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Abstract

Social media is an easy-to-access platform pro-001
viding timely updates about societal trends and002
events. Discussions regarding epidemic-related003
events such as infections, symptoms, and social004
interactions can be crucial for informing poli-005
cymaking during epidemic outbreaks. In our006
work, we pioneer exploiting Event Detection007
(ED) for better preparedness and early warn-008
ings of any upcoming epidemic by developing009
a framework to extract and analyze epidemic-010
related events from social media posts. To this011
end, we curate an epidemic event ontology com-012
prising seven disease-agnostic event types and013
construct a Twitter dataset SPEED with human-014
annotated events focused on the COVID-19015
pandemic. Experimentation reveals how ED016
models trained on COVID-based SPEED can017
effectively detect epidemic events for three018
unseen epidemics of Monkeypox, Zika, and019
Dengue; while models trained on existing ED020
datasets fail miserably. Furthermore, we show021
that reporting sharp increases in the extracted022
events by our framework can provide warnings023
4-9 weeks earlier than the WHO epidemic dec-024
laration for Monkeypox. This utility of our025
framework lays the foundations for better pre-026
paredness against emerging epidemics.1027

1 Introduction028

Early warnings and effective control measures are029

among the most important tools for policymakers030

to be prepared against the threat of any epidemic031

(Collier et al., 2008). World Health Organization032

(WHO) reports suggest that 65% of the first reports033

about infectious diseases and outbreaks originate034

from informal sources and the internet (Heymann035

et al., 2001). Social media is an important informa-036

tion source here, as it is more timely than other al-037

ternatives like news and public health (Lamb et al.,038

2013), more publicly accessible than clinical notes039

1Code and data will be released upon acceptance.

WHO DECLARES
MONKEYPOX AS
GLOBAL HEALTH
CONCERN

OUR
EPIDEMIC
WARNINGS

Figure 1: Number of reported Monkeypox cases and
extracted events by our trained ED model from May
11 to Nov 11, 2022. Arrows indicate how our system
could provide early epidemic warnings about 4-9 weeks
before the WHO declared Monkeypox as a concern.
MAVEN = Data Transfer model trained on MAVEN.
Keyword = epidemiological keyword baseline.

(Lybarger et al., 2021), and possesses a huge vol- 040

ume of content.2 This underscores the need for 041

an automated system monitoring social media to 042

provide early and effective epidemic prediction. 043

To this end, we pioneer to leverage the task 044

of Event Detection (ED) for epidemic prediction. 045

ED involves identifying and categorizing signifi- 046

cant events based on a pre-defined ontology (Sund- 047

heim, 1992; Doddington et al., 2004). Compared 048

to existing epidemiological keyword and sentence- 049

classification approaches (Lejeune et al., 2015; Ly- 050

barger et al., 2021), ED requires a deeper seman- 051

tic understanding. This enhanced understanding 052

aids in more effective disease-agnostic extraction 053

of epidemic events from social media. By report- 054

ing sharp increases in epidemic-related events, we 055

can provide early epidemic warnings, as shown for 056

Monkeypox in Figure 1 - highlighting the applica- 057

bility of ED for epidemic prediction. 058

Existing ED datasets are unsuitable for estab- 059

lishing a framework to extract epidemic-related 060

2A daily average of 20 million tweets were posted about
COVID-19 from May 15 – May 31, 2020.
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events from social media, as they focus on general-061

purpose events in news and wikipedia domains,062

while other epidemiological works are disease-063

specific and too fine-grained (§ 6). Thus, we con-064

struct our own epidemic ED ontology and dataset065

for social media. Our created ontology comprises066

seven event types - infect, spread, symptom, pre-067

vent, cure, control, death - chosen based on their068

relevance for epidemics, frequency in social media,069

and their applicability to various diseases. We fur-070

ther validate our ontology through clinical sources071

and public health experts. For the dataset, we072

choose Twitter as the social media platform and073

focus on the COVID-19 pandemic. Using our cu-074

rated ontology and expert annotation, we create our075

dataset SPEED (Social Platform based Epidemic076

Event Detection) comprising 1,975 tweets and077

2,217 event mentions. We complete our ED frame-078

work by training ED models (Du and Cardie, 2020;079

Hsu et al., 2022) on SPEED. Overall, SPEED pro-080

vides disease-agnostic coverage of epidemic events081

for social media; thus, serving as a valuable dataset082

for epidemic prediction.083

To validate the utility of our ED framework for084

disease-agnostic epidemic prediction, we perform085

two evaluations for three unseen diseases Monkey-086

pox, Zika, and Dengue. First, we evaluate if our087

framework trained on our COVID-only SPEED088

dataset can detect epidemic events for the unseen089

diseases. Experiments reveal that our framework090

can successfully extract epidemic events, providing091

gains up to 29% F1 over the best few-shot model092

and 10% F1 gain over supervised models trained093

on limited target disease data.094

Our second evaluation validates if aggregation095

of our extracted events can provide early epidemic096

warnings. Comparing our extracted events with the097

actual reported cases, we show that our framework098

can provide warnings up to 4-9 weeks earlier than099

the WHO declaration for the Monkeypox epidemic100

(Figure 1). Such early warnings aided with timely101

action can potentially lead to 2-4x reduction in102

the number of infections and deaths (Kamalrathne103

et al., 2023). These results underscore the strong104

utility of our dataset and framework for upcoming105

epidemic prediction and preparedness.106

The contribution of this work is threefold, first,107

we pioneer to utilize Event Detection to develop an108

effective framework capable of extracting events109

from social media and providing early warnings110

for any unforeseeable epidemic. To support the111

proposed framework, our second contribution is112

Might be allergic to the food, just sneezed.

Death
A total of eight residents who tested positive 
for COVID-19 at the local hospital have died.

Infect

Symptom

Figure 2: Illustration for the task of Event Detection.
Event mentions: Event symptom and trigger sneezed
(1st sentence), Event infect and trigger positive (2nd
sentence), Event death and trigger died (2nd sentence).

the design of a disease-agnostic social-media tai- 113

lored ontology and dataset SPEED. Our final con- 114

tribution is extensive experiments to demonstrate 115

the inadequacy of existing methods and the sub- 116

stantial improvements achieved by models trained 117

on SPEED. This signifies the pivotal role of our 118

dataset and framework in enhancing the efficacy of 119

epidemic prediction. 120

2 From Event Detection to Epidemic 121

Prediction 122

Given a social media post, Event Detection (ED) 123

(Sundheim, 1992; Doddington et al., 2004) extracts 124

and classifies significant events of interest. By de- 125

signing disease-agnostic epidemic-based events, 126

we aim to train ED models to extract epidemic 127

events from social media posts for any possible 128

disease. By detecting abnormal influx in the trends 129

of extracted epidemic events from social media, 130

we can thus provide early epidemic warnings for 131

any possible disease, as we show for Monkeypox 132

in Figure 1. Existing epidemiological approaches 133

(Lejeune et al., 2015; Lybarger et al., 2021) are sim- 134

ple keyword or sentence classification-based and 135

less accurate. Other works like COVIDKB (Zong 136

et al., 2022) and ExcavatorCovid (Min et al., 2021a) 137

are disease-specific and utilize events for building 138

knowledge bases. To the best of our knowledge, 139

we are the first ones to leverage event detection 140

to extract epidemic events from social media and 141

provide early warnings for any possible disease. 142

Formal Task Definition Following ACE 2005 143

guidelines (Doddington et al., 2004), we define an 144

event to be something that happens or describes a 145

change of state and is labeled by a specific event 146

type. An event mention is the sentence wherein 147

the event is described. Each event mention com- 148

prises an event trigger, which is the word/phrase 149

that most distinctly highlights the occurrence of 150

the event. Event Detection is technically defined 151
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as the task of identifying event triggers from sen-152

tences and classifying them into one of the pre-153

defined event types (defined by an event ontology).154

The subtask of identifying event triggers is called155

Trigger Identification and classification into event156

types is Trigger Classification (Ahn, 2006). Fig-157

ure 2 shows examples for three event mentions for158

the events symptom, infect, and death.159

3 Ontology Creation and Data Collection160

We choose social media as our document source as161

it provides faster and more timely worldly informa-162

tion than news and public health (Lamb et al., 2013)163

and is more publicly accessible than clinical notes164

(Lybarger et al., 2021). Owing to its public access165

and huge content volume, we consider Twitter3 as166

the social media platform and consider the recent167

COVID-19 pandemic as the primary disease.168

Existing epidemiological ontologies are typi-169

cally disease-specific, too fine-grained, or limited170

in coverage (§ 6 and Table 6). Similarly, standard171

ED datasets don’t comprise epidemiological events172

and mostly focus on news or Wikipedia domains173

(§ 6). Due to these limitations, we create our own174

event ontology and dataset SPEED for detecting175

disease-agnostic epidemics from social media. Fig-176

ure 3 provides a brief overview of our data creation177

process, with further details discussed below.178

3.1 Ontology Creation179

Taking inspiration from medical sources like180

BCEO (Collier et al., 2008), IDO (Babcock et al.,181

2021), and the ExcavatorCovid (Min et al., 2021b),182

we curate a wide range of epidemic-related event183

types. Next, we merge similar event types across184

these different ontologies (e.g. Outbreak event185

type). To create a disease-agnostic ontology, we fil-186

ter out event types biased for specific diseases (e.g.187

Mask Wearing for COVID-19) and create disease-188

agnostic definitions using aid from public-health189

experts. Finally, we categorize these events into190

three abstractions: personal (individual-oriented191

events), social (large population events), and medi-192

cal (medically focused events) types. We report our193

initial ontology comprising 18 event types in Ta-194

ble 21 and share additional specifications in § A.1.195

Social Media Relevance To tailor our curated on-196

tology for social media, we conduct a deeper analy-197

sis of the event types based on their frequency and198

specificity. Our goal is to filter and merge event199

3https://www.twitter.com/

Ontology Creation

Data 
Processing Annotation

SPEED 

Expert 
Annotators 

Inter-Annotator Agreement

Quality Control

Past 
Ontologies

COVID-19
Endpoint

Base 
Dataset

Tweet
Preprocessing

 Event-based Filtering 

Event-based Sampling

Guideline 
Preparation 

Cure DeathControlPreventSymptomSpreadInfect

Our Ontology

Data Annotation

Social Media Relevance Ontology Validation

Figure 3: Overview of our dataset creation process with
three major steps: Ontology Creation, Data Processing,
and Data Annotation.

types that occur less frequently and less distintively 200

in social media. To this end, using human expertise 201

and external tools like Thesaurus,4 we first asso- 202

ciate each event type with specific keywords. Then 203

we rank the event types based on the specificity 204

and frequency of their keywords in social media 205

posts. Based on this ranking, we merge and discard 206

the lower ranked event types (e.g. Respond and 207

Prefigure). Furthermore, we conduct human stud- 208

ies and merge event types to ensure better pairwise 209

distinction (e.g. Treatment is merged with Cure). 210

Additional details are mentioned in § A.2. 211

Ontology Validation and Coverage Elemental 212

medical soundness is ensured for our ontology 213

since it is derived from established epidemiological 214

ontologies. To further certify this soundness, two 215

public health experts validate the sufficiency and 216

comprehensiveness of our ontology and event defi- 217

nitions. To verify if our ontology is characteristic 218

of any disease, we assess our ontology coverage 219

for four diverse diseases by estimating the percent- 220

age of event occurrence in disease-related tweets. 221

Notably, we observe a high coverage: 50% for 222

COVID-19, 44% for Monkeypox, 70% for Dengue 223

and 73% for Zika (details in § A.3), confirming 224

robust disease coverage of our ontology. 225

Our final ontology comprises seven primary 226

event types tailored for social media, disease- 227

agnostic, and encompassing crucial aspects of an 228

epidemic. We present our ontology in Table 1 along 229

with event definitions and example event mentions. 230

4https://www.thesaurus.com/

3

https://www.twitter.com/
https://www.thesaurus.com/


Event Type Event Definition Example Event Mention

Infect The process of a disease/pathogen invading host(s) Children can also catch COVID-19 ...

Spread The process of a disease spreading/prevailing massively at a
large scale

#COVID-19 CASES RISE TO 85,940 IN INDIA ...

Symptom Individuals displaying physiological features indicating the
abnormality of organisms

(user) (user) Still coughing two months after being
infected by this stupid virus ...

Prevent Individuals trying to prevent the infection of a disease ... wearing mask is the way to prevent COVID-19

Control Collective efforts trying to impede the spread of epidemic Social Distancing reduces the spread of covid ...

Cure Stopping infection and relieving individuals from infec-
tions/symptoms

... recovered corona virus patients cant get it again

Death End of life of individuals due to infectious disease. More than 80,000 Americans have died of COVID ...

Table 1: Event ontology comprising seven event types promoting epidemic preparedness along with their definitions
and example event mentions. The trigger words are marked in bold.

3.2 Data Processing231

To access a wide range of tweets related to COVID-232

19, we utilized the Twitter COVID-19 Endpoint233

released in April 2020. We used a randomized se-234

lection of 331 million tweets between May 15 –235

May 31 2020, as our base dataset. For preprocess-236

ing tweets, we follow Pota et al. (2021): (1) we237

anonymize personal information like phone num-238

bers, emails, and handles, (2) we normalize any239

retweets and URLs, (3) we remove emojis and split240

hashtags, (4) we filter out tweets only in English.241

Event-based Filtering Most tweets in our base242

dataset expressed subjective sentiments, while only243

3% comprised mentions aligned with our event on-244

tology.5 To reduce annotation costs, we further245

filter these tweets using a simple sentence embed-246

ding similarity technique. Specifically, each event247

type is linked to a seed repository of 5-10 diverse248

tweets. Query tweets are filtered based on their249

sentence-level similarity (Reimers and Gurevych,250

2019) with this event-based seed repository.6 This251

step filters about 95% tweets from our base dataset,252

leading to 20x reduction in the annotation cost.253

Event-based Sampling Random sampling of254

tweets would yield an uneven and COVID-biased255

distribution of event types for our dataset. We in-256

stead perform a uniform sampling - wherein we257

over-sample tweets linked to less frequent types258

(e.g. prevent) and under-sample the more frequent259

ones (e.g. death). Such a uniform sampling has260

proven to ensure model robustness (Parekh et al.,261

2023) - as also validated by our experiments (§ B) -262

and in turn, would make SPEED generalizable to a263

wider range of diseases. In total, we sample 1,975264

5Based on keyword-based study conducted on 1,000 tweets
6We use a filtering threshold of 0.9.

tweets which are utilized for ED annotation. 265

3.3 Data Annotation 266

For ED annotation, annotators are tasked with iden- 267

tifying whether a given tweet mentions any event 268

outlined in our ontology. If an event is present, an- 269

notators are required to identify the specific event 270

trigger. We design our annotation guidelines fol- 271

lowing the standard ACE dataset (Doddington et al., 272

2004) and amend them through several rounds of 273

preliminary annotations to ensure annotator consis- 274

tency. Additional details are provided in § C. 275

Annotator Details To ensure high annotation qual- 276

ity and consistency, we chose six experts instead of 277

crowdsourced workers. These experts are computer 278

science students studying NLP and well-versed for 279

ED. They were further trained through multiple 280

rounds of annotations and feedback. 281

Inter-annotator agreement (IAA) We used Fleiss’ 282

Kappa (Fleiss, 1971) for measuring IAA. We con- 283

duct two phases of IAA studies: (1) Guideline 284

Improvement: Three annotators participated in 285

three annotation rounds to improve the guidelines 286

through collaborative discussion of disagreements. 287

IAA score rose from 0.44 in the first round to 0.59 288

(70 samples) in the final round. (2) Agreement 289

Improvement: All annotators participated in three 290

rounds of annotations to boost consistency. IAA 291

score improved from 0.56 in the first round to a 292

strong 0.65 (50 samples) in the final round. 293

Quality Control We further ensure high annotation 294

quality through: (1) Multi-Annotation: each tweet 295

is annotated by two annotators, disagreements re- 296

solved by a third, and (2) Flagging: annotators flag 297

ambiguous annotations, resolved by a third annota- 298

tor via discussion. These, coupled with good IAA 299
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Dataset # Event # Sent # EM Avg. EM DomainTypes per Event

ACE 33 18, 927 5, 055 153 News
ERE 38 17, 108 7, 284 192 News
M2E2 8 6, 013 1, 105 138 News
MLEE 29 286 6, 575 227 Biomedical
FewEvent 100 12, 573 12, 573 126 General
MAVEN 168 49, 873118, 732 707 Wikipedia
SPEED 7 1, 975 2, 217 317 Social Media

Table 2: Data Statistics for SPEED dataset and compari-
son with other standard ED datasets. # = “number of",
Avg. = average, Sent = sentences, EM = event mentions.
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Figure 4: Distribution of number event mentions per
sentence. Here % indicates percentage.

scores, ensure the high quality of our annotations.300

3.4 Data Analysis301

Our dataset SPEED comprises seven event types302

with 2,217 event mentions annotated over 1,975303

tweets. We compare SPEED with other ED datasets304

like ACE (Doddington et al., 2004), ERE (Song305

et al., 2015), M2E2 (Li et al., 2020), MLEE306

(Pyysalo et al., 2012), FewEvent (Deng et al.,307

2020), and MAVEN (Wang et al., 2020) in Table 2.308

We show how other datasets focus on the news,309

biomedical, general, and Wikipedia domains, while310

SPEED is the first-ever ED dataset for social media,311

specifically Twitter. Furthermore, none of the pre-312

vious datasets comprise any of the epidemiological313

event types present in SPEED (§ D.1).314

Comparable Datasize Since we only focus on 7315

event types, SPEED has relatively lesser number of316

sentences and event mentions. However, SPEED317

has a high 316 average mentions per event type318

(column 5 in Table 2), more than most other stan-319

dard datasets. We compare the distribution of event320

mentions per sentence with other ED datasets like321

ACE and MAVEN in Figure 4. We observe that the322

event density of our dataset is less than MAVEN323

but better than ACE. This shows that SPEED is324

fairly dense and reasonably sized ED dataset.325

Disease # Sent # EM

Train COVID 1, 601 1, 746

Dev COVID 374 471

Test Monkeypox 286 398
Zika + Dengue 300 274

Table 3: Statistics for data splits for epidemic event
detection evaluation. # = “number of", Sent = sentences,
EM = event mentions.

4 Epidemic Prediction 326

For our ED framework, we utilize our curated 327

dataset SPEED to train various ED models (§ 4.1). 328

To validate the utility of models for the application 329

of epidemic prediction, we perform evaluations us- 330

ing two tasks: (1) Epidemic event detection and (2) 331

Early warning prediction. Epidemic event detec- 332

tion performs a formal ED evaluation of the models 333

for detecting epidemic-based events. On the other 334

hand, early warning prediction practically evaluates 335

if the extracted events by the model can be aggre- 336

gated to provide any early epidemic warnings. 337

Since SPEED focuses solely on COVID-19, we 338

conduct these epidemic prediction evaluations for 339

three unseen epidemics of Monkeypox (2022), Zika 340

(2017), and Dengue (2018). These diseases are 341

fairly distinct too, as Monkeypox causes rashes and 342

rarely fatal, Zika causes birth defects, and Dengue 343

causes high fever and can be fatal. For our evalua- 344

tions, we utilize and modify the raw Twitter dumps 345

provided by Thakur (2022) for Monkeypox and 346

Dias (2020) for Zika and Dengue. 347

4.1 Epidemic Event Detection 348

To validate if our SPEED-trained models can ex- 349

tract events for any epidemic, we perform tradi- 350

tional ED evaluation of these models for unseen 351

diseases of Monkeypox, Zika, and Dengue. Follow- 352

ing Ahn (2006), we report the F1-score for trigger 353

identification (Tri-I) and classification (Tri-C). 354

Data Setup To train our ED models, we split the 355

SPEED into 80-20 split for training and develop- 356

ment sets. For testing, we sample tweets from the 357

Twitter dumps of Monkeypox, Zika, and Dengue. 358

Since the original data doesn’t have any annota- 359

tions, we utilize human experts to annotate them 360

for ED and create the evaluation dataset. We pro- 361

vide statistics for our data setup in Table 3. 362

ED Models For training models using SPEED 363

for our ED framework, we consider the following 364
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supervised models: (1) DyGIE++ (Wadden et al.,365

2019), (2) BERT-QA (Du and Cardie, 2020), (3)366

DEGREE (Hsu et al., 2022), (4) TagPrime (Hsu367

et al., 2023). We utilized the TextEE framework368

(Huang et al., 2023) to implement these models and369

provide more details in § E.370

Baseline Models As baselines, we consider zero-371

shot ED models (ZERO-SHOT) that do not train372

on any supervised data and solely utilize the event373

definitions. We consider the following zero-shot374

models: (1) TE (Lyu et al., 2021), (2) WSD (Yao375

et al., 2021), (3) ETypeClus (Shen et al., 2021).376

Additional model implementation details is pro-377

vided in § E. We also consider transferring from378

existing datasets (TRANSFER FROM EXISTING379

DATASETS) by training models on standard ED380

datasets like ACE (Doddington et al., 2004) and381

MAVEN (Wang et al., 2020) without fine-tuning382

on epidemic ED data.383

As stronger baselines, we also consider models384

utilizing epidemic ED data. Here, we consider mod-385

els using few-shot target disease data without any386

model training (NO TRAINING) like: (1) Keyword387

(Lejeune et al., 2015), an epidemiological model388

utilizing curated event-specific keywords to detect389

events, and (2) GPT-3.5 (Brown et al., 2020), a390

large-language model (LLM) using GPT-3.5-turbo391

with seven target disease in-context ED examples.392

Finally, we consider super-strong baselines training393

ED models on limited 300 tweets for the target dis-394

ease (TRAINED ON TARGET EPIDEMIC). Noting395

that these models are added for comparison, but396

they are practically infeasible for epidemic predic-397

tion, as it takes 4-6 weeks after the first infection398

to collect such target disease data.399

Results We present our results in Table 4. Firstly,400

none of the existing data transfer, zero-shot, or no401

training-based models perform well for our task,402

mainly owing to the domain shift of social media403

and unseen epidemic events. Overall, ED models404

trained on SPEED perform the best, thus demon-405

strating the capability of our ED framework to406

detect epidemic events for new diseases. Com-407

pared with models trained on the target epidemic,408

SPEED-trained models provide a gain of 10 F1409

points for Monkeypox and at par performance for410

Zika and Dengue. This outcome is particularly en-411

couraging, as it demonstrates the resilience of our412

framework, making it highly applicable during413

the early stages of an epidemic, when minimal414

to no epidemic-specific data is accessible.415

Model Monkeypox Zika + Dengue
Tri-I Tri-C Tri-I Tri-C

ZERO-SHOT

TE 16.70 12.11 12.69 9.06
WSD 22.04 4.35 27.93 5.85
ETypeClus 18.31 6.78 13.99 5.33

TRANSFER FROM EXISTING DATASETS

ACE - TagPrime 4.80 0 23.64 0
ACE - DEGREE 12.15 5.14 14.47 0
MAVEN - TagPrime 29.16 0 33.97 0
MAVEN - DEGREE 27.94 0 32.04 0

NO TRAINING

Keyword 36.40 25.09 25.93 21.69
GPT-3.5 42.23 35.33 53.22 14.27

TRAINED ON TARGET EPIDEMIC

BERT-QA 59.8 54.08 94.92 80.89
DEGREE 59.58 54.12 86.21 78.76
TagPrime 55.57 49.65 96.67 84.43
DyGIE++ 55.83 50.31 73.24 65.65

TRAINED ON SPEED (OUR FRAMEWORK)

BERT-QA 67.38 64.17 96.77 81.97
DEGREE 62.95 61.45 88.52 77.69
TagPrime 64.71 61.92 95.24 75.54
DyGIE++ 62.76 59.82 91.8 80.34

Table 4: Evaluating ED models trained on SPEED for
detecting events for new epidemics of Monkeypox, Zika,
and Dengue in terms of F1 scores.

4.2 Early Warning Prediction 416

As the practical validation of the utility of our 417

framework, we evaluate if SPEED-trained ED mod- 418

els are capable of providing early warnings for an 419

unknown epidemic. More specifically, we aggre- 420

gate the extracted event mentions by our framework 421

over a time period and report any sharp increase 422

in the rolling average of detected events as an epi- 423

demic warning. For evaluation, we compare it with 424

the actual number of disease infections reported 425

in the same time period. Naturally, the earlier we 426

provide an epidemic warning, the better the frame- 427

work is deemed. For this evaluation, we choose 428

Monkeypox as the unseen disease and its outbreak 429

from May 11 to Nov 11, 2022, as the unknown 430

epidemic period. 431

Results We report the number of epidemic events 432

extracted by the BERT-QA trained on SPEED 433

along with the actual number of Monkeypox cases 434

reported in the US7 from May 11 to Nov 11, 435

2022, in Figure 1. For comparison, we also plot 436

7As reported by CDC at https://www.cdc.gov/
poxvirus/mpox/response/2022/mpx-trends.html
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Figure 5: Number of reported Monkeypox cases and
the number of extracted events from our four trained
models from May 11 to Nov 11, 2022.

the Keyword and the MAVEN-trained TagPrime437

model. As indicated by the arrows, our model438

could potentially provide two sets of early warn-439

ings around May 23 (9 weeks earlier, when first440

cases were detected) and June 29 (4 weeks ear-441

lier, when cases started rising) before the outbreak442

reached its peak around July 30. Comparatively,443

MAVEN-trained model fails completely, while key-444

word model trends are super weak to provide any445

warnings. In fact, all our trained ED models are ca-446

pable of providing these early signals as shown447

in Figure 5 (further event-wise analysis in Ap-448

pendix F). This robust outcome underscores the449

practical utility of our framework to provide450

early epidemic warnings and ensure better pre-451

paredness for any potential epidemic.452

5 Analysis and Discussion453

5.1 Event-based Disease Profiling454

Our ED framework offers the additional utility of455

generating event-based disease profiles using pub-456

lic sentiments. These disease profiles can be gen-457

erated by plotting the percentage of mentions per458

event type extracted by our framework. Using 500k459

tweets, we depict the profiles for COVID, Monkey-460

pox, and Zika+Dengue in Figure 6.461

Distinctive profiles emerge for each disease;462

COVID majorly comprises control, Monkeypox463

exhibits a bias toward infect and spread, while464

Zika+Dengue emphasizes control and death. These465

trends align with the higher fatality rate of Zika and466

Dengue (Paixao et al., 2022), recent discoveries of467

transmission routes of Monkeypox (Kozlov et al.,468

2022), and the need for mass public control mea-469

sures for the COVID pandemic (Güner et al., 2020).470

Relatively, Monkeypox also shows low mentions471

for death, cure - which aligns with low fatality472

and no available cure for Monkeypox (Kmiec and473
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Figure 6: Disease profiles of public opinions generated
by plotting the percentage of extracted event mentions
for COVID-19, Monkeypox and Zika.

Kirchhoff, 2022). Overall, these profiles can pro- 474

vide policymakers with valuable insights about new 475

unknown outbreaks to implement more informed 476

and effective interventions. 477

5.2 Why does SPEED generalize? 478

We provide a qualitative analysis of why COVID- 479

based SPEED helps detect epidemic events for 480

other unseen diseases compared to previous epi- 481

demiological works (Collier et al., 2008; Lejeune 482

et al., 2015) and attribute it to the difference in 483

the task formulation and annotation schema. We 484

demonstrate this difference (highlighted in bold) 485

through illustrative examples for Infect and Symp- 486

tom events in Table 5. As evident, keyword-based 487

modeling requires annotating highly precise but 488

disease-specific keywords like COVID-19, fever, 489

etc. On the other hand, our ED annotation formula- 490

tion emphasizes the annotation of disease-agnostic 491

triggers like infected, symptoms, etc. This provides 492

SPEED and our framework superior generalizabil- 493

ity without new annotation to unseen diseases. 494

6 Related Work 495

Event Extraction Datasets Event Extraction 496

(EE) is the task of detecting events (Event Detec- 497

tion) and extracting structured information about 498

specific roles linked to the event (Event Argument 499

Extraction) from natural text. Earliest works for 500

this task can be dated back to MUC (Sundheim, 501

1992; Grishman and Sundheim, 1996) and the more 502

standard ACE (Doddington et al., 2004). Over the 503

years, ACE was extended to various datasets like 504

ERE (Song et al., 2015) and TAC KBP (Ellis et al., 505

2015). Recent progress has been the creation of 506

massive datasets and huge event ontologies with 507
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Disease Infect Event Example Symptom Event Example

Keyword-based COVID-19 Three students infected with COVID-19 COVID-19 symptoms include fever, cough, ...
Keyword-based Monkeypox How do you catch Monkeypox? Monkeypox may cause rashes and itching ...
SPEED (Ours) COVID-19 Three students infected with COVID-19 COVID-19 symptoms include fever, cough, ...
SPEED (Ours) Monkeypox How do you catch Monkeypox? Monkeypox may cause rashes and itching ...

Table 5: Qualitative analysis for annotation difference between previous keyword-based epidemiological datasets
(Collier et al., 2008; Lejeune et al., 2015) and SPEED’s Event Detection based annotation schema. Our annotation
schema is less disease-specific and thus, better generalizable to a wide range of diseases.

Dataset Sent- Social Per.
Source Level Trig. Eve. Eve. SMG

SPEED (Ours) Twitter ✓ ✓ ✓ ✓ ✓
COVIDKB Twitter ✓ ✗ ✗ ✓ ✓
CACT Clinical ✗ ✗ ✗ ∼ ✓
ExcavatorCovid News ✗ ✓ ✓ ✓ ✗
BioCaster News ✗ ✗ ✓ ✓ ✗
DANIEL News ✗ ∼ ✗ ∼ ✓

Table 6: Objective comparison of various epidemiologi-
cal datasets COVIDKB (Zong et al., 2022), CACT (Ly-
barger et al., 2021), ExcavatorCovid (Min et al., 2021a),
BioCaster (Collier et al., 2008), and DANIEL (Lejeune
et al., 2015) with our dataset SPEED. We objectify the
source of data (Data Source), the level of annotation
granularity (Sentence Level), the presence of trigger in-
formation (Trigger Present), the presence of social and
personal events (Social Events and Personal Events),
and the suitability of ontology for social media (SMG –
Social Media Granular). ∼ indicates partial presence.

datasets like MAVEN (Wang et al., 2020), RAMS508

(Ebner et al., 2020), WikiEvents (Li et al., 2021),509

DocEE (Tong et al., 2022), GENEVA (Parekh et al.,510

2023) and GLEN (Zhan et al., 2023). These ontolo-511

gies and datasets cater to general-purpose events512

and do not comprise epidemiological event types.513

Epidemiological Ontologies Earliest works514

(Lindberg et al., 1993; Rector et al., 1996) defined515

highly rich taxonomies for describing technical516

concepts used by biomedical experts. Further de-517

velopments led to the creation of SNOMED CT518

(Stearns et al., 2001) and PHSkb (Doyle et al.,519

2005) that define a list of reportable events used520

for communication between public health experts.521

BioCaster (Collier et al., 2008) and PULS (Du522

et al., 2011) extended ontologies for the news do-523

main. Recent works of NCBI (Dogan et al., 2014),524

IDO (Babcock et al., 2021) and DO (Schriml et al.,525

2022) focus on comprehensively organizing human526

diseases. In light of the recent COVID-19 pan-527

demic, CIDO (He et al., 2020) define a technical528

taxonomy for coronavirus, while ExcavatorCovid529

(Min et al., 2021a) automatically extract COVID-530

19 events and relations between them. Most of 531

these ontologies are too fine-grained or limited to 532

specific events, and can’t be directly used for ED 533

from social media, as also shown in Table 6. 534

Epidemiological Information Extraction Early 535

works utilized search-engine queries and click- 536

through rates for predicting influenza trends (Ey- 537

senbach, 2006; Ginsberg et al., 2009). Information 538

extraction from Twitter has also been quite suc- 539

cessful for predicting influenza trends (Signorini 540

et al., 2011; Lamb et al., 2013; Paul et al., 2014). 541

Over the years, various biomedical monitoring sys- 542

tems have been developed like BioCaster (Col- 543

lier et al., 2008; Meng et al., 2022), HeathMap 544

(Freifeld et al., 2008), DANIEL (Lejeune et al., 545

2015), EpiCore (Olsen, 2017). Extensions to sup- 546

port multilingual systems has also been explored 547

(Lejeune et al., 2015; Mutuvi et al., 2020; Sah- 548

noun and Lejeune, 2021). For the COVID-19 pan- 549

demic, several frameworks like CACT (Lybarger 550

et al., 2021) and COVIDKB (Zong et al., 2022) 551

were developed for extracting symptoms and infec- 552

tion statistics respectively. Most of these systems 553

are disease-specific, focus on news and clinical 554

domains, and use keyword/rule-based or simple 555

BERT-based models, as shown in Table 6. In our 556

work, we explore exploiting ED while focusing 557

specifically on the social media domain. 558

7 Conclusion and Future Work 559

In this work, we develop an Event Detection (ED) 560

framework to extract events from social media to 561

provide early epidemic warnings. To facilitate this, 562

we create our Twitter-based dataset SPEED com- 563

prising seven event types. Through experimenta- 564

tion, we show how existing models fail; while mod- 565

els trained on SPEED can effectively extract events 566

and provide early warnings for unseen emerging 567

epidemics. More broadly, our work demonstrates 568

how event extraction can exploit social media to aid 569

policy-making for better epidemic preparedness. 570

8



Limitations571

Our work focuses majorly on a single source of572

social media - Twitter. We haven’t explored other573

social media platforms and how ED would work on574

those platforms in our work. We leave that for fu-575

ture work, but are optimistic that our models should576

be able to generalize across platforms. Secondly,577

our work mainly only focuses on ED as the pri-578

mary task, while its sister task Event Argument579

Extraction (EAE) is not explored. We hope to ex-580

tend our work for EAE as part of our future work.581

Finally, we would like to show the generalization582

of our models on a vast range of diseases. How-583

ever owing to budget constraints and the lack of584

publically available Twitter data for other diseases,585

we couldn’t perform such a study. However, we586

believe showing results on three diseases lays the587

foundation for generalizability of our model.588

Ethical Considerations589

One strong assumption in our work is the avail-590

ability of internet and social media for discussions591

about epidemics. Since not everyone has equal ac-592

cess to these platforms, our dataset, models, and593

results do not represent the whole world uniformly.594

Thus, our work can be biased and should be consid-595

ered with other sources for better representation.596

Our dataset SPEED is based on actual tweets597

posted by people all over the world. We attempted598

our best to anonymize any kind of private informa-599

tion in the tweets, but we can never be completely600

thorough, and there might be some private infor-601

mation embedded still in our dataset. Furthermore,602

these tweets were sentimental and may possess603

stark emotional, racial, and political viewpoints604

and biases. We do not attempt to clean any of such605

extreme data in our work (as our focus was on606

ED only) and these biases should be considered if607

being used for other applications.608

Since our ED models are trained on SPEED, they609

may possess some of the dataset-based social bi-610

ases. Since we don’t focus on bias mitigation, these611

models should be used with due consideration.612

Lastly, we do not claim that our models can613

be used off-the-shelf for epidemic prediction as614

it hasn’t been thoroughly tested and can have false615

positives and negatives too. We majorly throw light616

to show these model capabilities and motivate fu-617

ture work in this direction. The usage of these618

systems for practical purposes should be appropri-619

ately considered.620
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A Ontology Creation - Additional Details998

A.1 Complete ontology999

Here, we first describe the selection steps for event1000

types for our ontology as follows:1001

1. Curation of event types: We scan through ex-1002

isting medical ontologies like BCEO (Collier1003

et al., 2008), IDO (Babcock et al., 2021), and1004

the ExcavatorCovid (Min et al., 2021b) and1005

curate a large list of event types for infectious1006

and epidemic-related diseases.1007

2. Merge event types across ontologies: Since1008

these existing ontologies may have repeti-1009

tive event types, we perform a merging step.1010

Specifically, two human experts manually ex-1011

amine and merge event types that are exactly1012

similar in our curated list of event types.1013

3. Filter out disease-specific event types: Some1014

event types in our curated list are specific to1015

certain diseases. We identify and filter out1016

such event types (e.g. Mask Wearing for1017

COVID-19 which may not be observed for1018

other diseases). We utilize opinions from pub-1019

lic health experts to aid this step ensuring our1020

event types are disease-agnostic.1021

4. Definition Correction: Utilizing aid from pub-1022

lic health experts, we add and refine defini-1023

tions for the curated set of event types and1024

ensure they are disease-agnostic.1025

5. Organization - Following ExcavatorCovid1026

(Min et al., 2021b), we organize our cu-1027

rated list of event types into three larger cate-1028

gories: social (events involving larger popula-1029

tions), personal (individual-oriented events),1030

and medical (medically focused events) types.1031

Our complete initial event ontology comprises1032

18 event types along with their event definitions1033

organized into three abstract categories as shown1034

in Table 21.1035

A.2 Initial analysis of events1036

Our initial ontology (§ A.1) was constructed using1037

previous ontologies and human knowledge. But1038

the relevance of each event type for social media1039

(specifically Twitter) remains unknown. To eval-1040

uate this relevance, we first associate each event1041

type with event-specific keywords. Then we utilize1042

frequency and specificity as two guiding heuris-1043

tics for further filtering/merging of event types in1044

our curated ontology. We utilize the base Twitter 1045

dataset for SPEED for conducting this analysis. We 1046

describe each of these steps in more detail here: 1047

Keyword Association In order to objectively 1048

conduct this analysis, we associate each event type 1049

with a set of keywords.8 This association involves 1050

two simple steps: 1051

1. Human expert curation: For each event type, 1052

a human expert curates 2-3 simple yet specific 1053

keywords for each event based on common- 1054

sense knowledge. For example, for the Cure 1055

event, the set of curated keywords were [cure, 1056

recovery]. 1057

2. Thesaurus-based expansion: For each human- 1058

expert curated list, we utilize an external 1059

resource - Thesaurus9 to further find event- 1060

relevant keywords. Human experts manually 1061

curate keywords from this thesaurus list such 1062

that the curated keyword is not generic (e.g. 1063

display is filtered out for event Symptom since 1064

it has other meanings as well). 1065

Frequency-based filtering Using frequency, we 1066

aim to filter out event types that are less mentioned 1067

in social media. To approximately estimate the 1068

frequency of each event type in social media, we 1069

count the number of social media posts containing 1070

any of the curated keywords for each event type. 1071

We show the keyword-count based frequency for 1072

each event type in Figure 7. We observe that most 1073

events under the medical abstraction occur much 1074

lesser than others. Furthermore, the variance in 1075

frequency is large as the most frequent event type 1076

control is 180 times more likely to occur than the 1077

least frequent event type variant. Since such low- 1078

frequency events (e.g. Variant, Cause, Prefigure, 1079

etc.) are less likely to be mentioned in a smaller 1080

sample of data, we discard or merge such events 1081

for our final ontology. 1082

Specificity-based filtering Specificity ensures 1083

that each event type is uniquely identifiable with a 1084

good confidence and mainly aims to reduce ambi- 1085

guity and make the event types more distinct. To 1086

estimate specificity, for each curated keyword of 1087

an event type, we randomly sample a small num- 1088

ber of non-duplicate social media posts. Human 1089

experts then manually evaluate the keyword speci- 1090

ficity based on the percentage of posts wherein the 1091

8We release these keywords as part of our final code.
9https://www.thesaurus.com/
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semantic meaning of the keyword matches the defi-1092

nition of its event and is specific only to this event1093

type. This specificity and distinctivity classifies1094

keywords as high, medium, or low.1095

For example, the Control event comprises high1096

specificity keywords such as quarantine, protocol,1097

guidelines; medium specificity keywords such as1098

restrict, postpone, investigate; and low specificity1099

keywords such as battle, separation, limitation. On1100

the other hand, the event Prefigure doesn’t have1101

any high specificity keywords, but only medium1102

specificity keywords such as foreshadow and low1103

specificity keywords such as foretell.1104

Our analysis suggests that medium and low1105

specificity keywords are more likely to give false1106

positives relative to high specificity ones. Thus, we1107

filter/merge event types that have a high number of1108

low-confidence keywords (e.g. Intrude, Promote).1109

Final Ontology Thus, with the above filtering1110

and merging, we shrink our ontology from 18 event1111

types to seven event types that are distinguishable,1112

frequent, and have a low false-positive rate. We1113

provide details about the action taken for each event1114

type with respect to the final ontology in Table 21.1115

A.3 Coverage analysis of ontology1116

To quantitatively verify the coverage of our ontol-1117

ogy, we conduct an analysis on four diseases with1118

very different characteristics - COVID-19, Mon-1119

keypox, Dengue, and Zika. For each disease, we1120

randomly sample 300 tweets and then filter them1121

if they are related to the disease or not. Next, we1122

annotate the filtered disease-related tweets based1123

on our ontology and evaluate the proportion of1124

event occurrences relative to the number of disease-1125

related tweets. We find that our ontology has high1126

coverage of 50% for COVID-19, 44% for Monkey-1127

pox, 70% for Dengue, and 73% for Zika. This in1128

turn assures that our ontology can be used to de-1129

tect epidemic events for various different kinds of1130

diseases.1131

Event Type Distribution As part of our analysis,1132

we also study our ontology’s event type distribution1133

for each disease and its correlation with the disease1134

properties and outbreak stage. We show this event1135

distribution in Figure 8 for each of the diseases. We1136

note that distributions for Dengue and Monkeypox1137

exhibit a strong focus on spread and infect events.1138

This makes sense as the data for these diseases was1139

collected at earlier stages of the outbreak when mit-1140

igation measures were not being discussed yet. On1141

the other hand, for COVID-19, the distribution is 1142

vastly dominated by control and death events. Our 1143

COVID-19 data was collected in May 2020 when 1144

the outbreak had vastly spread in America. Thus 1145

our distribution reflects more notions of lockdowns 1146

and control measures as well reflects the deadly 1147

nature of the disease. 1148

B Uniform Sampling v/s Random 1149

Sampling for Data Selection 1150

Previously Parekh et al. (2023) had shown how uni- 1151

form sampling of data for events can yield more 1152

robust model performance. To validate the same 1153

for our ontology and data, we conduct additional 1154

experiments comparing uniform sampling with ran- 1155

dom sampling. More specifically, we annotate 200 1156

tweets that conform to a ‘real distribution’10 based 1157

on random sampling and compare the trained mod- 1158

els on this data with models trained on 200 tweets 1159

of uniform-sampling data. We further annotated 1160

300 tweets based on the ‘real-distribution’ which 1161

was used for the evaluation of these two sampling 1162

techniques. 1163

Model Tri-I Tri-C

TRAINED ON UNIFORM DISTRIBUTION

BERT-QA 58.19 52.30
DEGREE 55.83 52.88
TagPrime 55.48 50.51
DyGIE++ 53.22 47.64
Average 55.68 50.83

TRAINED ON RANDOM DISTRIBUTION

BERT-QA 46.11 43.76
DEGREE 46.11 45.23
TagPrime 25.03 24.15
DyGIE++ 51.10 47.35
Average 42.09 40.12

Table 7: Benchmarking ED models trained on
uniformly-sampled and randomly-sampled SPEED data
on real-distribution based test data of 300 samples.

We present our results in Table 7 averaged over 1164

three model runs. We show that in terms of best 1165

model performance, uniform sampling is better by 1166

5.5 F1 points compared to random sampling. On 1167

average, uniform-sampling trained models outper- 1168

form the random-sampling trained models by up 1169

to 11 points. Both these results prove how de- 1170

spite train-test distribution differences, uniform 1171

sampling leads to better training of downstream 1172

models. 1173

10Event-based filtering was still applied before sampling.
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Figure 7: Frequency of occurrence based on keyword search for all event types in the initial complete ontology.
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Figure 8: Event type distribution of the disease-related
tweets for each disease. Numbers on the axis represent
count of mentions for a given event type.

Generalizability to Other Diseases We also1174

evaluate the models trained on the uniform and1175

random-sampled data for generalizability to other1176

diseases of Monkeypox, Zika, and Dengue. We1177

show the results in Table 8. Clearly, we can see su-1178

perior generalizability of uniform-sampling trained1179

models as they outperform random-sampling1180

trained models by 37 F1 points for Monkeypox and1181

28 F1 points for Zika + Dengue. Overall, this result1182

strongly highlights the impact of uniform sampling 1183

for robust and generalizable model training. 1184

Model Monkeypox Zika + Dengue
Tri-I Tri-C Tri-I Tri-C

TRAINED ON UNIFORM SAMPLED DATA

BERT-QA 56.56 49.30 56.35 46.19
DEGREE 58.35 53.39 58.37 51.27
TagPrime 58.36 53.56 57.05 48.53
DyGIE++ 55.73 48.30 56.90 47.10

TRAINED ON REAL SAMPLED DATA

BERT-QA 9.48 7.97 21.68 20.43
DEGREE 10.76 10.53 19.33 19.00
TagPrime 10.37 8.57 12.78 12.28
DyGIE++ 19.59 16.62 26.43 23.40

Table 8: Generalizability benchmarking of ED mod-
els trained on 200 samples of uniformly-sampled and
randomly-sampled COVID data on other diseases of
Monkeypox, Zika, and Dengue.

C Annotation Guidelines and Interface 1185

C.1 Annotation Guidelines 1186

Inspired by Doddington et al. (2004), we de- 1187

velop an extensive set of instructions with tricky 1188

cases and examples that have been developed 1189

through multiple rounds of expert annotation stud- 1190

ies. For our interface, we utilize Amazon Mechan- 1191
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ical Turk.11 We present the task summary with1192

the major instructions in Figure 14. To reduce am-1193

biguity in trigger selection, we present extensive1194

examples and tricky cases with priority orders as1195

shown in Figure 15. Finally, we also provide a1196

wide range of annotated positive and negative ex-1197

amples as part of the guidelines and show those in1198

Figure 16.1199

C.2 Annotation Interface1200

We utilize Amazon Mechanical Turk12 as the inter-1201

face for quick annotation. To annotate, annotators1202

can select any word and label it into one of the1203

seven pre-defined event types. Event definitions1204

and examples are provided alongside for reference.1205

Each batch (also known as HIT) comprises five1206

tweets for flexibility in annotations. We show the1207

interface and various utilities in Figure 17, 18, and1208

19 respectively.1209

D Data Analysis for SPEED1210

D.1 Event Coverage for previous datasets1211

To show the distinction of the event types covered1212

in SPEED compared to other previous datasets, we1213

calculate the percentage event types from SPEED1214

present in various diverse previous dataset ontolo-1215

gies. We show the results of this analysis in terms1216

of partial coverage (similar events present) and ex-1217

act coverage (exact event present) in Table 9.1218

Dataset Partial Exact
Match Match

ACE (Doddington et al., 2004) 14% 0%
ERE (Song et al., 2015) 14% 0%
MAVEN (Wang et al., 2020) 42% 0%
MEE (P B Veyseh et al., 2022) 14% 0%
M2E2 (Li et al., 2020) 14% 0%
MLEE (Pyysalo et al., 2012) 0% 0%
FewEvent (Deng et al., 2020) 28% 0%

Table 9: Comparison of SPEED with ACE and MAVEN
in terms of unique trigger words and average number of
triggers per event mention. Avg = Average.

Overall, from the table, we can note that there1219

is no dataset with exact matches with our ontology.1220

This proves the distinctive coverage of our dataset.1221

D.2 Trigger Word Analysis1222

We show the diversity of trigger words in SPEED1223

and compare it with other datasets in Table 10. We1224

11https://www.mturk.com/
12https://www.mturk.com/

note that SPEED has a strong average number of 1225

triggers per event mention. This demonstrates how 1226

SPEED is a diverse and challenging ED dataset. 1227

Dataset # Unique Avg. Triggers
Triggers per Mention

ACE 1, 229 0.24
MAVEN 7, 074 0.06
SPEED 555 0.25

Table 10: Comparison of SPEED with ACE and
MAVEN in terms of unique trigger words and average
number of triggers per event mention. Avg = Average.

D.3 Event Distribution Analysis 1228

As part of data processing, we attempt to sample 1229

tweets in a more uniform distribution between the 1230

event types (§ 3.2). In Figure 9, we show the dis- 1231

tribution of our dataset in terms of event types. In 1232

contrast to tail-ending distributions of other stan- 1233

dard datasets like ACE (Doddington et al., 2004) 1234

and MAVEN (Wang et al., 2020) as shown in Fig- 1235

ures 10 and 11 respectively, our distribution of 1236

event mentions is more uniform. 1237
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Figure 9: Distribution of event mentions per event type
for our dataset SPEED.
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Figure 10: Distribution of event mentions for the event
types in the ACE dataset.

D.4 Benchmarking Test Suites Statistics 1238

We provide the statistics in terms of number of 1239

event mentions and tweets for the various bench- 1240

marking test suites based on SPEED in Table 11. 1241
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Figure 11: Distribution of event mentions for the event
types in the MAVEN dataset.

Test Suite # Mentions # Tweets

Train

FS-2 14 11
FS-5 35 24.33
LR-100 99 67
LR-200 198 139
LR-300 306 211

Dev LR/FS 101 81
Test All 1,810 1,683

Table 11: Data Statistics for the various benchmarking
test suites in terms of number of event mentions and
number of tweets. Here, LR-XX represents low resource
with XX training event mentions and FS-YY represents
few-shot with YY training mentions per event. For FS,
we take the average over three different splits of data.

D.5 Monkeypox Test Data Statistics1242

We share the data statistics of the evaluation dataset1243

used for Monkeypox in Table 12 split according to1244

each event type. We observe that there is a disparity1245

in distribution across different event types, with1246

spread mostly discussed and cure and death are1247

least discussed.1248

Event Type # Event Mentions

infect 78
spread 119
symptom 43
prevent 70
control 62
cure 13
death 13

Total 389

Table 12: Data Statistics for the evaluation dataset for
Monkeypox Event Detection categorized by event types.

D.6 Zika + Dengue Test Data Statistics 1249

We share the data statistics of the evaluation dataset 1250

used for Zika + Dengue in Table 13 split according 1251

to each event type. We observe a more even dis- 1252

tribution of event types with more focus on infect, 1253

spread, and death well-discussed. 1254

Event Type # Event Mentions

infect 57
spread 53
symptom 34
prevent 22
control 28
cure 20
death 60

Total 274

Table 13: Data Statistics for the evaluation dataset for
Zika+Dengue Event Detection categorized by event
types.

E ED models and Implementation Details 1255

We present details about each ED model that we 1256

benchmark along with the extensive set of hyper- 1257

parameters and other implementation details. 1258

E.1 TE 1259

TE (Lyu et al., 2021) is a pre-trained model that 1260

formulates ED as a textual entailment and question- 1261

answering task. We run our experiments for TE 1262

on an NVIDIA 1080Ti machine with support for 1263

8 GPUs. Our hyperparameters are as listed in the 1264

original paper. 1265

E.2 WSD 1266

WSD (Yao et al., 2021) is a classification model 1267

using on the joint encoding of the contextualized 1268

trigger and event definitions. We run our experi- 1269

ments for WSD on an NVIDIA A100 machine with 1270

support for 8 GPUs. The major hyperparameters 1271

for this model are listed in Table 14. 1272

E.3 TABS 1273

TABS (Li et al., 2022) is an event type induc- 1274

tion model, wherein the goal is to discover new 1275

event types without a pre-defined event ontology. 1276

It utilizes two complementary trigger embedding 1277

spaces (mask view and token view) for classifica- 1278

tion. To adapt this for ED, we follow the end-to-end 1279

event discovery setting in (Choi et al., 2022) while 1280
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Pre-trained LM RoBERTa-Large
Training Batch Size 64
Eval Batch Size 8
Learning Rate 0.00001
Weight Decay 0.01
# Training Epochs 7
Max Sentence Length 128
Max gradient norm 1

Table 14: Hyperparameter details for WSD model.

making the following modifications: (1) Dataset1281

Composition: We utilize ACE (Doddington et al.,1282

2004) dataset for training and development and1283

our SPEED dataset for testing. Our training data1284

comprises 26 known event types from ACE, the1285

validation set comprises 7 ACE event types, while1286

our test set comprises 7 event types from SPEED.1287

(2) Candidate Trigger Extraction: To improve1288

trigger coverage, we extract all nouns and non-1289

auxiliary verbs as candidate trigger mentions. (3)1290

Evaluation Setup: Trigger identification (Tri-I)1291

F1 score is evaluated using the extracted candidate1292

triggers. For trigger classification (Tri-C), we first1293

find the best cluster assignment of the predicted1294

event clusters to the gold event types and then eval-1295

uate the F1 score.1296

We run our experiments for TABS on an NVIDIA1297

RTX 2080 Ti machine with support for 8 GPUs.1298

The major hyperparameters for this model are listed1299

in Table 15.1300

Pre-trained LM BERT-Base
Training Batch Size 8
Eval Batch Size 8
Gradient Accumulation Steps 2
Learning Rate 0.00005
Gradient Clipping 1
# Pretrain Epochs 10
# Training Epochs 30
Consistency Loss Weight 0.2
# Target Unknown Event Types 30

Table 15: Hyperparameter details for TABS model.

E.4 ETypeClus1301

ETypeClus (Shen et al., 2021) extracts salient1302

predicate-object pairs and clusters their embed-1303

dings in a spherical latent space. For consis-1304

tency across our evaluations, we follow the re-1305

implementation of the ETypeClus model in (Choi 1306

et al., 2022), which consists of the latent space clus- 1307

tering stage of the ETypeClus pipeline and uses the 1308

embeddings of trigger mentions to be the input fea- 1309

tures. We utilize the contextualized embeddings 1310

of the candidate triggers extracted from SPEED 1311

for unsupervised training. The candidate trigger 1312

extraction process and the evaluation setup are the 1313

same as described in § E.3. 1314

We run our experiments for ETypeClus on an 1315

NVIDIA RTX 2080 Ti machine with support for 8 1316

GPUs. The major hyperparameters for this model 1317

are listed in Table 16. 1318

Pre-trained LM BERT-Base
Training Batch Size 64
Eval Batch Size 64
Learning Rate 0.0001
Gradient Clipping 1
# Pretrain Epochs 10
# Training Epochs 50
KL Loss Weight 5
Temperature 0.1
# Target Unknown Event Types 30

Table 16: Hyperparameter details for ETypeClus model.

E.5 BERT-QA 1319

BERT-QA (Du and Cardie, 2020) is a classifica- 1320

tion model utilizing label semantics by formulating 1321

event detection as a question-answering task. We 1322

run our experiments for BERT-QA on an NVIDIA 1323

RTX A6000 machine with support for 8 GPUs. The 1324

major hyperparameters for this model are listed in 1325

Table 17. 1326

Pre-trained LM RoBERTa-Large
Training Batch Size 6
Eval Batch Size 12
Learning Rate 0.001
Weight Decay 0.001
Gradient Clipping 5
Training Epochs 30
Warmup Epochs 5
Max Sequence Length 175
Linear Layer Dropout 0.2

Table 17: Hyperparameter details for BERT_QA model.
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E.6 DEGREE1327

DEGREE (Hsu et al., 2022) is a generation-based1328

model prompting using natural language templates.1329

We run our experiments for DEGREE on an1330

NVIDIA RTX A6000 machine with support for 81331

GPUs. The major hyperparameters for this model1332

are listed in Table 18.1333

Pre-trained LM BART-Large
Training Batch Size 32
Eval Batch Size 32
Learning Rate 0.00001
Weight Decay 0.00001
Gradient Clipping 5
Training Epochs 45
Warmup Epochs 5
Max Sequence Length 250
Max Output Length 20
Negative Samples 15
Beam Size 1

Table 18: Hyperparameter details for DEGREE model.

E.7 TagPrime1334

TagPrime (Hsu et al., 2023) is a sequence tagger1335

priming words to input text to convey more task-1336

specific information. We run our experiments for1337

TagPrime on an NVIDIA RTX A6000 machine1338

with support for 8 GPUs. The major hyperparame-1339

ters for this model are listed in Table 19.1340

Pre-trained LM RoBERTa-Large
Training Batch Size 64
Eval Batch Size 8
Learning Rate 0.001
Weight Decay 0.001
Gradient Clipping 5
Training Epochs 100
Warmup Epochs 5
Max Sequence Length 175
Linear Layer Dropout 0.2

Table 19: Hyperparameter details for TagPrime model.

E.8 DyGIE++1341

DyGIE++ (Wadden et al., 2019) is a multi-1342

task classification-based model utilizing local and1343

global context via span graph propagation. We run1344

our experiments for DyGIE++ on an NVIDIA RTX1345

A6000 machine with support for 8 GPUs. The1346

major hyperparameters for this model are listed in 1347

Table 20. 1348

Pre-trained LM RoBERTa-Large
Training Batch Size 6
Eval Batch Size 12
Learning Rate 0.001
Weight Decay 0.001
Gradient Clipping 5
Training Epochs 60
Warmup Epochs 5
Max Sequence Length 200
Linear Layer Dropout 0.4

Table 20: Hyperparameter details for DyGIE++ model.

E.9 Keyword 1349

This baseline model basically curates a list of key- 1350

words specific to each event and predicts a trigger 1351

for a particular event if it matches one of the cu- 1352

rated event keywords. Event keywords are curated 1353

by expert annotators based on the gold triggers 1354

appearing in the SPEED dataset and classified as 1355

high confidence, medium confidence, and low con- 1356

fidence based on their occurrence counts and false 1357

positive rates (as described in § A.2.13 Although 1358

this baseline accesses gold test data, it is meant to 1359

be a baseline to provide the upper cap for models 1360

of this family. 1361

E.10 GPT-3 1362

We use the GPT-3.5 turbo model as the base GPT 1363

model. We experiment with ChatGPT (OpenAI, 1364

2021) for tuning our prompts that ensure output 1365

consistency. Our final prompt (as shown in Fig- 1366

ure 12) comprises a task definition, ontology de- 1367

tails, 1 example for each event type, and the final 1368

test query. We conducted a looser evaluation for 1369

GPT and only match if the predicted trigger text 1370

matches the gold trigger text (we didn’t check the 1371

exact span match basically). 1372

F Predicting Early Warnings for 1373

Monkeypox 1374

F.1 Event-wise Analysis 1375

As BERT-QA yields the strongest early warning 1376

signal (shown in Figure 5), we conduct an analy- 1377

sis at a more granular level on the contribution of 1378

each event type to the early warning signal based 1379

13We will release the set of keywords with our final code.
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This is an event extraction task where the goal is to extract structured events from the text. A 
structured event contains an event trigger word and an event type.

Here are seven events that we are interested in:
CONTROL: A CONTROL event are collective efforts trying to impede the spread of a pandemic.
INFECT: A INFECT event is the process of a disease or pathogen invading a host or hosts.
…
SPREAD: A SPREAD event is the process of a disease spreading or prevailing massively at a large 
scale.

Some examples:

Input: As the Covid - 19 outbreak spreads at breakneck speed , so does information about the 
coronavirus . But experts say there ' s a balancing act between sharing findings quickly and taking 
the time to ensure they ' re scientifically sound . ( url )
Output: [{"event_type": "SPREAD", "trigger": "spreads"}]

Input: signs and symptoms of this phenomenon include fever , rash , abdominal pain , vomiting or 
diarrhea , along with blood tests showing ( url ) news headlines & amp ; live updates : A New COVID 
- 19 Syndrome In Children ( url ) ( url )
Output: [{"event_type": "SYMPTOM", "trigger": "symptoms"}]

…

Input: We are waiting for the vaccine against the Covid - 19 , when it will be ready ? we need to live 
in normality .
Output: [{"event_type": "PREVENT", "trigger": "vaccine"}]

Test Sentence: 
Input: My COVID19 antibodies test came back positive . Crazy . Ive had no symptoms . Please get 
tested if possible . The more data we have on this the better .

Task Description

Ontology and Definitions

In-context Examples

Test Query

Figure 12: Illustration of the prompt used for GPT-
3 model. It includes a task description, followed by
ontology details of event types and their definitions.
Next, we show some in-context examples for each event
type and finally, provide the test sentence.

on the trained BERT-QA output. We present the1380

results in Figure 13, which leads to the following1381

observations: (1) Strength of indication varies1382

among event types: As indicated in Figure 13,1383

event type infect and spread are strong indicators1384

of the incoming surge in reported cases, while event1385

type prevent and control can serve as indicators of1386

medium strength. Event type symptom, cure, and1387

death are weak indicators that barely contribute to1388

the early warning signal. (2) Distribution across1389

event types can potentially reveal high-level dis-1390

ease characteristics: We can infer some proper-1391

ties of diseases based on the frequency of men-1392

tions about particular events. For example, death1393

is less mentioned, which can indicate that Monkey-1394

pox is less fatal compared to other epidemics like1395

COVID. We would like to mention that these are1396

hypothetical properties based on predictions of our1397

best model (which can be imperfect) and should be1398

taken with a pinch of salt.1399
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Figure 13: Number of reported Monkeypox cases and
the number of extracted events for each SPEED event
type from our trained BERT-QA model from XX to
XX

20



An Event is defined as something happens in a sentence. In this task, we are trying to 
identity whether one or more of the following events exist in a given string: infect, spread,
symptom,prevent,control, cure, and death. And if an event exist, what is the major triggering 
word that mostly manifest its occurrence.
Event Definition
infect The process of a disease/pathogen invading host(s).
spread The process of a disease spreading/pervailing massively at a large scale.
symptom Individuals displaying physiological features indicating the abnormality of organisms.
prevent Individuals trying to prevent the infection of a disease.
control Collective efforts trying to impede the spread of a pandemic.
cure Stopping infection and relieving individuals from infections/symptoms.
death End of life of individuals due to infectious disease.
If there exist any explicit negation of an Event, we say that Event does NOT exist and do not mark it.
Important Notes:
There can be sentences without any events. No need to annotate anything for such sentences.
A trigger word can be linked to one or more events. Choose all possible events in such cases.
Multiple events can be presented in a given sentence. Mark all such events.
The same event can occur multiple times (at different parts) in the same sentence. Mark all 
occurrences of the event.
You will be able to submit the HIT at the last sentence once you finish annotating all the sentences.
Select "flag" event if you see multiple triggering words or any other tricking situations that needs 
revisiting, but do not abuse this function.

Figure 14: Task summary and the major annotation guidelines.
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Event name Definition Action for Final
Ontology

SOCIAL SCALE EVENTS

Prefigure The signal that precedes the occurrence of a potential
epidemic.

Discarded

Outbreak The process of disease spreading among a certain
amount of the population at a massive scale.

Merged into Spread

Spread The process of disease spreading among a certain
amount of the population but at a local scale.

Final Event

Control Collective efforts trying to impede the spread of a epi-
demic.

Final Event

Promote The relationship of a disease driver leading to the break-
out of a disease.

Discarded

PERSONAL SCALE EVENTS

Prevent Individuals trying to prevent the infection of disease. Final Event
Infect The process of a disease/pathogen invading host(s). Final Event
Symptom Individuals displaying physiological features indicating

the abnormality of organisms.
Final Event

Treatment The process that a patient is going through with the aim
of recovering from symptoms.

Merged into Cure

Cure Stopping infection and relieving individuals from infec-
tions/symptoms.

Final Event

Immunize The process by which an organism gains immunization
against an infectious agent.

Merged into Pre-
vent

Death End of life of individuals due to infectious disease. Final Event

MEDICAL SCALE EVENTS

Cause The causal relationship of a pathogen and a disease. Discarded
Variant An alternation of a disease with genetic code-carrying

mutations.
Discarded

Intrude The process of an infectious agent intruding on its host. Merged into Infect
Respond The process of a host responding to an infection. Discarded
Regulate The process of suppressing and slowing down the infec-

tion of a virus.
Merged into Cure

Transmission
route

The process of a pathogen entering another host from a
source.

Discarded

Table 21: Complete initial epidemic event ontology comprising 18 event types organized into 3 higher-level abstract
categories. We also present details about the event definitions and the action taken for each event type in the final
ontology.
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Here are more detailed instructions for how to choose the most appropriate triggering word.

Goal: Look for the one word that MOST LIKELY manifests the event's occurrence. You can use the following priority order for 
annotation:
1. Most of the times, the trigger of the event will be the main verb in the sentence.
2. If the verb is ambigous/vague, the trigger would be a noun semantocally related to the event.
3. (Rare case) If no such noun exist, the trigger would be any adjective/adverb that is realated to the event.
4. If still confused, use your best judgement to select the trigger.

In the following illustrations, correct trigger words are marked blue.

CASE I : main verb
Example Sentence: "I was coughing and got a fever yesterday and today confirmed I did not get COVID"
Annotation: There are 2 events of symptom
a. ...got a fever...-->Event symptom. 
b. ...was coughing... -->Event symptom.
c. Note 1: "fever" and "COVID" are Not marked as triggering word of the events since the main verbas indicate the event.
    Note 2: Here, due to the presence of "and", we have two occurrences of the event symptom.
d. Although "get COVID" appears, "not" is the negation emphasizing no infection happens, so event infect does NOT occur
e. More examples of main verbs as triggering word:
Example Event
fight against the pandemic control
caught a flu infect
recover from COVID cure
COVID takes lives death
prevent infection prevent
stomach hurts symptom
number of infection increases spread

CASE II : nouns
Example Sentence: "Fever, cough, and headache are the most common symptoms of COVID"
Annotation: Here we have 1 event of symptom event:
a. ...symptoms -->Event symptom.
b. Note: "fever","cough", and "headache" manifest the symptom event but they are NOT triggering words because "symptom" 
better manifests the Event.
c. More examples of nouns as triggering word:
Example Event
death rate death
therapy for COVID cure
infection prevention prevent
control of spread control
signs of infection symptom
spreading of COVID spread
infection rate infect

CASE III : adjective
Example Sentence: "I am feverish since 2 days ago"
Annotation: Here we have 1 event of the symptom event
a. ...feverish -->Event symptom.
b. Note: Here, we do not have a strong verb/noun for marking the trigger. Thus we 
mark "feverish".
c. More examples of nouns as triggering word:
Example Event
get rid of disease cure
stay cautious against virus prevent
contagious virus infect

Figure 15: Guidelines to choose the proper triggering word.
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Good Examples
Example 1 : "3000+ people are dead due to COVID, so every one please remember to wear a mask and follow the rules to prevent infection and protect our nation from the virus."
Annotation:
a. prevent --> evemt prevent
b. protect --> event control
c. dead-->event death
Note1: Although "infection" is mentioned, it is prevented, meaning no infection is happening in the sentence, so event infect does NOT exist
Note2: Do not mark negation of an event.
Note3: intuitively, people die of COVID must have been infected, but event infect DOES NOT edist here because
An event must be triggered via triggering word and cannot be infered from another event.

Example 2: "if you ever have a fever, or cough, or have a sore throat, or feel difficult breathing, get tested immediately since you may have been infected."
Annotation:
a. ...have a fever --> event symptom
b. ...been infected --> event infect
Note1: if have more than two parallel phrases triggering an event, only mark the first one instead of all of them.
Note2: event infect has no explicit negation, so event infect exists here.

Bad Examples
Example 1: "Wear a mask""
Wrong annotation:
a. wear-->event prevent
Note1: we may link the action of wearing a mask with pandemic prevention directly, but here it is just an action similar to "read a book" or "eat my lunch".
Note2: if the sentence is instead "wear a mask to prevent COVID." we mark prevent as a triggering word for event prevent instead of "wear" 
Look for Events themselves instead of actions/policies related to Events.

Example 2:"Two weeks of quarantine is killing me! May God cure my mind and stop my crazy thoughts."
Wrong annotation:
a. killing-->event death
b. cure--> event cure
Note1: killing does not indicate any body is dying, and cure does not indicate a therapy against a disease.
Note2: Do NOT mark hyperbole or rhetorics as Events

Figure 16: Positive and Negative examples in the annotation guideline.

Figure 17: Illustration of the default annotation interface on Amazon Mechanical Turk.

24



Figure 18: Illustration of selection of a word within a tweet for annotation in the interface.

Figure 19: Illustration of the format and options available for a completed annotation in the interface.
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