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Abstract

This paper demonstrates spherical convolutional neural networks (spherical CNN) offer dis-
tinct advantages over conventional fully connected networks (FCN) at estimating rotation-
invariant indices of tissue microstructure from diffusion MRI (dMRI). Such microstructure
indices are valuable for identifying pathology and quantifying its extent. However, current
clinical practise commonly acquires dMRI data consisting of only 6 diffusion weighted im-
ages (DWIs), limiting the accuracy and precision of estimated microstructure indices.

Machine learning (ML) has been proposed to address this challenge. However, existing
ML-based methods are not robust to differing dMRI sampling schemes, nor are they ro-
tation equivariant. Lack of robustness to sampling schemes requires a new network to be
trained for each scheme, complicating the analysis of data from multiple sources. The lack
of rotational equivariance potentially prevents these methods from estimating the same
microstructure viewed from different angles consistently. Here, we show spherical CNNs
represent a compelling alternative that is robust to new gradient schemes as well as offering
rotational equivariance. We show the latter can be leveraged to decrease the number of
training datapoints required.

1. Introduction

This work aims to demonstrate the advantages of spherical convolutional neural networks
(S-CNNs) over standard fully-connected network (FCN) methods for estimating microstruc-
ture indices from diffusion MRI data. Diffusion MRI (dMRI) is a non-invasive method of
measuring diffusion of water in tissue. This methodology has led to discoveries in neuro-
science (Scholz et al., 2009; Sagi et al., 2012) as well as providing methods to identify and
quantify pathology in neural tissue.

Diffusion MRI acquires data in the form of diffusion-weighted images (DWI). Each DWI
voxel contains a measurement sensitised to diffusion along a direction of choice known as the
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diffusion gradient direction. This measurement depends on the angle between the diffusion
gradient direction and the underlying tissue microstructure we probe. For a full picture of
microstructure within a voxel, multiple DWIs are acquired from multiple directions which
collectively are known as a gradient scheme. The measurements drawn from the correspond-
ing voxel of these DWIs can be fitted to mathematical models, such as the diffusion tensor
(DT) (Basser et al., 1994), to capture the diffusion occurring at the voxel in all directions.
This is typically in the form of the apparent diffusion coefficient (ADC) profile, a spherical
function. From these models, orientation-independent indices can be derived to describe
the microstructure; example DT indices are mean diffusivity and fractional anisotropy (FA)
which characterise the size and shape of diffusion respectively. The computation of these
indices from DWIs is known as dMRI parameter estimation. However, signal-noise limits
estimation fidelity for conventional models, requiring more DWI acquisitions than are rou-
tinely acquired clinically (Jones, 2013).

As in many other fields, dMRI parameter estimation has recently been revolutionised by ex-
ploiting deep learning, yielding greatly increased accuracy in comparison with conventional
methods when estimating with a limited number of DWIs (Golkov et al., 2016; Aliotta et al.,
2019). However, current deep-learning models, which are based on FCNs, are ignorant of
the gradient scheme adopted by a given DWI acquisition, rendering these methods inflexible
to new sampling schemes. This complicates the application of a model across data acquired
from multiple sources. Moreover, these networks do not exhibit rotational equivariance and
therefore lacking generalisation between different views of the same microstructure.

Previous attempts to include the relationship between the gradient schemes and image
acquisitions (Chen et al., 2020; Park et al., 2021) do not utilize the topological features of
the sphere inherent in the fundamental structure of the modelled signal. S-CNNs, recently
proposed as an alternative to FCNs (Sedlar et al., 2021), provide a more natural solution to
this problem. However, currently there exists no direct evidence of the theoretical benefits
of S-CNNs, such as rotational equivariance and robustness to different gradient schemes.
Here we aim to provide the very first empirical evidence of these advantages in the context
of estimating rotation-invariant diffusion parameters.

2. Methods

The study aims to assess two potential advantages of S-CNNs over FCNs for estimating
rotation-invariant microstructure indices. First, are S-CNNs more robust to differing gra-
dient schemes than FCNs? And second, does rotational equivariance provide benefit for
estimation of microstructure indices? This will be assessed in experiment 1 and 2 respec-
tively.

2.1. Common experimental settings

All of the networks evaluated in this paper are supervised neural networks, therefore, they
require a high quality ground truth microstructure index to be estimated by the network
coupled with the corresponding DWI inputs. FA is chosen as the microstructure index
due to its potential sensitivity to differing gradient schemes and it’s estimation should be

2



Spherical-CNNs improve ML-based diffusion MRI parameter estimation

DT fitting

DWI subsetting

Compute ADC profile

Allign diffusion direction

Diffusion Tensor ADC profile

Figure 1: Here we show generation of GT DT estimates along with generating 6 DWI sub-
sets and the noisy ADC profile for both training and testing in both experiments.

independent on the primary fibre orientation. Furthermore, we choose the input to the
estimation algorithm to use 6 DWIs to mimic routine clinical acquisitions. For the high
quality ground truth output, a dataset is required that contains a sufficiently large number
of DWIs to provide accurate estimation of FA. For this reason, we have chosen the dMRI
data from the Human Connectome Project (HCP), which includes 90 DWIs at b=1000 s

mm2 .
Ground-truth (GT) FA maps are computed from the complete set of DWIs. Subsets of 6-
directional DWIs are sampled from the 90 DWI to be in maximal agreement with the chosen
gradient schemes. Training was performed with one participant and, to show generalisation,
data from 12 unseen subjects were used for testing.

Table 1: Table describing all of the different network architectures used in this paper.

Network Input Network architecture

Conventional FCN (C-FCN) 6 directional DWI measurements at each voxel, i.e. 6 scalar values 3 hidden layers with sizes [100,100,10] and Relu activation
Spherical FCN (S-FCN) Interpolated noisy ADC profile, sampled with a 33x64 matrix Identical to C-FCN
Spherical CNN (S-CNN) Identical to S-FCN Hybrid spherical CNN model (see appendix A)

2.2. Networks

All of the network architectures used across both experiments are described in table 1, all
of these networks are designed to estimate FA voxel-by-voxel. The S-CNN architecture we
use is known as the hybrid spherical CNN architecture (Cobb et al., 2021), this has been
shown to estimate parameters with high fidelity for a variety of tasks. We employ a version
of this model tailored for regression to estimate FA. Training parameters for FCNs were
chosen in accordance with the literature: three hidden layers all consisting of [100,100,10]
units with ReLU activation function. All networks were trained with the Adam optimizer
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for 50 epochs with learning rate set to 0.001, the batch size 32 and the loss metric MSE.
These values are consistent with the literature.
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Figure 2: Results of experiment 1 are visualised on an subject unseen during training.
Conventional fully-connected networks are compared against the SCNN model at
estimating FA with either the same gradient scheme as used in training or a new
sampling scheme.

2.3. Generating densely sampled spherical signals from 6 directional DWI at
each voxel with sampled ADC profile

Densely sampled spherical signals are required as input for both S-CNNs and the S-FCN.
The densely sampled spherical signals are generated for each voxel by exploiting the 1-to-1
mapping between the six-directional DWI measurements and diffusion tensor. Calculation
of a diffusion tensor from just 6 DWIs will inevitably provide a noisy estimate of the DT,
as the number of measurements is equal to the number of unknowns. The noisy DT is used
to generate a ADC profile that is then highly sampled with a 33x64 matrix. This sampled
ADC profile corresponds exactly to the original 6-direction DWI input. This process is
visually described in Figure 1.

2.4. Experiment 1

This experiment addresses the first question. Gradient scheme dependence is evaluated by
training using a subset of the DWI generated by one gradient scheme and testing on a
subset of the DWIs generated with this same gradient scheme as well as a different scheme.
We use two common gradient schemes, Skare (Skare et al., 2000) and Jones (Jones et al.,
1999) to extract 6-directional DWIs from the 90 DWIs. FCN follows the standard practice
of feeding each DWI signal to a different node so we call this model conventional FCN
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(C-FCN) . This is compared against the S-CNN, whose input is the highly sampled ADC
profile. The information for both of these networks is derived from one voxel at a time.

2.5. Experiment 2

The second question is evaluated with experiment 2. The benefit of rotation equivariance
is explored by training both S-CNN and FCN on data with every primary fibre orientation
aligned along a single axis. This is achieved by adapting the dense ADC sampling algorithm
to produce a dataset with a single primary fibre orientation. In the dense ADC sampling
algorithm, after the noisy DT is estimated, the shape of the noisy DT is extracted by
eigendecomposition. Following this the primary and secondary directions of diffusion are
set to the anterior-posterior and superior-inferior axes, respectively; see visual description
in the light blue dashed box in Figure 1. The sampled noisy ADC profile aligned along
the anterior-posterior axis is as input for both the S-CNNs and the FCN. For consistency
with S-CNN, the input of the FCN must be adapted to be compatible with the spherical
signal spherical FCN (S-FCN). At test time tissue with primary fibre orientation in all
directions will be estimated: networks exhibiting rotational equivariance are expected to
perform equally well here. To show further benefits of rotational equivariance we test to
see if the rotational equivariance allows S-CNNs to estimate with high fidelity when starved
of training data points. For this, a S-CNN is trained with only 10 % of the total training
datapoints. The gradient scheme is kept consistent between training and testing, both using
Skare.

2.6. Evaluation

In both experiments, quantitative measurements of the estimation error are calculated with
root mean square error (RMSE) over specific FA ranges over the whole image. Statistical
significance between distributions is quantified with paired t-tests. Qualitative assessment
is made with maps of estimates and errors relative to the ground truth. In the second ex-
periment the distribution of estimation error over the primary fibre orientation is evaluated.

3. Results and discussion

Results of experiment 1 are shown in figures 2 and 3. Figure 2 compares the C-FCN and
the S-CNN models,when the gradient scheme is either consistent, or inconsistent, between
training and testing. Note minimal differences between the C-FCN model and the S-CNN
model when the gradient schemes at test time are consistent with training. However, when
applied to the new sampling scheme, where the DWI directions do not correspond to the
training set, the C-FCN model performs far worse. Note the error is structured, maximal in
regions of high FA, whereas, the S-CNN model remains faithful to the ground truth image,
with only a small increase in error.

It is expected that the C-FCN model is unable to accurately estimate regions of high
FA when testing and training gradient schemes do not correspond. In highly anisotropic
microstructure, the extent of signal attenuation greatly depends on the direction in which
it is measured. This explains why areas of high FA, an example being the corpus callosum
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Figure 3: Boxplots of the RMSE over the 12 testing subjects for both experiments, with
p-values between distributions from paired t-test shown.

at the centre of these brain images, are poorly estimated by the C-FCN model. Whereas,
for regions of isotropic tissue microstructure the signal is less dependent on the gradient
direction and therefore estimations on these voxels will be less affected.

Figure 3 substantiates this claim quantitatively with measures of the RMSE over the 12
subjects. We see for anisotropic signals (FA > 0.4) the conventional FCN performance is
significantly worse (p < 6e-12) when applied to a new gradient scheme than on the training
scheme, whereas, the S-CNN models estimation fidelity does not decrease when applied to
a scheme it hasn’t been trained on.

The results of experiment 2 are shown in figures 4,5 and 3. Figure 4 shows the effect
of estimating the full brain volume using networks trained only on tissue microstructure
aligned with the anterior-posterior axis. For the S-FCN model the FA is consistently un-
derestimated in regions where the underlying tissue microstructure does not align with
anterior-posterior direction (e.g. the corpus callosum which consists of left-right white mat-
ter tracts). In contrast, the S-CNN models estimate FA with high accuracy for tensors in
all directions, and the noise is far less structured than that of the S-FCN. This is mirrored
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Figure 4: Comparison between the FCN model with spherical input and the S-CNN model
at estimating the FA when trained only with microstrucure oriented along the
anterior-posterior axis. These are also compared against a training data starved
S-CNN.

in the quantitative measurements over the 12 testing subjects, shown in figure 3. The
S-FCN model only well estimates isotropic signals (FA< 0.2), notice that the maximum
difference between the median RMSE for different methods is 0.04. When the signal be-
comes isotropic, the S-FCN model estimates the signal significantly (p=1.1e-17) worse than
the S-CNN models with a difference of 0.08 between the median RMSEs. As the signals
get more anisotropic the S-FCN model performs even worse until in the top FA bracket
(0.8≤FA<1) the median RMSE between the S-FCN and the S-CNN models is 0.5, 10 times
the difference in error of the isotropic signals.

These results are supported by Figure 5, where the distribution of the absolute error over
the full range of primary fibre orientations is shown. The S-FCN model well estimates tissue
microstructure aligned with the anterior-posterior axis, seen during training. However the
error quickly grows as the primary fibre orientation deviates from this axis. This adverse
feature is not exhibited by the S-CNN model as the estimation error is low and independent
of training dataset distribution of the primary fibre orientation . The lack of rotational
equivariance in FCNs hinders estimation performance when generalising to microstructure
with primary fibre orientation not sampled in the training distribution. This has potential
for orientation bias in the training dataset to lead to poor estimation for under-sampled
directions.

In figures 4 and 3, another advantage of rotational equivariance is shown. Performance
of the S-CNN network is not greatly changed when only a tenth of the training dataset is
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used. This is shown in the maps of FA estimated by the data starved S-CNN model in figure
4 and the RMSE over the 12 testing subjects shown in figure 3. The robustness to a lack of
training data is due to S-CNNs being able to generalise from microstructure across the full
range of primary fibre orientation. Therefore, during training only a diverse distribution
of the microstructure shape is required and not their orientations as well. This reduces
the number of training datapoints required for good estimation. This is a real benefit when
training with simulated data, as the microstructure orientation does not need to be sampled
the shape parameters may be more densely sampled.

Figure 5: The distribution of the estimation error over the sphere is compared between the
spherical fully-connected network and spherical-CNN.

4. Conclusion

In this work we explore the advantages of S-CNNs for dMRI parameter estimation over con-
ventional fully-connected networks. Representing diffusion-weighted imaging as a spherical
signal is here demonstrated to introduce robustness to the ordering of gradients absent
from C-FCNs, at no cost to fidelity. This removes the need to retrain a new network for
every gradient sampling scheme, a feature especially beneficial when combining data from
multiple sites. S-CNN is shown to be superior to FCN methods because of its rotational
equivariance property. This enables the network to encode information about the pattern
of the signal irrespective of primary fibre orientation. This obviates sampling of diffusion
primary fibre orientation, reducing the number of samples needed to cover the full param-
eter space. In further work we shall expand to other microstructure indices and evaluate if
microstructure orientation bias in common dMRI datasets causes poor estimation.
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Appendix A. Hybrid spherical CNN architecture

The S-CNN architecture used in this paper is an implementation of the hybrid spherical
CNN architecture (Cobb et al., 2021). This consists of a spherical convolutional layer
which maps the spherical image onto a function on SO(3), followed by a convolution layer
on SO(3). This is followed by a restricted generalized convolution layer and then 3 channel-
wise tensor-product activations and two restricted generalized convolutions, until the final
restricted generalized convolution which produces a rotationally invariant representation
of its input. Following this, there is a dropout layer (dropout rate of 0.5), a single fully
connected layer (30 nodes) and ReLu activation followed by another dropout layer (dropout
rate of 0.5). The final output layer of size one follows, transforming its input with a sigmoid
activation function.
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