE or Triplet loss significantly enhanced 436

the performance of Text2Text architecture in both 437

BART and T5 compared to baseline models. 438

T5-Contrast (InfoNCE) shows superior perfor- 439

mance across all metrics. For the MCQ dataset, 440

this model achieves a 8.49% increase in P@1 and 441

a 7.65% rise in NDCG@3 over its baseline T5- 442

base. Similarly, the SciQ dataset records a 6.10% 443

increase in P@1 and a 10.02% improvement in 444

NDCG@3, underscoring the effectiveness of the 445

InfoNCE loss in aligning the T5 model closely with 446

ground-truth distractors. In addition, T5-Contrast 447

3https://github.com/contrastivelearningDG/
contrastive_learning_in_encoder_decoder_models
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Dataset Method P@1 R@1 F1@3 MRR NDCG@3
MCQ T5-base 14.29 4.76 10.81 20.14 24.68

T5-Contrast(InfoNCE) 22.78 7.59 15.70 28.57 32.33
T5-Contrast(InfoNCE)/one-stage 21.24 7.08 14.80 26.64 30.64
T5-Contrast(InfoNCE)/max 16.99 5.66 11.71 22.46 27.09
T5-Contrast(Triplet)/Cosine 20.46 6.82 13.38 25.61 29.51
T5-Contrast(Triplet)/Cosine/one-stage 20.08 6.69 15.06 26.00 30.60
T5-Contrast(Triplet)/Cosine/max 21.62 7.21 15.06 26.83 30.67
T5-Contrast(Triplet)/Euclidean 22.01 7.34 14.16 26.96 30.46
T5-Contrast(Triplet)/Euclidean/one-stage 20.46 6.82 12.74 25.42 29.05
T5-Contrast(Triplet)/Euclidean/max 20.85 6.95 13.26 25.23 28.21

SciQ T5-base 18.90 6.30 13.77 23.23 26.66
T5-Contrast(InfoNCE) 25.00 8.33 17.73 31.42 36.68
T5-Contrast(InfoNCE)/one-stage 24.90 8.30 17.50 31.23 36.33
T5-Contrast(InfoNCE)/max 25.40 8.47 16.70 30.83 35.26
T5-Contrast(Triplet)/Cosine 22.20 7.40 16.60 28.58 33.72
T5-Contrast(Triplet)/Cosine/one-stage 23.90 7.97 17.33 30.58 35.91
T5-Contrast(Triplet)/Cosine/max 22.90 7.63 17.03 29.23 34.27
T5-Contrast(Triplet)/Euclidean 24.80 8.27 17.50 30.62 35.25
T5-Contrast(Triplet)/Euclidean/one-stage 24.80 8.27 17.33 30.33 34.62
T5-Contrast(Triplet)/Euclidean/max 24.50 8.17 17.07 30.38 35.28

Table 4: Ablation experiments on both MCQ and SciQ datasets using the T5 model.

(Triplet), utilizing Euclidean distance, shows the448

second-best performance, which may illustrate the449

benefits of batch-wide optimization in InfoNCE450

that considers multiple negative examples, com-451

pared to one negative example in Triplet.452

Conversely, while BART-Contrast (InfoNCE)453

achieves significant improvements over the BART-454

base model, BART-Contrast (Triplet), also utilizing455

Euclidean distance, occasionally surpasses the In-456

foNCE variant in metrics such as P@1, R@1, and457

F1@3 in both datasets. The choice of distance458

metric in Triplet loss plays a critical role in per-459

formance, with Euclidean distance demonstrating460

notably better results compared to the cosine simi-461

larity method across both models and datasets. It462

is worth noting that applying CL within encoder-463

decoder models for the DG task achieves state-of-464

the-art results and outperforms other methods (e.g.,465

beam search and clustering-based selection).466

4.5.2 Human Evaluation Results467

Table 3 presents the results of human evaluations468

comparing different methods for generating dis-469

tractors in the MCQ dataset. Remarkably, T5-470

(InfoNCE) scores the highest across all evaluation471

metrics: relevance, difficulty, and fluency, demon-472

strating the substantial benefits of semantic fine-473

grained training in encoder-decoder models. Addi-474

tionally, the T5-Triplet/Euclidean distance model475

surpasses ground-truth distractors in relevance and476

fluency, underscoring the impact of semantic ob-477

jective learning in pre-trained models. Compar-478

ing T5-base models with contrastive learning mod-479

(1) Question [Answer]
The common term for the
chemical formula H2O is [water]

Models Generated Distractors
T5-Contrast(InfoNCE) [helium, nitrogen, carbon]
T5-Contrast(Triplet)/Euclidean [nitrogen, carbon, oxygen]
GPT-3(few-shot) [carbon dioxide, nitrogen, oxygen]
T5-CG(beam) [carbon, oxygen, gas]
T5-CG(clustering) [carbon, air, ions]
T5-base [air, light, air]
Ground-Truth [hydrogen, air, oxygen]

(2) Question [Answer]
The only known planet with large
amounts of water is [earth]

Models Generated Distractors
T5-Contrast(InfoNCE) [Mars, Venus, Jupiter]
T5-Contrast(Triplet)/Euclidean [earth, moon, planet]
GPT-3(few-shot) [Venus, Mars, Mercury]
T5-CG(beam) [moon, planet earth]
T5-CG(clustering) [planet, ice]
T5-base [ice, moon, planet]
Ground-Truth [Saturn, Jupiter, Mars]

Table 5: Examples of distractors generated by seven
models from the MCQ dataset.

els confirm the critical role of semantic training 480

in enhancing DG models. While approaches like 481

few-shot learning and candidate generation and se- 482

lection methods can generate in-context relevant 483

distractors, they often under-perform CL models 484

due to the lack of semantic fine-grained learning. 485

4.6 Ablation Study 486

To assess the impact of each component in our 487

methodology, we conduct an ablation study and 488

the results are presented in Table 4. We propose 489

two types of contrastive objectives, as discussed in 490

Sec. 3. Triplet loss incorporates cosine similarity 491

or Euclidean distance. We also utilize a pooling 492

function and a two-stage training strategy. 493
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Test Dataset Method (Pre-train Dataset) P@1 R@1 F1@3 MRR NDCG@3

MCQ
T5-base (SciQ) 25.86 8.62 22.26 33.59 39.03
T5-Contrast(InfoNCE) (SciQ) 63.70 21.23 55.08 74.38 81.24
T5-Contrast(Triplet)/Euclidean (SciQ) 66.79 22.26 48.64 74.90 79.72
BART-base (SciQ) 15.05 5.01 17.76 25.22 33.79
BART-Contrast(InfoNCE) (SciQ) 86.48 28.82 85.84 90.54 93.37
BART-Contrast(Triplet)/Euclidean (SciQ) 82.62 27.54 81.33 86.87 89.85

SciQ
T5-base (MCQ) 15.80 5.26 10.29 19.51 22.38
T5-Contrast(InfoNCE) (MCQ) 34.10 11.36 27.53 38.34 41.71
T5-Contrast(Triplet)/Euclidean (MCQ) 29.59 9.86 22.03 33.93 37.21
BART-base (MCQ) 7.50 2.49 10.36 13.71 18.91
BART-Contrast(InfoNCE) (MCQ) 36.30 12.09 35.36 38.53 40.42
BART-Contrast(Triplet)/Euclidean (MCQ) 34.90 11.63 34.13 37.75 40.19

Table 6: Cross-domain training on the two datasets. The best scores are highlighted in bold.

Replacing the mean pooling function with max494

pooling in the T5-Contrast methods using InfoNCE495

and Triplet loss across both datasets shows different496

results. In the InfoNCE method, max pooling gen-497

erally underperforms compared to mean pooling498

across most metrics. With Triplet cosine similarity,499

max pooling slightly improves the performance;500

but it reduces with Triplet Euclidean distance.501

Removing the first stage and directly training the502

model with the second stage (contrastive loss and503

generation loss) in T5 generally shows a decline504

in performance across all metrics in both datasets,505

indicating that the complexity of the two-stage pro-506

cess is beneficial for the InfoNCE method. Con-507

versely, the one-stage Triplet model with cosine508

similarity presents improvements in several metrics,509

particularly in the SciQ dataset, while the one-stage510

Triplet model with Euclidean distance shows a de-511

cline in performance across both datasets. We also512

provide analysis on hyper-parameters in App. A.513

All ablated variants still outperform T5-Base in all514

metrics, indicating the robustness of CL in DG.515

4.7 Case Study516

Table 5 presents the distractors generated by seven517

models. Firstly, it is obvious that the distractors518

generated by the T5-base model lack semantic rele-519

vance to the question. As demonstrated in example520

(1), the distractors (e.g., air, light, air) might seem521

plausible in relation to the answer water, and in ex-522

ample (2), the distractors (e.g., ice, moon, planet)523

might also be contextually plausible to earth. How-524

ever, both sets of distractors fail to maintain mean-525

ingful semantic connections to the questions, mak-526

ing them unsuitable for real-world applications.527

Contrastive learning shows semantic fine-528

grained in the generated distractors. First, InfoNCE529

presents remarkable outputs as showed in both ex-530

ample (1) and (2). Secondly, Triplet/Euclidean ob-531

jective shows varied success in generated outputs. 532

The distractors in example (1) (e.g., nitrogen, car- 533

bon, oxygen) are successfully relevant to the ques- 534

tion, but the distractors (e.g., earth, moon, planet) 535

in example (2) are semantically less relevant. This 536

outlines the benefit of InfoNCE, including several 537

negative examples compared to Triplet loss, using 538

only one negative example. We provide additional 539

cases in Table 13 in App. A. 540

We further investigate cross-domain training us- 541

ing CL, leading to notable improvements in the 542

automatic metrics for both datasets, as detailed in 543

Table 6. Contrastive learning has enhanced these 544

metrics even though the training dataset MCQ is 545

smaller than the testing dataset SciQ. This outlines 546

the critical role of contrastive learning in distractor 547

generation models. We present examples of dis- 548

tractors generated through cross-domain training 549

in Table 14 in App. A. 550

5 Conclusion 551

In this paper, we integrate contrastive learning (CL) 552

into pre-trained encoder-decoder models for en- 553

hancing the objective query distractor generation 554

(DG). We introduce contrastive objectives like In- 555

foNCE and Triplet losses, integrating each one of 556

them with the generation task to align semanti- 557

cally similar question-answer and distractor pairs 558

closer in feature space while distancing negative 559

pairs. This training improves the models to capture 560

semantic features from given pairs to generate in- 561

context relevant distractors. We demonstrate the 562

effectiveness of our approach, which are validated 563

through both automatic and manual evaluations 564

across two datasets. Our work represents a novel 565

contribution to the field of DG. It underscores the 566

significance of CL in improving the automatic re- 567

sults and the quality of generated distractors with- 568

out using external data augmentation techniques. 569
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Limitations570

We identify the following limitations of contrastive571

learning (CL) in Text2Text-based distractor genera-572

tion (DG). While contrastive learning has enhanced573

the semantic alignment between generated distrac-574

tors and human-created ones, Text2Text models575

are still vulnerable to producing distractors that are576

either too similar to the correct answer, repetitive,577

or semantically valid as potential answers. Fur-578

thermore, automatic evaluation metrics still rely579

on token scores, which only reflect similarity to580

the ground truth and do not comprehensively repre-581

sent the quality of the generated output. Although582

contrastive learning has been effectively applied583

in Text2Text architectures, candidate generation584

frameworks can produce a more diverse set of dis-585

tractors that may are suitable in real-world appli-586

cations. However, these frameworks require de-587

tailed semantic analysis to select high-quality dis-588

tractors. We hope our work will encourage the589

community to explore integrating contrastive learn-590

ing as a novel selection method within candidate591

generation frameworks. Finally, we would like to592

declare that our approach and all baseline models593

are implemented without relying on external data594

augmentation resources.595
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A Analysis on Hyper-Parameters968

In the following sections, we study the hyper-969

parameters used in our approach. Sec. A.1 ex-970

amines the influence of generation loss (λg) and971

contrastive loss (λc) weights on the InfoNCE ob-972

jective, as defined in Eq. 7, on learning variations973

within the T5 model. Then, Sec. A.2 details the974

effects of temperature (τ ) in the InfoNCE loss and975

margin (m) in the Triplet loss as defined in Eq. 3976

and Eq. 5, respectively. The hyper-parameters are977

studied across both the MCQ and SciQ datasets.978

A.1 Loss Weights979

Adjusting the weights of the generation loss λg980

and contrastive loss λc in the T5 model, using the981

InfoNCE contrastive objective, resulted in varied982

outcomes across both the MCQ and SciQ datasets.983

Firstly, Table 7 presents the results in the MCQ984

dataset. The optimal performance is achieved when985

both λc and λg are set to 0.5. Secondly, Table 8986

outlines the results in the SciQ dataset. Unlike the987

MCQ dataset, SciQ achieves optimal performance988

metrics - P@1 and R@1 with both λc and λg set to989

0.2, F1@3 at 0.1, and MRR and NDCG@3 at 0.3.990

Then, both MCQ and SciQ datasets show a slight991

decrease when the contrastive loss is omitted in the992

second stage of training, underscoring the impor-993

tance of contrastive loss weight in the task of dis-994

tractor generation at pre-trained encoder-decoder995

models. Notably, the performance significantly de-996

teriorates when the generation loss λg is set to 0.0997

in the second stage, highlighting the crucial role of998

generation loss in aligning T5 objectives with its999

generative goals.1000

A.2 Temperature and Margin1001

Another crucial hyper-parameter impacting model1002

performance is the temperature (τ ) in the InfoNCE1003

loss and the margin (m) in the Triplet loss.1004

Table 9 presents the results of varying the tem-1005

perature τ for the InfoNCE objective in the T51006

model within the MCQ dataset, with optimal per-1007

formance observed at 0.1 across all automatic met-1008

rics. Table 10 outlines the performance of the T5-1009

Triplet/Euclidean model in the MCQ dataset, where1010

the best results are achieved with margins ranging1011

from 0.01 to 0.1. In contrast, Table 11 shows that1012

the optimal performance of the temperature in the1013

SciQ dataset ranges between 0.1 and 0.5, while Ta-1014

ble 12 indicates that the best margin performance1015

in SciQ occurs at 0.1.1016

λg λc P@1 R@1 F1@3 MRR NDCG@3
0.1 0.1 19.69 6.56 14.03 25.48 29.70
0.2 0.2 20.46 6.82 14.16 26.51 31.19
0.3 0.3 19.31 6.44 13.51 24.07 27.54
0.4 0.4 20.46 6.82 13.64 26.38 31.16
0.5 0.0 20.46 6.82 13.64 24.58 27.37
0.5 0.5 22.78 7.59 15.70 28.57 32.33
0.0 0.5 1.16 0.39 1.54 2.45 3.61
0.6 0.6 20.46 6.82 14.54 26.58 31.33
0.7 0.7 20.08 6.69 13.90 25.55 29.64
0.8 0.8 20.08 6.69 15.06 26.71 31.66
0.9 0.9 19.69 6.56 12.87 25.10 29.15
1.0 1.0 19.31 6.44 13.26 24.13 27.71

Table 7: λg and λc settings on T5 InfoNCE loss at
MCQ.
λg λc P@1 R@1 F1@3 MRR NDCG@3
0.1 0.1 25.00 8.33 18.13 31.48 36.64
0.2 0.2 25.70 8.57 17.60 31.55 36.22
0.3 0.3 25.50 8.50 18.03 31.95 37.08
0.4 0.4 23.60 7.87 17.60 30.42 35.95
0.5 0.0 24.30 8.10 17.70 30.35 35.16
0.5 0.5 25.00 8.33 17.73 31.42 36.68
0.0 0.5 0.90 0.30 1.07 1.81 2.50
0.6 0.6 24.30 8.10 17.87 30.97 36.43
0.7 0.7 24.00 8.00 17.67 30.63 36.14
0.8 0.8 25.00 8.33 17.50 30.73 35.03
0.9 0.9 23.40 7.80 17.50 30.12 35.78
1.0 1.0 24.10 8.03 16.87 30.12 35.06

Table 8: λg and λc settings on T5 InfoNCE loss at SciQ.

τ P@1 R@1 F1@3 MRR NDCG@3
0.08 18.92 6.31 13.51 25.16 30.24
0.1 22.78 7.59 15.70 28.57 32.33
0.5 20.85 6.95 14.80 26.71 31.12
1.0 21.24 7.08 14.93 25.42 27.97

Table 9: τ on T5 InfoNCE loss at MCQ

m P@1 R@1 F1@3 MRR NDCG@3
0.04 21.62 7.21 13.77 26.06 29.27
0.01 22.01 7.34 14.16 26.96 30.46
0.1 21.24 7.08 14.29 26.64 30.63
0.4 20.08 6.69 14.29 25.42 29.33

Table 10: m on T5 Triplet loss (Euclidean) at MCQ.

τ P@1 R@1 F1@3 MRR NDCG@3
0.08 24.70 8.23 17.33 31.08 36.26
0.1 25.00 8.33 17.73 31.42 36.68
0.5 25.80 8.60 17.47 31.47 35.91
1.0 23.90 7.97 17.70 30.52 36.04

Table 11: τ on T5 InfoNCE loss at SciQ.

m P@1 R@1 F1@3 MRR NDCG@3
0.04 23.60 7.87 16.90 29.98 35.23
0.01 24.80 8.27 17.50 30.62 35.25
0.1 25.40 8.47 17.60 31.08 35.67
0.4 24.70 8.23 17.00 30.15 34.47

Table 12: m on T5 Triplet loss (Euclidean) at SciQ
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Question [Answer] A [lead] is typically used to shield things from gamma rays
Models Generated Distractors
T5-Contrast(InfoNCE) [aluminum, copper, zinc]
T5-Contrast(Triplet)/Euclidean [aluminum, lead, copper ]
GPT-3(few-shot) [aluminum, lead, copper]
T5-CG(beam) [glass, carbon, mercury]
T5-CG(clustering) [iron, metals, cellulose]
T5-base [helium, sulphur, carbon]
Ground-Truth [gold, silver, aluminum]
Question [Answer] Gymnosperms have seeds but do not have [flowers]
Models Generated Distractors
T5-Contrast(InfoNCE) [leaves, cells, roots]
T5-Contrast(Triplet)/Euclidean [leaves, stems, roots]
GPT-3(few-shot) [leaves, flowers, roots]
T5-CG(beam) [seeds, leaves, stems]
T5-CG(clustering) [eggs, flowers, stems]
T5-base [leaves, leaves]
Ground-Truth [leaves, stems, roots]
Question [Answer] [inches] of measurement is typically used for rainfall
Models Generated Distractors
T5-Contrast(InfoNCE) [grams, meters, liters]
T5-Contrast(Triplet)/Euclidean [grams, minutes, liters ]
GPT-3(few-shot) [unit, method, scale]
T5-CG(beam) [kilograms, meters, grams]
T5-CG(clustering) [kilograms, meters, degrees]
T5-base [meters, meters]
Ground-Truth [gallons, feet, pounds]
Question [Answer] Sugars are broken down into in your digestive system [glucose]
Models Generated Distractors
T5-Contrast(InfoNCE) [fats, vitamins, protein]
T5-Contrast(Triplet)/Euclidean [fat, protein, water ]
GPT-3(few-shot) [proteins, vitamins, minerals ]
T5-CG(beam) [glucose, fat, cellulose]
T5-CG(clustering) [sugar, fats, cellulose]
T5-base [lipids, fat, protein]
Ground-Truth [starch, insulin, nicotine]

Table 13: Examples of distractors generated by seven models from the MCQ dataset. The models include contrastive
learning (InfoNCE, Triplet), prompting (few-shot), candidate set generation and selection framework (beam search,
clustering) and ground-truth distractors.
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Test Dataset MCQ

Question [Answer]
While similar to insects, [arachnids] eight-legged invertebrates
lack antennae or wings

Models (Pre-train Dataset) Generated Distractors
T5-base (SciQ) [reptiles, mammals, amphibians]
T5-Contrast(InfoNCE) (SciQ) [spiders, reptiles, crustaceans]
T5-Contrast(Triplet)/Euclidean (SciQ) [spiders, reptiles, insects]
BART-base (SciQ) [parasites, invertebrates, arthropods]
BART-Contrast(InfoNCE) (SciQ) [spiders, reptiles, crustaceans]
BART-Contrast(Triplet)/Euclidean (SciQ) [spiders, reptiles, crustaceans]
Ground-Truth [spiders, reptiles, crustaceans]
Test Dataset MCQ
Question [Answer] The common term for the chemical formula H2O is [water]
Models (Pre-train Dataset) Generated Distractors
T5-base (SciQ) [air, sand, air]
T5-Contrast(InfoNCE) (SciQ) [acid, air, plasma]
T5-Contrast(Triplet)/Euclidean (SciQ) [oxygen, helium, nitrogen]
BART-base (SciQ) [carbon dioxide, oxygen, nitrogen]
BART-Contrast(InfoNCE) (SciQ) [hydrogen, air, oxygen]
BART-Contrast(Triplet)/Euclidean (SciQ) [glass, smog, salt]
Ground-Truth [hydrogen, air, oxygen]
Test Dataset SciQ
Question [Answer] What are by far the most common type of invertebrate? [insects]
Models (Pre-train Dataset) Generated Distractors
T5-base (MCQ) [worms, fungi, insects]
T5-Contrast(InfoNCE) (MCQ) [spiders, crustaceans, corals]
T5-Contrast(Triplet)/Euclidean (MCQ) [crustaceans, crusted, mammals]
BART-base (MCQ) [mammals, reptiles, crustaceans]
BART-Contrast(InfoNCE) (MCQ) [spiders, crustaceans, corals]
BART-Contrast(Triplet)/Euclidean (MCQ) [spiders, crustaceans, corals]
Ground-Truth [spiders, crustaceans, corals]
Test Dataset SciQ
Question [Answer] What kind of organisms helps hold soil in place to slow erosion? [plants]
Models (Pre-train Dataset) Generated Distractors
T5-base (MCQ) [insects, insects, animals]
T5-Contrast(InfoNCE) (MCQ) [animals, insects, bacteria]
T5-Contrast(Triplet)/Euclidean (MCQ) [roots, bacteria, insects]
BART-base (MCQ) [mammals, animals, insects]
BART-Contrast(InfoNCE) (MCQ) [flowers, bacteria, animals]
BART-Contrast(Triplet)/Euclidean (MCQ) [flowers, bacteria, animals]
Ground-Truth [flowers, bacteria, animals]

Table 14: Additional distractors generated through cross-domain training using both base fine-tuning and contrastive
learning in two PLMs (T5, BART). Each example specified with test dataset and each model indicates the pre-train
dataset in parentheses.
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