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Abstract

Transformer-based chemical language models (CLM), trained on large and gen-
eral purpose datasets consisting of molecular strings, have recently emerged as
a powerful tool for successfully modeling various structure-property relations,
as well as for proposing novel candidates. In this work, we propose a novel ap-
proach that harnesses a recent generative CLM, namely GP-MOLFORMER, to
propose small molecules with more desirable properties. Specifically, we present a
parameter-efficient fine-tuning method for the unconstrained property optimization,
which uses property-ordered molecular pairs as input. We call this new approach
pair-tuning. Our results show GP-MOLFORMER outperforms existing baselines in
terms of generating diverse molecules with desired properties across three popular
property optimization tasks, namely druglikeliness, penalized logP, and dopamine
type 2 receptor activity. Results demonstrate the general utility of pair-tuning
together with a generative CLM for a variety of molecular optimization tasks.

1 Introduction

Identifying molecules with desirable properties from the vast landscape of possibilities is daunting. It
has been postulated that only 108 out of 1023–1060 possible small drug-like molecules are synthesiz-
able [1]. As the search space is enormous and high-throughput screening of molecules is costly and
time-consuming, this requires a thorough understanding of the chemical data manifold. Recently,
deep generative models have made great strides in modeling molecular distributions and sampling
new molecules from them in de novo or targeted manners.

In this work, we present a family of generative pre-trained molecular foundation models for the
targeted generation of novel molecules, which are based on the recently published Molecular Lan-
guage transFormer (MOLFORMER) architecture [2]. We refer to these Generative Pre-trained models
as GP-MOLFORMER. The base transformer architecture of our decoder-only GP-MOLFORMER,
consisting of ≈ 47M parameters, uses an efficient linear attention mechanism, together with rotary
positional encodings, analogously to MOLFORMER [2]. The model is then trained with a causal
language modeling objective on a large corpus of 1.1 billion canonicalized SMILES strings of small
molecules from publicly available chemical databases.

We further extend GP-MOLFORMER to two targeted molecular design tasks: scaffold-constrained
molecular decoration and unconstrained property-guided optimization. For the first, we exploit GP-
MOLFORMER’s causal language modeling ability and establish GP-MOLFORMER’s ability to handle
the task without undergoing any task-specific tuning. For the second, we provide a prompt-tuning
or soft prompt-learning algorithm that learns from partial orderings of molecules. We name this
method pair-tuning. Results show that pair-tuning on GP-MOLFORMER provides on par or better
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Table 1: Scaffold-constrained generation. Predicted active hits is the percentage of generated
molecules that pass the DRD2 binding classifier. Baseline performance is taken from Arús-Pous et
al. (2020) [5]. Bold value indicates the best performing model.

predicted active hits (%)

Scaffold decorator[5] 3.64

de novo GP-MOLFORMER 0.83
scaffold-conditioned GP-MOLFORMER 4.58

performance in three different property optimization tasks, namely (i) drug-likeness optimization, (ii)
penalized logP optimization, and (iii) optimization of dopamine type 2 receptor binding activity.

2 Methods

2.1 GP-MOLFORMER Framework

We construct the GP-MOLFORMER architecture using a 12-layer linear attention transformer with 12
attention heads and a hidden state size of 768 and generalized random Fourier feature maps [3] for
the linear attention. The model is trained on the SMILES representation of 1.1 billion molecules from
PubChem and ZINC databses. We choose a relative positional embedding, namely rotary positional
embedding [4], to model the token dependency within SMILES better using rotary attention. During
training, GP-MOLFORMER uses a causal modeling objective of predicting the next token given the
context history of prior tokens in the input SMILES strings. Given the size of the model and the
efficient linear attention, GP-MOLFORMER takes only around 3 milliseconds for a single forward
pass during generation, using a single A100 GPU. More details on the architecture, datasets and
training are in Appendex B.

2.2 Scaffold-constrained decoration

For this experiment, we first take the five unique scaffolds from the dopamine receptor D2 (DRD2)
active binder dataset validation split [5]. These scaffolds contain between two to four attachment
points. We perform a pre-processing step for each unique scaffold, generating every possible
randomized SMILES representation of that scaffold. Then we sort the resulting candidates according
to the distance of the “*” characters, also known as the attachment point, to the end of the string.
For multiple *s, we sum the distances. As an example, C1(=O)N(CCN1*)* would score 2(2 + 0)
while C1N(*)C(=O)N(*)C1 would score 15(12 + 3). If multiple representations are equivalently
optimal, we save all of them. During the generation step, we provide the candidates produced in this
pre-processing step as input to GP-MOLFORMER.

Next, the task is to generate multiple possible candidates for the first attachment point given an
input scaffold. First, we collect all valid candidates from that generation. Then, we again generate
multiple possible candidates for the recently extended scaffolds. This process is repeated until all the
attachment points are decorated then we collect all valid molecules generated.

We compare the performance of GP-MOLFORMER in terms of generating DRD2 active molecules
that will pass the DRD2 binding classifier (p > 0.5). For baselines of comparison, we consider our
own random generations from GP-MOLFORMER-RAW, as well as an earlier scaffold-conditioned
generation model [5] that was specifically trained for scaffold decoration tasks and was then used to
decorate the same scaffolds under investigation here with fragments from ChEMBL. In contrast to
this baseline model, GP-MOLFORMER-RAW has not seen scaffold-constrained generation during
pre-training, nor is it specifically fine-tuned for this purpose. Table 1 shows that GP-MOLFORMER
generates more DRD2 active hits compared to a random baseline of de novo generation, as well as a
generative model trained on this specific task.

2.3 Unconstrained Single Property Optimization

Given GP-MOLFORMER demonstrates desirable performance in scaffold-constrained molecular
decoration, it makes sense to extend GP-MOLFORMER to downstream task settings, where the goal is
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Algorithm 1 Pair-tuning training

Require: Pretrained GP-MOLFORMER; Number of fine-tuning epochs, m; number of enhancement
tokens, n; Pair-Tuning dataset D = {(a, b)|b > a} for a, b ∈ Ω where > is an order relation
defined for a certain property T

1: Append n + 1 new tokens ϕT = ⟨enh1⟩⟨enh2⟩ . . . ⟨enhn⟩, ⟨sep⟩ to GP-MOLFORMER-RAW
vocabulary

2: for m epochs do
3: Prepare training prompts as ⟨enh1⟩⟨enh2⟩ . . . ⟨enhn⟩⟨bos⟩⟨a1⟩⟨a2⟩ . . . ⟨ai⟩⟨sep⟩ where a =

⟨a1⟩⟨a2⟩ . . . ⟨ai⟩, i.e., tokenized training molecules
4: Compute the cross-entropy (CE) loss conditioned on enhancement tokens ϕT and molecule a

with the auto-regressive CE loss with target the molecule b = ⟨b1⟩⟨b2⟩ . . . ⟨bn⟩⟨eos⟩
5: Compute the gradient of the auto-regressive CE loss with respect to enhancement tokens ϕT

6: Update enhancement tokens via gradient descent optimizer
7: end for

to generate molecules with a desired property. In light of current LLM adaptation efforts, one obvious
path is model tuning (or “fine-tuning”), where all model parameters are tuned during adaptation. This
approach often is highly data-hungry. As an alternative, prompt-tuning or “soft prompt” learning
has been proposed, which includes an additional n tuneable tokens for each downstream task, which
is prepended to the input text [6]. This soft prompt is then trained end-to-end on a labeled dataset,
whereas the pre-trained LLM remains frozen. This method has been demonstrated to close the gap
in model tuning, even when combined with a smaller LLM [6] and is lower cost compared to full
fine-tuning. We exploit prompt-tuning to introduce a novel means for enabling GP-MOLFORMER to
tackle property-specific molecular optimization tasks. We call this method pair-tuning and show that
it performs well on a set of three tasks.

Pair-tuning framework Following a “text-to-text” approach, we formalize the task of generating a
(property-)optimal molecule as follows: Given a molecule a, translate it to another molecule b with a
more optimal property value where a, b come from domain Ω. This conditional generation task is
Pθ(b|a), where θ is the parametrization of the generative language model. This task is handled via
learning soft prompts, i.e., prompt-tuning, which is a parameter-efficient task adaptation method for
a frozen language model [6]. Specifically, we add a small number of task-specific parameters ϕT ,
such that the conditional task becomes Pθ(b|ϕT , a) and is trained through maximizing the probability
likelihood of b. Only ϕT is updated during gradient backpropagation. This procedure is explained in
Algorithm 1.

In this formulation, we do not need absolute property values of the molecules, rather only ordered
pairs of molecules are needed. This is to mimic the scenario of many drug and material development
tasks, in which two molecules are compared with each other to guide molecular optimization and
prioritization, especially for tasks with limited available data. For example, Matched Molecular Pair
(MMP) analysis allows the rapid estimation of property differences [7, 8]. However, MMP analysis
is limited to comparing close molecular derivatives, and it can fail to model important chemical
contexts. The present formulation of optimizing molecules is free from such constraints and only
aims to learn task-specific soft prompts to generate more optimal molecules given a seed molecule.

Pairtuning tasks We evaluate pairtuning using GP-MOLFORMER on three property optimization
benchmarks, namely drug-likeness (QED) maximization, penalized logP maximization, and activity
maximization for DRD2. The first two properties, QED and penalized logP, are important considera-
tions in drug discovery, and these task shows the ability of a model to optimize salient aspects of a
molecule, even if maximization of these properties by themselves is of low utility [9]. More details
about these tasks are in Appendix C.

Penalized logP optimization Table 2 shows results of pair-tuning on GP-MOLFORMER, as well
as of the baselines, in terms of the generated molecules with high penalized logP. We report pair-
tuning performances as a function of two different k, where k is the number of targeted generation
attempts per molecule. For k = 125, using a test set containing 800 molecules gives a total number
of generated molecules of 100k, which is the same used for the baselines. The baselines under
consideration are JT-VAE [11], GCPN [12], MolDQN [9], MARS [13], GraphDF [14], and LIMO
[10]. Penalized logP can be artificially inflated simply by generating molecules with increased length,
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Table 2: Performance on unconstrained penalized logP and QED optimization. Baseline performances
are taken from Zhou et al. (2019)[9] and Eckmann et al. (2022)[10]and are reported on 100k
generations as per LIMO[10]. For GP-MOLFORMER, we set k, the number of targeted generation
attempts per molecule, to 125 — given a test set of size 800 this results in 100k total generations.
Values in parentheses are after post hoc length filtering. Bold values indicate the highest property
values found (both length-constrained and unlimited).

Penalized log P QED

1 st 2nd 3rd 1st 2nd 3rd

JT-VAE 5.30 4.93 4.49 0.925 0.911 0.910
MARS 45.0 44.3 43.8 0.948 0.948 0.948

GRAPHDF 13.7 13.2 13.2 0.948 0.948 0.948
LIMO on z 6.52 6.38 5.59 0.910 0.909 0.892

LIMO 10.5 9.69 9.60 0.947 0.946 0.945
GCPN 7.98 7.85 7.80 0.948 0.947 0.946

MolDQN-bootstrap 11.84 11.84 11.82 0.948 0.944 0.943

Pair-tuning (k = 125) 13.18 (7.12) 12.24 (6.61) 11.51 (6.40) 0.948 0.947 0.947
Pair-tuning (k = 1000) 19.59 (9.35) 15.51(8.93) 15.27 (8.64) 0.948 0.948 0.948

specifically by adding alkyl carbons [13, 10]. Many works, e.g., GCPN, MolDQN, and LIMO, avoid
this by reporting top property scores given length constraints, e.g., limiting the length up to the
maximum molecule size of the ZINC250k dataset [15]. MARS, on the other hand, does not consider
such a length constraint. We also report the top 3 scores for pair-tuning with a length constraint
(length < 38), added post generation, in Table 2 as the value within parentheses. Compared to the
strongest length-constrained baselines, pair-tuning generates molecules with comparably high values.
When the length constraint is not considered, pair-tuning still generates molecules with higher but
reasonable penalized logP values. Note that pair-tuning does not require feedback or evaluation on
generations from an additional reward model or a property predictor, nor is the generative model
updated during the tuning. We also report top 3 scores for 1M generations (k = 1000), which requires
less than an hour to generate. Altogether, Table 2 shows that the proposed method can generate
molecules with even higher penalized logP values, both with and without a length constraint.

QED optimization As with penalized logP, we show results for QED optimization in Table 2
compared with the same baselines. Again, pair-tuning performances are reported for two different
values of k, showing comparable performances with respect to baselines. Supplementary Tables 4
and 5 further demonstrate that pairtuning with GP-MOLFORMER produces higher scoring molecules
that also share high diversity as well as high closeness to training distribution, compared to baselines.

DRD2 activity optimization DRD2 activity optimization results are reported in supplementary
Table 3. Activity scores are calculated using the trained predictor from Olivecrona et al. (2017) [16].
Average activity scores of the input seed molecules are also shown. Different baseline performances
are reported using different test seed molecules, and we are interested in comparing the activity
improvement of an experiment with the set of test seed molecules. For pair-tuning, performance
reported considers k = 20 generations per seed molecule and we use the top 1 for each, similar
to the baselines, Mol-CycleGAN [17] — a graph-based generation method that uses a CycleGAN
optimization scheme — and Gargoyles [18], which uses Monte Carlo Tree Search to optimize
molecular graphs based on an evaluation function. Results show that pair-tuning generates molecules
with the highest activity improvement with respect to the seed molecules, when compared to baselines.

Conclusion

In this work, we propose a parameter efficient fine tuning method on top a chemical language model
for scaffold constrained molecule generation and unconstrained molecular property optimization.
Unlike other methods, our approach does not require a trained property predictor or absolute property
values and can learn from pairs of sub-optimal and optimal molecules. We show that our method can
generate diverse molecules with desired properties on three property optimization benchmarks. In
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future work, we would like to apply our method to a variety of tasks including the design of easily
synthesizable molecules that satisfy multiple properties.
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Appendix

A Related Work

Earlier work on de novo molecule generation mapped a SMILES representation of a molecule
into a continuous latent space using character based recurrent neural networks [19] and variational
autoencoders (VAE)[15]. The VAE models have an encoder that converts the discrete molecular rep-
resentation of a molecule into a continuous representation and a decoder that converts the continuous
representation back to a discrete representation. The continuous representation allows for efficient
de novo generation of molecules by sampling from the latent space. A property predictor is often
trained on the latent embeddings from the encoder and is used to search for compounds that have
specific desirable properties (conditional generation) using gradient-based or Bayesian optimization
techniques.

However, there are several drawbacks for this approach. One drawback is that the decoded SMILES
string may not always represent a valid molecule, often violating chemical constraints like valency.
To alleviate this problem, several approaches have been proposed to augment the model with rules or
mechanisms to ensure that the decoded SMILES strings are always valid [11, 20, 21, 22]. Another
solution is to use alternate more robust string representations like DeepSMILES [23] SELFIES[24]
and Group SELFIES [25]. While SELFIES-based representation ensures that all the decoded
molecules are structurally valid, there is recent work that indicates that invalid SMILES are low-
likelihood samples and are beneficial for chemical language models to better model the input molecule
distribution [26].

Another drawback of this approach is that the property predictors trained on the latent embeddings
are not as accurate as predictors trained end-to-end on the molecule itself. This necessitates a post-
processing step, where the generated molecules have to be filtered using another, more accurate,
predictor [27]. LIMO [10] avoids this problem by freezing the encoder and using a property predictor
trained directly on the discrete representation of a molecule to optimize the latent space using an
inceptionism-like approach.

Along with string generation methods, several graph and topological generative models have also
been proposed [14, 28, 29, 30, 31, 13, 12, 32]. Another approach to molecule optimization is to use
reinforcement learning to generate or modify a molecular graph [12, 9, 33, 16, 14]. While these
methods have been shown to be successful against a variety of molecular optimization tasks, they
often require multiple calls to the property predictor during the optimization process and hence are
difficult to use along with computationally expensive property predictors.

B Details of Datasets and Model Training

B.1 Model Details

The GP-MOLFORMER decoder uses the transformer block used in MOLFORMER. To avoid the
quadratic complexity associated with regular attention computations in vanilla transformers [34],
MOLFORMER utilized a base 12-layer transformer architecture with linear attention [3], wherein
each layer has 12 attention heads and a hidden state size of 768. A Generalized Feature map [3] for
the linear attention was chosen. To better model positional dependence of tokens within a SMILES
string, MOLFORMER deviates from using the default absolute position embeddings and instead uses
rotary embeddings [4]:

Attentionm(Q,K, V ) =

∑N
n=1⟨φ(Rmqm), φ(Rnkn)⟩vn∑N
n=1⟨φ(Rmqm), φ(Rnkn)⟩

,

where Q,K, V are the query, key, and value respectively, and φ a random feature map. The
GP-MOLFORMER is trained on the next token prediction task using a cross-entropy objective:
LLM (w1, ..., wn) =

∑
i logP (wi|wj<i).

B.2 Datasets and Tokenization

We used two datasets for pre-training by combining SMILES from the PubChem [35] and ZINC
[36] databases with varying proportions from each. The dataset contains a total of 1.1B SMILES
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strings; 111M of them are from the PubChem dataset, whereas the larger 1B portion comes from the
ZINC database. We utilized the tokenizer from Schwaller et al. (2019) [37] to construct a vocabulary.
All SMILES sequences from both PubChem and ZINC are converted to a canonical format with no
isomeric information using RDKit [38] followed by tokenization. All unique tokens extracted from
the resulting output give us a vocabulary of 2357 tokens plus 5 special tokens, resulting in a total
of 2362 vocabulary tokens. The post tokenization sequence length of the molecules range from 1 to
just over 2000 tokens. We decide to restrict the sequence length range from 1 token to 202 tokens,
special tokens inclusive, to reduce computation time. Since over 99.4 percent of all molecules from
our dataset contain less than 202 tokens, we hypothesize that the removal of molecules with more
than 202 tokens would be of minimal negative impact on pre-training.

B.3 Large Scale Training and Parallelization

For pre-training, we use the causal language model objective defined in Devlin et al. (2019) [39].
The training was performed for 4 epochs through the entire combined PubChem+ZINC dataset with
a fixed learning rate of 1.6 × 10−4 and a batch size of 1600 molecules per GPU on a total of 16
A100 80 GB GPUs over 2 servers connected via EDR Infiniband fabric. It should be noted that as
the number of GPUs utilized increased, we found an increase in learning rate was necessary up to a
factor of 8.

In order to scale our training to large datasets (>1B data points), we relied on adaptive bucketing of
mini-batches by sequence length, as well as parallelization via distributed data-parallel training.The
combination of linear attention, bucketing, and data parallelism allowed us to reduce the number of
GPUs needed from roughly 1000 for quadratic attention with no bucketing to 16.

C Pair-tuning

The paired molecule datasets for pair-tuning experiments were taken from Jin et al. (2019) [40]; The
QED paired data used for training consists of 70644 molecule pairs where the first/seed molecule has
a QED value in the range of 0.7–0.8 while the second/target molecule has a QED of 0.9–1.0. The
penalized logP paired data consists of 60227 molecule pairs. It should be noted that while the paired
datasets were collected such that molecular similarity within the pair is 0.4 and 0.6 for QED and
logP, respectively, we demonstrate pair-tuning only on unconstrained property optimization tasks
— we do not account for similarity preservation. The test set size for both QED and penalized logP
optimization was 800. For the DRD2 binding optimization task, we used 34,404 molecule pairs from
ZINC and Olivecrona et al. (2017) [16] for training and a test set of 1000 molecules [40]. For scoring
the generated molecules, the bioactivity prediction model from Olivecrona et al. (2017) [16] is used;
inactive compounds were defined with p < 0.5 and actives were with p ≥ 0.5.

The vocabulary includes 20 randomly initialized prompt embeddings as well as the <unk> embed-
ding from GP-MOLFORMER pre-training. For pair-tuning training, we prepended all 20 prompt
embeddings to the <bos> embedding, followed by the embeddings of the first/seed molecule in a
specific pair. We then add the <unk> embedding at the end of the first/seed molecule. After the <unk>
embedding, we add the embeddings of the target molecule, followed by the <eos> embedding.

For evaluation, we do a forward pass using the following sequence: the first 20 prompt embeddings
+ the <bos> embedding + the input molecule embeddings + the <unk> embedding. After that, we
sample from the token distribution generated by GP-MOLFORMER until <eos> is encountered. For
all pair-tuning experiments, batch size was set to 35, the learning rate was fixed at 3× 10−2, and the
number of epochs run was 1000. Each epoch took 6 minutes to complete on a single GPU. During
pairtuning generation, GP-MOLFORMER takes 0.00375 seconds for a single forward pass.

9



D DRD2 Activity Optimization

The performance of pair-tuning on DRD2 activity optimization task is given below. We show that
Pair-tuning achieves the best predicted activity score when compared to the baselines.

Table 3: Performance on the unconstrained DRD2 activity optimization task with respect to the initial
value. Baseline performances are reported from Erikawa et al. (2023)[18]. Bold value indicates the
best performing model.

pred. activity score avg. seed score

Mol-CycleGAN 0.381 0.179
Gargoyles 0.782 0.122
Pair-tuning 0.844 0.007

E Diversity Analysis in property-optimized molecules

In this section, we demonstrate the diversity of generated molecules for two property optimization
molecules. We show that the optimized molecules created by using pair tuning are highly novel
with high internal diversity compared to existing methods. For the penalized logP task, pair tuning
achieves the best score in both unlimited and limited length scenarios.

Table 4: Penalized logP molecule diversity (ll-38 = length-limited to 38 atoms). Results for LIMO are
reproduced using their published model while results for JT-VAE use their published set of generated
molecules. Size = # of examples, valid = fraction of valid SMILES, unique = fraction of unique valid
molecules, novel = fraction of novel molecules, IntDiv = internal diversity (p=1) of valid molecules,
SNN = average Taniomoto similarity to nearest neighbor in train, best score = maximum PLogP. Bold
values indicate the best models for a given metric (both unlimited and length-limited).

size valid unique novel IntDiv SNN best score

un
lim

ite
d train 75284 1.000 0.928 0.000 0.860 1.000 5.481

LIMO 100000 1.000 0.994 1.000 0.857 0.226 6.810
JT-VAE 2481 1.000 0.765 1.000 0.874 0.372 5.300
Pair-tuning (k = 125) 100000 0.944 0.939 1.000 0.896 0.370 13.187
Pair-tuning (k = 1000) 800000 0.946 0.916 1.000 0.896 0.371 19.595

ll-
38

train 73154 1.000 0.926 0.000 0.860 1.000 5.288
LIMO 99618 1.000 0.994 1.000 0.857 0.226 6.768
JT-VAE 2475 1.000 0.765 1.000 0.874 0.372 4.935
Pair-tuning (k = 125) 86193 1.000 0.933 1.000 0.898 0.372 7.123
Pair-tuning (k = 1000) 692082 1.000 0.908 1.000 0.898 0.373 9.355

Table 5: QED molecule diversity. Results for LIMO are reproduced using their published model.
Size = # of examples, valid = fraction of valid SMILES, unique = fraction of unique valid molecules,
novel = fraction of novel molecules, IntDiv = internal diversity (p=1) of valid molecules, SNN =
average Taniomoto similarity to nearest neighbor in train, best score = maximum QED. Bold values
indicate the best models for a given metric.

size valid unique novel IntDiv SNN best score

train 88306 1.000 0.150 0.000 0.840 1.000 0.948
LIMO 100000 1.000 0.972 1.000 0.906 0.203 0.943
Pair-tuning (k=125) 100000 0.990 0.991 1.000 0.860 0.429 0.948
Pair-tuning (k=1000) 800000 0.927 0.861 1.000 0.892 0.356 0.948
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