
Saliency-Guided Hidden Associative Replay for
Continual Learning

Guangji Bai
Department of Computer Science

Emory University
guangji.bai@emory.edu

Qilong Zhao
Department of Computer Science

Emory University
qzhao31@emory.edu

Xiaoyang Jiang
Department of Computer Science

Emory University
jxxxxxygoat@gmail.com

Liang Zhao∗
Department of Computer Science

Emory University
liang.zhao@emory.edu

Abstract
Continual Learning (CL) is a burgeoning domain in next-generation AI, focusing on
training neural networks over a sequence of tasks akin to human learning. Amongst
various strategies, replay-based methods have emerged as preeminent, echoing bio-
logical memory mechanisms. However, these methods are memory-intensive, often
preserving entire data samples—an approach inconsistent with humans’ selective
memory retention of salient experiences. While some recent works have explored
the storage of only significant portions of data in episodic memory, the inherent
nature of partial data necessitates innovative retrieval mechanisms. Addressing
these nuances, this paper presents the Saliency-Guided Hidden Associative Replay
for Continual Learning (SHARC). This novel framework synergizes associative
memory with replay-based strategies. SHARC primarily archives salient data seg-
ments via sparse memory encoding. Importantly, by harnessing associative memory
paradigms, it introduces a content-focused memory retrieval mechanism, promising
swift and near-perfect recall, bringing CL a step closer to authentic human memory
processes. Extensive experimental results demonstrate the effectiveness of our
proposed method for various continual learning tasks. 2

1 Introduction
Continual learning (CL) represents a vital advancement for next-generation AI [17]. While traditional
supervised learning is well-established, CL remains in its nascent stages. The main challenge is
to prevent Catastrophic Forgetting [16] as agents acquire new tasks, ensuring they retain earlier
knowledge. In order to address this problem, researchers have put forward several strategies. Replay-
based methods [20, 6, 2], which utilizes a small memory to store previous data and reuse them when
learning new tasks, have emerged as a particularly effective solution. However, a potential bottleneck
of this approach is its memory-intensive nature, as entire data samples are conserved. The vast
storage requirements of replay-based methods and their divergence from natural memory processes
necessitate exploration into more efficient and human-like strategies for continual learning.

While there are pioneering works [23, 3] in replay-based CL that explored the idea of storing only
the salient or partial aspects of data into episodic memory, challenges arise due to the inherent nature
of partial data. Since these fragments are not directly usable as model input, an effective retrieval
technique becomes indispensable. Inspired by that the human brain, especially the hippocampus,

∗Corresponding author.
2Code available at https://github.com/BaiTheBest/SHARC.

Associative Memory & Hopfield Networks in 2023. NeurIPS 2023 workshop.

https://github.com/BaiTheBest/SHARC


Task 𝑡
Frozen Backbone 𝑔 Prediction Head f!

Prediction

Episodic Memory

Associative
Memory

New Data

𝛼!" 𝛼#" 𝛼$" 𝛼%"…

Feature Map 𝐴

En
co

de
d 

sa
m

pl
es

Content-based 
Retrieval

𝐴

Re
pl

ay
 D

at
a Forward prop

Backward prop

New task Old tasks

Similarity score 
calculated by the AM

/

Figure 1: Overview of our proposed SHARC framework (best viewed in color).

employs associative recall for content-based memory retrieval [10, 19], achieving a remarkable recall
accuracy close to perfection. As such, for systems aiming to emulate human-like continual learning,
there is an evident inspiration to design techniques that mirror the associative and content-based
retrieval processes inherent in human cognition.

To address the aforementioned challenges, this paper introduces the Saliency-Guided Hidden
Associative Replay for Continual Learning (SHARC), marking the inception of a Continual Learning
framework that seamlessly integrates associative memory into replay-based techniques. SHARC
distinguishes itself from existing replay-based CL methodologies in two pivotal aspects: First, rather
than archiving complete samples within episodic memory, SHARC conserves only the most salient
segments through sparse memory encoding. More crucially, drawing inspiration from the principles
of associative memory, we have crafted a content-centric memory retrieval module that boasts swift
and impeccable recall capabilities. Our contribution includes 1). We develop a novel neural-inspired
replay-based continual learning framework to handle catastrophic forgetting. 2). We propose to
leverage associative memory for efficient memory storage and recovery. 3). We demonstrate our
model’s efficacy and superiority with extensive experiments.

2 Proposed Method
2.1 Saliency-Guided Memory Encoding with Structured Sparsity
Different from many earlier works that store raw images for replay, we consider first encoding
raw data into high-level representations and storing them. Formally, our model y = fθ(g(x)) is
composed of a pre-trained backbone g and a trainable prediction head fθ. The output of g(x) is a
tensor A ∈ RH×W×K , where H , W are the dimension of the feature map and K is the number of
channels. To achieve sparse representation, we consider saliency-based methods [25] that measure the
importance of the neurons by their first-order gradients. Specifically, denote αc = [αc

1, α
c
2, · · · , αc

K ],
where αc

i is the saliency score over channel i, the masked feature map A′ is

A′ = TRH,W,K

(
1{|αc| > Qµ} ⊗ JH,W

)
⊙A, (1)

where 1{·} is the indicator function, Qµ is the threshold for masking out the bottom µ quantile of
channels. J denotes the all-one matrix and TR(·) denotes tensor reshaping operation.

Our design offers a notable advantage of structured sparsity. This characteristic is hardware-friendly
and immediately translates into reduced memory costs, requiring no additional system-level optimiza-
tions. By simply discarding channels with saliency scores below a specified threshold, the remaining
feature maps maintain a consistent tensor shape.

2.2 Associative Memory Retrieval for Replay
How to leverage associative memory in the continual learning setting is under-explored. Content-
based retrieval and noise tolerance of the associative memory allow us to increase the sparsity of the
masked feature maps and achieve maximal memory saving. The fast recall reduces the computational
overhead for memory retrieval hence our method can be applied to various replay-based baselines.

Formally, an AM A(x,ω) can be implemented as a recurrent or feed-forward neural network [10, 19,
26], where x and ω denote the input and model parameters of the associative memory, respectively.
The read and write operations of an associative memory are implemented based on an energy function.

2



(a) Task-IL S-CIFAR10 (b) Task-IL S-CIFAR100

Figure 2: Learning curves of multiple models with/without SHARC on S-CIFAR10 and S-CIFAR100
in Task-IL scenario. Models with/without SHARC are shown in solid/dotted lines.

For example, [26] considers the sum of prediction errors across all network layers:

E
(
x0:L,ω0:L

)
= ∥xL − ωL∥22 + λ

∑L−1

ℓ=0
∥xℓ −Aℓ(xℓ+1,ωℓ)∥22. (2)

2.3 Training Pipeline
Our proposed method involves training the classifier fθ and the associative memory A.

Training classifier. In each incremental, we update the model parameters of the continual learning
classifier fθ by using the new coming data and the replay samples. The key here is that we use
associative memory to retrieve the “complete” feature map and then feed it to the classifier for
memory replay. Formally, the training objective of the classifier can be formulated as follows

θ∗ = argminθ

∑
(x,t,y)

ℓ
(
fθ(g(x), t),y

)
+
∑

k<t
ℓ
(
fθ,M̃k

)
where M̃k = argminx E

(
x0:L,ω0:L

)
with x0 initialized as A′

k ∈Mk,
(3)

where the first row is the continual learning objective. M̃k denotes the retrieved episodic memory,
i.e., the feature maps recalled by associative memory.

Training associative memory. Given feature maps coming from new tasks in each incremental, we
need to write those feature maps into the associative memory such that we can ask it to retrieve the
complete feature map given a partial cue later. Formally, given feature maps At from new task t,
writing them into associative memory corresponds to solving the following optimization problem

ω = argminω E
(
x0:L,ω0:L

)
with x0 fixed as At, (4)

where we minimize Eq. 2 w.r.t. parameter ω while keeping the input x = A.

3 Experiment
In this section, we evaluate our proposed method SHARC for CL tasks. Detailed experiment settings
can be found in the appendix due to the limited space.

Performance Comparison. Table 1 compares six replay-based methods before and after combining
them with SHARC in the Task-IL scenario. Overall, the methods used in conjunction with SHARC
offer significant improvements in most cases. Such contrast exists in all settings (different datasets,
models, and buffer sizes). In particular, CLS-ER [2] equipped with SHARC achieves a 12.9%
improvement in ACC on S-CIFAR10 with buffer size 200. From a methodological perspective,
rehearsal-based methods (e.g., ER [6]) offer greater improvements than constraint-based methods
(e.g., GEM [15]). Rehearsal-based methods can benefit more from masking because masking reduces
the memory space for samples, allowing more previous samples to be reviewed. Furthermore, in
most cases on S-CIFAR100 and S-MiniImgNet, the BWT increases or even becomes positive when
using SHARC, indicating that SHARC is highly resistant to forgetting. As the buffer size decreases,
the complexity of the task increases. Achieving good performance with smaller buffer sizes is the
spirit of continual learning. Based on this consideration, we further investigate the learning curve for
a minimum buffer size of 200. As shown in Figure 2, methods equipped with SHARC clearly prevail
in the figure, indicating that they have been steadily improved during the learning process.

3



Table 1: Performance comparison on image classification datasets (Task-IL). + denotes the
corresponding method combined with our SHARC framework.

Buffer Model S-CIFAR-10 S-CIFAR-100 S-Mini-ImgNet

ACC (↑) BWT (↑) ACC (↑) BWT (↑) ACC (↑) BWT (↑)

- JOINT 93.49 ± 0.61 43.14 ± 2.07 87.57 ± 0.89 67.99 ± 1.53 74.95 ± 0.7 70.02 ± 0.81
- SGD 92.31 ± 0.54 -0.38 ± 0.82 85.83 ± 0.35 3.08 ± 2.14 76.2 ± 0.41 3.98 ± 0.75

GEM 88.44 ± 1.11 -4.6 ± 2.24 82.82 ± 0.62 0.2 ± 1.69 72.23 ± 1.26 -1 ± 1.82
GEM+ 91.01 ± 1.04 -1.5 ± 1.31 83.88 ± 0.52 -0.04 ± 1.2 76.13 ± 0.98 3.49 ± 1.47
A-GEM 90.52 ± 3.29 -1.07 ± 1.57 85.33 ± 0.58 2 ± 1 75.18 ± 1.11 2.33 ± 1.5

A-GEM+ 91.72 ± 1.02 -0.35 ± 2.08 85.55 ± 0.88 1.25 ± 0.63 76.54 ± 0.97 4.14 ± 1.71
ER 86.36 ± 1.33 -5.04 ± 1.72 82.55 ± 0.47 -0.71 ± 1.59 71.66 ± 1.44 -1.53 ± 2.04

200 ER+ 91.48 ± 1.18 -0.93 ± 1.54 84.55 ± 0.62 0.71 ± 0.61 73.68 ± 0.59 0.71 ± 0.97
MER 87.32 ± 1.39 -2.3 ± 3.83 82.04 ± 0.63 -0.83 ± 1.49 71.2 ± 1.43 -1.99 ± 1.53

MER+ 91.14 ± 1.62 -0.9 ± 2.46 84.3 ± 0.92 0.41 ± 1.26 73.54 ± 0.58 0.7 ± 1.06
DER++ 84.94 ± 1.95 -6.45 ± 1.91 83.27 ± 0.76 0.32 ± 1.47 72.92 ± 1.09 -0.13 ± 1.44

DER+++ 89.89 ± 1.34 -2.72 ± 2.04 84.96 ± 0.97 0.62 ± 1.44 74.59 ± 0.87 2 ± 1.27
CLS-ER 80.97 ± 2.11 -12.6 ± 4.39 82.97 ± 0.32 -1.95 ± 1.5 73.67 ± 1.05 -1.75 ± 0.4

CLS-ER+ 91.39 ± 0.7 -0.94 ± 1.18 85 ± 0.41 1.27 ± 0.68 77 ± 0.45 2.7 ± 0.97
GEM 88.02 ± 2.61 -3.84 ± 1.19 82.81 ± 0.66 0.06 ± 1.66 73.6 ± 1.13 0.23 ± 1.27

GEM+ 91.53 ± 1.17 -0.05 ± 1.58 84.37 ± 1.03 1.63 ± 0.79 75.56 ± 0.93 3.2 ± 1.61
A-GEM 90.81 ± 2.97 0.31 ± 2.81 85.44 ± 0.28 2.32 ± 0.84 75.59 ± 1.15 2.78 ± 1.61

A-GEM+ 92.32 ± 0.67 0.22 ± 0.7 85.89 ± 0.82 3.25 ± 1.01 75.65 ± 0.86 3.21 ± 1.56
ER 88.05 ± 1.51 -1.88 ± 3.62 82.7 ± 0.63 -0.09 ± 0.5 71.83 ± 1.17 -1.36 ± 1.5

500 ER+ 91.64 ± 0.66 -0.82 ± 0.67 84.77 ± 1.57 1.85 ± 1.72 72.94 ± 0.63 0.41 ± 1.08
MER 88.33 ± 1.87 -3.35 ± 1.6 82.11 ± 0.5 -0.36 ± 0.91 70.69 ± 1.07 -2.28 ± 1.41

MER+ 91.69 ± 0.73 -0.39 ± 1.56 84.06 ± 1.33 1.43 ± 1.46 72.63 ± 0.37 -0.28 ± 1.08
DER++ 86.73 ± 2.77 -4.79 ± 1.26 83.04 ± 0.58 0.76 ± 1.64 72.05 ± 0.87 -0.95 ± 1.52

DER+++ 90.46 ± 1.3 -2.71 ± 1.01 85.13 ± 1.57 1.81 ± 1.01 73.85 ± 0.79 1.5 ± 1.5
CLS-ER 82.54 ± 3.06 -8.64 ± 5.52 81.34 ± 0.9 -2.27 ± 1.8 72.11 ± 0.38 -3.41 ± 0.88

CLS-ER+ 90.94 ± 1.49 -2.22 ± 1.51 85.36 ± 0.83 1.82 ± 1.66 76.27 ± 0.52 2.05 ± 0.82

(a) Class-IL AM (b) Task-IL AM (c) Class-IL SA (d) Task-IL SA

Figure 3: (a) & (b): comparison of different associative memories. (c) & (d): sensitivity analyses of
the masking threshold.

Associative Memory Comparison. As shown in Figures 3(a) and 3(b), we found that Modern
Hopfield Network (MHN) [19] favors more towards the task-incremental setting while BayesPCN [26]
favors more towards class-incremental setting. This is potentially due to that, in BayesPCN a
forgetting mechanism is implemented, which can help mitigate the memory overload of the associative
memory when too many samples to memorize.

Masking Threshold Sensitivity Analysis. We conduct sensitivity analysis on the threshold Qµ in
Eq 1. Masking threshold Qµ is defined as a certain percentile value and feature maps with importance
below the threshold will be masked. As shown in Figure 3(d), the optimal Theta in Task-IL is between
0.8 to 0.9. As shown in Figure 3(c), the optimal Theta in Class-IL is between 0.3 to 0.5. This indicates
that the optimal thresholds show different trends in Task-IL and Class-IL.

4 Conclusion
We propose SHARC, a novel framework that bridges the gap between current AI models and humans
in continual learning. Combining associative memory and interpretive techniques, SHARC enables
efficient, near-perfect recall of seen samples in a human-like manner. As a generic framework,
SHARC can be seamlessly adapted to any replay-based approach, thus improving their performance
in different continual learning scenarios. We demonstrate the effectiveness of our framework with
abundant experimental results. Our proposed SHARC framework consistently improves several
SOTA replay-based methods on multiple benchmark datasets.

4



References
[1] D. J. Amit and D. J. Amit. Modeling brain function: The world of attractor neural networks.

Cambridge university press, 1989.

[2] E. Arani, F. Sarfraz, and B. Zonooz. Learning fast, learning slow: A general continual learning
method based on complementary learning system. arXiv preprint arXiv:2201.12604, 2022.

[3] G. Bai, C. Ling, Y. Gao, and L. Zhao. Saliency-augmented memory completion for continual
learning. In Proceedings of the 2023 SIAM International Conference on Data Mining (SDM),
pages 244–252. SIAM, 2023.

[4] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. Calderara. Dark experience for general
continual learning: a strong, simple baseline. Advances in neural information processing
systems, 33:15920–15930, 2020.

[5] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny. Efficient lifelong learning with
a-gem. arXiv preprint arXiv:1812.00420, 2018.

[6] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. Torr, and M. Ran-
zato. On tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486,
2019.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial networks. Communications of the ACM, 63(11):139–144,
2020.

[8] T. L. Hayes, K. Kafle, R. Shrestha, M. Acharya, and C. Kanan. Remind your neural network to
prevent catastrophic forgetting. In European Conference on Computer Vision, pages 466–483.
Springer, 2020.

[9] D. Hebb. The organization of behavior. New York, 1949.

[10] J. J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[11] Y. Huang and R. P. Rao. Predictive coding. Wiley Interdisciplinary Reviews: Cognitive Science,
2(5):580–593, 2011.

[12] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

[13] D. Krotov and J. Hopfield. Large associative memory problem in neurobiology and machine
learning. arXiv preprint arXiv:2008.06996, 2020.

[14] Z. Li and D. Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and
machine intelligence, 40(12):2935–2947, 2017.

[15] D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continual learning. Advances in
neural information processing systems, 30:6467–6476, 2017.

[16] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[17] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual lifelong learning with
neural networks: A review. Neural Networks, 113:54–71, 2019.

[18] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin. Variational autoencoder
for deep learning of images, labels and captions. Advances in neural information processing
systems, 29:2352–2360, 2016.

[19] H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, T. Adler, L. Gruber, M. Holzleit-
ner, M. Pavlović, G. K. Sandve, et al. Hopfield networks is all you need. arXiv preprint
arXiv:2008.02217, 2020.

5



[20] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier and
representation learning. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 2001–2010, 2017.

[21] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro. Learning to
learn without forgetting by maximizing transfer and minimizing interference. arXiv preprint
arXiv:1810.11910, 2018.

[22] A. Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science,
7(2):123–146, 1995.

[23] G. Saha and K. Roy. Saliency guided experience packing for replay in continual learning. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
5273–5283, 2023.

[24] T. Salvatori, Y. Song, Y. Hong, L. Sha, S. Frieder, Z. Xu, R. Bogacz, and T. Lukasiewicz.
Associative memories via predictive coding. Advances in Neural Information Processing
Systems, 34:3874–3886, 2021.

[25] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual
explanations from deep networks via gradient-based localization. In Proceedings of the IEEE
international conference on computer vision, pages 618–626, 2017.

[26] J. Yoo and F. Wood. Bayespcn: A continually learnable predictive coding associative memory.
Advances in Neural Information Processing Systems, 35:29903–29914, 2022.

[27] W. Zhou, S. Chang, N. Sosa, H. Hamann, and D. Cox. Lifelong object detection. arXiv preprint
arXiv:2009.01129, 2020.

6



A Appendix
A.1 Experimental Details
A.1.1 Dataset Details
We expand upon the datasets used for our experiments in this section. We highlighted the sentence
that describes the domain drift within each dataset.

• CIFAR-10: The CIFAR-10 dataset is a comprehensive collection of 60, 000 32× 32 color images
divided into 10 distinct classes, with 6, 000 images per class. This dataset is further split into
50, 000 training images and 10, 000 test images, allowing for effective model evaluation.

• CIFAR-100: The dataset is similar to CIFAR-10 and is composed of 100 classes, each containing
600 images. Specifically, within the 600 images, there are 500 images used for training and 100
images designated for testing purposes. It is important to note that the 100 classes are actually
comprised of 20 classes, where each class is further divided into 5 sub-classes. Therefore, the total
count of 100 classes is obtained by multiplying 5 and 20 (5× 20 = 100).

• Mini-ImageNet: The Mini-ImageNet dataset contains 100 classes with a total of 60, 000 color
images. Each class has 600 samples, and the size of each image is 84× 84 pixels. Typically, the
class distribution between the training and testing sets of this dataset is 80 : 20. Compared to the
CIFAR-10 dataset, the Mini-ImageNet dataset is more complex but is better suited for prototype
design and experimental research. [6]

A.1.2 Details of Comparison Methods
In this paper, we compare our proposed SHARC with several SOTA replay-based methods as well as
regularization-based methods. Specifically,

• ER, a rehearsal-based method that utilizes the average of parameter update gradients from the
current task’s samples alongside samples from episodic memory to update the learning agent. This
method, known as ER (Episodic Regularization), offers a computationally efficient alternative to
GEM (Gradient Episodic Memory) and has demonstrated successful performance when dealing
with a limited memory buffer.

• MER, a rehearsal-based model that harnesses the power of an episodic memory. MER employs a
unique loss function that approximates the dot products of the gradients of current and previous
tasks, thereby mitigating the issue of forgetting. To ensure a fair and comprehensive comparison
with other methods, we adjust the experimental setting by setting the number of inner gradient steps
to 1 for each outer meta-update, while maintaining a mini-batch size of 10. This adjustment allows
us to establish a more consistent framework for evaluating the performance of MER alongside
other approaches, specifically in terms of the number of stochastic gradient descent (SGD) updates.
By presenting these findings, we aim to shed light on the effectiveness and practicality of MER as
a rehearsal-based model in the context of meta-learning [21].

• GEM, who utilizes an episodic memory buffer to store past experiences and gradients. By
incorporating both the current task’s gradient and the gradients of previous tasks from the episodic
memory, GEM ensures that valuable information from prior tasks is retained while accommodating
new learning. To prevent catastrophic forgetting, the algorithm employs a constrained optimization
approach, projecting the current gradient onto a subspace that preserves knowledge from previous
tasks [15].

• A-GEM, takes a step further than GEM by incorporating an adaptive mechanism that updates the
model’s parameters based on both the current task’s gradient and the gradients of previous tasks
stored in the episodic memory. This allows AGEM to effectively preserve knowledge from prior
tasks while adapting to new tasks.

• CLS-ER, an innovative algorithm that utilizes a dual-memory learning mechanism to enhance
performance in continual learning tasks. In this approach, the episodic memory serves as a
repository for storing samples encountered during the learning process. On the other hand, semantic
memories play a crucial role in constructing short-term and long-term memories of the learned
representations from the working model [2].

• DER++, a combination of rehearsal, knowledge distillation, and regularization techniques. This
approach leverages the network’s logits sampled at different stages of the optimization trajectory.
This approach promotes consistency with the network’s past experiences [4].

7



Model

Replay-based CL Neuro-inspired associative replay (ours)

Data Buffer

Exact replayNew data

Cortex 

HippocampusInput 

Output 

Model Sparse Encoding

Associative replayNew data

Input 

Output 

En
co

de
d 

sa
m

pl
es

Content-based 
Retrieval

Figure 4: Motivation and overview of our proposed framework. Left: Typical replay-based ap-
proaches maintain and replay a small episodic memory of previous samples, which is inspired by the
cortex and hippocampus in the human brain. Right: Our memory buffer is equipped with a forgetting
mechanism to drop uninformative episodes, and a content-addressable associative memory is used to
achieve fast and high-accuracy data retrieval.

A.1.3 Hyper-Parameter Setting
All experiments are conducted on a 64-bit machine with an NVIDIA T4 Tensor Core GPU which has
320 Turing Tensor cores, 2560 CUDA cores, 16GB memory, and Intel R⃝ Xeon R⃝ Platinum 8259CL
CPU @ 2.50GHz. The learning rate for all datasets is uniformly set to be 0.1. Down below we report
the hyper-parameter unique to some models applied in our experiment.

• ER:
’lr’: 0.1

• MER:
’lr’: 0.1, ’gamma’: 0.5, ’batch num’: 1

• GEM:
’lr’: 0.1, ’gamma’: 0.5

• AGEM:
’lr’: 0.1

• DER++:
’lr’: 0.1, ’alpha’: 0.1, ’beta’: 0.5

• CLSER:
’lr’: 0.1, ’reg weight’: 0.15, ’stable model update freq’: 0.1, ’stable model alpha’: 0.999, ’plastic
model update freq’: 0.3, ’plastic model alpha’: 0.999

A.2 Preliminaries
In this section, we provide more discussion about some preliminaries in this paper.

A.2.1 Associative Memory
When applied to Computer Science problems, associative memories come in two high-level forms:
auto-associative and hetero-associative memories. While both are able to recall patterns given a set
of inputs, auto-associative memories are primarily focused on recalling a pattern X when provided
a partial or noisy variant of X. By contrast, hetero-associative memories are able to recall not only
patterns of different sizes from their inputs but can be leveraged to map concepts between categories
(hence “hetero-associative”). One common example from the literature is a hetero-associative memory
that might recall the embedded animal concept of “monkey” given the embedded food concept of
“banana". Since all forms of AM are focused on the actual content being stored and retrieved, they
are also commonly referred to as content-addressable memories (CAM) in the literature.

Classical Hopfield Network. One of the earliest and probably the most well-known auto-associative
memory are Hopfield Networks [10]. The original Hopfield Networks are discrete where they operate
by storing binary-pattern inputs into the weights of a fully-connected neural network using a local
update rule. For an input x ∈ {−1, 1}d containing d binary values, a Hopfield Network contains d2

real-valued connections, i.e., W ∈ Rd×d. The Hopfield learning algorithm specifies a write over n

8



binary memories x1,x2, · · · ,xn, represented as column vectors, by accumulating their outer product

W =

n∑
i=1

xix
⊺
i , W[p, q] =

n∑
i=1

xi[p]x
⊺
i [q]. (5)

This specific write update is termed the Hebbian update rule as it follows the "fire together, wire
together" principle proposed by psychologist Donald Hebb as a model of synaptic learning [9]. The
Hopfield Network read operation involves minimizing an energy function

E(W, ξ) = −1

2
ξ⊺Wξ, (6)

where ξ ∈ Rd is the state of the network, initialized as the initial query, and then optimized to a
stable state known as the attractor.

Modern Hopfield Network. Hopfield Networks serve as an interesting weight-based method of
memory storage. However, although they use optimization as a method of memory retrieval, their
learning rule is not differentiable due to the use of discrete states. Modern Hopfield Network
(MHN [19]) introduces a new energy function instead of that in Eq. 6. Specifically, MHN generalizes
the energy function to continuous-valued patterns and adds a quadratic term, i.e.,

E(X, ξ, β) = −LSE(β,X⊺ξ) +
1

2
ξ⊺ξ + β−1 log(N) +

1

2
M2, (7)

where X is the matrix form of N continuous stored patterns xi, i = 1, 2, · · · , N , M is the largest
norm of all stored patterns, LSE stands for the LogSumExp function with coefficient β.

Predictive Coding Network. The Predictive Coding Network is a computational model that aims
to explain how the brain processes sensory information and makes predictions about future sensory
inputs. It is based on the concept of predictive coding, which suggests that the brain constantly
generates predictions about upcoming sensory inputs and updates these predictions based on the actual
sensory feedback it receives. In machine learning, the predictive coding network is implemented as
an energy-based associative memory model that has set the state-of-the-art on a number of image
associative recall tasks.

A.3 Related Work
Continual Learning (CL). Catastrophic forgetting is a long-standing problem [22] in continual
learning which has been recently tackled in a variety of visual tasks such as image classification [12,
20], object detection [27], etc.

Existing techniques in CL can be divided into three main categories [17]: 1) regularization-based
approaches, 2) dynamic architectures and 3) replay-based approaches. Regularization-based ap-
proaches alleviate catastrophic forgetting by either adding a regularization term to the objective
function [12] or knowledge distillation over previous tasks [14]. Dynamic architecture approaches
adaptively accommodate the network architecture (e.g., adding more neurons or layers) in response
to new information during training. Dynamic architectures can be explicit if new network branches
are grown, or implicit, if some network parameters are only available for certain tasks. Replay-based
approaches alleviate the forgetting of deep neural networks by replaying stored samples from the
previous history when learning new ones and have been shown to be the most effective method for
mitigating catastrophic forgetting.

Replay-based CL. Replay-based methods mainly include three directions: rehearsal methods,
constrained optimization, and pseudo rehearsal. Rehearsal methods directly retrieve previous samples
from a limited size memory together with new samples for training [6, 8, 2]. While simple in nature,
this approach is prone to overfitting the old samples from the memory. As an alternative, constrained
optimization methods formulate backward/forward transfer as constraints in the objective function.
GEM [15] constrains new task updates to not interfere with previous tasks by projecting the estimated
gradient on the feasible region outlined by previous task gradients through first-order Taylor series
approximation. A-GEM [5] further extended GEM and made the constraint computationally more
efficient. Finally, pseudo-rehearsal methods typically utilize generative models such as GAN [7] or
VAE [18] to generate previous samples from random inputs and have shown the ability to generate
high-quality images recently [22]. Readers may refer to [17] for a more comprehensive survey on
continual learning.

9



Associative Memory (AM). In general, the attractor-based mechanism [1] is typically used for the
implementation of AMs, which are models that store and recall patterns. Pattern recall (associative
recall) is a process whereby an associative memory, upon receiving a potentially corrupted memory
query, retrieves the associated value from memory. One of the earliest and probably the most
well-known associative memory are Hopfield Networks [10]. Hopfield networks are a class of
recurrent artificial neural networks that have gained prominence for their ability to model associative
memory and pattern recognition. The modern Hopfield network refers to an updated version of the
original Hopfield network [19, 13]. The modern Hopfield network incorporates enhancements and
modifications to improve its performance and overcome some limitations of the original model. More
recently, predictive coding networks [11] have provided a new perspective for the design of AM, and
such works [24, 26] have shown strong performance on recall tasks.

A.4 Problem Formulation
We consider supervised continual learning in this paper. Following the learning protocol in [5], we
consider a training set D = {D1,D2, · · · ,DT } consisting of T tasks, where Dt = {(x(t)

i ,y
(t)
i )}nt

i=1

contains nt input-target pairs (x(t)
i ,y

(t)
i ) ∈ X × Y . While each learning task arrives sequentially,

we make the assumption of locally i.i.d, i.e., ∀ t, (x
(t)
i ,y

(t)
i )

iid∼ Pt, where Pt denotes the data
distribution for task t and i.i.d for independent and identically distributed. Given such a stream of
tasks, the goal is to train a learning agent fθ : X → Y , parameterized by θ, which can be queried at
any time to predict the target y given associated unseen input x and task id t. Moreover, we require
that such a learning agent can only store a small amount of seen samples in an episodic memoryM
with a fixed budget. Given predictor fθ, the loss on the episodic memory of task k is defined as

ℓ(fθ,Mk) := |Mk|−1
∑

(xi,k,yi)
ϕ(fθ(xi, k),yi), ∀ k < t, (8)

where ϕ can be e.g. cross-entropy or MSE. In general, a large body of replay-based continual learning
methods seeks to optimize for the following loss function at t-th task

minθ LCL

(
θ
)
, where LCL

(
θ
)
=

∑
(x,t,y)

ℓ
(
fθ(x, t),y

)
+
∑

k<t
ℓ
(
fθ,Mk

)
, (9)

which is an aggregation of the losses on the current task and replay data. After the training of task t,
a subset of training samples will be stored in the episodic memory, i.e.,M =M∪{(x(t)

i ,y
(t)
i )}mt

i=1,
where mt is the memory buffer size for the current task.

A.5 Pseudo-Code of SHARC
Here, we provide the pseudo-code of our proposed method SHARC. Specifically, the training
procedure is summarized in Algorithm 1.

A.6 Additional Experimental Results

Table 2: Performance comparison on image classification datasets (Task-IL). The mean and
standard deviation are calculated based on five runs with varying seeds. + denotes the corresponding
method combined with our SHARC framework.

Buffer Model S-CIFAR-10 S-CIFAR-100 S-Mini-ImgNet

ACC (↑) BWT (↑) ACC (↑) BWT (↑) ACC (↑) BWT (↑)

- JOINT 72.85 ± 2.18 61.26 ± 8.55 45.87 ± 1.22 45.55 ± 1.45 47.08 ± 0.77 46.25 ± 0.98
- SGD 20.47 ± 0.78 -90.16 ± 0.92 8.55 ± 1.39 -78.24 ± 0.93 12.21 ± 0.75 -67.11 ±0.77

GEM 89.07 ± 1.09 -3.28 ± 1.61 82.38 ± 0.93 2.59 ± 1.08 73.78 ± 1 0.38 ± 1.53
GEM+ 92.14 ± 0.39 -0.66 ± 1.93 85.56 ± 0.76 1.97 ± 1.8 75.11 ± 0.59 3.69 ± 1.79
A-GEM 91.01 ± 2.86 -0.46 ± 1.09 85.7 ± 0.45 2.53 ± 1.43 75.86 ± 0.92 3.02 ± 1.38

A-GEM+ 92.13 ± 0.49 -0.44 ± 2.05 86.67 ± 0.87 3.46 ± 1.05 75.42 ± 0.88 4.02 ± 1.74
ER 89.56 ± 1.09 -1.33 ± 3.47 83.58 ± 1.12 1.39 ± 1.17 71.45 ± 1.01 -1.71 ± 1.37

1000 ER+ 91.81 ± 0.25 -0.83 ± 1.82 85.71 ± 0.63 2.34 ± 1.2 74.18 ± 0.82 2.53 ± 1.54
MER 89.05 ± 2.37 -2.82 ± 3.1 82.5 ± 1.05 0.1 ± 2.23 70.17 ± 1.22 -3.16 ± 1.66

MER+ 91.7 ± 0.55 -0.78 ± 1.01 85.08 ± 1.19 1.53 ± 1.06 72.37 ± 0.87 0.29 ± 1.7
DER++ 87.56 ± 1.87 -2.14 ± 4.63 83.57 ± 0.64 1.62 ± 1.31 71.83 ± 1.12 -0.98 ± 1.46

DER+++ 90.4 ± 0.63 -3.1 ± 0.77 85.87 ± 0.92 2.54 ± 1.22 74.09 ± 0.85 2.82 ± 2
CLS-ER 83.02 ± 2.81 -8.88 ± 4.33 82.67 ± 0.73 -0.28 ± 1.5 71.97 ± 0.43 -3.69 ± 1.02

CLS-ER+ 89.81 ± 1.77 0.85 ± 3.75 85.17 ± 0.61 1.24 ± 2.02 76.35 ± 0.41 1.97 ± 0.52

10



Algorithm 1 SHARC Training
Require: Continual learning classifier fθ, associative memory A(·,ω), training continuum Dtrain,

dropping threshold µ, optimizer OPT, forgetting frequency R, total number of tasks T .
1: Mt ← {}, ∀ t = 1, 2, · · · , T ▷ Initialize episodic memory
2: for t = 1 to T do
3: M̃k ← OPTx(x,Mk<t,ω), ∀ k < t as Eq. 9 ▷ Associative memory read
4: for Bt ∼ Dtrain

t do
5: θ ← OPTθ(θ,Bt,M̃k<t) as Eq. 9 ▷ Train the classifier
6: for (x, y) ∈ Bt do
7: A = g(x)
8: A′ = TRH,W,K

(
1{|αc| > Qµ} ⊗ JH,W

)
⊙A ▷ Channel-wise sparsity

9: Mt ←Mt ∪ (A′, y) ▷ Update episodic memory
10: end for
11: end for
12: ω ← OPTω(ω,At) as Eq. 4 ▷ Associative memory write
13: if t % R == 0 then
14: Bayesian Training by ω ← OPTω(ω) ▷ Associative memory forgetting
15: end if
16: end for

In general, when combined with SHARC, the methods used show notable enhancements in most
scenarios. Specifically, in the experiments conducted with a buffer size of 1000 and CIFAR-10, the
maximum improvement in accuracy reaches approximately 7%.

Table 3: Performance comparison on image classification datasets (Class-IL). The mean and
standard deviation are calculated based on five runs with varying seeds. + denotes the corresponding
method combined with our SHARC framework.

Buffer Model S-CIFAR-10 S-CIFAR-100 S-Mini-ImgNet

ACC (↑) BWT (↑) ACC (↑) BWT (↑) ACC (↑) BWT (↑)

- JOINT 72.85 ± 2.18 61.26 ± 8.55 45.87 ± 1.22 45.55 ± 1.45 47.08 ± 0.77 46.25 ± 0.98
- SGD 20.47 ± 0.78 -90.16 ± 0.92 8.55 ± 1.39 -78.24 ± 0.93 12.21 ± 0.75 -67.11 ±0.77

GEM 32.13 ± 6.79 -56.21 ± 13.61 23.39 ± 5.47 -48.35 ± 5.51 31.92 ± 5.29 -42.6 ± 6.71
GEM+ 40.68 ± 3.18 -49.08 ± 11.47 27.49 ± 3.49 -44.72 ± 3.92 33.54 ± 2.24 -40.21 ± 4.06
A-GEM 26.2 ± 8.53 -80.68 ± 7.31 13.38 ± 3.81 -73.22 ± 4.95 16.52 ± 1.54 -62.86 ± 2.1

A-GEM+ 28.93 ± 3.67 -78.13 ± 5.81 16.04 ± 3.47 -70.52 ± 3.49 17.58 ± 1.71 -60.32 ± 1.7
ER 33.82 ± 8.42 -53.69 ± 15.06 23.13 ± 5.06 -53.35 ± 5.2 30.77 ± 1.85 -43.9 ± 2.47

1000 ER+ 37.74 ± 2.45 -43.36 ± 14.88 26.75 ± 1.1 -49.72 ± 0.86 30.26 ± 1.95 -43.64 ± 1.07
MER 32.87 ± 8.8 -50.42 ± 18.37 23.59 ± 3.26 -51.08 ± 4.59 29.73 ± 2.36 -44.68 ± 2.92

MER+ 36.94 ± 5.38 -44.32 ± 14.72 25.22 ± 0.8 -49.68 ± 1.81 29.71 ± 1.37 -43.58 ± 1.47
DER++ 31.37 ± 7.22 -52.59 ± 16.29 19.43 ± 7.88 -59.2 ± 7.87 29.33 ± 1.83 -45.58 ± 2.29

DER+++ 35.51 ± 7.44 -36.06 ± 11.08 26.35 ± 1.84 -52.05 ± 2.85 29.42 ± 2.02 -44.78 ± 2.61
CLS-ER 24.13 ± 8.02 -33.43 ± 23.68 25.71 ± 2.91 -51.68 ± 2.84 30.3 ± 1.51 -47.22 ± 1.7

CLS-ER+ 26.34 ± 5.38 -43.81 ± 7.09 23.99 ± 4.36 -53.42 ± 5.22 30.21 ± 1.25 -46.88 ± 1.73

Our method demonstrates strong performance on the image classification dataset task, with improve-
ments observed across various metrics compared to the original method. Notably, even with a large
buffer, we achieve an average improvement of approximately 3% in accuracy, providing compelling
evidence of the effectiveness of our approach.

It is evident that our approach significantly enhances the model across multiple dimensions. Notably,
in terms of task accuracy, all algorithms show an improvement of approximately 2%, with this value
consistently increasing as the number of tasks grows. Particularly noteworthy is the observation
that while the accuracy of the original algorithms tends to decrease with larger tasks, our method
continues to increase in accuracy, demonstrating its effectiveness in handling a large number of
multi-tasks. These findings strongly indicate the superior performance of our method in scenarios
involving numerous tasks.

11



(a) Task-IL S-Mini-ImgeNet (b) Class-IL S-Mini-ImgeNet

Figure 5: Learning curves of mumltiple models with / without SHARC on S-Mini-ImgeNet. Models
with / without SHARC are shown in solid / dotted lines. Buffer size for all models is 200.

12


	Introduction
	Proposed Method
	Saliency-Guided Memory Encoding with Structured Sparsity
	Associative Memory Retrieval for Replay
	Training Pipeline

	Experiment
	Conclusion
	Appendix
	Experimental Details
	Dataset Details
	Details of Comparison Methods
	Hyper-Parameter Setting

	Preliminaries
	Associative Memory

	Related Work
	Problem Formulation
	Pseudo-Code of SHARC
	Additional Experimental Results


