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Abstract

Current state-of-the-art vision-and-language models are evaluated on tasks either
individually or in a multi-task setting, overlooking the challenges of continually
learning (CL) tasks as they arrive. Existing CL benchmarks have facilitated research
on task adaptation and mitigating “catastrophic forgetting”, but are limited to
vision-only and language-only tasks. We present CLiMB, a benchmark to study
the challenge of learning multimodal tasks in a CL setting, and to systematically
evaluate how upstream continual learning can rapidly generalize to new multimodal
and unimodal tasks. CLiMB includes implementations of several CL algorithms
and a modified Vision-Language Transformer (ViLT) model that can be deployed
on both multimodal and unimodal tasks. We find that common CL methods can
help mitigate forgetting during multimodal task learning, but do not enable cross-
task knowledge transfer. We envision that CLiMB will facilitate research on a new
class of CL algorithms for this challenging multimodal setting.

1 Introduction

Large-scale pre-trained models, including crossmodal vision-and-language models, are generally
fine-tuned on each downstream task individually, requiring fine-tuning and storing new models for
each task. By contrast, multi-task learning requires fixing a set of tasks, but such training is incapable
of dynamically learning new tasks. Although continual learning (CL) algorithms have explored cross-
task knowledge transfer, existing methods primarily consider unimodal tasks in artificial settings [Jin
et al., 2021, Lin et al., 2021]. Multimodal pre-training can encode useful and transferable features
for diverse tasks, but learning from a sequence of different multimodal tasks and the subsequent
forgetting effects [Kirkpatrick et al., 2017] have not yet been studied.

Additionally, it is assumed that these deployed models will encounter tasks containing all modalities
seen during training time. This assumption means learning separate models for language-only,
vision-only, and vision-language tasks, as opposed to a single “generalist” model that can handle
all modalities or subsets of them [Reed et al., 2022]. Yet, existing work suggests that knowledge
grounded in multiple modalities can benefit unimodal tasks [Desai and Johnson, 2021, Jin et al.,
2022]. Currently, the research community lacks a suitable benchmark to systematically study how
models can continually learn vision-and-language tasks while being transferable to unimodal tasks.

In this paper, we introduce the Continual Learning in Multimodality Benchmark (CLiMB),1 to
facilitate the study of CL in vision-and-language tasks with deployment to multi- and unimodal tasks.
We formulate a learning problem wherein a model is first trained on sequentially arriving vision-
and-language tasks, referred to as upstream continual learning, and then transferred downstream
to low-shot multimodal and unimodal tasks. CLiMB initially includes four vision-and-language

1The code for our benchmark is available at https://github.com/GLAMOR-USC/CLiMB

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.
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Figure 1: CLiMB evaluates candidate CL models and learning algorithms in two phases. For Phase I,
Upstream Continual Learning, a pre-trained multimodal model is trained on a sequence of vision-and-
language tasks, and evaluated after each task on its degree of Forgetting of past tasks and Knowledge
Transfer to the next task. For Phase II, after each multimodal task the model is evaluated for its
Downstream Low-Shot Transfer capability on both multimodal and unimodal tasks.

tasks, five language tasks, and four vision tasks, and is extensible to new tasks, models, and learning
algorithms. Experiments using CLiMB find that existing CL algorithms can mitigate forgetting,
but not transfer knowledge across tasks, revealing a need for new research into continual learning
strategies for vision-language tasks. Further, current CL algorithms and multimodal models are not
well suited for low-shot adaptation to multimodal or unimodal tasks. We hope CLiMB will provide
the basis for developing models and learning algorithms for multimodal continual learning.

2 Background and Related Work

Continual, or lifelong, learning is an essential ability to develop autonomous agents that can learn
in a cumulative way [Chen and Liu, 2018]. In CL, a model is trained on sequentially arriving tasks
and evaluated both on its ability to learn future tasks as well as retain performance on past learned
tasks [Kirkpatrick et al., 2017]. A necessity for developing CL algorithms is benchmarks that collate
suitable sequential tasks. There are two primary approaches to create such CL benchmarks.

The first approach is to split existing tasks into non-overlapping sub-tasks that are sequentially
presented for continual learning. For example, one can divide tasks along input categories [Greco
et al., 2019] or output classes [Vinyals et al., 2016, Kirkpatrick et al., 2017] into disjoint sets.
Mimicking real world distribution shift, timestamps can group data instances according to the order
of their creation [Lin et al., 2021].

CLiMB goes beyond such artificial, single-task-based CL and instead aggregates several diverse tasks.
Similarly, unimodal benchmarks such as Visual Domain Decathlon [Rebuffi et al., 2017] and Natural
Language Decathlon [McCann et al., 2018] aggregate 10 image classification and 10 language tasks,
respectively. The CLIF-26 benchmark [Jin et al., 2021] is built for CL on the GLUE [Wang et al.,
2019] language tasks. CLiMB goes beyond these unimodal benchmarks by evaluating on sequences
of multimodal, vision-and-language tasks and testing downstream transfer to unimodal tasks.
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Task Vision Input(s) Language Input(s) Decision Score Metric

VQAv2 Image Question 1 of 3129 VQAScore2

NLVR2 2 images Caption True/False Accuracy
SNLI-VE Image Hypothesis Ent/Neu/Con Accuracy
VCR Image w/ bboxes Question + 4 Answers 1 of 4 Accuracy

IMDb Sentence Pos/Neg Accuracy
SST-2 Sentence Pos/Neg Accuracy
HellaSwag Sentence Prefix + 4 Endings 1 of 4 Accuracy
CommonsenseQA Question + 5 Answers 1 of 5 Accuracy
PIQA Question + 2 Answers 1 of 2 Accuracy

ImageNet-1000 Image 1 of 1000 Top-1 Accuracy
iNaturalist2019 Image 1 of 1010 Top-1 Accuracy
Places365 Image 1 of 365 Top-1 Accuracy
COCO-object Image n of 80 Micro-F1

Table 1: The initial tasks in CLiMB include various forms of vision and language inputs, and each
task is framed as a classification problem. Multimodal vision-and-language tasks serve as upstream
training for both multimodal and unimodal downstream, low-shot tasks.

3 CLiMB: The Continual Learning in Multimodality Benchmark

CLiMB tests the ability of models and learning algorithms to adapt to a sequentially arriving stream
of vision-language tasks, as well as rapidly transfer to new multimodal and unimodal tasks (Table 1).

3.1 CLiMB Learning and Evaluation

Learning and evaluation in CLiMB proceeds in two phases: upstream continual learning and
downstream low-shot transfer (Figure 1). Table 2 summarizes our CL evaluation metrics. We
denote a task with modality M ∈ {V,L, V L} as T i

M and the number of such tasks as KM .

Upstream Continual Learning of Multimodal Tasks A candidate modelM encounters a se-
quence of KV L vision-language tasks, T 1...KV L

V L . M can be initialized with a pre-trained encoder.
We allow parameter additions to the base model on a per-task basis. In this work we add task-specific
classification layers for each new task on top of the base encoder model. The modelM is sequentially
trained on the training split of each task T i

V L with candidate CL algorithm A. For task T i
V L, the

model is not presented with any inputs from T 1...i−1
V L . However, the CL algorithm A may allocate

memory to access previous training examples.

We evaluate two primary model properties in the upstream phase: upstream knowledge transfer from
past learned tasks to new tasks, and withstanding forgetting of previously-seen tasks. The upstream
knowledge transfer TUK(i) on task T i

V L is the relative gain in score from learning the previous tasks
T 1...i−1
V L . Forgetting TF (j ← i) of previously-seen task T j

V L is the relative performance degradation
in that task after learning subsequent tasks T j+1...i

V L (Table 2).

Downstream Transfer to Low-Shot Tasks We evaluate the low-shot adaptation ability of the
modelM after learning each upstream vision-language task. After training on the ith upstream task
T i
V L, we evaluate low-shot transfer to remaining multimodal tasks T i+1...KV L

V L , as well as unimodal
tasks T 1...KV

V and T 1...KL

L . Specifically, for every task in each modality, a low-shot instance of
task T i

M , denoted as T LS(i)
M , is created. The low-shot transfer ability to this task is evaluated by

fine-tuning upstream encoder checkpoints on task T LS(i)
M . We compute the low-shot transfer TM

LS(i)

as the relative improvement of the CL encoder’s performance on the low-shot task T LS(i)
M , denoted

as SLS(i)
A , over the pre-trained encoder’s performance on the same low-shot task, SLS(i)

PT .

2https://visualqa.org/evaluation.html
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Evaluation Type Description Metric (×100%)

Upstream
Knowledge
Transfer, TUK(i)

Improvement of performance on task T i
V L after training

on tasks T 1...i
V L using algorithm A (Si

A) compared to
finetuning the pretrained model on T i

V L directly (Si
PT ).

TUK(i) =
Si
A−Si

PT

Si
PT
−Si

R

Forgetting
Transfer,
TF (j ← i)

Decrease of performance when a model trained on tasks
T 1...i
V L is evaluated on task T j

V L(j < i). Sj←i
A denotes

model performance on T j
V L after training up to i.

TF (j ← i) =
S
j
A−S

j←i
A

S
j
A−S

j
R

Low-Shot Transfer,
TM
LS(i)

Improvement of performance on low-shot task T LS(i)
M

using an encoder checkpoint trained by upstream al-
gorithm A (SLS(i)

A ) compared to learning the same
low-shot task without any upstream learning (SLS(i)

PT ).

TM
LS(i) =

S
LS(i)
A −S

LS(i)
PT

S
LS(i)
PT

−Si
R

Table 2: Model and algorithm evaluation metrics in the upstream and downstream phases. For the
ith task, we compute a model’s δi = Si − Si

R, the model’s task score Si minus the score Si
R of

random selection. Our evaluation protocol computes each metric as a relative change in the δi of a
CL algorithm A over a baseline setting B to enable across-task comparisons. Each evaluation metric
is calculated as δA−δB

δB
= SA−SB

SB−SR
, and is presented as a percentage.

3.2 CLiMB Multimodal and Unimodal Tasks

CLiMB initially includes four multimodal upstream vision-language tasks, five language-only tasks,
and four vision-only tasks (Table 1). We frame each as a classification task.

Vision-Language Tasks CLiMB includes VQAv2 [Goyal et al., 2017], NLVR2 [Suhr et al., 2019],
SNLI-VE [Xie et al., 2019] and VCR [Zellers et al., 2019a]. Solving these challenging tasks requires
different kinds of knowledge in the multimodal model: question answering, visual and commonsense
reasoning, entailment understanding.

Language-Only Tasks CLiMB includes IMDb [Maas et al., 2011], SST-2 [Socher et al., 2013],
HellaSwag [Zellers et al., 2019b], CommonsenseQA [Talmor et al., 2019], and PIQA [Bisk et al.,
2020]. We hypothesize that visually-grounded knowledge from upstream tasks may benefit tasks
such as IMDb and SST-2, which are sourced from movie reviews, as well as HellaSwag, sourced
from video captions, and PIQA, sourced from physically-grounded instructions from images and
videos. Further, commonsense knowledge and reasoning skills obtained from VCR and NLVR2 may
benefit tasks like HellaSwag, CommonsenseQA, and PIQA.

Vision-Only Tasks CLiMB includes ImageNet-1000 [Russakovsky et al., 2015], iNatural-
ist2019 [Van Horn et al., 2018], Places365 [Mahajan et al., 2018], and MS-COCO object detection (for-
mulated as a multi-label classification task). Since VQAv2 images are sourced from MS-COCO [Lin
et al., 2014], we hypothesize VQAv2 upstream learning may aid in the COCO object detection task.

4 Modeling and Experiments

Using CLiMB, we study the performance of several commonly used CL algorithms on multimodal
tasks. We use fixed upstream task order (VQAv2→ NLVR2→ SNLI-VE→ VCR).

4.1 Vision-Language Encoder: ViLT

We use a pre-trained Vision-Language Transformer (ViLT) [Kim et al., 2021] as a backbone encoder.
Unlike other pre-trained vision-language models [Lu et al., 2019, Chen et al., 2020] that build upon
region-level features extracted from Faster R-CNN [Ren et al., 2015], ViLT directly operates on
image patches without using any convolutional layers. In ViLT, text tokens and image patches are
concatenated into an input sequence and passed through a Transformer, which learns the vision-
language alignment with self-attention across both modalities (Figure 2).
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Figure 2: The ViLT model [Kim et al., 2021] operates on vision and language inputs (left). We adapt
these inputs for language-only tasks by providing the average MS-COCO image as in-domain visual
input, and vision-only tasks by providing vacuous language input “This is an image” (right).

4.2 Upstream Experiments: Algorithms and Task Ordering

CLiMB includes several CL algorithm implementations. Sequential Fine-tuning (SeqFT) fine-tunes
the full encoder and task-specific layers for each task in order. This baseline algorithm is an extension
of the single-task fine-tuning paradigm to the CL setting. We also experiment with a Frozen Encoder
baseline that trains only the task-specific layers. Fine-tuning all parameters may cause forgetting
since the encoder parameters are overwritten, while fine-tuning only the task-specific layer prevents
knowledge transfer since the shared encoder parameters are fixed. In Frozen Bottom-K, we freeze
the bottom K layers of the encoder and fine-tune the rest, balancing these solutions (we set K=9).

CLiMB also includes two CL algorithms that fine-tune all parameters but are designed to mitigate
forgetting. Experience Replay (ER) [Chaudhry et al., 2019] caches a small percentage of training
examples in a memory buffer after training on each task, and periodically performs a “replay” training
step using cached examples to refresh the model. Elastic Weight Consolidation (EWC) [Kirkpatrick
et al., 2017] is a regularization method that adds an auxiliary L2 loss between weights in the current
model and previous checkpoints to slow change in important encoder parameters.

Finally, CLiMB includes Adapters [Houlsby et al., 2019], which add a small number of task-specific
parameters, called Adapter modules, within layers of the pre-trained encoder. During training, the
encoder’s original parameters are kept frozen and only the Adapter modules are trained. We use
a new set of Adapter modules each time we train on a new task, which leaves the previous tasks’
modules untouched and prevents forgetting, but also does not facilitate cross-task knowledge transfer.

4.3 Downstream Low-Shot Experiments

We consider low-shot multimodal and unimodal tasks. We first define low-shot settings for different
task types, then explain how we apply the multimodal ViLT model to unimodal settings.

Low-Shot Task Settings We study “low-shot” training paradigms where only a fraction of full
training data is available. For the multimodal classification tasks, NLVR2 and SNLI-VE, we use
2048 examples per class, whereas for the multiple choice VCR task, we use 5% of the training data.
Among unimodal tasks, for vanilla classification tasks (IMDb, SST2, ImageNet-1000, iNaturalist,
and Places365), we consider training with N = {16, 32} examples per class. For multiple choice
classification tasks (PIQA, CommonsenseQA, HellaSwag), we use N = {1024, 4096} since these
tasks are considerably more challenging. For the multi-label COCO object detection task, we consider
M = {5%, 10%} of the original training data.
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Alg A Params Task 1 Task 2 Task 3 Task 4
Trained VQAv2 NLVR2 SNLI-VE VCR

Direct FT 100% [67.70] [73.07] [76.31] [61.31]
SeqFT 100% 0.13% [67.79] -1.80% [72.66] -3.33% [74.89] -5.09% [59.47]
Frozen Enc 7.88% -14.10% [58.15] -40.78% [63.66] -15.98% [69.45] -53.47% [41.90]
Frozen B9 25.92% -0.58% [67.30] -0.58% [72.94] -3.31% [74.90] -15.49% [55.69]
ER 100% 0.26% [67.87] 0.56% [73.20] -2.89% [75.08] -4.45% [59.70]
EWC 100% 0.20% [67.84] -2.79% [72.39] -4.52% [74.38] -4.86% [59.55]
Adapters 13.02% 0.59% [68.10] 2.55% [73.66] -0.56% [76.08] -0.36% [61.18]

Table 3: Upstream Knowledge Transfer TUK(i) relative to direct fine-tuning on each task, along
with task score [Si

A] (%), for different CL algorithms A applied to ViLT. No CL algorithms achieve
notable positive Knowledge Transfer, while the majority in fact hurt learning of new tasks.

Unimodal Tasks in ViLT To apply ViLT to vision-only tasks, we use the phrase “This is an image”
as the language input paired with the input image from the vision task. For language-only tasks,
however, we need to address several challenges to effectively apply ViLT.

First, we find that averaging all MS-COCO training images into a single, in-distribution image paired
with text inputs produces better results with ViLT than not concatenating any image tokens at all to
the Transformer input sequence.

Second, ViLT only allows a maximum of 40 language tokens in the input, which is enough for
captions but insufficient for most language tasks. To deal with this challenge, we first downsample
the vacuous image to reduce its token length from 144 to 16. Next, we extend the available language
tokens by creating copies of pre-trained ViLT’s language positional embeddings, E ∈ R40×d, and
concatenating these copies to get extended positional embeddings, Ê ∈ RL×d, where L is the
maximum sequence length of each task and d is the embedding dimension.

Finally, ViLT’s language pre-training is on image captions that do not represent more general language
use. We additionally experiment with a VAuLT [Chochlakis et al., 2022] model that extracts language
representations from a pre-trained, frozen BERT [Devlin et al., 2019] that serve as input embeddings
for ViLT. Please refer to the supplementary materials for more experiments and details.

5 Results

We present Knowledge Transfer and Forgetting capabilities of different CL algorithms, experiments
with multiple upstream task orders, and Low-Shot Transfer to downstream tasks.

5.1 Upstream Learning Results

We find that common CL algorithms do not facilitate positive knowledge transfer in the vision-and-
language setting of CLiMB, and in fact often hurt future task learning. Some are able to effectively
mitigate forgetting, but none perform as well as directly fine-tuning on a candidate task. By examining
the effects of task order, we conclude that the VCR task hurts further upstream task learning.

Upstream Knowledge Transfer In Table 3, we compare the upstream knowledge transfer exhibited
by the different algorithms described in Section 4.2. Freezing the entire encoder severely under-
performs the direct fine-tuning baseline for each task. Among other methods, all perform similarly
to directly fine-tuning on the first task, with approximately zero knowledge transfer. However, for
all methods other than Adapters, more continual learning hurts the model’s ability to learn new
tasks, as evidenced by the increasingly negative upstream transfer for later tasks. This effect may be
due to loss of pre-training knowledge which is useful for task adaptation. This property of models
to learn new tasks poorly in a continual learning setting is also called intransigence [Chaudhry
et al., 2018]. Adapters, which do not train shared encoder parameters, do not exhibit this negative
knowledge transfer, and show comparable performance to full model fine-tuning despite having very
few learnable parameters.
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Figure 3: (a) Forgetting TF (j ← i) (%) of the previous i− 1 tasks for each algorithm. Each subplot
denotes model performance on one of the previous tasks. While all algorithms that fine-tune shared
parameters exhibit Forgetting, ER best preserves past task performance. (b) Effect of task order on
upstream Knowledge Transfer (left) and Forgetting (right) for three different orders. Lines represent
performance conditioned on a particular task order. After experiencing the VCR task, models exhibit
lower Knowledge Transfer and higher Forgetting.
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Figure 4: Low-shot transfer, TV L
LS (j), for multi-

modal tasks j = {i+1, ...,KV L} after training on
upstream task T i

V L. All CL algorithms exhibit neg-
ative Low-shot transfer on all multimodal tasks.

Forgetting Figure 3a shows how each algo-
rithm affects forgetting of previous tasks. Se-
quential Fine-tuning forgets previous tasks to
a large extent, Frozen Bottom-9 shows slight
improvement, and freezing the encoder pre-
vents forgetting entirely. Experience Replay
does a better job at retaining task performance,
while EWC shows only a slight improvement.
Adapters enable a model to learn upstream tasks
in the multimodal CL setting while not forget-
ting tasks already learned, adding only 3-4%
parameters per task. Interestingly, forgetting is
more severe after training models on the VCR
task, demonstrating that the order of encounter-
ing tasks affects continual learning.

Effect of Upstream Task Order Figure 3b
shows the upstream knowledge transfer and for-
getting for ViLT using Sequential Fine-tuning on three different task orders. While the upstream
transfer is similar for the first two tasks in each task ordering, training on VCR negatively affects
both knowledge transfer to future tasks and forgetting of past tasks. This effect may be due to a shift
in the visual domain of VCR: input images have colored boxes drawn on them to represent grounded
objects in the question, following previous work [Zellers et al., 2021, Hessel et al., 2022].

5.2 Downstream Low-Shot Transfer Results

In downstream transfer, we fine-tune the entire model irrespective of the upstream CL algorithm. We
find that upstream learning with current CL algorithms3 does not help the ViLT encoder generalize to
multimodal and unimodal tasks in low-shot settings.

Vision-Language Tasks Figure 4 presents the low-shot transfer TV L
LS (j) for all future tasks j > i

after training on upstream task T i
V L (x-axis). We observe that low-shot transfer is always negative,

implying that upstream continual learning always hurts the model’s ability to learn new tasks in
low-shot settings. Since upstream learning hurts model adaptation on new multimodal tasks with full
training data (Table 3), it is expected that this effect will also be reflected in the low-shot regime.

3We do not include Adapters and Frozen-Encoder as they do not modify pre-trained ViLT’s parameters.
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Figure 5: Low-Shot Transfer (%) comparison between different CL algorithms on downstream
vision-only tasks (left: ImageNet; right: COCO). Findings on iNaturalist 2019 and Places365 are
similar to ImageNet (see Supp). Generally, current CL algorithms hurt low-shot transfer compared to
direct fine-tuning, with Frozen Bottom-9 being the least harmful.

Vision-Only Tasks Figure 5 presents low-shot transfer on vision downstream tasks, using check-
points from different upstream CL algorithms. Fine-tuning ViLT without CL performs well on
vision-only tasks, achieving 65% top-1 accuracy on ImageNet-1000 with only 16 shots per class (see
Supp). This performance suggests that ViLT already contains rich visual representations, making it
sample efficient when transferred to vision-only tasks.

Second, CL actually hurts the transferability to downstream vision tasks. Among CL algorithms,
Sequential Fine-tuning is the most harmful one, while freezing the bottom 9 layers causes the least
degradation, almost matching direct fine tuning. This finding is consistent with previous work
suggesting that bottom layers in deep models learn more general and transferable representations
than upper layers [Yosinski et al., 2014, Lee et al., 2019].

Notably, upstream VQA and SNLI-VE checkpoints have a less negative effect on downstream COCO
performance compared to NLVR2 and VCR. Because images from NLVR2 and VCR are more
dissimilar to MS-COCO than the image sources of VQA and SNLI-VE, we hypothesize that large
data distribution shifts between upstream and downstream tasks hurts transfer.

Language-Only Tasks In Figure 6, we compare the performance of two pre-trained encoders, ViLT
and VAuLT, on low-shot language tasks, and the effects of upstream multimodal CL on low-shot
transfer when applied to both encoders.

We observe that model adaptation to language tasks is challenging. The ViLT model frequently
performs only marginally better than the random baseline, regardless of the upstream algorithm.
Using VAuLT as the encoder achieves notably higher accuracy compared to ViLT on all tasks,
indicating that strong language priors are key to low-shot language adaptation.

All upstream CL tasks improve VAuLT’s transferability to SST-2 except for VCR. For both SST-2 and
IMDb, there are significant drops after learning VCR in the upstream phase with ViLT and VAuLT,
following vision-only results showing VCR is farther out of distribution than other upstream tasks.

However, we do not observe similar trends on the three multiple-choice tasks, where CL generally
hurts. We believe that current multimodal tasks do not learn complex language reasoning skills,
hurting model transferability to language-only reasoning tasks.

6 Conclusions

We propose the Continual Learning in Multimodality Benchmark (CLiMB) to study CL in
multimodal tasks with deployment to multi- and unimodal tasks. Our experiments find that existing
CL strategies do not generalize well to sequences of multimodal tasks or enable effective low-
shot adaptation to downstream multi- or unimodal tasks. We hope CLiMB will allow systematic
evaluation of new models and algorithms for multimodal continual learning. CLiMB is designed to
be an extensible community tool for studying tasks, model architectures, and CL algorithms.
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Figure 6: Comparisons between different encoders and continual learning algorithms on downstream
language-only tasks (left: SST-2; right: CommonsenseQA). Note that the proposed Low-Shot Transfer
metric is computed relative to the pre-trained encoder, making scores for different encoders (in this
case, ViLT and VAuLT) incomparable. Hence, we plot the absolute accuracy with shaded standard
deviation. VAuLT strictly improves absolute accuracy over ViLT in direct fine-tuning and CL settings.
See Supp for comparable IMDb, HellaSwag, and PIQA results.

7 Limitations

Task-Specificity The current CLiMB design allows for task-specific parameters and for model
awareness of the task, but multi-task language modelling has seen impressive results from reframing
all tasks as sequence-to-sequence problems that remove task-specific parameters [Raffel et al., 2020].
In future iterations of CLiMB, we intend to explore this task-agnostic paradigm, building further on
the promising Adapters methods by learning a library of adapters that are dynamically selected based
on input vision and language on a per-instance basis. Additionally, the task formulations in CLiMB
are mostly classification, but sequence-based vision-and-language tasks could allow the study of
embodied navigation [Anderson et al., 2018] and task completion [Shridhar et al., 2020], and may be
feasible in a more task-agnostic CLiMB framework.

Additional CL Metrics We have defined a set of metrics and methodologies for the challenge
of multimodal continual learning, but these metrics are only an initial starting point. We design
CLiMB to be flexible so that researchers can add metrics that they find valuable to measure, such as
intransigence [Chaudhry et al., 2018].

Ethical Considerations The initial CLiMB release is limited to English-only text, eliding the
challenges of multi-lingual language tasks. Further, images in currently included datasets are sourced
from social media, movie clips and web searches, thus excluding certain image domains, including
those taken for accessibility needs such as descriptions for people with blindness [Gurari et al., 2018].
Such biases in a benchmark, inherited from the multi- and unimodal datasets selected, serve the needs
of English-speaking, able-bodied folks as a “default.”

8 Future Work

The initial findings from CLiMB reveal several promising opportunities and lines of research.

Adapters Primarily, we find that Adapters are effective at mitigating catastrophic forgetting,
while achieving comparable performance to full model fine-tuning. However, our current Adapter
experiments introduce an independent set of parameters for each multimodal task, which does not
facilitate sharing of task knowledge between tasks. Within unimodal multi-task and continual learning,
Hypernetworks [Mahabadi et al., 2021] and compositional Adapter modules [Zhang et al., 2022]
have been shown to facilitate knowledge transfer by generating Adapter parameters from shared task
information. We plan to investigate how these methods generalize to multimodal CL, where shared
information across tasks in either one or both modalities can influence generation of Adapter module
parameters for new tasks.
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Distribution Shifts with Multiple Modalities Second, the stark performance degradation of the
CL model after training on VCR, and the subsequent poor downstream few-shot transfer, invites study
of how domain shifts in both vision and language inputs can affect upstream learning and forgetting,
and can be mitigated.

Sequence-to-Sequence Tasks Finally, as we noted in our Limitations, currently CLiMB only
supports classification tasks. However, recently several “generalist” models have been developed,
such as UnifiedIO [Lu et al., 2022] and FLAVA [Singh et al., 2022], that can solve a large variety of
multimodal and unimodal tasks by formulating all tasks as a Sequence-to-Sequence problem. We
plan to extend CLiMB to support such all-purpose Sequence-to-Sequence models.
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