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Abstract

We study the problem of meta-learning with task-level differential privacy. Meta-
learning has received increasing attention recently because of its ability to enable
fast generalization to new task with small number of data points. However, the
training process of meta learning likely involves exchange of task specific informa-
tion, which may pose privacy risk especially in some privacy-sensitive applications.
Therefore, it is important to provide strong privacy guarantees such that the learning
process will not reveal any task sensitive information. To this end, existing works
have proposed meta learning algorithms with record-level differential privacy,
which is not sufficient in many scenarios since it does not protect the aggregated
statistics based on the task dataset as a whole. Moreover, the utility guarantees in
the prior work are based on assuming the loss function satisfies both smoothness
and quadratic growth conditions, which do not necessarily hold in practice. To ad-
dress these issues, we propose meta learning algorithms with task-level differential
privacy; that is, our algorithms protect the entire dataset for each task. In the case
when a single meta model is trained, we give both privacy and utility guarantees
assuming only that the loss is convex and Lipschitz. Moreover, we propose a
new private clustering-based meta-learning algorithm that enables private meta
learning of multiple meta models. This can provide significant accuracy gains over
the single meta model paradigm, especially when the tasks distribution cannot be
well represented by a single meta model. Finally, we conduct several experiments
demonstrating the effectiveness of our proposed algorithms.

1 Introduction

Meta learning has received increasing attention recently due to its successful applications in a variety
of machine learning domains. Meta learning is the process in which existing learning tasks are
used to infer a learning rule that enables faster adaptation to new tasks from the same environment.
Specifically, meta learning takes in a collection of tasks (datasets) sampled from an unknown
distribution. Each task defines a learning problem with respect to an input dataset. The goal of
meta learning is to output a meta-learner which can extract the shared knowledge among the tasks
(datasets) and generalize well on a newly sampled task (dataset) with a small number of data points.
The performance of a meta learner is measured by transfer risk, defined as the expected risk of the
output of the algorithm w.r.t. a newly sampled task.

Machine learning algorithms typically rely on gradient-based optimization methods. The optimization-
based meta learning framework allows such methods to converge to a solution using a small number
of samples. This is done by learning either a good parameter initialization or a regularizer. In meta
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initialization methods like MAML [1] and Reptile [2], the meta leaner obtains a meta initialization wq
such that one or a few gradient updates of wq produces a good task-specific model for new tasks. An-
other class of meta learning algorithms are based on an approach known as meta-regularization [3—6]
in which a regularizer is first learned based on all tasks datasets, then a task-specific model is obtained
for a new task by minimizing the regularized loss. Meta-regularization has received more attention
recently due to its formal utility guarantees and computational efficiency. In meta-regularization, the
goal is to find a good bias vector i such that a local learner (base learner) can converge to a good
task-specific model by minimizing the regularized empirical loss: min,ew Rz (w) + 3 lw — h>.
In [7], the authors formalize the connection between meta-initialization and meta-regularization under
the framework of online convex optimization.

Meanwhile, the nature of the meta learning requires the exchange of task-specific information,
which may pose serious privacy risks, especially in distributed settings where all tasks (users) are
participating into a meta training process by communicating meta-model updates among themselves,
typically with the assistance of a central server. Therefore it is important to ensure that the sensitive
information in every task (dataset) remains private through the meta learning process.

Despite its importance, the privacy aspect of meta learning is still underexplored. In [8], using
the meta-initialization framework, the authors propose a meta-learning algorithm with record-level
differential privacy (DP) and give an accuracy guarantee in terms of the transfer risk. Record-level DP
is a weak privacy guarantee for a wide range of scenarios. Imagine training an email spam filter for
each user (task). Even if we ensure differential privacy w.r.t. each record of a user’s email, aggregate
statistics across the entirety of a user’s records (e.g., the frequency of certain words or sentences) may
still reveal some sensitive information which the user doesn’t want to share. Moreover, the accuracy
guarantees in [8] rely on relatively strong assumptions concerning the loss function used for training.
In particular, the loss function therein is assumed to satisfy both smoothness and quadratic growth
conditions, which do not hold simultaneously for many loss functions commonly used in practice.

In this work, we propose new meta-learning algorithms with task-level DP and derive formal transfer
risk bounds. Unlike [8], our algorithms are based on the meta-regularization framework. We now
highlight our main technical contributions:

* We propose a task-level differentially private (task-level DP) meta learning algorithm based on
the meta-regularization approach. We observe that when the meta-loss is properly defined, one
can view each task dataset as a “data point” and the meta-loss as its corresponding loss function.
Therefore, applying existing DP optimization techniques like Noisy SGD on the newly defined
"data point" and loss function achieves task-level differential privacy naturally.

* We give a bound for the statistical performance for our algorithm in terms of its excess transfer
risk. Our statistical accuracy guarantee holds under standard assumptions; namely, assuming only
that loss function is convex and Lipshitz. With sufficiently large number of tasks, the bound asserts
improved performance over local training, where a model is trained locally based on a single task
dataset.

* When the task distribution becomes more complex such that a single meta model is not enough to
capture the relationship among tasks, we propose a task-level DP clustering-based meta learning
algorithm that can learn multiple meta models. This approach can provide significant improvements
in the statistical accuracy (transfer risk) over the standard single-model case, especially when the
tasks distribution is better captured by multiple meta models.

* We empirically evaluate our algorithms to demonstrate the effectiveness of our proposed algo-
rithms!.

Related work: The most related work to ours is [8], where the authors propose a meta-learning
algorithm with record-level DP via the framework of meta-initialization. Their analysis relies on
assuming that the loss function satisfies a quadratic growth condition, which we do not require in
our analysis. Furthermore, we consider a stronger notion of the excess transfer risk than the one
in [8]. To be more specific, in [8], the achieved transfer risk is compared to the transfer risk of
the optimal global model, while the transfer risk in our work is compared to that of the optimal
personalized model. This is because we allow different tasks to have different parameters. Since
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the optimal personalized model always outperforms global model, we have a stronger notion of the
excess transfer risk. Consequently, our utility guarantee also holds under the notion studied in [8].

Our results are also related to the line of work in private model personalization. The goal of model
personalization is to train a personalized model for each user that generalizes well on the user’s
distribution. Reference [9] proposes a private personalization algorithm that solves a stochastic
optimization problem involving both local and global models. The authors of [10] develop an
algorithm for mean-regularized multi-task learning under the joint differential privacy guarantee and
study its application in model personalization. The work of [11] presents private personalization
algorithms that learn a common embedding model among users using the alternating minimization
framework, where convergence to the optimal solution is guaranteed for linear regression models
with Gaussian data. There are also a variety of works, mainly in the non-private regime, exploring
the connection between meta learning and model personalization. For example, [12] proposes a
personalization mechanism based on MAML, which aims at finding a good initialization parameter
for the users. The authors of [13] study the connection between meta learning and personalization
based on the observation that FedAvg [14] can be seen as a meta learning algorithm. Therefore, it is
possible to extend the results in this work to the domain of model personalization.

There are also prior works studying learning with task-level or user-level differential privacy but
under different learning paradigms. In [15, 16], the authors provide user-level differential privacy
under the framework of federated learning, in which case all users share a single global model. This
is different from our setting because we allow each user to have its own task-specific model. The
authors in [17] develop algorithms for a variety of learning tasks under user-level differential privacy.
They consider a limited heterogeneity setting where all users’ distributions are close to each other
in total variation distance. On the other hand, in this work we focus on the meta learning paradigm,
where we only assume small variation across users’ models.

2 Preliminaries

Distributional setup: We consider a meta distribution p and each task is sampled from p which

will induce a task specific distribution p over the data domain Z, thatis p1, ... ux ey p for K tasks.
After the sampling of u;, a dataset Z; with n datapoints is subsequently sampled from p; written as

Zi=A{z1,...2n} i w. The collection of K task datasets is denoted as
Z={Zy,...Zx}

In this paper, we focus on distributed settings such that the datasets {Z; } £ | are decentralized across
multiple locations. All tasks jointly participate into a model training process coordinated by a trusted
central server. The data of each task is stored and processed locally, only the model updates are
shared to the server or other tasks.

Task population and empirical losses:Given a closed convex parameter space ¥V, we consider
learning task parametrized by vector w € R%. We let £ : R? x Z — R be a loss function, where
£(w, z) is the loss incurred by a parameter vector w on a data point z. For any task drawn from a
distribution p and observed via a dataset Z = (21, . .. 2, ), we denote the population risk of w € W
as R, (w) = E,.,¢(w, z) and the empirical risk as Rz (w) = 1 3" | l(w, z;).

n

Meta learning: Given K learning tasks with datasets Z, a meta-learning process aims to learn an
algorithm A that enables fast adaption on newly sampled tasks from the meta-distribution p. Such
adaptation is measured by the notion of transfer risk defined as

gn(.A, p) = EMNPEZNHHRII/('A(Z)). (1)
The transfer risk &, (A; p) can be considered as the expected loss of the parameter returned by
applying the algorithm A on a dataset Z € Z™ sampled from the meta distribution p. In summary,
the whole process starts with a meta-learning algorithm taking Z as input and outputting a learning
algorithm A. After that, new learning task with distribution p ~ p trains its corresponding dataset
with the learned algorithm A and apply the resulting parameter vector w to new data drawn from .

For any task specific distribution y, we denote the minimizer w,, as w, € min,ew R,L(w) and
the expected minimum error over the meta-distribution p as £, = E,,R,,(w,). Note that, there
might be more than one minimizers of R,,(w), but £, remains same regardless of the selection of w,,.
Furthermore, we define the excess transfer risk as

A& (A;p) = En(Asp) = &, @)



Task similarity metric: To achieve low transfer risk, the meta learning algorithm leverages the shared
similarity among tasks and output the optimized inner algorithm. In this work, the task similarity is
measured by the quantity:

2
2 . .

V2 = min B, ¢ — Proju, (9)] )

where W, is the set of optimal parameters for task p written as W, = argmin,, ¢y R, (w),

and ProjWH denotes the Euclidean projection on W,. V can be roughly seen as the expected
variation of task parameters. We denote w as the minimizer of (3) such that w € W and

2
V2= Hﬁ) - ProjW“’(w)H .

Task-level Differential Privacy [18]: A randomized algorithm M is (¢, §)-differential private if for
any pair of neighboring sets Z and Z’ and for any measurable subset O of Range(M), we have

P(M(Z) € O) < eEP(M(Z') € O) +6

In this work, we consider task-level neighboring relationship. Let Z = {Z;,...Zx} and Z' =
{Z1,...Z%}, and we say Z and Z' are neighboring if, for some i € [K], Z and Z’ differ only on the
dataset from the 7y, task, i.e., Z; = Z ; for all j except <. Therefore, a task-level differential private
algorithm ensures that any adversary cannot tell if the dataset of a particular task was used in the
algorithm given its output.

Our analysis involves the following fairly standard assumption:
Assumption 1. (Convex-Lipschitz-Bounded models)
» Forany z € Z, the loss function {(w, z) is convex and L-Lipshitz with respect to w.

* Bounded parameter space: |W||, = maxy, w,ew ||w1 — wa| < M

3 Learning with Meta Regularization

Base learner: A base learner solves a regularized loss minimization problem w.r.t. a biased regularizer
parameterized by a bias vector h.In particular, given a bias vector h and a task dataset Z, the base
learner solves the following problem:

. . A
min Rz\(w;h) = min Rz(w) + 5 |lw - h||?
where \ is the regularization parameter. In the sequel, we define w,(Z) as the minimizer of
Rz x(w; h), that is wy (Z) = argmin,, ¢y Rz x(w; h).

Meta algorithm: Given a collection of base learners, the goal of a meta-algorithm is to find a good
regularization bias h that yields a small transfer risk. First, let’s rewrite the transfer risk defined in (1)
as a function h:

En(hsp) = E  Ez un Ry (wn(2)) 4)

and hence the excess transfer risk can be expressed as A&, (h; p) = £, (h; p) — E,. Therefore, the
goal of the meta algorithm is to find an (approximate) minimizer h* of &, (h; p) in (4), i.e., the goal
is to solve:

ilzq»lelvr\l) En(h; p) = EpnpEzapn Ry (win(2)) )

Intuitively speaking, the base learner aims to figure out the best parameter vector “around” the bias
vector h. Therefore, if the meta algorithm can find a good bias vector £ that is close to the solution
space of the tasks, the base learner can converge to its solution space quickly by only searching
around h.

3.1 Meta Loss and proxy transfer risk

Directly optimizing over (5) above is usually infeasible. A common strategy to get around this
difficulty is to propose a proxy loss function which is related to the transfer risk but easier to handle.
In this section, we follow the definitions in [3, 4] and define our meta loss as

. . A 2
Lz(h) = min Rz x(w;h) —ﬁl%Rz(w)—&-gHw—hH

weWw



and the proxy to the transfer risk is defined as

5n(h, P) = EuwaZNp," Ly (h)

The goal of the meta-algorithm is to optimize the proxy risk over £, that is,

min En(h p) = BBz Lz (h) (©)

Note that Lz (h) is in fact the Moreau envelope of the empirical loss Rz (w). In Proposition 2, we
review some useful properties of Ly (h) which will help our analysis.

Proposition 2. (follows from [19, 20]) Under Assumption 1, we have
1. Ly is convex, 2L-Lipshitz and A-smooth.
2. Forany h € W, VLz(h) = =X\ wp(Z) — h) where wy,(Z) = argmin, ¢y, Rz x(w; h).

A key observation is that all datasets go through the same stochastic process under our distributional
setup and thus can be seen as i.i.d. sequence drawn from a distribution P,. Therefore, (6) can be
rewritten as )
min &, (h;p) = min Ez p, Lz(h 7
min &, (h; p) = min Ez..p, Lz(h) ()

Combined with Proposition (2), the objective of the meta algorithm is formulated as a stochastic
convex optimization (SCO) problem which has been well studied under privacy constraints [19, 21,
22]. The notion of task-level differential privacy just comes up naturally when we see each task
dataset Z as a “data point” and Lz (h) as its loss function, therefore the conventional record-level
neighboring relationship can be readily translated to a task-level neighboring relationship.

However, one challenge in adapting existing differentially private SCO methods pertains to the
gradient computation. In standard SCO settings, we are expected to be able to compute the gradient of
the loss function efficiently and precisely. However, in our case, as seen in Proposition 2, computing
V Lz (h) for each h requires computing wy, (Z) which further involves solving a A-strongly convex
optimization problem. Therefore, finding the exact value of wy, (Z) for general convex loss  is not
feasible, alternatively what we can do is to approximate wy, (Z) using some iterative methods up to
some error b. Therefore, it is important to incorporate this approximation error into our convergence
analysis. Moreover, due to the distributed nature of the algorithm, the model iterates are assumed
to be visible to multiple tasks who are selected to participate in each round. Therefore, the privacy
should be defined over all model iterates as well as the final model, and we cannot use the linear-
time algorithm for DP smooth stochastic optimization [22] despite the fact that the objective of the
meta-algorithm can be formulated as a stochastic convex optimization problem with a smooth loss.

4 Private Meta Learning with Noisy SGD

In this section, we present our meta learning algorithm adapted from the mini batch noisy SGD
method in [19] described in Algorithm 1. In iteration ¢, given the current iterate h;, each sampled
task computes an approximation of the gradient of the meta loss Lz (hy), denoted as V Ly (h). After
that, the server aggregates theses approximate gradients to update the model. The privacy is achieved
by adding Gaussian noise scaled with the [5 sensitivity of each task to the model iterate.

We will first describe the privacy and utility guarantee of Algorithm 1, and then show the resulting
transfer risk.

Theorem 3. (Privacy guarantee) Let Assumption 1 holds and let {hy,...hr_1} and hr be the
output, Algorithm 1 is (¢, 6)-differentially private on task level.

Proof. Since the computed gradient V Lz (h;) is only an approximation to V Lz (h;), then we have
[VL2(h) = VL2(h)|| < Alion, (2) = wn, (Z)]) < b
and because V Lz (h) is 2L-Lipshitz by Proposition 2, we have

VL2 < IV L2+ b <20 + b
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Algorithm 1: A, Nsgp: meta learning with mini-batch noisy SGD

input :Initial iterate wy € YV, number of iterations 7', estimation error b, regularization
parameter A, step size 7).

Set noise variance 02 = %205(1/5) and batch size m = max (K\/e/(4T), 1)

fort=1,..., T —1do ~
Server samples a batch of tasks By = {Z;, , ... Zi, ., } < Z and sends h; to tasks in B;
for each task Z in B; do
Solve Rz »(w; h;) and compute an estimate wy,, (Z) with ||@y, (Z) — wp, (Z)]] < 2
Send VL (hy) = —A(in, (Z) — hy) back to server
end
Server updates the model with
his1 = Projy, | h ! VLz(h) +G
t+1 = Projyy, | e —m - EZ z(h) + Gy
ZeBy
where Projy,, denotes the Euclidean projection onto W, and G; ~ N (0, 02I4) drawn
independently each iteration.
end

output:hr = L ST by

Note that Algorithm 1 has the similar structure of the mini-batch noisy SGD method in [19] if we

consider VL z(h¢) as the model updates and h; as model iterates. By adding Gaussian noise scaled
with (2L + b), a direct application of Theorem 3.1 in [19] completes the proof. O

Since the objective of the base learner Rz (w; h;) is a A-strongly convex problem, one can use
gradient decent to bound the approximation error at step 5 in Algorithm 1. Alternatively, the
base learner can use other stochastic optimization method i.e. SGD to achieve a high probability
bound on the approximation error, such that ||wy, (Z) — wp, (Z)|| < % with probability over 1 — &
By letting the overall failure probability m7'd’ on the same order of the privacy parameter J, the
privacy guarantee still holds. For the simplicity of the analysis, we assume the approximation error
l[n, (Z) — wn, (Z)]] < % always satisfies.

In the next theorem, we will give the excess risk of Amea-NsGD

K
2

eK
’ 2,/2dlog(1/5))'

e . 2L -
Theorem 4. (Utility guarantee) Under Assumptions 1, suppose A < Tt -min (

. K 2K? _ M __ 2L
Let T = min (g, 32d€10g(1/6)), = 5T and b = 7 Then,

E[&, (hr;p)] — ]gré%én(h;p) <0 (ML. (\/1? " dlzi(l/é)))

where lszjs the final model output by Algorithm 1, and the expectation is taken over the collection of
datasets Z and the inner randomness of the algorithm.

Note that the excess rate in Theorem 4 is with respect to &n (h; p), the proxy to the transfer risk. It
remains to show how it can be related to the excess rate of the true transfer risk &, (h; p). In the next
theorem, we give the excess transfer risk of Algorithm 1. The proof follows from [Theorem 6, [3]]
and decomposes the excess transfer rate into three components. We bound each component separately
and one of them is based on the excess rate achieved in Theorem 4.

Theorem 5. (Transfer risk) Recall the settings in Theorem 4, we have

z 22 A dlog(1/6) 1
E[E,(hr;p)] = & < S+ 5v2 +0 (ML <€K + ﬁ))



By letting A\ = %\/% we have

El&n (s )] — &, < 2\Lfv+o< (dl‘;f((l/‘”+\/%>>

where hy is the output of Amera-nscp and the expectation is taken w.r.t. Z and the inner randomness
of the algorithm.

Theorem 5 shows that when the number of tasks K is sufficiently large, the excess transfer risk
becomes O (%) Recall that V' is a measure of task similarity, hence when the optimal task

parameters are close to each other, V' can be much smaller than the diameter of the parameter
space which indicates better performance than local training where each task trains its own model
independently. Note one can also give a direct bound of the transfer risk of the output of Algorithm 1
based on the fact that || Ar — w,|| < [|[W|| = M for any task y with optimal parameter w,,, standard

derivation gives that E[E,, (hr; p)] — €, < O (LM ) which is the same as the excess risk for local

training. Therefore, Algorithm 1 is at least as good as local training, in the worst case, it recover the
performance of local training.

The rate achieved in Theorem 5 is on the same order of the non-private rate O ( N Aﬁ) from

[3] in the regime most common in practice where d = O(K) and ¢ = 6(1). Note that [8] obtains
0] (%) convergence on the number of tasks K under record-level privacy guarantee, but their analysis
relies on the assumption for the loss function to be a-quadratic growth, which we do not require
for our analysis. Furthermore, we have different definitions of excess transfer risk from [8], given
the meta learner Ay, the excess transfer risk in [8] is defined as &, (Ap; p) — mingew Epvp Ry (w)
while ours is defined as &,(An;p) — E,np [mingew Ry (w)]. Since mingew By p Ry (w) >
E, -, [min,ew R, (w)], our bound holds under a stronger definition for the excess transfer risk.
Hence, our bound is a valid upper bound for the notion defined in [8]. The detailed proofs of
Theorems 4 and 5 can be found in the appendix.

Communication-efficient, private meta Learning with DP-FTMRL Although Algorithm 1 gives
a transfer risk comparable with the non-private rate, it requires O (min {\/? , K3/2 / d}) rounds of

communication to each task on average. This can be expensive when the task number K is large but
each task only has limited computation and communication resource, which is a common setting
in distributed scenarios like federated learning. Therefore, we introduce a communication efficient
DP meta algorithm Differentially Private Follow-the-Meta-Regularized-Leader (DP-FTMRL) which
is based on the DP-FTRL algorithm in [23]. DP-FTMRL is a one-pass algorithm which means
that every task will be communicated by the server for only once. Furthermore, it processes each
task sequentially thus allows tasks to arrive in a stream. With high probability over the algorithm

inner randomness, DP-FTMRL obtains transfer risk of O (\L/‘f + ML ( Tt \d//f) ) This rate
is suboptimal compared with the one achieved in Theorem 5, but DP-FTMRL provides significant
savings on the communication cost. More details of DP-FTMRL can be found in the appendix.

Note: To get the excess transfer risk guarantee in Theorem 5, we need to set A = 2‘/@ \}

which requires the knowledge of the value of V, the task similarity. In fact, we can privately
approximate V' using its empirical counterpart; in particular, we can find a private counterpart for
V2 2 mingey = Son | || — @(Z;)||* where @(Z;) is a minimizer of the empirical loss of task Z;.
This can be done using standard DP convex optimization methods such Noisy Gradient Descent.
An alternative approach to choose a setting for A, which is quite common in practice, is to treat A
as a hyperparameter [4] and tune it privately. This can also be done using existing methods in the
literature of DP [24, 25].

5 Private Clustering-Based Meta Learning

In this section, we consider the case where the tasks are sampled from distribution with multiple
concentrations (e.g., a multi-modal distribution) where a single meta model is not enough to capture
the relationship among tasks. A natural extension is to cluster the tasks into several groups and train
a meta model for each group.
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To provide a more formal treatment, we let ¢ denote the number of possible meta models (clusters),
each is parametrized with a bias vector h;. These meta models are denoted as (h1, ho, ... hy). The
task similarity in the presence of ¢ meta modals is hence modified to

 (hi)

2
ch = min E,.,min ’
hi,...hq€W i€[q]

(®)

Recall that W, is the set of optimal parameters for task . Note that V.. is no larger than V' from
single meta learner case defined in (3). In the case when {IW,,} contains multiple disjoint and far
apart concentrations, V.. can be much smaller compared with V.

In particular, inspired by the idea of hypothesis based clustering from [26], we define the objective of
the meta-algorithm with ¢ meta learners as

1o Ty, Zf?%? el ©

where Lz(+) is the meta loss.

Given h = (hy ... h,), the base learner with dataset set Z first chooses the h; with lowest meta
loss, that is, C(Z) = argmin;c, Lz(h;) and output the corresponding minimizer wp,. ,, (Z) =

ming,ew Rz (w; ho(z)) = mingew Rz(w) + % ||w — he(z) H2 Therefore, the transfer risk is
defined as

En(hyp) =B, pEz Ry, (whc(Z)(Z))

We present our meta-clustering algorithm described in Algorithm 2, which is inspired by the HYP-
CLUSTER algorithm in [26]. Algorithm 2 is a heuristic algorithm aiming at minimizing the objective
(9) over hy, ... hy. Each iteration consists of two steps, the model selection step and model update
step. At the begmmng of one iteration, each sampled task selects the model from {h;}7_, that incurs
the lowest loss. After the assignment is done, the server will update each model with its corresponding
tasks.

We formally show the privacy guarantee of Algorithm 2. The performance of this algorithm in terms
of its transfer risk will be evaluated empirically since convergence to a true optima is not guaranteed

due to the non-convexity of &, (h, Z)) in h.

Algorithm 2: A, clusier: private clustering-based meta learning algorithm

input :q randomly initialized iterates h(l), h%, o hg, number of iterations 7, batch size m
2 _ 8T(2L+b) 1og(1/5)

E

Set noise variance o
fort=1,...,T—1do
Server samples a batch of tasks By of size m and sends {hi}?_; to B,
for each task Z in B; do
For i € [q], compute approximate minimizers of Rz x(w, h) as ¢ (Z) with
approximation error %

Select the model with smallest meta loss C(Z) = arg min;¢(, Rz (w},(2), h})
Compute the gradient VL (h C(Z)) - (mg(z) - htC(Z))
Send (C(Z), VLy(h; oz ))) back to server

end
For every i € [q], denote the set C} = {Z € B;|C(Z) = i}, server updates h! as

i : i 1 v i i
By = Projyy | hp =7+ | — > VLz(h) +Gi
ZeC}

where G¢ ~ N(0,01;) drawn independently each iteration ¢ and meta model i.
end

output: {h}, h%, ... h1}




Theorem 6. (Privacy guarantee) Let {h}, ... h}}scr be the output, Algorithm 2 is (¢, §)-differentially
private on task level.

Proof. Similar to Theorem 3, we have the norm of VL Z(htc(z)) is bounded by (2L + b) for any

choice of C(Z). Since each task only selects one meta model to update in each iteration, we consider
{hi}1_, as the model iterate and VL7 (h}) as the model update from the task, we can use the same
argument in Theorem 3 to complete the proof. O

6 Experiments

In this section, we empirically evaluate the performance of our algorithms under various privacy
regimes. On the one hand, we demonstrate the performance improvement of our algorithms over
local training. Meanwhile, when the tasks are sampled from multi-modal distribution, we show that
our clustering based algorithm achieves lower transfer risk than the single meta model paradigm.
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Figure 1: The transfer risk of A pea-cluster 0 linear regression task with respect to the number of tasks.
€ is the privacy parameter and g is the number of meta models (clusters).

We consider linear regression task with mean square loss. The weight vector w,, is d-dimentional
vectors that concentrates around one or more common vectors. We let d = 30 for all experiments.
The feature vector x is uniformly sampled from unit ball, and the label y = (w,,, ) + n where n is
the zero mean Gaussian noise with standard deviation equal to 0.5.

Single cluster case: For each task p, its d-dimensional weight vector w,, is sampled from Gaussian
distribution with mean h and with variance o2, denoted as ' (h, o%I;). In the experiment, o = 1 and
h is a vector with all entries equal to 4. Each task contains 10 datapoints (z;,;).2;. The privacy
parameters ¢ are chosen from {1,3,10} and § is set as 10~°. We set the clipping norm to 2 and use
the functions from ZTensorFlow privacy[27] to choose the noise multiplier to fit the privacy budget. In
Figure 1, the transfer risks of our meta learning algorithm are substantially better than the transfer risk
of local training even in high privacy regimes when ¢ = 1. Furthermore, by comparing the transfer
risks for different €’s, we show that the performance gaps are much less significant compared with the
gap between local training. In modest privacy regimes when € = 3 or 10, the corresponding transfer
risks are quite close to the non-private rate (€ = 00).

Multi clusters case: The weight vector is sampled from the distribution N'(h, 0%Z,) where h is
uniformly sampled from the seth = {hq, ... h;}. In the experiment, ¢, the number of cluster in the un-
derlying distribution, is set to be 3, o = 0.5 and we choose {h1, hz, h3} to be three orthogonal vectors
with different norms. More specifically, hy = [2...2,0,...0], ha =[0,...,0,—4...,—4,0,...0]
and hy = [0,...,0,6,...6], and each @, has 10 non-zero components. The privacy parameters € are
chosen from {3, 10} and ¢ is set as 1075, the clipping norm is set to 1. Furthermore, we set g, the
number of meta models in Algorithm 2, from 1 to 3 and report the transfer risk with each q. The
plots in Figure 2 confirms our claim that we can achieve better performance by adding the number of
meta models. By choosing different number of meta models, the performance gap can be significant.
Meanwhile, similar to the single cluster case, with the same number of clusters, we see relatively
small performance difference under various privacy parameters.



In Appendix C, we present additional experiments to evaluate our algorithms on Omniglot [28]
few-shot classification tasks, where we demonstrate an improved performance over existing DP meta
learning methods.

7 Conclusion and Future Work

In this work, we studied the meta learning problem with task-level privacy. When a single meta model
is trained, we have shown, both theoretically and empirically, that our private meta algorithm achieves
better performance than local training when the variation among the tasks is relatively small. To
deal with more complex task distribution, we also proposed a private clustering-based meta learning
algorithm that outputs multiple meta models. This approach can provide noticeable performance
gains over the single meta model paradigm as demonstrated by our empirical results.

An interesting direction for future work is to formally study the accuracy guarantees of our clustering-
based algorithm. Due to the non-convexity of the objective function, theoretical analysis on the
transfer risk may be challenging. However, it is still possible to obtain a guarantee to characterize the
generalization property of the clustering-based algorithm.
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