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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable performance
across various natural language processing tasks. Recently, several LLMs-based
pipelines have been developed to enhance learning on graphs with text attributes,
showcasing promising performance. However, graphs are well-known to be suscep-
tible to adversarial attacks and it remains unclear whether LLMs exhibit robustness
in learning on graphs. To address this gap, our work aims to explore the potential of
LLMs in the context of adversarial attacks on graphs. Specifically, we investigate
the robustness against graph structural and textual perturbations in terms of two
dimensions: LLMs-as-Enhancers and LLMs-as-Predictors. Through extensive
experiments, we find that, compared to shallow models, both LLMs-as-Enhancers
and LLMs-as-Predictors offer superior robustness against structural and textual
attacks. Based on these findings, we carried out additional analyses to investi-
gate the underlying causes. Furthermore, we have made our benchmark library
openly available to facilitate quick and fair evaluations, and to encourage ongoing
innovative research in this field.

1 INTRODUCTION

In recent years, significant progress has been made in the development of Large Language Models
(LLMs) like Sentence-BERT Reimers & Gurevych (2019), GPT Radford et al. (2018), LLaMA Tou-
vron et al. (2023), etc. These variants showcase exceptional performance across a range of natural
language processing tasks, such as sentiment analysis Sun et al. (2023b); Rønningstad et al. (2024),
machine translation Feng et al. (2024); Zhang et al. (2023), and text classification Sun et al. (2023a);
Zhang et al. (2024). While LLMs are widely employed for handling plain text, there is an in-
creasing trend of applications where text data is linked with structured information represented as
text-attributed graphs (TAGs) Chen et al. (2024); He et al. (2023). Recently, solely utilizing LLMs
for graph data has proven effective in various downstream graph-related tasks, and integrating LLMs
with Graph Neural Networks (GNNs) Kipf & Welling (2016); Veličković et al. (2017) can further
enhance graph learning capabilities Chen et al. (2024).

Although graph machine learning methods with LLMs (Graph-LLMs) have reported promising
performance Qin et al. (2023); Chen et al. (2023); Wei et al. (2024); Guo et al. (2023); Zhao et al.
(2024); Wang et al. (2024); Cao et al. (2023); Liu et al. (2023); Qian et al. (2023); Chien et al.
(2022); Duan et al. (2023), their robustness to adversarial attacks remains unknown. Robustness has
always been a crucial aspect of model performance, especially in high-risk tasks like medical diagno-
sis Ahmedt-Aristizabal et al. (2021), autonomous driving Xiao et al. (2023), epidemic modeling Liu
et al. (2024b), where failures can have severe consequences. It is well-known that graph learning
models such as GNNs are vulnerable to adversarial attacks, where adversaries manipulate the graph
structure to produce inaccurate predictions Zügner et al. (2018); Jin et al. (2021). Moreover, text
attributes in TAGs are also vulnerable to manipulation, raising concerns about the reliability of graph
learning algorithms in safety-critical applications. In the era of LLMs embracing graphs, a critical
question arises: Are Graph-LLMs robust against graph adversarial attacks?

To address this question, we identify several research gaps in existing evaluations that hinder our
understanding of current methods. These include: (1) Limited Structural Attacks for Graph-
LLMs: Existing structural attacks are tailored for GNNs and have not been tested on Graph-LLMs,
leaving it uncertain whether Graph-LLMs are sensitive to subtle structural changes within graphs.
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Figure 1: An overview of our benchmark. The evaluation is divided into two perspectives: LLMs-as-
Enhancers and LLMs-as-Predictors, both of which consider structural and textual attacks.

Understanding this sensitivity is crucial for developing robust Graph-LLMs. (2) Limited Textual
Attacks for TAGs: Current feature attacks Zügner et al. (2020); Ma et al. (2020) particularly
manipulate node attributes in the embedding of continuous space, rather than in textual space.
This calls for creating an evaluation framework for assessing the robustness of Graph-LLMs to
textual attacks. This area has been minimally explored, and it is essential to understand how text
manipulations within graphs can impact model performance. (3) Diverse Architectures of Graph-
LLMs: Various strategies exist for utilizing LLMs for graph data, with approaches such as LLMs-as-
Enhancers Chen et al. (2024); He et al. (2023); Zhao et al. (2022)and LLMs-as-Predictors Chen et al.
(2024); Ye et al. (2023); Chai et al. (2023) being among the most popular. This diversity necessitates
the development of specialized attack pipelines to address the unique characteristics of different
Graph-LLM architectures.

In response to these challenges, we aim to conduct a fair and reproducible evaluation of both structural
and textual attacks under the representative pipelines of Graph-LLMs for node classification. Our
contributions can be summarized as follows:

• New evaluation perspective. Different from existing works focusing on the predictive power
of Graph-LLMs, we stress test the robustness of Graph-LLMs against graph adversarial attacks.
Specifically, our work introduces a dual-focus evaluation of robustness against both structural
and textual attacks, specifically targeting Graph-LLMs. Unlike traditional LLM studies Wu et al.
(2024); Chao et al. (2024); Shuyuan et al.; Wang & Zhao (2024), we consider the unique challenges
posed by interconnected graph structures and multi-dimensional perturbations.

• Reproducible and comprehensive comparison. We conduct a comprehensive comparison of
various Graph-LLM pipelines across multiple datasets. Specifically, we systematically evaluate
two distinct groups of Graph-LLMs: LLMs-as-Enhancers and LLMs-as-Predictors. To guarantee
reproducibility and fairness in our comparison, we fine-tune all models using the same set of hyper-
parameters. We employ two types of evaluation metrics: performance degradation percentage and
attack success rate.

• Insights into the robustness of Graph-LLMs: This study reveals several interesting observations
about the robustness of Graph-LLMs:
(a) LLMs-as-Enhancers exhibit greater robustness against adversarial structural attacks compared

to shallow embeddings like Bag of Words (BOW) and TF-IDF, particularly at high attack rates.
Additionally, the better the distinguishability of the encoded features, the better the robustness.

(b) LLMs-as-Predictors show better robustness in resisting structural attacks than Vanilla GNN in
both zero-shot and full-shot settings.

(c) LLMs-as-Predictors show better robustness in resisting textual attacks than MLP and the
fine-tuned predictor holds even better robustness than vanilla GNN.

(d) LLMs-as-Enhancers demonstrate excellent robustness against textual attacks, with GCN being
significantly more robust than MLP as the victim model.

(e) Text entropy, text length, and node centrality show certain negative correlations with the attack
success rate of the textual attack for Graph-LLMs.

• Open-source benchmark library: To support and advance future research, we have developed an
easy-to-use open-source benchmark library, now publicly available on https://anonymous.
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Figure 2: Evaluation pipelines: (a)(b) for LLMs-as-Enhancers in structural and textual attacks,
respectively; (c)(d) for LLMs-as-Predictors in structural and textual attacks, respectively.

4open.science/r/ICLR2025 This library allows researchers to quickly evaluate their own
methods or datasets with minimal effort. Additionally, we have outlined potential future directions
based on our benchmark findings to inspire further investigations.

2 FORMULATIONS AND BACKGROUND

We begin by providing preliminaries on graph neural networks, and then formalize the graph adver-
sarial attacks. Finally, we briefly introduce the developments in large language models on graphs.
More details are shown in Appendix A.

Notations. We define a graph as G = (V,E), where V denotes the node set and E represents the
edge set. We employ X ∈ RN×d to denote the node feature matrix, where N is the number of nodes
and d is the dimension of the node features. Furthermore, we use the matrix A ∈ RN×N to signify
the adjacency matrix of G. Finally, the graph data can be denoted as G = (A,X).

Graph Adversarial Attacks. While graph adversarial attacks can perturb node features or graph
structures, most existing attacks focus on modifying the graph structure due to its complexity and
effectiveness. These modifications often involve adding, deleting, or rewiring edges Jin et al. (2020);
Madry et al. (2017); Geisler et al. (2021); Xu et al. (2019); Chang et al. (2020); Ma et al. (2019);
Entezari et al. (2020); Chen et al. (2021); Zhang et al. (2021), exemplified by the PGD Madry et al.
(2017) and PRBCDGeisler et al. (2021) attacks.

Textual Attack. Textual attacks can be performed on different levels like character level or sentence
level according to the target to be perturbed. In this work, we focus on word-level attacks, applying
substitutions to fool the classifier with minimal text perturbation. For example, SemAttack Wang
et al. (2022a) generates adversarial text by employing various semantic perturbation functions.

Large Language Models (LLMs) on Graphs. Recent advances in Large Language Models (LLMs)
like BERT Devlin et al. (2018), Sentence-BERT (SBert) Reimers & Gurevych (2019) E5 Wang
et al. (2022b), GPT Radford et al. (2018), LLaMA Touvron et al. (2023) and their variants have
significantly impacted graph-related tasks. Two main paradigms are LLMs-as-Enhancers, improving
node features (e.g., TAPE He et al. (2023), KEA Chen et al. (2024), GLEM Zhao et al. (2022)), and
LLMs-as-Predictors, leveraging LLMs for graph predictions (e.g., InstructGLM Ye et al. (2023),
GraphLLM Chai et al. (2023), GraphGPT Tang et al. (2023)).

3 BENCHMARK DESIGN

To deepen our understanding of the potential of Graph-LLMs in the context of robustness on
graph learning, we need to design diverse pipelines to systematically assess the robustness of LLM
approaches against adversarial attacks on graphs. Our benchmark evaluation encompasses two pivotal
dimensions: LLMs-as-Enhancers and LLMs-as-Predictors. In this section, we will introduce the
benchmark design. Details about the benchmark datasets are provided in Appendix B.
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3.1 THREAT MODEL

We describe the characteristics of the graph adversarial attacks we developed, including both structural
and textual attacks, from the following aspects. (1) Adversary’s Goal: The primary objective is
focused on evasion attacks, where the adversary seeks to manipulate the input graph data at inference
time to cause the model to make incorrect predictions. In this scenario, the adversaries do not have
the authority to change the classifier or its parameters. (2) Victim Models: The targets of these
attacks include LLMs-as-Predictors and LLMs-as-Enhancers, of which the details will be thoroughly
elaborated in Sections 3.2 and 3.3. (3) Adversary’s Knowledge: The attacks are designed under
white-box and grey-box frameworks, meaning that the adversary either possesses complete knowledge
of the model architecture and parameters or not respectively. White-box attacks are employed during
the LLM-as-Enhancers experiments to evaluate robustness in the worst-case scenarios. However, for
LLM-as-Predictors, it becomes impractical to perform white-box attacks due to the significant time
costs associated with these large, complex models, and thus we adopt a grey-box setting.

3.2 LLMS-AS-ENHANCERS

For LLMs-as-Enhancers, our benchmark provides a fair and comprehensive comparison of existing
representative methods from two perspectives: structural attack and textual attack.

Structural attack: We have discussed two commonly used methods for structural attacks, PGD Xu
et al. (2019) and PRBCD Geisler et al. (2021), in Section 2. Currently, existing frameworks rely on
shallow features such as Bag of Words (BOW) and TF-IDF. In the era of LLMs, it’s imperative to
examine the impact of LLM features on structural attacks. Therefore, we designed a pipeline for
structural attacks using LLMs-as-Enhancers. Specifically, we first generate diverse feature types
derived from various LLMs, including SBert, E5, LLaMA, and Angle-LLaMA Li & Li (2023), as
well as LLaMA fine-tuned (LLaMA-FT) with LoRa Hu et al. (2021), etc. We then utilize these
features to evaluate the performance of structural attacks. The pipeline is visualized in Figure 2(a).

Textual attack: We conduct an evaluation on text attacks to verify whether LLMs-as-Enhancers
can withstand textual attacks compared to traditional text preprocessing techniques. Specifically, in
the white-box setting, we first conduct text attacks by using SemAttack Wang et al. (2022a) on the
texts of text-attributed graphs. Then, we encode the texts using different methods such as traditional
techniques and LLMs. Finally, we assess their performance on GCN Kipf & Welling (2016) and
MLP. Incidentally, to enhance efficiency on LLMs, we modified SemAttack for batch-wise operation
instead of word-level processing. The pipeline is illustrated in Figure 2(b).

3.3 LLMS-AS-PREDICTORS

For LLMs-as-Predictors, we also perform structural and textual attacks on pre-trained and fine-
tuned LLMs, respectively. Different from the attacks on LLMs-as-Enhancers, white-box attacks
on the predictors can bring enormous computational costs due to the complexity of the models.
Therefore, this study adopts the grey-box setting, choosing LLMs-as-Enhancers as the victim model
and transferring the attacked texts or graphs to the LLMs-as-Predictors. For pre-trained models, we
utilize the same pipeline in Chen et al. (2024), which describes the graph structure in text and inputs
it along with text features directly into GPT-3.5 for prediction. For fine-tuned models, we perform
attacks on InstructGLM Ye et al. (2023), which uses LLaMA Touvron et al. (2023) as the backbone
and is fine-tuned on different benchmark datasets.

Structural attack: Although the LLMs-as-Predictors in this study flatten graph structure into
texts and only incorporate a small number of neighbors when predicting a node, it is possible that
introducing irrelevant or false neighbors can influence the prediction results. During the structure
attack, we use PRBCD as the attack algorithm and choose SBert and GCN as the surrogate model.
The perturbed graph then serves as the input of GPT-3.5 or InstructGLM. The pipeline is depicted in
Figure 2(c).

Textual attack: The LLMs-as-Predictors directly utilize texts as inputs. Thus, perturbing the input
texts is also likely to have impacts to the prediction results. In this study, we first perform SemAttack
on the selected nodes with SBert and GCN as the surrogate model. After that, the perturbed texts are
used to evaluate GPT-3.5 and InstructGLM. The pipeline is shown in Figure 2(d).
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Table 1: Performance of LLMs-as-Enhancers against 0%, 5%and 25% structural attacks. GAP
represents the percentage (%) decrease in performance after an attack compared to the clean perfor-
mance. N/A indicates that TAPE does not provide the explanation features. We use pink to denote
the best performance, green for the second-best, and yellow for the third-best.

BOW TF-IDF SBert E5 LLaMA Angle-LLaMA Explanation Ensemble LLaMA-FT
Dataset Ptb. ACC GAP ACC GAP ACC GAP ACC GAP ACC GAP ACC GAP ACC GAP ACC GAP ACC GAP

Pudmed
0% 74.69 0% 76.86 0% 78.71 0% 81.83 0% 77.65 0% 75.15 0% 88.84 0% 83.59 0% 77.4 0%
5% 72.40 3.07% 74.68 2.8% 74.68 5.1% 79.39 3.0% 76.68 1.3% 74.65 0.67% 87.32 1.5% 82.55 1.2% 76.55 1.1%
25% 62.83 24.30% 66.18 13.9% 69.24 12.0% 71.06 13.1% 74.62 3.9% 72.72 3.2% 82.11 7.6% 77.85 6.9% 75.63 2.3%

Arxiv
0% 50.99 0% 48.39 0% 52.51 0% 57.04 0% 58.04 0% 58.53 0% 54.37 0% 59.9 0% 52.46 0%
5% 42.35 16.9% 43.32 10.5% 47.59 9.4% 48.15 15.6% 51.76 10.8% 51.46 12.1% 47.19 13.2% 54.33 9.3% 47.59 9.3%
25% 18.95 62.9% 24.36 49.7% 29.24 44.3% 25.24 55.8% 31.67 45.4% 31.73 45.8% 21.61 60.3% 32.82 45.2% 29.19 44.4%

Cora
0% 78.49 0% 81.46 0% 81.99 0% 83.17 0% 78.13 0% 80.28 0% 82.79 0% 82.57 0% 78.54 0%
5% 73.71 3.1% 77.23 5.2% 79.18 3.4% 80.43 3.3% 70.91 9.2% 80.23 0.06% 80.47 2.8% 80.67 2.3% 78.51 0%
25% 60.72 22.6% 67.53 17.1% 72.14 12.0% 69.84 16.0% 69.99 10.4% 76.75 4.4% 71.32 13.9% 74.89 9.3% 70.72 10.0%

WikiCS
0% 74.92 0% 75.96 0% 75.89 0% 76.71 0% 79.72 0% 73.33 0% N/A N/A N/A N/A 79.69 0%
5% 61.46 18.0% 62.03 18.3% 64.44 15.1% 63.01 17.9% 70.91 11.1% 67.0 8.6% N/A N/A N/A N/A 70.11 12.0%
25% 45.34 39.5% 45.74 39.8% 50.19 33.9% 46.38 39.6% 59.23 25.7% 56.75 22.6% N/A N/A N/A N/A 60.13 24.6%

History
0% 51.25 0% 58.38 0% 65.59 0% 66.96 0% 66.73 0% 66.52 0% N/A N/A N/A N/A 64.53 0%
5% 49.04 4.3% 57.57 1.4% 65.6 0% 64.69 3.4% 61.64 7.6% 63.47 4.6% N/A N/A N/A N/A 62.99 2.4%
25% 38.93 24.0% 22.66 61.2% 56.34 14.1% 55.37 17.3% 54.54 18.3% 52.75 20.7% N/A N/A N/A N/A 53.34 17.4%

Citeseer
0% 70.74 0% 73.02 0% 74.94 0% 75.14 0% 67.48 0% 71.71 0% N/A N/A N/A N/A 69.7 0%
5% 68.84 2.7% 71.40 2.2% 72.60 3.1% 72.29 3.8% 70.82 5.0% 68.46 4.5% N/A N/A N/A N/A 68.62 1.6%
25% 61.76 12.7% 64.36 11.9% 64.51 13.9% 64.38 14.3% 64.69 4.1% 68.61 4.3% N/A N/A N/A N/A 66.17 5.1%

4 EXPERIMENTS

In this section, we assess the robustness of LLMs against graph adversarial attacks in their two roles:
LLMs-as-Enhancers and LLMs-as-Predictors. Specifically, we aim to answer the following questions:
Q1: How effective are the LLMs-as-Enhancers on structural attack? Q2: What is the effectiveness of
LLMs-as-Enhancers on textual attacks? Q3: How effective are the LLMs-as-Predictors on structural
attack? Q4: How do LLMs-as-Predictors perform on textual attacks? The experimental settings and
usage instructions are reported in Appendix C.

4.1 STRUCTURAL ATTACK FOR LLMS-AS-ENHANCERS

Experiment Design. To tackle the research question Q1, we enhance text attributes using LLMs
and generate new features. These enriched features are then used to train a GCN as the victim
model. Specifically, we use PGD to conduct white-box evasion attacks on the structures of small
graphs such as Cora, Citeseer, Pubmed, and Wikics, while we employ PRBCD to conduct white-box
evasion attacks on the structures of large graphs Arxiv and History. We vary the perturbation rates
at 0% (clean graphs), 5%, and 25%, which represent the ratio of perturbed edges to original edges.
Subsequently, we feed the perturbed graphs into different LLMs-as-Enhancers architectures and
compare the LLM features with shallow features. To quantify model robustness, we report the test
accuracy (ACC) and the percentage accuracy degradation after attacks compared to the original
accuracy (GAP).

Results. The results are reported in Table 1. Further details, including standard deviations, can be
found in Appendix D. In addition, we incorporate additional GNN architectures, such as GraphSAGE,
in our experiments to evaluate the robustness against adversarial attacks. The time costs are provided
in Appendix L. The results of Deepseek Liu et al. (2024a) are shown in Table 20. Lastly, we conducted
PGD and PRBCD attacks on the Cora, Citeseer and Pubmed and found that the performance of large
language models remained consistent against both attacks. The detailed data and conclusions are
provided in Appendix J. From these results, we have the following observations.

Performance comparison on clean graphs. The features generated by pre-trained language models
exhibit better performance on most clean datasets. For instance, SBert and e5-large (E5) show
improvements of 2.4% and 6.5% respectively on clean Pubmed datasets compared to TF-IDF.

Robustness against structural attacks. For 25% evasion attacks, almost all language models exhibit
greater robustness compared to traditional BOW and TF-IDF approaches. For example, in the case of
a 25% evasion attack on Pubmed, while TF-IDF experiences a decrease of 13.9%, LLaMA only drops
by 3.9%. Moreover, we observe that fine-tuning enhances the robustness of LLMs, as demonstrated by
the fact that fine-tuned LLaMA exhibits greater robustness compared to its unfine-tuned counterpart.
Further, by comparing the results on 5% and 25% attacks, we find that LLMs-as-Enhancers are more
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Table 2: Performance (ACC) for various models on different datasets and structural perturbation
levels.

GraphSAGE Ptb. BOW TFIDF SBert E5 LLaMA Angle-LLaMA

Cora
0 79.11 ± 1.05 80.34 ± 1.32 80.92 ± 0.89 81.87 ± 1.13 79.36 ± 1.07 80.54 ± 0.31
5% 74.55 ± 1.29 77.40 ± 1.36 77.89 ± 0.49 79.56 ± 1.40 75.99 ± 0.32 77.09 ± 0.88
25% 65.40 ± 2.67 66.95 ± 2.40 71.73 ± 0.77 73.74 ± 2.02 71.34 ± 0.95 73.04 ± 1.26

Citeseer2
0 69.43 ± 1.32 71.75 ± 1.70 75.25 ± 1.24 73.61 ± 1.27 71.84 ± 1.21 73.10 ± 0.96
5% 68.22 ± 1.73 70.72 ± 1.35 73.40 ± 1.75 72.99 ± 0.83 70.93 ± 1.54 71.83 ± 0.57
25% 63.09 ± 2.17 66.42 ± 1.59 70.48 ± 1.80 68.36 ± 1.68 68.85 ± 1.67 69.15 ± 2.48

Pubmed
0 72.78 ± 2.13 74.60 ± 1.07 77.68 ± 0.54 78.95 ± 1.20 74.68 ± 1.09 69.89 ± 2.33
5% 69.10 ± 1.30 70.95 ± 1.23 74.69 ± 0.77 76.32 ± 1.74 73.15 ± 0.40 66.40 ± 1.86
25% 62.79 ± 2.46 64.63 ± 1.59 70.18 ± 1.47 71.91 ± 1.59 69.30 ± 2.38 64.15 ± 2.87

helpful at higher perturbation rates. For example, with a 5% perturbation budget on Cora, only 4
language models show a lower GAP compared to the shallow BOW features, while this number
increases to 7 at the perturbation rate of 25%. However, by examining the accuracy on clean graphs,
we note that the performance of LLM features still declines considerably on certain datasets, such
as Arxiv, under high perturbation rates, indicating that graph LLMs remain vulnerable to attacks.
Furthermore, we incorporate additional dataset, such as Arxiv23, into our experiments, where certain
portions of this dataset have not been previously encountered by LLMs. The results and conclusion
are presented in Appendix M.

Results for GraphSAGE. We incorporate additional GNN architectures, such as GraphSAGE, in
our experiments to evaluate the robustness against adversarial attacks. From the results in Table 2,
we find that when GraphSAGE is used for prediction, the features generated by the large language
model can still help the GNN achieve better adversarial robustness, which is consistent with previous
conclusions on GCN.

Robustness of explanation features. ”Explanation” refers to the explanation features generated by the
TAPE model He et al. (2023). Specifically, the original text features are processed by TAPE, from
which the new generated texts are served as the augmented inputs. Similarly, ”Ensemble” denotes the
combined use of both explanation features and LLaMA features of the original inputs. As shown in
the Table 1, we find that the use of these augmented features improves the model’s robustness.

Key Takeaways 1: Most LLMs demonstrate greater robustness against structural attacks compared
to shallow models. The analysis can be found in Section 4.5.

Key Takeaways 2: The higher the attack rate, the more robust the features of LLMs compared to
shallow features.

4.2 TEXTUAL ATTACK FOR LLMS-AS-ENHANCERS

Experiment Design. To answer Q2, we conduct white-box evasion attacks on LLMs-as-Enhancers,
targeting textual attributes. We first utilize diverse LLMs-as-Enhancers to transform the text into
node embeddings and train a GCN and an MLP. Then we perform the evasion attack at the model
inference stage by perturbing text using SemAttack. Then, LLMs are used to transform the perturbed
text into node embeddings, which will then be fed into the trained GCN or MLP for inference. For all
models and datasets, we randomly sample 200 nodes as target nodes and utilize the Attack Success
Rate (ASR) Wang et al. (2022a) as the evaluation metric.

Results. The results are reported in Table 3. Additional details, including standard deviations of
performance, are provided in Appendix E. From these results, we can draw the following observations.

LLaMA performs well against textual attack when MLP is used as the victim model. When using
MLP as the victim model, E5 and LLaMA demonstrate greater resilience against SemAttack, with a
noticeable downward trend in ASR for SBert, E5, and LLaMA models. For example, on the WikiCS
dataset, SBert has an ASR of 62.45%, while the performance of LLaMA dropped to 22.17%. Another
interesting observation is that BOW shows better robustness than SBert on Cora, Pubmed, and Arxiv.
Given that BOW has a limited input of words, the robustness of BOW is likely to come from filtering
the perturbed words, whose frequencies are often low.
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Table 3: Performance of LLMs-as-Enhancers against the textual attack. Bold numbers represent the
lowest Attack Success Rate (ASR), indicating superior robustness.

Cora Pubmed Arxiv Wikics History Citeseer
Features MLP GCN MLP GCN MLP GCN MLP GCN MLP GCN MLP GCN

BOW 62.11 9.27 41.00 8.58 72.69 15.19 67.85 3.82 74.53 18.40 68.80 18.98
SBert 73.18 14.76 45.36 9.32 82.69 11.17 62.12 9.08 76.73 13.41 66.33 16.93

E5 65.29 10.53 35.62 8.76 81.92 15.22 65.99 6.64 61.51 6.54 57.10 14.69
LLaMA 56.49 12.58 19.66 4.95 67.87 6.05 22.17 4.17 65.07 15.92 46.81 13.77

LLaMA-FT 40.10 4.37 16.69 3.27 67.71 6.08 30.00 2.98 56.98 6.91 38.46 6.58

Table 4: The robustness of the predictor InstructGLM against 5% structural attack. GAP refers to
the percentage (%) performance decrease after an attack compared to the clean ACC. The bold font is
used to highlight the smallest gap.

Dataset Cora Pubmed Arxiv

model \ Perturbation Rate Clean Attack GAP Clean Attack GAP Clean Attack GAP

GCN 87.45 81.73 6.54% 87.07 84.25 3.24% 57.5 52.94 7.93%
InstructGLM (structure-aware) 82.47 80.73 2.11% 91.63 91.10 0.58% 72.87 71.84 1.41%

For textual attack, GCN as the victim model is more robust compared to MLP as the victim model. In
terms of GCN as the victim model, fine-tuned LLaMA achieves the lowest ASR among all datasets,
ranging from 2.98% to 6.91%. Also, compared to MLP, the ASR for GCN decreases significantly
and remains below 20% across all datasets.

Key Takeaways 3: Among all models and settings, the fine-tuned model, LLaMA-FT, generally
exhibits the best robustness against the textual attack on most datasets. The detailed analysis is
provided in Section 4.6.

Key Takeaways 4: In the LLMs-as-Enhancers framework, GCN greatly improves the robustness
against textual attacks compared to MLP as the victim model. The analysis is presented in Section 4.6.

4.3 STRUCTUAL ATTACK FOR LLMS-AS-PREDICTORS

Experiment Design. To answer Q3, we explore the robustness of LLM-as-Predictors against graph
structural attacks, using GPT-3.5 and InstructGLM as the selected predictors. Given the difficulty
in directly attacking these predictors due to their large number of parameters or lack of model
access, we adopt a grey-box setting. In this setting, LLMs-as-Enhancers are used as surrogate
models during adversarial attacks, and the resulting attacked graph structures are then fed into the
LLMs-as-Predictors. When employing GPT-3.5 in the graph domain, we follow the approach in
Chen et al. (2024) and evaluate 200 nodes in the test set. For InstructGLM, we directly attack the
pre-processed datasets provided by the author.

Results. The results of InstructGLM are reported in Table 4. Additional results for GPT-3.5 are
presented in Figure 3, while further results for GPT-4o Mini can be found in Table 15 in Appendix H.
Based on these results, we can make the following observations.

GPT-3.5 shows the strongest robustness against structural attack in the zero-shot setting. We evaluate
the model under various few-shot and zero-shot settings with the input of summarized two-hop
neighbors, as illustrated in Chen et al. (2024). The results demonstrate that GPT-3.5 maintains
the highest robustness in the zero-shot setting, with minimal performance degradation even under
significant perturbations. We conjecture that the neighbor sampling and summarizing processes likely
mitigate noise introduced by structural alterations. Although GAT also uses the migrated attacked
graph structure from GCN, its accuracy drops much faster than that of GPT-3.5.

Similarly, InstructGLM also shows stronger robustness against structural attack compared to GCN.
While GCN experiences a noticeable accuracy decrease after 5% structural perturbation, InstructGLM
maintains performance close to that on the clean graph. Like GPT-3.5, InstructGLM also employs
neighbor sampling and its robustness may benefit from this procedure.

Key Takeaways 5: LLMs-as-Predictors show strong robustness against the structural attack, espe-
cially in the zero-shot setting. The analysis is shown in Appendix I.
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Figure 3: The performance of LLMs-as-Predictors against structural attacks, evaluated by accuracy.

Table 5: The performance of the predictor GPT-3.5 against 5% textual attacks. The bold font is used
to highlight the lowest Attack Success Rate.

Dataset Cora Pubmed Arxiv
Model Clean ACC ASR Clean ACC ASR Clean ACC ASR

MLP 69.25 35.97 78.00 14.74 69.50 30.10
GCN 81.00 4.30 80.00 3.20 69.25 5.42
GAT 81.75 2.99 80.75 2.23 69.00 3.97
GPT-3.5 (2-hop zero-shot) 74.25 10.03 90.00 5.53 55.75 13.33
GPT-3.5 (2-hop one-shot) 75.75 5.59 84.00 3.75 54.75 18.65
GPT-3.5 (2-hop three-shot) 76.50 5.59 81.00 5.29 51.00 19.10
GPT-3.5 (2-hop five-shot) 76.25 6.72 82.50 6.07 52.00 21.24

4.4 TEXTUAL ATTACK FOR LLMS-AS-PREDICTORS

Experiment Design. To answer Q4, we explore the performance of GPT-3.5 and InstructGLM with
perturbed texts as inputs. The perturbed texts are generated by SemAttack and used as adversarial
inputs for GPT-3.5 and InstructGLM to evaluate the robustness of LLMs-as-Predictors against textual
attacks. Following the experiment design in Q3, the experiment is conducted in a grey-box setting.
this experiment is conducted in a grey-box setting. We use GCN with SBert embeddings as the
surrogate model, randomly sampling 200 target nodes for attack and evaluation.

Results. The results about GPT-3.5 are presented in Table 5, More results of InstructGLM are
presented in Table 6, while further results for GPT-4o Mini and LLaGA under SemAttack attack Wang
et al. (2022a) can be found in Table 16 in Appendix H. For the sentence-level attack SCPN Iyyer
et al. (2018) on GPT-4o Mini, results are available in Appendix N. These results lead us to the
following observations.

GPT-3.5 shows stronger robustness compared to MLP but failed to exceed GCN. As shown in Table 5,
our experiment reveals that GPT-3.5 has strong robustness compared to MLP but fails to exceed
GCN and GAT in all few shot settings. On the other hand, GAT exhibits the strongest robustness,
followed by GCN. However, on Cora and Pubmed, the Attack Success rate of GPT-3.5 is close to
GCN, ranging from 0.55% to 1.70%.

InstructGLM shows the strongest robustness compared to both MLP and GCN. Different from the
above observations of GPT-3.5, the fine-tuned InstructGLM shows stronger robustness on the three
datasets compared to GCN. While there is an ASR of 30.37% for GCN on Cora, InstructGLM can
resist the textual perturbation and achieves an ASR of 1.21% with structural information incorporated.
The 0% ASR result of MLP on the Arxiv dataset is due to the low ACC, as we can not find a sample
that is both predicted correctly before the attack and predicted wrong after the attack. Also, this low
accuracy is likely to be caused by the dataset used by InstructGLM, which only utilizes titles of a few
words as the node attributes.
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Table 6: The robustness of the predictor InstructGLM against textual attacks. The bold font is used to
highlight the lowest Attack Success Rate (ASR).

Dataset Cora Pubmed Arxiv
Model Clean ACC ASR Clean ACC ASR Clean ACC ASR

MLP 67.53 30.37 86.92 10.11 5.86 0
GCN 88.01 10.22 86.82 3.55 58.85 6.61
InstructGLM (structure-aware) 82.50 1.21 91.50 1.09 74.87 3.42

bow-cora

(a) BOW

tfidf-cora

(b) TF-IDF

sbert-cora

(c) SBert

e5-cora

(d) E5

llama-cora

(e) LLaMA

Figure 4: t-SNE visualization of initial Cora features, with different colors representing classes.

Key Takeaways 6: LLMs-as-Predictors are more robust against textual attacks than MLP. However,
GPT-3.5, which is not fine-tuned, shows poorer robustness compared to GCN. Similarly, the analysis
in Section 4.6 provides support for explaining why GCN is more robust than MLP.

4.5 ANALYSIS FOR STRUCTURAL ATTACK

Since Sections 4.1 and 4.3 have shown the robustness of Graph-LLMs against the structure attack,
we conduct analysis from the following perspectives to explore the reasons behind such robustness.

t-SNE visualization. First, we examine t-SNE visualizations of various initial features and find that
initial features generated by language models are more distinguishable in categories compared to
traditional features as shown in Fig. 4.

DBI. To further evaluate the separability of input features, we use the Davies-Bouldin Index
(DBI) Davies & Bouldin (1979), as shown in Table 7. The DBI score represents the average
similarity measure between each cluster and its most similar cluster, with lower scores indicating
better clustering quality. A score of zero is ideal, signifying optimal clustering. We find that initial
LLM features have lower initial DBI scores. We further examine the DBI of embeddings both before
and after the attack, and the differences therein. Notably, embeddings from larger models exhibit a
smaller decrease in DBI scores post-attack, as indicated by the DBI Diff in the Table 7.

Homophily. Additionally, we analyze the homophily of the Cora dataset before and after attacks, as
shown in Table 7. It discovers that the pre-attack Cora dataset has a homophily of 0.81, and after the
attack, Cora with shallow features exhibits lower homophily.

Based on the above results, we find that robustness is strongly positively correlated with the quality
of features, indicating that higher distinguishability of features leads to stronger robustness and
higher homophily after attacks. This could be attributed to the richer information present in features
generated by pre-trained language models, resulting in higher distinguishability in clustering. The
higher the quality of the features, the less the model depends on the structure. Therefore, high-quality
features of LLMs can be more robust against structural attacks.

4.6 ANALYSIS FOR TEXTUAL ATTACK

From the experiments of the LLMs-as-Enhancers against textual attack in Section 4.2, we observe
that LLaMA performs much better than other smaller models and the fine-tuned LLaMA exhibits
the best robustness. In addition, GCN demonstrates much stronger robustness compared to MLP. To
explore the reasons behind this, we perform analysis from feature and structure perspectives.

Feature Perspective. From the feature perspective, we assume that text attributes can have an impact
on the attack success rate. Specifically, we first explore some basic indicators like text entropy, text
length, and the number of words among successfully attacked nodes and failed attacked nodes, as
shown in Table 8. Based on the observation with LLaMA and GCN as the victim model, it is obvious
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Table 7: DBI and homophily of Cora. “Init DBI” indicates the DBI of initial features, “Embed DBI”
represents the DBI of trained embedding, “Post-Attack DBI” refers to the DBI of embedding after an
attack, “DBI Diff” donates the difference between Embed DBI and Post-Attack DBI. The homophily
value of the graph before being attacked is 0.81.

GCN MLP Init DBI↓ Embed DBI↓ Post-Attack DBI↓ DBI Diff↓ GAP↓ Homophily (0.81)
BOW 78.49 55.90 9.34 1.60 2.75 1.15 22.68% 0.66
TF-IDF 81.46 65.85 8.85 1.24 1.89 0.65 17.10% 0.66
SBert 81.99 70.80 4.47 1.28 1.56 0.28 12.00% 0.70
E5 83.17 69.16 5.92 1.27 1.66 0.39 16.00% 0.67
LLaMA 78.13 67.48 4.88 1.83 1.90 0.07 10.41% 0.68

Table 8: Comparisons between successfully attacked nodes and failed attacked nodes from the feature
perspective (success / failed), with LLaMA and GCN as the victim model.

Dataset Pubmed Citeseer History

Fine-tuned w/o Fine-tuned Fine-tuned w/o Fine-tuned Fine-tuned w/o Fine-tuned
Entropy 6.25/6.40 6.24/6.41 5.90/6.09 5.86/6.09 5.45/6.21 5.28/6.25
Text Length 206.10/237.22 197.94/237.64 125.17/148.94 124.07/149.38 114.71/250.45 95.51/237.71
Words 108.48/122.04 108.69/122.89 78.60/90.80 77.57/90.99 73.45/139.59 63.79/138.39
DBI 4.77 4.87 5.01 5.24 4.65 5.02

that the successfully attacked nodes tend to have smaller entropy (less richness of texts), shorter texts,
and smaller amounts of words. By comparing the DBI of the fine-tuned and not fine-tuned model, we
also observe that the fine-tuned model always has a smaller DBI compared to the fine-tuned model.

Figure 5: Centrality distributions
of nodes being attacked successfully
and unsuccessfully on WikiCS.

Structure Perspective. From the structure perspective, we inves-
tigate the relations between the degree centrality of nodes and the
attack success rate. As shown in Fig. 5, we use SBert and GCN
as the victim model and visualize the distribution of degrees from
successfully attacked nodes and failed attacked nodes respectively.
The results clearly show that successfully attacked nodes often
have smaller degrees, indicating that nodes with less structural
information in the graph are more vulnerable to textual at-
tacks. Additionally, similar patterns are observed for eigenvector
centrality and PageRank values, which we detail in Appendix F.

5 CONCLUSION AND FUTURE DIRECTIONS

This work introduces a comprehensive benchmark for exploring the potential of LLMs in context of
adversarial attacks on graphs. Specifically, we investigate the robustness against graph structural and
textual attacks in two dimensions: LLMs-as-Enhancers and LLMs-as-Predictors. Through extensive
experiments, we find that, compared to shallow models, both LLMs-as-Enhancers and LLMs-as-
Predictors offer superior robustness against structural and textual attacks. Despite these promising
results, several critical challenges and research directions remain worthy of future investigation.

Rethinking Textual Attack. Based on the observations above, we realize that textual attacks can
significantly affect the prediction of individual samples. However, when GCN serves as the victim
model, the incorporation of neighbor information helps mitigate these perturbations, significantly
reducing the attack’s effectiveness. From an attack perspective, weakening the resistance of GCN-
based victim models is crucial, particularly when targeting stronger Graph-LLMs.

Combining Textual and Structural Attack on Graphs. To enhance attack capabilities, a combined
framework that perturbs both text attributes and graph structure is needed. However, challenges such
as integrating textual and structural attacks to improve attack efficiency remain unsolved. In this study,
we provide preliminary results in the Appendix G. Our experiment shows that adding additional
textual perturbations on top of structural perturbations can further degrade model performance.

Rethinking Graph-LLMs. From the results in Table 1, we can conclude that the angle-optimized
Angle-LLaMA, which is more suitable for text encoding, exhibits better robustness against adversarial
attacks compared to LLaMA. This phenomenon may inspire us to design better Graph-LLMs for text
attribute encoding. Finally, we can use LLMs to perform attacks on graphs by generating harmful
structures and text attributes.
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A FORMULATIONS AND BACKGROUND

We begin by providing preliminaries on graph neural networks, and then formalize the graph adver-
sarial attacks. Finally, we introduce the developments in large language models on graphs.

Notations. We define a graph as G = (V,E), where V denotes the node set and E represents the
edge set. We employ X ∈ RN×d to denote the node feature matrix, where N is the number of nodes
and d is the dimension of the node features. Furthermore, we use the matrix A ∈ RN×N to signify
the adjacency matrix of G. Finally, the graph data can be denoted as G = (A,X).

Graph Neural Networks. GCN Kipf & Welling (2016) is one of the most representative models of
GNNs, utilizing aggregation and transformation operations to model graph data. Unlike GCN, which
treats all neighbors equally, GAT Veličković et al. (2017) assigns different weights to different nodes
within a neighborhood during aggregation.

Graph Adversarial Attacks. In the context of G = (A,X) and a subset Vm ⊆ V comprising victim
nodes, where yi signifies the label for node i, the attacker’s objective is to discern a perturbed graph
denoted as G̃ = (Ã, X̃). The primary goal is to minimize the attack objective Lattack.

minLattack

(
fθ(G̃)

)
=

∑
i∈Vm

ℓattack

(
fθ∗(G̃)i, yi

)
s.t., θ∗ = argminθ Ltrain

(
fθ

(
Ĝ
))

, (1)

where fθ indicates the model function of GNN, Lattack represents the loss function for attacks, one
option is to set Lattack = −L, and Ĝ can be either G or G̃. Here, G̃ is chosen from a constrained
domain Ψ(G). Given a fixed perturbation budget D, a typical constraint for Ψ(G) can be expressed
as ∥Ã −A∥0 + ∥X̃ −X∥0 ≤ D. This constraint implies that the perturbations introduced in the
adjacency matrix Ã and node feature matrix X̃ should be limited, and their combined L0 should not
exceed the specified budget D.

While graph adversarial attacks can perturb either node features or graph structures, the complexity
of structural information has led the majority of existing adversarial attacks on graph data to focus on
modifying graph structure, particularly through actions such as adding, deleting, or rewiring edges Jin
et al. (2020); Madry et al. (2017); Geisler et al. (2021); Xu et al. (2019); Chang et al. (2020); Ma
et al. (2019); Entezari et al. (2020); Chen et al. (2021); Zhang et al. (2021). For example, the PGD
attack Madry et al. (2017) uses edge perturbation to overcome the challenge of attacking discrete
graph structures via first-order optimization. In contrast, the PRBCD attack Geisler et al. (2021)
addresses the high cost of adversarial attacks on large graphs with a sparsity-aware optimization
approach.

On one hand, we explore the robustness against structural attacks. On the other hand, instead of
targeting continuous features as in existing feature attack works, we adopt a direct approach by
employing textual attacks to evaluate robustness, which remains a relatively unexplored direction.

Textual Attack. For tasks on TAGs, the raw inputs are in text format and it can be hard for attackers
to manipulate the encoded features directly, which makes the traditional feature attacking on graphs
less practical. Therefore, the textual attack is used in this study to evaluate the robustness of LLMs
enhanced graph features. Textual attacks can be performed on different levels like character level or
sentence level according to the target to be perturbed. In this work, we focus on word-level attacks,
which can be defined as follows.

Word-level attacks. Given a classifier f that predicts labels y ∈ Y , the input X is defined in a
categorical space and each input is a sequence of n words x1, x2, · · · , xn. Each word xi has a limited
amount of substitution candidates, denoted as S(x). To keep the perturbation as unnoticeable as
possible, a constraint, usually L1 or L2 distance is applied. Finally, to fool classifier f to the largest
extent, the following objective is maximized:

argmaxx′∈S(x) L(f(x
′), y)

s.t., ||x′ − x||2 < ϵ,
(2)

where L is the loss function between original prediction y and prediction f(x′) after perturbation.
ϵ is the budget of the perturbation, which keeps the original and the perturbed sample as close as
possible. As the loss function above is maximized, we will get a perturbed sample x′ that makes the
classifier f generate a prediction far from the original output. For example, SemAttack Wang et al.
(2022a) generates natural adversarial text by employing various semantic perturbation functions.
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Large Language Models on Graphs. In recent years, remarkable progress has been achieved
in the field of Large Language Models (LLMs), with notable contributions from transformative
architectures such as Transformers Reimers & Gurevych (2019), BERT Devlin et al. (2018), Sentence-
BERT (SBert) Reimers & Gurevych (2019) E5 Wang et al. (2022b), GPT Radford et al. (2018),
LLaMA Touvron et al. (2023) and their variants. These LLMs can be applied to graph-related tasks.
The collaboration between Large Language Models and Graph Neural Networks (GNNs) can be
mutually advantageous, leading to improved graph learning. The two most popular paradigms for
applying LLMs to graphs are LLMs-as-Enhancers and LLMs-as-Predictors. LLM-as-Enhancers
aim to enhance the quality of node features through the assistance of LLMs. TAPE He et al. (2023)
is a groundbreaking example of explanation-based enhancement, encouraging LLms to produce
explanations and pseudo-labels for the augmentation of textual attributes. KEA Chen et al. (2024)
instructs LLMs to produce a compilation of knowledge entities, complete with text descriptions,
and encodes them using fine-tuned pre-trained language models (PLMs). GLEM Zhao et al. (2022)
considers pseudo labels generated by both PLMs and GNNs and incorporates them into a variational
EM framework. The fundamental concept of the LLMs-as-Predictors are to leverage LLMs for
making predictions in graph-related tasks. InstructGLM Ye et al. (2023) formulates a set of scalable
prompts grounded in the maximum hop level and fine-tunes LLMs to output predicted labels directly.
GraphLLM Chai et al. (2023) derives the graph-enhanced prefix from the graph representation. This
method boosts the LLM’s capability in conducting graph reasoning tasks by graph-enhanced prefix
tuning. The GraphGPT Tang et al. (2023) framework aligns LLMs with graph structural knowledge
using a paradigm of graph instruction tuning.

B BENCHMARK DATASETS

To comprehensively and effectively assess the robustness of LLMs in graph learning, we present six
text-attributed graphs that offer original textual sentences. For instance, renowned citation graphs
such as Cora Sen et al. (2008), PubMed Sen et al. (2008), Citeseer Sen et al. (2008), and ogbn-arxiv
(Arxiv) Hu et al. (2020) fall under the category of TAGs. These datasets extract node attributes from
textual information, including titles and abstracts of papers. WikiCS Mernyei & Cangea (2020) serves
as a Wikipedia-based dataset for benchmarking Graph Neural Networks. It comprises 10 classes
corresponding to branches of computer science, demonstrating high connectivity. Node features are
derived from the text of the respective articles. Moreover, we employ the History Yan et al. (2023)
dataset sourced from Amazon, where node attributes originate from book titles and descriptions. For
instance, ”Description: Collection of Poetry; Title: The golden treasury of poetry”. All datasets are
utilized with a low labeling rate split, following the setting described in KEA Chen et al. (2024). The
statistics of datasets are reported in Table 9. The licenses of these datasets are MIT License.

Table 9: Statistics of datasets.

Cora Citeseer Pubmed WikiCS History ogbn-arxiv

#Nodes 2,708 3,327 19,717 11,701 41,551 169,343
#Edges 5,429 4,732 44,338 216,123 358,574 1,166,243
#Class 7 6 3 10 12 40

#Domain Academic Academic Academic Wikipedia E-commerce Academic

C EXPERIMENTAL SETTINGS AND USAGE INSTRUCTIONS

All algorithms in our benchmark are implemented by PyTorch Paszke et al. (2019). All experiments
are conducted on a Linux server with GPU (NVIDIA RTX A6000 48Gb and Tesla V100 32Gb),
using PyTorch 2.0.0, PyTorch Geometric 2.4.0 Fey & Lenssen (2019) and Python 3.10.13. We
train each model using binary cross-entropy loss, optimized with the Adam optimizer. We use PGD
and PRBCD to attack the structures on graphs, which are implemented by DeepRobust Li et al.
(2020). For hyperparameter, a hidden size of 256 is used uniformly across all datasets. For the
sake of reproducibility, the seeds of random numbers are set to the same. For all the datasets and
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models, we tune the following hyper-parameters: learning rate: lr ∈ {0.01, 0.001}, weight decay:
λ ∈ {1e− 4, 5e− 4}.

For further research, our benchmark can easily accommodate the addition of new datasets. Cur-
rently, many studies have introduced more graph datasets with textual information. For exam-
ple, users only need to load the new dataset into the framework in the format of features: x,
edges:’edge index’, labels:‘y‘, training set indices:‘train masks‘, validation set indices:‘val masks‘,
test set indices:‘test masks‘, and textual attributes: ‘raw texts‘. To add new attack and defense
methods, users can simply import existing methods from the Deeprobust package. If users wish to
use their own attack methods, they can add them to Deeprobust. Finally, our benchmark can advance
research on the adversarial robustness of large language models on graphs, allowing users to add new
LLM method to the benchmark for use.

For concrete applications, take credit card fraud detection as an example. Fraudsters may manipulate
both the network of transactions and the associated textual attributes to evade detection. As researchers
build new models for detecting these frauds, our benchmark can be used to quickly evaluate the
model’s robustness against frauds from both textual and structural levels.

D RESULTS OF LLMS-AS-ENHANCERS AGAINST ATTACKS ON GRAPH
STRUCTURES

To answer Q1, we conduct experiments to examine the robustness against structural attack for LLMs-
as-Enhancers. The results are reported in Table 10 and Table 11, which include additional details on
the standard deviation (std) compared to Table 1.

Table 10: The performance of LLMs-as-Enhancers against 5% attacks on graph structures

Cora Pudmed Arxiv

Feature Clean 5% Attack Gap Clean 5% Attack Gap Clean 5% Attack Gap

BOW 78.49 ± 1.13 73.71 ± 1.10 03.06% 74.69 ± 2.07 72.40 ± 1.89 3.07% 50.99 ± 2.15 42.35 ± 2.64 16.94%
TFIDF 81.46 ± 1.21 77.23 ± 1.07 05.19% 76.86 ± 1.34 74.68 ± 1.40 02.84% 48.39 ± 1.15 43.32 ± 1.27 10.48%
SBert 81.99 ± 0.76 79.18 ± 0.71 03.43% 78.71 ± 1.17 74.68 ± 1.40 05.12% 52.51 ± 0.87 47.59 ± 1.72 09.37%

E5 83.17 ± 0.73 80.43 ± 0.59 03.29% 81.83 ± 1.16 79.39 ± 1.06 02.98% 57.04 ± 1.77 48.15 ± 1.71 15.59%
Llama 78.13 ± 1.07 70.91 ± 1.02 09.24% 77.65 ± 0.74 76.68 ± 0.94 01.25% 58.04 ± 1.79 51.76 ± 1.95 10.82%

Angle-Llama 80.28 ± 1.42 80.23 ± 0.92 0.06% 75.15 ± 2.50 74.65 ± 1.45 0.67% 58.53 ± 1.56 51.46 ± 3.33 12.08%
Explanation 82.79 ± 1.17 80.47 ± 1.28 02.80% 88.84 ± 0.34 87.32 ± 0.38 01.52% 54.37 ± 5.51 47.19 ± 1.13 13.21%
Ensemble 82.57 ± 1.48 80.67 ± 1.39 02.30% 83.59 ± 0.81 82.55 ± 1.41 01.24% 59.90 ± 2.93 54.33 ± 2.43 09.30%
Llama-FT 78.54 ± 1.53 78.51 ± 0.88 0% 77.40 ± 0.78 76.55 ± 0.85 1.10% 52.46 ± 0.84 47.59 ± 1.71 09.28%

Wikics History Citeseer

Feature Clean 5% Attack Gap Clean 5% Attack Gap Clean 5% Attack Gap

BOW 74.92 ± 0.05 61.46 ± 0.32 17.95% 51.25 ± 4.80 49.04 ± 5.80 04.31% 70.74 ± 0.72 68.84 ± 0.82 02.69%
TFIDF 75.96 ± 0.14 62.03 ± 0.31 18.34% 58.38 ± 3.25 57.57 ± 1.69 01.39% 73.02 ± 0.66 71.40 ± 0.78 02.22%
SBert 75.89 ± 1.77 64.44 ± 2.33 15.09% 65.59 ± 1.60 65.60 ± 1.48 0% 74.94 ± 0.88 72.60 ± 0.81 03.14%

E5 76.71 ± 1.74 63.01 ± 2.13 17.86% 66.96 ± 2.30 64.69 ± 2.10 03.39% 75.14 ± 0.93 72.29 ± 1.27 03.79%
Llama 79.72 ± 0.35 70.91 ± 1.02 11.05% 66.73 ± 3.53 61.64 ± 3.21 07.63% 67.48 ± 3.40 70.82 ± 1.07 04.95%

Angle-Llama 73.33 ± 1.77 67.00 ± 3.62 08.63% 66.52 ± 1.69 63.47 ± 3.14 04.59% 71.71 ± 1.73 68.46 ± 4.92 04.53%
Llama-FT 79.69 ± 0.39 70.11 ± 1.03 12.02% 64.53 ± 2.02 62.99 ± 1.44 02.39% 69.70 ± 2.18 68.62 ± 3.15 01.55%

E RESULTS OF LLMS-AS-ENHANCERS AGAINST ATTACKS ON TEXTS

To address Q2, we perform a white-box evasion attack on LLMs-as-Enhancers, specifically targeting
textual attributes. The results are shown in Table 12, which includes additional details on the standard
deviation (std) compared to Table 3.

F ANALYSIS FOR TEXTUAL ATTACK

From the experiments on LLMs-as-Enhancers against textual attacks in Section 4.2, we observe that
LLaMA performs significantly better than other smaller models, with fine-tuned LLaMA demonstrat-
ing the best robustness. Additionally, GCN shows much stronger robustness compared to MLP.
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Table 11: The performance of LLMs-as-Enhancers against 25% attacks on graph structures

Cora Pudmed Arxiv

Feature Clean 25% Attack Gap Clean 25% Attack Gap Clean 25% Attack Gap

BOW 78.49 ± 1.13 60.72 ± 1.92 22.64% 74.69 ± 2.07 62.83 ± 1.61 15.88% 50.99 ± 2.15 18.95 ± 1.63 62.85%
TFIDF 81.46 ± 1.21 67.53 ± 0.82 17.10% 76.86 ± 1.34 66.18 ± 1.44 13.90% 48.39 ± 1.15 24.36 ± 2.10 49.67%
SBert 81.99 ± 0.76 72.14 ± 2.13 12.01% 78.71 ± 1.17 69.24 ± 1.85 12.03% 52.51 ± 0.87 29.24 ± 3.27 44.32%

E5 83.17 ± 0.73 69.84 ± 0.55 16.03% 81.83 ± 1.16 71.06 ± 1.12 13.15% 57.04 ± 1.77 25.24 ± 2.77 55.75%
Llama 78.13 ± 1.07 69.99 ± 1.92 10.42% 77.65 ± 0.72 74.62 ± 1.64 03.89% 58.04 ± 1.79 31.67 ± 3.09 45.43%

Angle-Llama 80.28 ± 1.42 76.75 ± 1.33 04.40% 75.15 ± 2.50 72.72 ± 3.00 03.23% 58.53 ± 1.56 31.73 ± 4.80 45.79%
Explanation 82.79 ± 1.17 71.32 ± 2.28 13.85% 88.84 ± 0.34 82.11 ± 0.72 07.57% 54.37 ± 5.51 21.61 ± 3.10 60.25%
Ensemble 82.57 ± 1.48 74.89 ± 0.93 09.30% 83.59 ± 0.81 77.85 ± 0.50 06.87% 59.90 ± 2.93 32.82 ± 3.19 45.21%
Llama-FT 78.54 ± 1.53 70.72 ± 4.15 09.96% 77.40 ± 0.78 75.63 ± 2.15 2.29% 52.46 ± 0.84 29.19 ± 3.19 44.36%

Wikics History Citeseer

Feature Clean 25% Attack Gap Clean 25% Attack Gap Clean 25% Attack Gap

BOW 74.92 ± 0.05 45.34 ± 0.31 39.45% 51.25 ± 4.80 38.93 ± 5.53 24.02% 70.74 ± 0.72 61.76 ± 1.44 12.69%
TFIDF 75.96 ± 0.14 45.74 ± 0.51 39.76% 58.38 ± 3.25 22.66 ± 1.69 61.15% 73.02 ± 0.66 64.36 ± 0.72 11.86%
SBert 75.89 ± 1.77 50.19 ± 3.20 33.86% 65.59 ± 1.60 56.34 ± 2.41 14.10% 74.94 ± 0.88 64.51 ± 1.50 13.92%

E5 76.71 ± 1.74 46.38 ± 4.50 39.55% 66.96 ± 2.30 55.37 ± 1.80 17.30% 75.14 ± 0.93 64.38 ± 1.83 14.31%
Llama 79.72 ± 0.35 59.23 ± 1.47 25.71% 66.73 ± 3.53 54.54 ± 1.74 18.26% 67.48 ± 3.40 64.69 ± 2.99 04.13%

Angle-Llama 73.33 ± 1.77 56.75 ± 4.65 22.61% 66.52 ± 1.69 52.75 ± 3.66 20.71% 71.71 ± 1.73 68.61 ± 3.61 04.32%
Llama-FT 79.69 ± 0.39 60.13 ± 0.31 24.56% 64.53 ± 2.02 53.34 ± 2.47 17.36% 69.70 ± 2.18 66.17 ± 3.62 05.07%

Table 12: Attack success rate (ASR) results of LLMs-as-Enhancers against 5% textual attack.

Cora PubMed Arxiv

Features MLP GCN MLP GCN MLP GCN

BOW 62.11±4.48 9.27±2.97 41.00±7.86 8.58±2.45 72.69±6.93 15.19±4.86

Sbert 73.18±2.02 14.76±2.48 45.36±3.88 9.32±3.89 82.69±10.88 11.17±1.39
E5 65.29±6.42 10.53±1.86 35.62±5.64 8.76±2.59 81.92±8.76 15.22±4.18

LLaMA 56.49±7.34 12.58±0.85 19.66±4.89 4.95±2.59 67.87±13.10 6.05±2.56
LLaMA-FT 40.10±12.16 4.37±1.94 16.69±5.57 3.27±1.65 67.71±9.83 6.08±2.00

Wikics History Citeseer

Features MLP GCN MLP GCN MLP GCN

BOW 67.85±4.88 3.82±1.46 74.53±10.13 18.40±6.00 68.80±6.99 18.98±4.67

Sbert 62.12±4.32 9.08±2.34 76.73±8.79 13.41±3.86 66.33±6.09 16.93±3.31
E5 65.99±5.05 6.64±2.47 61.51±15.43 6.54±1.04 57.10±6.25 14.69±3.73

LLaMA 22.17±4.96 4.17±0.80 65.07±9.50 15.92±8.47 46.81±14.07 13.77±5.34
LLaMA-FT 30.00±2.07 2.98±1.83 56.98±14.55 6.91±3.64 38.46±11.19 6.58±2.97

To explore the reasons behind these observations, we analyze the models from feature and structure
perspectives. From the feature perspective, we use SBert and GCN as the victim model and use Latent
Dirichlet Allocation to generate the distribution of three themes for each node. Then, we acquire
the mean value for each theme. As shown in Fig. 7, the theme distributions for the successfully and
failed attacked nodes are similar, indicating that there is not a strong relation between text content
and robustness. From the structure perspective, we examine the relationship between the centrality of
nodes and the attack success rate. As shown in Fig. 6, we use SBert and GCN as the victim models
and visualize the degree distributions of successfully attacked nodes versus failed attacked nodes.

It is evident that successfully attacked nodes often have smaller degrees, indicating that nodes with
less structural information in the graph are more vulnerable to textual attacks. Furthermore, similar
patterns are observed with eigenvector centrality and PageRank values.

G COMBINING TEXTUAL AND STRUCTURAL ATTACK

To enhance attack capabilities, maybe a combined framework that perturbs both text attributes and
graph structure is needed. In this study, we provide some preliminary results. First of all, we design
a simple strategy that combines the structural attack and textual attack directly, further improving
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Figure 6: Centrality distributions of the node being attacked successfully and unsuccessfully. We use
Sentence-Bert as the victim model and gather all attacked results from the PubMed dataset.

Figure 7: Theme distributions of the node being attacked successfully and unsuccessfully.

the attack ability. The results are reported in Table 13. In addition, we design various combination
strategies for modifying the textual attack. These include prioritizing the attack on text attributes
of small-degree nodes, targeting large-degree nodes first, and attacking text attributes within the
same cluster. Based on the results in Table 14, we find that prioritizing attacks on the text attributes
of small-degree nodes is more effective. This is merely a preliminary attempt, and we hope it will
inspire more in-depth research.

H RESULTS OF GPT-4O MINI AND LLAGA

In addition, we also included results of other predictors: GPT-4o Mini and LLaGA. The results are
reported in Table 15 and Table 16.

For textual attack, as the below results show, GPT-4o mini performs robustly against word-level
textual-level attacks, aligning with our existing conclusion that LLM exhibits stronger robustness
against textual attacks compared to MLP. However, LLaGA only shows competitive performance on
PubMed Dataset with MLP.

For structural attack, GPT-4o Mini remains robust compared to GCN and GAT, which aligns with our
previous findings on GPT-3.5 and InstructGLM.

I ANALYSIS FOR KEY TAKEAWAYS 5

Key Takeaways 5: We found that LLMs-as-Predictors demonstrate strong robustness against structural
attacks, particularly in zero-shot settings.

The reason is that all the predictors we examined employed a neighbor sampling strategy, which we
believe positively impacts model robustness. To validate this, we applied the same strategy using
GraphSAGE against a structural attack (PGD Attack) and observed improved robustness, as shown
in Table 17. As the number of adversarial edges increases, the performance of the model without
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Table 13: Result of combined attack using SemAttack and PRBCD. Here we perform 5% perturbation
on both text features and the graph structure.

Cora Citeseer PubMed WikiCS

Feature \ Ptb. 5% edge 5% edge & node 5%edge 5% edge & node 5%edge 5% edge & node 5%edge 5% edge & node
BOW 78.40±1.67 78.23±1.70 69.64±0.98 69.58±1.18 74.18±0.76 74.01±0.78 66.38±4.65 66.07±4.63
Sbert 79.93±0.49 79.75±0.54 74.16±1.23 74.15±1.31 75.92±1.40 75.87±0.90 66.94±2.54 66.73±2.53
LLaMA 80.03±0.50 79.14±1.17 71.70±1.50 70.68±1.70 75.78±1.33 74.95±0.98 66.60±5.54 66.41±5.64

Table 14: Results of 5% edge and 15% perturbations under three different sampling strategies on
Cora. Small degree first and Large degree first means we sample nodes with the smallest or largest
degrees respectively. Clustering refers to sampling nodes that are in the same cluster.

Cora Dataset 5% edge & 15% node

sampling\perturbation ASR ACC
Small degree first 17.20±3.33 79.37±0.53
Large degree first 3.27±1.15 79.44±0.85
Clustering 4.40±1.69 79.53±0.61

Table 15: The results (ACC) of structure attack (0.05% ptb) on Cora, PubMed, and Citeseer datasets.

Model Cora PubMed Citeseer

Clean Perturbed GAP Clean Perturbed GAP Clean Perturbed GAP

MLP 69.25 - 0% 78.00 - 68.50 -
GCN 81 79.75 1.54 80 77.25 3.44 73.75 72.25 2.03
GAT 81.75 80.25 1.83 80.75 78 3.41 74.25 73 1.68
GPT-4o Mini 68.56 69.31 -1.14 84.56 83.63 1.07 67.04 66.38 0.79

Table 16: The attack success rate (ASR) of word-level textual attack (0.05% ptb) on Cora and PubMed
datasets.

Model Cora PubMed

full shot shot=0 shot=1 shot=3 shot=5 full shot shot=0 shot=1 shot=3 shot=5

GPT-4o Mini - 35.06 31.25 36.11 31.84 - 5.72 7.71 6.76 7.52
GPT-3.5 - 10.03 5.59 5.59 6.72 - 5.53 3.75 5.29 6.07
LLaGA 8.80 - - - - 14.79 - - - -
MLP 35.97 - - - - 14.74 - - - -
GCN 4.30 - - - - 3.20 - - - -
GAT 2.99 - - - - 2.23 - - - -

a sampling strategy degrades more rapidly than that of the model with a sampling strategy. The
influence of adversarial edges is mitigated because they might not be sampled.

Table 17: Performance (ACC) with and without sampling at various perturbation levels.

Method 0 0.05 0.10 0.15 0.20 0.25

With Sampling 81.15 ± 0.99 78.85 ± 1.24 76.96 ± 1.29 76.52 ± 1.45 75.87 ± 1.69 75.71 ± 1.81
Without Sampling 81.15 ± 0.99 76.86 ± 1.73 75.34 ± 1.53 74.29 ± 2.07 73.91 ± 2.24 73.63 ± 1.88

J RESULTS OF PRBCD AND PGD

From the results in Table 18 and Table 19, we find that the conclusions drawn under PGD and PRBCD
attacks for large language models are consistent, with both demonstrating strong robustness.
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Table 18: Performance (ACC) for various models on different datasets under PRBCD attack.

Model Dataset GCN/PRBCD BOW TFIDF SBert E5 LLaMA

Cora
0 77.65 ± 1.34 78.01 ± 1.10 81.79 ± 0.99 81.64 ± 1.23 79.96 ± 0.41 80.83 ± 0.68
5% 73.22 ± 1.16 76.55 ± 0.87 79.22 ± 1.58 76.66 ± 0.99 76.13 ± 1.01 76.89 ± 0.82
25% 61.69 ± 1.47 67.25 ± 0.67 72.31 ± 1.24 64.50 ± 2.17 62.68 ± 0.62 64.27 ± 4.35

Citeseer
0 69.40 ± 0.85 69.25 ± 1.09 73.68 ± 0.99 69.56 ± 0.88 68.24 ± 1.30 72.53 ± 1.35
5% 63.81 ± 1.39 66.85 ± 1.78 71.00 ± 1.68 69.20 ± 0.73 65.88 ± 2.01 68.56 ± 1.13
25% 53.32 ± 1.72 59.13 ± 1.88 63.25 ± 2.32 57.74 ± 0.61 57.01 ± 2.31 56.90 ± 1.02

Pubmed
0 74.89 ± 1.22 75.36 ± 1.50 77.33 ± 1.43 79.35 ± 0.85 77.09 ± 1.30 74.93 ± 0.95
5% 69.17 ± 1.96 72.21 ± 1.25 72.39 ± 1.37 74.11 ± 1.55 70.82 ± 1.90 68.47 ± 1.02
25% 54.04 ± 2.04 56.53 ± 1.24 58.25 ± 2.62 60.20 ± 2.32 54.09 ± 2.00 51.56 ± 2.06

Table 19: Performance (ACC) for various models on different datasets under PGD attack.

Model Dataset GCN/PGD BOW TFIDF SBert E5 LLaMA

Cora
0 78.49 ± 1.13 81.46 ± 1.21 81.99 ± 0.76 83.17 ± 0.73 78.13 ± 1.07 80.28 ± 1.42
5% 73.71 ± 1.10 77.23 ± 1.07 79.18 ± 0.71 80.43 ± 0.59 70.91 ± 1.02 80.23 ± 0.92
25% 60.72 ± 1.92 67.53 ± 0.82 72.14 ± 2.13 69.84 ± 0.55 69.99 ± 1.92 76.75 ± 1.33

Citeseer
0 70.74 ± 0.72 73.02 ± 0.66 74.94 ± 0.88 75.14 ± 0.93 67.48 ± 3.40 71.71 ± 1.73
5% 68.84 ± 0.82 71.40 ± 0.78 72.60 ± 0.81 72.29 ± 1.27 70.82 ± 1.07 68.46 ± 4.92
25% 61.76 ± 1.44 64.36 ± 0.72 64.51 ± 1.50 64.38 ± 1.83 64.69 ± 2.99 68.61 ± 3.61

Pubmed
0 74.69 ± 2.07 76.86 ± 1.34 78.71 ± 1.17 81.83 ± 1.16 77.65 ± 0.74 75.15 ± 2.50
5% 72.40 ± 1.89 74.68 ± 1.40 74.68 ± 1.40 79.39 ± 1.06 76.68 ± 0.94 74.65 ± 1.45
25% 62.83 ± 1.61 66.18 ± 1.44 69.24 ± 1.85 71.06 ± 1.12 74.62 ± 1.64 72.72 ± 3.00

K RESULTS FOR DEEPSEEK

We incorporate additional LLM methods, such as Deepseek, in our experiments. The results are
presented in Table 20. As a consistent conclusion, high-quality features generated by models like
Deepseek improve model robustness to some extent compared to simple features like BOW and
TFIDF.

Table 20: Performance (ACC) for various models on different datasets and perturbation levels by
using Deepseek as enhancer.

Model Dataset GCN/PGD BOW TFIDF SBert E5 LLaMA Deepseek

Cora
0 78.49 81.46 81.99 83.17 78.13 80.28 81.41
5% 73.71 77.23 79.18 80.43 70.91 80.23 78.83
25% 60.72 67.53 72.14 69.84 69.99 76.75 72.48

Citeseer
0 70.74 73.02 74.94 75.14 67.48 71.71 73.12
5% 68.84 71.40 72.60 72.29 70.82 68.46 72.63
25% 61.76 64.36 64.51 64.38 64.69 68.61 65.55

Pubmed
0 74.69 76.86 78.71 81.83 77.65 75.15 76.24
5% 72.40 74.68 74.68 79.39 76.68 74.65 75.27
25% 62.83 66.18 69.24 71.06 74.62 72.72 71.76

L TIME COST

We showcase the computational time required by the LLM to produce high-quality features in
Table 21. Simple strategies like BOW and TFIDF mainly utilize indexing to generate features, which
is none parametric and have a linear cost. However, E5, Sbert, and Llama all follow transformer
architecture, which has a computational cost of O(N2). Also, for these parametric models, the
computational cost increases with the number of parameters. In this paper, the largest model we used
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is Llama with 7B parameters and therefore has the highest computational cost. Therefore, using Sbert
and E5 offers a more time-efficient solution while still providing strong robustness.

Table 21: Processing time for various models on the Cora dataset.

Model Time (s)

BOW 0.4
TFIDF 0.4
E5 57.5
Sbert 15.5
LLama 485.6
Angle-LLama 441.7

M RESULTS OF ARXIV23

We incorporate additional dataset, such as Arxiv23, into our experiments, where certain portions of
this dataset have not been previously encountered by LLMs.

From the results in Table 22, we find that LLaMA demonstrates greater robustness against structural
attacks compared to shallow models on Arxiv23.

Table 22: Performance (ACC) for various models on the Arxiv23 dataset at different perturbation
levels.

Dataset PRBCD BOW TFIDF SBert E5 LLaMA

Arxiv23
0 34.12 ± 0.94 43.53 ± 2.37 55.85 ± 1.49 50.88 ± 1.56 57.86 ± 1.79

5% 27.49 ± 1.40 38.45 ± 2.76 50.69 ± 1.41 44.93 ± 1.69 55.72 ± 2.54
25% 10.30 ± 0.67 18.81 ± 2.41 35.38 ± 1.55 31.95 ± 1.21 40.77 ± 3.74

N RESULTS FOR SENTENCE-LEVEL ATTACK

For sentence-level attacks, the experimental results are reported in Table 23. These results are
consistent with our previous conclusions, which indicate GCN has a stronger robustness against
textual attack and LLM-as-Predictor has stronger robustness compared to MLP.

Table 23: The attack success rate (ASR) comparison across datasets under sentence-level attack

Model Cora PubMed Citeseer

MLP (Sbert embedding) 46.5 32.5 60.0
GCN (Sbert embedding) 4.40 4.65 6.72
GPT-3.5 zero-shot 22.78 14.00 45.79
GPT-3.5 three-shot 29.69 13.38 47.96
GPT-4o mini zero-shot 39.87 13.57 50.25
GPT-4o mini three-shot 49.19 13.23 37.22
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